Insertion Heuristics for a Class of Dynamic
Vehicle Routing Problems

Matthew Randall* Ahmed Kheirif Adam N. Letchford?

November 2022

Abstract

We consider a simple family of dynamic vehicle routing problems, in
which we have a fixed fleet of identical vehicles, and customer requests
arrive during the route-planning process. For this kind of problem, it
is natural to use an insertion heuristic. We test several such heuristics
computationally, on two different variants of the problem. It turns out
that a parallel heuristic, based on a certain “sum-of-squares” insertion
criterion, significantly outperforms the others.

Keywords: dynamic vehicle routing; insertion heuristics; parallel in-
sertion

1 Introduction

Vehicle routing problems (VRPs) are a very well-known class of combinato-
rial optimisation problems, and there is a huge literature on them, including
several books (e.g., [2, 11, 24]). An important distinction in the VRP lit-
erature is between static VRPs, in which all of the relevant data is known
before the routes need to be planned, and dynamic VRPs, in which new
information can come in during the route-planning process, or even after
the vehicles have set off (e.g., [16, 18]). Dynamic VRPs tend to be much
harder to solve than static ones, yet they have received less attention.

In this paper, we consider one specific dynamic situation, in which cus-
tomer requests arrive one at a time, and the routes must be constructed as
the requests come in. In this context, it is natural to use insertion heuristics.
The idea of such a heuristic is that we start with a collection of “empty”
routes, and then iteratively attempt to insert each new customer into one
of the routes.

*STOR-i Centre for Doctoral Training, Lancaster University, Lancaster LA1 4YR, UK.
E-mail: M.Randallil@lancaster.ac.uk

fDepartment of Management Science, Lancaster University, Lancaster LA1 4YX, UK.
E-mail: {A.Kheiri,A.N.Letchford}@lancaster.ac.uk

Insertion heuristics were first introduced for the TSP [20], and then
extended to the VRP with time windows by Solomon [23]. Since then,
many more insertion heuristics have been devised for various static VRPs
(e.g., [22, 17, 21, 12, 14]).

Insertion heuristics do not give particularly good solutions for static
VRPs, and they tend to be combined with local search heuristics or meta-
heuristics [8, 10]. Nevertheless, insertion heuristics remain an attractive
alternative for the dynamic VRPs that we are considering here. (In fact, in
some circumstances, they may be the only option, because there may not
be sufficient time between consecutive requests to perform local search.)

The aim of this paper is to gain more insight into the relative perfor-
mance of various insertion heuristics in the dynamic setting. We consider five
different insertion heuristics, which we call “sequential”, “quasi-sequential”,
“naive parallel”, “seeded paralle]” and “sum-of-squares parallel”. We also
consider two different dynamic VRPs: a dynamic version of the capacitated
VRP [7] and a dynamic version of the distance-constrained VRP [13]. It
turns out that the sum-of-squares heuristic significantly outperforms the
others for both problems.

The paper has the following structure. In Section 2, we define our
two problems formally. In Section 3, we describe several different inser-
tion heuristics. The computational results are given in Section 4. Finally,
Section 5 contains some concluding remarks.

2 Two Dynamic VRPs

In this section, we explain our dynamic setting in more detail, and then
define our two specific dynamic VRPs.

2.1 General setup

We have a single depot and a fixed fleet of m identical vehicles, all of which
must start and finish their routes at the depot. There may also be side
constraints, such as limited vehicle capacities or a restriction on the length
of each route. The primary objective is to maximise the number of customers
served, but the secondary objective is to minimise the total travel distance.

A total of n customers will place orders, but the value of n is not known in
advance, nor are the locations of the customers. We assume that there is an
“ordering period”, during which customer orders are placed and routes are
constructed simultaneously. We will view the ordering period as consisting
of n “decision epochs”, numbered from 1 to n. At the start of epoch e,
the eth customer reveals their location, together with any other relevant
information (such as demands or time windows). An insertion heuristic
must then decide (a) whether it is possible to insert the order into one of
the existing routes and, if so (b) where to insert the order.

To describe this in detail, we introduce some notation. Fore =1,...,n,
we let A, denote the set of customers whose requests have been accepted
by the end of epoch e. We also use the convention that Ag = (). In epoch
e, the insertion heuristic attempts to find a feasible way to insert customer
e into one of current routes. If it is successful, the request of customer e is
accepted, and A, is set to Ac_; U {e}. Otherwise, the request is declined
and A, is set to A._1.

Now, for i = 1,...,m and e = 1,...,n, we let C;. denote the set of
customers that have been allocated to the ith vehicle at the end of epoch e.
We also use the convention that C;o =) for i = 1,..., m. Note that

In any given epoch, the current route for vehicle i is stored as an ordered
sequence of nodes:

R = (O,rgi), . ’Tl(gi,e‘70)T’

where T‘J@ € {1,...,e} represents the jth customer visited by vehicle i.
Note that r((f) = rfgieH‘l = 0 denotes the depot, since each route starts
and ends there. At the start of the heuristic, the routes are initialised as
R() = (0,0)T. If the insertion heuristic accepts the customer’s order during
epoch e, the heuristic then selects a vehicle ¢, along with a position in that
vehicle’s route, and e is inserted into R(*) in the given position.

With this notation, the primary objective is to maximise |A4,|, and the
secondary objective is to minimise

where d(j,7) = d(j',j) denotes the distance between customers j and j’,
and d(0, j) denotes the distance between the depot and customer j.

2.2 A dynamic capacitated VRP

Our first problem is a dynamic version of the well-known capacitated VRP
[7]. We are given a positive integer (), representing the vehicle capacity.
Each customer will have a positive integer demand, which is not known in
advance. The total demand of the customers served by any single vehicle
must not exceed (). In our notation, we require

Y e<Q (i=1,...,m),

eGCi’n

where ¢. denotes the demand of the eth customer.

We will call this problem the dynamic capacitated VRP, or DCVRP for
short.

2.3 A dynamic distance-constrained VRP

In our second problem, we have a distance constraint instead of a capacity
constraint (see [13]). More precisely, we are given a positive integer D,
and the length of each vehicle route is not permitted to exceed D. In our
notation, this amounts to imposing

|Ci,n‘ A .
S d(r) <D (=1....m).
7=0

We will call this problem the dynamic distance-constrained VRP, or DDVRP
for short.

3 Five Insertion Heuristics

The general framework mentioned in Subsection 2.1 permits one to define
many different insertion heuristics, depending on the precise rule used to
select the insertion point. In this section, we will consider five specific rules
and discuss their pros and cons.

3.1 Sequential insertion

In sequential insertion, the vehicles are filled one at a time. We allocate as
many customers as possible to vehicle ¢ = 1, until we encounter a customer
that cannot be inserted into the route of that vehicle (due to capacity or
distance constraints). From that point, we allocate as many customers as
possible to vehicle i = 2, and so on. The process continues until (a) there
are no more vehicles available or (b) the ordering period has ended. (In
the case of the DDVRP, we disregard any customers that cannot possibly
appear on any route, i.e., any customer e for which 2d (0,¢e) > D).

Now, suppose that we have found that customer e can be inserted into
the 7th route. If there are several possible insertion points, we simply choose
the point which leads to the smallest increase in the length of the ith route.
More precisely, we search sequentially through R(® to find the position j

which minimises
d (TJ@, e) +d (e, Tj(i)l) —d (rj@, 7’5’21) .

We remark that, although sequential insertion is a very simplistic heuris-
tic, it may be necessary in real-world applications where orders can arrive
even after some of the vehicles have been sent out.

3.2 Quasi-sequential insertion

Observe that it could happen that the current customer cannot be inserted
into route ¢, but a later customer can be. (In the case of the DCVRP, this
could happen if the current customer has a very large demand. In the case
of the DDVRP, it could happen if the current customer is far away from
route 7.) This leads us to consider a modified version of sequential insertion,
which we call quasi-sequential.

The idea is as follows. If it is possible to insert a customer into the first
route, we do so. Otherwise, we check whether the customer can be inserted
into the second route. If it is possible, we do so. And so on. The process
continues until the end of the ordering period. If there are several possible
insertion points in any given epoch, we again choose the point which leads
to the smallest increase in the length of the given route.

3.3 Naive parallel insertion

Our third insertion rule is called naive parallel insertion. Here, we attempt to
construct routes for all of the vehicles in parallel. More precisely, whenever
a new customer requests a delivery, we check all possible insertion positions
in all of the m routes. If a feasible insertion point exists, the request is
accepted. If there are several feasible insertion points, we choose the point
which leads to the smallest increase in the total length of the routes.

We call this rule naive for the following reason. In practice, we found that
the naive insertion heuristic behaves in a more-or-less sequential manner. To
see why, suppose that we have just inserted the first customer into the first
route, and we are now considering where to insert the second customer.
Due to the triangle inequality, it will almost always be cheaper to insert
the second customer into the first route rather than into one of the other
routes. This in turn will make it more likely that the third customer will be
inserted into the first route as well. As a result, the routes tend to “fill up”
one after another, and the resulting solution tends to be very similar to the
one obtained with quasi-sequential insertion.

We will comment on this phenomenon again in Section 4.

3.4 Parallel insertion with seeds

Our fourth insertion rule is called parallel insertion with seeds. In this
method, we “seed” the routes, in an attempt to prevent the behaviour men-
tioned in the previous subsection. More precisely, in the first m decision
epochs, each customer is allocated to a different route. From that point on,
we proceed as in naive parallel insertion.

3.5 Sum of squares insertion

Our fifth and final rule is inspired by the work of Bektag and Letchford [3].
They observed that, in optimal solutions to (static) VRPs, some routes are
often much longer than others. Such solutions will be perceived as unfair
by the drivers. To address this, they proposed to minimise the sum of the
squared route lengths rather than the sum of the route lengths.

Although [3] was concerned with static VRPs, one can apply the same
concept to dynamic VRPs. To do this, we modify the naive insertion rule
in the following way. If there are several feasible insertion points for a given
customer e, we choose the point which leads to the smallest increase in
the sum of the squared route lengths. That is, we check all vehicles ¢ and
positions j sequentially for that which minimises

(Ti,eﬂ +d (r](.i)7 e) +d (e, 1"]@1) —d (rj(.i), 7“](21»2 — Tfe_l,

where
| C’L e— 1

Tie1 = Z d(’"k 7rk+1>

is the total travel distance of route i at the end of epoch e — 1.
We call this last insertion rule sum-of-squares (SoS) insertion. We will
see in the next section that the SoS insertion performs remarkably well.

4 Computational Results

In this section, we describe our computational experiments and present the
results. Subsection 4.1 presents some preliminary remarks. Subsections
4.2 and 4.3 report results for the DCVRP with general and unit demands,
respectively. Finally, Subsection 4.4 gives the results for the DDVRP.

4.1 Preliminary remarks

The five insertion heuristics were coded in C++ and compiled using g++.
All experiments were run on an Intel Xeon® Gold 6248R processor running
at 3.00 GHz with 128GB of RAM.

As far as we know, there are no benchmark instances available for the
dynamic VRPs under consideration. Accordingly, we selected some static
benchmark instances, and converted them into dynamic VRPs simply by
assuming that the customer information is revealed one customer at a time.

It is important to note that the order in which the customers appear
can affect the solution that is obtained by any of our insertion heuristics.
For this reason, we apply each of our heuristics 1000 times on each instance,
randomising the customer order each time.

Table 1: Average number of customers served for the DCVRP instances (to
2 dp). Values in bold mean that all customers were always served.

Instance Q Seq QSeq Naive Seed SoS

E-n13-k4 6000 12.00 12.00 12.00 12.00 12.00
E-n22-k4 6000 19.93 21.00 20.99 20.85 20.76
E-n23-k3 4500 21.24 22.00 22.00 21.70 21.56
E-n30-k3 4500 26.29 28.96 28.96 28.79 28.48
E-n31-k7 140 26.14 29.99 29.98 29.53 29.81
E-n33-k4 8000 31.15 32.00 32.00 31.98 32.00
E-n51-k5 160 48.48 50.00 50.00 49.89 49.69
E-n76-k7 220 74.40 75.00 75.00 75.00 75.00
E-n76-k8 180 74.40 75.00 75.00 75.00 74.99
E-n76-k10 140 71.31 74.99 74.93 74.45 74.20
E-n76-k14 100 75.00 75.00 75.00 75.00 75.00
E-n101-k8 200 100.00 100.00 100.00 100.00 100.00
E-n101-k14 112 98.24 100.00 100.00 100.00 100.00
F-n45-k4 2010 41.56 44.00 44.00 43.89 43.76
F-n72-k4 30000 71.00 71.00 71.00 71.00 71.00

F-n135-k7 2210 134.00 134.00 134.00 134.00 134.00
M-n101-k10 200 100.00 100.00 100.00 100.00 100.00

M-n121-k7 200 118.21 120.00 120.00 120.00 119.99
M-n151-k12 200 149.98 150.00 150.00 150.00 150.00
M-n200-k16 200 190.07 19777 198.35 197.59 197.38
M-n200-k17 200 198.95 199.00 199.00 199.00 199.00

4.2 Results for the DCVRP with general demands

Our first set of DCVRP instances is based on the classical ‘E’, ‘F’ and ‘M’
CVRP instances, due to [5], [9] and [6], respectively. These instances are
all available in the TSPLIB [19], and optimal solution values are known for
all of them (see [15]). In these instances, customers have general demands.
(This means that the demands may be of different sizes.)

Table 1 shows the average number of customers served for each instance
and each heuristic, where the average is taken over 1000 random customer
orders as mentioned above. The first column gives the instance name. (The
convention is that “n” represents the total number of nodes, including the
depot, and “k” represents the number of vehicles.) The second column shows
the vehicle capacity. The columns headed “Seq” and “QSeq” correspond to
the sequential and quasi-sequential heuristics, respectively. The remaining
three columns correspond to the naive, seeded and SoS parallel heuristics.
If a number is in bold, it indicates that the given heuristic always managed
to serve all of the customers for the given instance, regardless of the order
in which the customers were permuted.

It is clear that, for these instances, it is fairly easy to satisfy the majority

Table 2: Average total distance for the DCVRP instances. The best value
for each instance is given in bold.

Instance Stat Seq QSeq Naive Seed SoS

E-n13-k4 247 354 346 343 319 313
E-n22-k4 375 613 626 612 490 441
E-n23-k3 569 786 771 748 631 617
E-n30-k3 534 775 792 772 624 554
E-n31-k7 379 862 904 756 672 666
E-n33-k4 835 1100 1104 1088 1017 1076
E-n51-k5 521 964 979 966 746 646
E-n76-k7 682 1446 1422 1399 980 836
E-n76-k8 735 1553 1554 1519 1077 933
E-n76-k10 830 1698 1742 1687 1191 1064
E-n76-k14 1021 1814 1743 1691 1135 1087
E-n101-k8 815 1800 1777 1736 1185 1024
E-n101-k14 1067 2381 2359 2251 1503 1396
F-n45-k4 724 1333 1315 1227 979 860
F-n72-k4 237 545 484 457 428 293
F-n135-k7 1162 2844 2673 2596 1809 1648
M-n101-k10 820 2346 2290 2275 1399 1180
M-n121-k7 1034 2168 2177 2167 1901 1792

M-n151-k12 1015 2645 2608 2547 1613 1411
M-n200-k16 1274 3376 3350 3354 2086 1884
M-n200-k17 1275 3559 3460 3384 2043 1866

of the customers. One can check that the mean percentages of customers
served by the five heuristics, taken over all of the instances, were 97.36%,
99.98%, 99.97%, 99.70% and 99.59%, respectively. Thus, all heuristics apart
from the sequential one perform extremely well. Note also that the quasi-
sequential and naive parallel heuristics found solutions of very similar qual-
ity. This is due to the phenomenon mentioned in Subsection 3.3.

Table 2 reports the average total distance of the solutions found by the
heuristics. Here, there is an extra column, labelled “Stat”, which gives the
total distance for the optimal solution to the static version of the problem.
In the last five columns, each figure is rounded to the nearest integer. The
best value for each instance is given in bold.

As one would expect, the heuristic solutions to the dynamic CVRP are
significantly worse than the optimal solution to the static version. Among
the five heuristics, the SoS version is the winner, with the seeded version a
close second. In fact, the solutions found by the seeded version were on aver-
age 14.7% longer than the ones found by the SoS version, and the solutions
found by the other three heuristics were over 50% longer on average.

It might be objected that the distance figures are not comparable, given

that the heuristics sometimes failed to serve every customer. So, for inter-
est, we computed the mean distance travelled per customer served for each
heuristic and each instance. The average figures for the five heuristics, over
all instances, were 23.9, 23.0, 22.2, 17.1 and 15.8, respectively. So, also using
this measure, the seeded and SoS versions come out top. (For interest, the
corresponding figure for the optimal static solution was 12.3.)

In order to gain more insight into the behaviour of the five insertion rules,
we computed some more statistics for the largest instance, M-n200-k17. For
each of the five rules, and for each epoch of the ordering period, we computed
the mean number of vehicles in use (i.e., the mean number of vehicles that
had at least one customer assigned to them). Figure 1 shows the results,
where each curve corresponds to a different insertion rule. The curve at the
bottom, which is blue in the online version of this paper, corresponds to the
sequential insertion rule. As expected, it fills up the routes one at a time.
The next curve up, which is pink in the online version, represents the quasi-
sequential and naive parallel insertion rules. (The two methods give almost
identical results for this instance.) This curve is only slightly higher than the
bottom one, showing that the quasi-sequential and naive parallel insertion
rules behave in an “almost sequential” manner. The next curve up, which is
black in the online version, represents the SoS insertion rule. It is apparent
that more vehicles are in use throughout the ordering period. Finally, the
curve at the top, which is green in the online version, corresponds to the
seeded parallel insertion rule. It inserts the first m customers into different
vehicles, as it is designed to.

4.3 Results for the DCVRP with unit demands

Next, we applied the heuristics to DCVRP instances with unit demands.
(That is, every customer has a demand equal to 1.) These instances were
based on the static unit-demand CVRP instances described in Araque et al.
[1]. (They were kindly provided to us by Jens Lysgaard.)

Note that, in the unit-demand case, all five heuristics will always serve
exactly min{n, mQ} customers. Thus, for these instances, we report only the
total travel distance. Moreover, the sequential and quasi-sequential heuris-
tics will always generate the same solution, since the first Q) customers will
be inserted into the first route, the next) into the second route, and so on.

Table 3 shows some statistics for these instances, along with the average
total distances. The first five columns show the instance name, number of
customers, number of vehicles, capacity (), and the optimal total distance
for the static problem. The column headed “Seq” contains the results for
the sequential and quasi-sequential heuristics. The other columns are as in
Table 2. As before, the best value for each instance is given in bold.

Here, there is a clear hierarchy, with the SoS rule giving the best re-
sults by far, and the seeded rule coming second. Moreover, as before, the

15

10

Number of Vehicles in Use

0 50 100 150 200

Epoch

Figure 1: Mean number of vehicles in use at each epoch with various inser-
tion methods for instance “M-n200-k17”.

Table 3: Average total distance for the unit-demand DCVRP instances. The
best value for each instance is given in bold.

Instance n m Q Stat Seq Naive Seed SoS

AKMP1 40 4 10 647 1183 1183 920 818
AKMP7 50 7 8§ 875 17rr 1777 1210 1076
AKMP8 50 4 15 678 1296 1296 931 780
AKMP13 60 2 30 688 1050 1050 923 850
AKMP15 21 7 3 530 830 830 668 631
AKMP16 21 3 7T 341 540 540 445 414
AKMP17 29 8 4 832 1524 1524 1080 1037
AKMP18 29 5 6 639 1176 1176 885 819
AKMP19 32 7 5 627 1059 1059 821 741
AKMP20 32 4 8 497 811 811 682 610

10

Table 4: Average number of customers served for the DDVRP instances (to
2 dp). The best value for each instance is given in bold.

Instance n Seq QSeq Naive Seed SoS

AKMP1 40 10.72 30.92 33.40 34.61 37.09
AKMP7 50 10.95 36.62 38.40 37.56 39.90
AKMPS 50 10.22 33.2 35.76 37.64 40.95
AKMP13 60 21.81 36.43 3748 45.06 49.80
AKMP15 21 10.68 16.26 16.39 15.17 16.41

AKMP16 21 7.03 16.66 1731 17.36 18.22
AKMP17 29 14.44 18.00 18.00 19.29 18.00
AKMP18 29 859 21.53 2191 20.82 22.14

AKMP19 32 12.38 27.00 2781 26.51 28.35
AKMP20 32 11.45 2722 2838 28.44 29.91

(quasi-)sequential and naive parallel heuristics found solutions of very simi-
lar quality.

4.4 Results for the DDVRP

Finally, to construct our DDVRP instances, we simply took the ten Araque
et al. instances and replaced the capacity constraint with a distance con-
straint. To ensure that the distance constraint was a genuine restriction, we
set D to [OPT/m], where OPT is the figure displayed in the fifth column
of Table 3. Note that the optimal solutions of these new instances are not
known, not even for the static version of the DVRP.

Table 4 shows the average number of customers served for these in-
stances. The format is similar to that of the previous tables. The best value
for each instance is given in bold. Once again, the “SoS” heuristic is the
clear winner.

Finally, as in the previous subsection, we computed the mean distance
travelled per customer for each heuristic and each instance. The average
figures for the five heuristics were 45.4, 24.1, 23.1, 23.4 and 21.4, respec-
tively. Here, again, the SoS variant performs very well. We remark that the
extremely poor performance of the sequential variant here is caused by the
presence of a few customers that cannot be served at all, because they are
too far from the depot.

It remains to be explained why the SoS heuristic performs so well. A
possible explanation follows. By penalising long routes, the SoS rule causes
the routes to have similar lengths throughout the ordering period. As a
result, none of the routes are likely to be completely full until near the end
of the ordering period. Thus, for all customers except the last, there tend
to be many feasible insertion positions. This increased number of options
allows for more efficient insertion of the later customers, which tends to

11

outweigh the slightly less efficient insertion of the earliest customers.

5 Conclusions

We tested five different insertion heuristics for dynamic VRPs. The main
conclusions are (a) if a parallel insertion heuristic is implemented in a naive
way, it is likely to perform as poorly as the sequential version, and (b) good
results are obtained by inserting customers in the position that minimises
the sum of the squared route lengths.

An interesting topic for future research is whether the “sum-of-squares”
insertion heuristic can be adapted to more complex dynamic VRPs, such
as ones in which each prospective customer must be offered a selection of
possible time windows (see [4]).

Acknowledgements: The authors thank Jens Lysgaard for sharing the
AKMP instances with us. The first author gratefully acknowledges financial
support from the EPSRC (through the STOR-i Centre for Doctoral Training
under grant EP/S022252/1), and from Tesco PLC.

References

[1] J.R. Araque, G. Kudva, T.L. Morin, and J.F. Pekny. A branch-and-
cut algorithm for vehicle routing problems. Ann. Oper. Res., 50:37-59,
1994.

[2] M.O. Ball, T.L. Magnanti, C.L.. Monma, and G.L. Nemhauser, editors.
Network Routing. North Holland, Amsterdam, 1995.

[3] T. Bektas and A.N. Letchford. Using ¢P-norms for fairness in combina-
torial optimisation. Comput. Oper. Res., 120: article 104975, 2020.

[4] A.M. Campbell and M.W.P. Savelsbergh. Incentive schemes for at-
tended home delivery services. Transp. Sci., 40:327-341, 2006.

[5] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching
problem. J. Oper. Res. Soc., 20:309-318, 1969.

[6] N. Christofides, A. Mongozi, and P. Toth. The vehicle routing prob-
lem. In N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors,
Combinatorial Optimization, pages 315-338. Wiley, Chichester, 1979.

[7] G.B.Dantzig and J.H. Ramser. The truck dispatching problem. Manag.
Sci., 6:80-91, 1959.

12

8]

[10]

[11]

[12]

[13]

R. Elshaer and H. Awad. A taxonomic review of metaheuristic algo-
rithms for solving the vehicle routing problem and its variants. Comput.
Ind. Eng., 140: article 106242, 2020.

M.L. Fisher. Optimal solution of vehicle routing problems using mini-
mum k-trees. Oper. Res., 42:626—642, 1994.

M. Gendreau, J.-Y. Potvin, O. Braysy, G. Hasle, and A. Lgkketangen.
Metaheuristics for the vehicle routing problem and its extensions: a cat-
egorized bibliography. In B.L. Golden, S. Raghavan, and E.A. Wasil,
editors, The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, pages 143-169. Springer, Boston, MA, 2008.

B.L. Golden, S. Raghavan, and E.A. Wasil, editors. The Vehicle Routing
Problem: Latest Advances and New Challenges. Springer, Boston, MA,
2008.

G. Ioannou, M. Kritikos, and G. Prastacos. A greedy look-ahead heuris-
tic for the vehicle routing problem with time windows. J. Oper. Res.
Soc., 52:523-537, 2001.

G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for
the distance constrained vehicle routing problem. Networks, 14:161—
172, 1986.

K.-W. Pang. An adaptive parallel route construction heuristic for the
vehicle routing problem with time windows constraints. Fxpert Syst.
Appl., 38:11939-11946, 2011.

D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-
and-price for capacitated vehicle routing. Math. Program. Comput.,
9:61-100, 2017.

V. Pillac, M. Gendreau, C. Guéret, and A.L. Medaglia. A review of
dynamic vehicle routing problems. FEur. J. Oper. Res., 225:1-11, 2013.

J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm
for the vehicle routing and scheduling problem with time windows. Eur.
J. Oper. Res., 66:331-340, 1993.

H.N. Psaraftis, M. Wen, and C.A. Kontovas. Dynamic vehicle routing
problems: Three decades and counting. Networks, 67:3-31, 2016.

G. Reinelt. TSPLIB-a traveling salesman problem library. ORSA J.
Comput., 3:376-384, 1991.

D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis. An analysis of several
heuristics for the traveling salesman problem. SIAM J. Comput., 6:563—
581, 1977.

13

[21] R.A. Russell. Hybrid heuristics for the vehicle routing problem with
time windows. Transp. Sci., 29:156-166, 1995.

[22] M.W.P. Savelsbergh. A parallel insertion heuristic for vehicle routing
with side constraints. Stat. Neerl., 44:139-148, 1990.

[23] M.M. Solomon. Algorithms for the vehicle routing and scheduling prob-
lems with time window constraints. Oper. Res., 35:254-265, 1987.

[24] P. Toth and D. Vigo, editors. Vehicle Routing: Problems, Methods, and
Applications. STAM, Philadelphia, PA, 2014.

14

