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Abstract

We consider the projected gradient algorithm for the nonconvex best subset se-
lection problem that minimizes a given empirical loss function under an ℓ0-norm
constraint. Through decomposing the feasible set of the given sparsity constraint as
a finite union of linear subspaces, we present two acceleration schemes with global
convergence guarantees, one by same-space extrapolation and the other by subspace
identification. The former fully utilizes the problem structure to greatly accelerate
the optimization speed with only negligible additional cost. The latter leads to a
two-stage meta-algorithm that first uses classical projected gradient iterations to
identify the correct subspace containing an optimal solution, and then switches to a
highly-efficient smooth optimization method in the identified subspace to attain
superlinear convergence. Experiments demonstrate that the proposed accelerated
algorithms are magnitudes faster than their non-accelerated counterparts as well as
the state of the art.

1 Introduction

We consider the sparsity-constrained optimization problem in ℜn:
minw∈As

f(w), (1)
where f is convex with L-Lipschitz continuous gradient, s ∈ N, and As is the sparsity set given by

As := {w ∈ ℜn : ∥w∥0 ≤ s}, (2)
where ∥w∥0 denotes the ℓ0-norm that indicates the number of nonzero components in w. We further
assume that f is lower-bounded on As.

A classical problem that fits in the framework of (1) is the best subset selection problem in linear
regression [6, 20]. Given a response vector y ∈ ℜm and a design matrix of explanatory variables
X ∈ ℜm×n, traditional linear regression minimizes a least squares (LS) loss function

f(w) = ∥y −Xw∥2/2. (3)
However, due to either high dimensionality in terms of the number of features n or having significantly
fewer instances m than features n (i.e., m ≪ n), we often seek a linear model that selects only a
subset of the explanatory variables that will best predict the outcome y. Towards this goal, we can
solve (1) with f given by (3) to fit the training data while simultaneously selecting the best-s features.
Indeed, such a sparse linear regression problem is fundamental in many scientific applications, such
as high-dimensional statistical learning and signal processing [22]. The loss in (3) can be generalized
to the following linear empirical risk to cover various tasks in machine learning beyond regression

f(w) = g(Xw), g(z) =
∑m

i=1
gi(zi), (4)

where g is convex. Such a problem structure makes evaluations of the objective and its derivatives
highly efficient, and such efficient computation is a key motivation for our algorithms for (1).
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Related Works. The discontinuous cardinality constraint in (1) makes the problem difficult to
solve. To make the optimization problem easier, a popular approach is to slightly sacrifice the quality
of the solution (either not strictly satisfying the sparsity level constraint or the prediction performance
is deteriorated) to use continuous surrogate functions for the ℓ0-norm, which lead to a continuous
nonlinear programming problem, where abundant algorithms are at our disposal. For instance, using
a convex penalty surrogate such as the ℓ1-norm in the case of LASSO [35], the problem (1) can be
relaxed into a convex (unconstrained) one that can be efficiently solved by many algorithms. Other
algorithms based on continuous nonconvex relaxations such as the use of smoothly clipped absolute
deviation [15] and the minimax concave penalty [40] regularizers are also popular in scenarios with
a higher level of noise and outliers in the data. However, for applications in which enforcing the
constraints or getting the best prediction performance is of utmost importance, solving the original
problem (1) is inevitable. (For a detailed review, we refer the interested reader to [11, Section 1].)
Unfortunately, methods for (1) are not as well-studied as those for the surrogate problems. Moreover,
existing methods are indeed still preliminary and too slow to be useful in large-scale problems often
faced in modern machine learning tasks.

In view of the present unsatisfactory status for scenarios that simultaneously involve high-volume data
and need to get the best prediction performance, this work proposes efficient algorithms to directly
solve (1) with large-scale data. To our knowledge, all the most popular algorithms that directly tackles
(1) without the use of surrogates involve using the well-known projected gradient (PG) algorithm, at
least as a major component [10–13, 3].1 [10] proved linear convergence of the objective value with
the LS loss function (3) for the iterates generated by PG under a scalable restricted isometry property,
which also served as their tool to accelerate PG. However, given any problem instance, it is hard, if
not computationally impossible, to verify whether the said property holds. On the other hand, [11]
established global subsequential convergence to a stationary point for the iterates of PG on (1) without
the need for such isometry conditions, and their results are valid for general loss functions f beyond
(3). While some theoretical guarantees are known, the practicality of PG for solving (1) remains a
big problem in real-world applications as its empirical convergence speed tends to be slow. The PG
approach is called iterative hard thresholding (IHT) in studies of compressed sensing [13] that mainly
focuses on the LS case. To accelerate IHT, several approaches that alternates between a PG step and
a subspace optimization step are also proposed [12, 3], but such methods mainly focus on the LS
case and statistical properties, while their convergence speed is less studied from an optimization
perspective. Recently, “acceleration” approaches for PG on general nonconvex regularized problems
have been studied in [26, 36]. While their proposed algorithms are also applicable to (1), the obtained
convergence speed for nonconvex problems is not faster than that of PG.

This work is inspired by our earlier work [1], which considered a much broader class of problems
without requiring convexity nor differentiability assumptions for f , and hence obtained only much
weaker convergence results, with barely any convergence rates, for such general problems.

Contributions. In this work, we revisit the PG algorithm for solving the general problem (1) and
propose two acceleration schemes by leveraging the combinatorial nature of ℓ0-norm. In particular, we
decompose the feasible set As as the finite union of s-dimensional linear subspaces, each representing
a subset of the coordinates {1, . . . , n}, as detailed in (7) of Section 2. Such subspaces are utilized
in devising techniques to efficiently accelerate PG. Our first acceleration scheme is based on a
same-space extrapolation technique such that we conduct extrapolation only when two consecutive
iterates wk−1 and wk lie in the same subspace, and the step size for this extrapolation is determined
by a spectral initialization combined with backtracking to ensure sufficient function decrease. This
is motivated by the observation that for (4), objective and derivatives at the extrapolated point can
be inferred efficiently through a linear combination of Xwk−1 and Xwk. The second acceleration
technique starts with plain PG, and when consecutive iterates stay in the same subspace, it begins to
alternate between a full PG step and a truncated Newton step in the subspace to obtain superlinear
convergence with extremely low computational cost. Our main contributions are as follows:

1. We prove that PG for (1) is globally convergent to a local optimum with a local linear rate,
improving upon the sublinear results of Bertsimas et al. [11]. We emphasize that our framework,
like [11], is applicable to general loss functions f satisfying the convexity and smoothness

1 [17] proposed an algorithm for a similar optimization problem that minimizes f(w) + C∥w∥0 for some
C > 0. But whether it is equivalent to (1) is unclear because both problems are nonconvex, and for any
prespecified sparsity level s, it is hard to find C that leads to a solution w∗ with ∥w∗∥0 = s.

2



requirements, and therefore covers not only the classical sparse regression problem but also many
other ones encompassed by the empirical risk minimization (ERM) framework.

2. By decomposing As as the union of linear subspaces, we further show that PG is provably capable
of identifying a subspace containing a local optimum of (1). By exploiting this property, we
propose two acceleration strategies with practical implementation and convergence guarantees
for the general problem class (1). Our acceleration provides both computational and theoretical
advantages for convergence, and can in particular obtain superlinear convergence.

3. In comparison with existing acceleration methods for nonconvex problems [26, 36], this work
provides new acceleration schemes with faster theoretical speeds (see Theorems 3.2 and 3.3), and
beyond being applied to the classical PG algorithm, those schemes can also easily be combined
with existing accelerated PG approaches to further make them converge even faster.

4. Numerical experiments exemplify the significant improvement in both iterations and running time
brought by our acceleration methods, in particular over the projected gradient algorithm by [11]
as well as the accelerated proximal gradient method for nonconvex problems proposed by [26].

This work is organized as follows. We review the projected gradient algorithm and prove its local
linear convergence and subspace identification for arbitrary smooth loss functions in Section 2. In
Section 3, we propose the acceleration schemes devised through decomposing the constraint set in
(1) into subspaces of ℜn. Experiments in Section 4 then illustrate the effectiveness of the proposed
acceleration techniques, and Section 5 concludes this work. All proofs, details of the experiment
settings, and additional experiments are in the appendices.

2 Projected Gradient Algorithm

The projected gradient algorithm for solving (1) is given by the iterations

wk+1 ∈ Tλ
PG(w

k) := PAs(w
k − λ∇f(wk)), (5)

where PAs(w) denotes the projection of w onto As, which is set-valued because of the nonconvexity
of As. When f is given by (3), global linear convergence of this algorithm under a restricted isometry
condition is established in [10]. For a general convex f with L-Lipschitz continuous gradients, that
is,

∥∇f(w)−∇f(w′)∥ ≤ L∥w − w′∥ ∀w,w′ ∈ ℜn, (6)

the global subsequential convergence of (5) is proved in [11], but neither global nor local rates of
convergence is provided. In this section, we present an alternative proof of global convergence and
more importantly establish its local linear convergence.

A useful observation that we will utilize in the proofs of our coming convergence results is that the
nonconvex set As given by (2) can be decomposed as a finite union of subspaces in ℜn:

As =
⋃

J∈Js

AJ , AJ := span{ej : j ∈ J}, Js := {J ⊆ {1, 2, . . . , n} : |J | = s} , (7)

where ej is the jth standard unit vector in ℜn. Throughout this paper, we assume that λ ∈ (0, L−1).

Theorem 2.1. Let {wk} be a sequence generated by (5). Then:

(a) (Subsequential convergence) Either {f(wk)} is strictly decreasing, or there exists N > 0 such
that wk = wN for all k ≥ N . In addition, any accumulation point w∗ of {wk} satisfies
w∗ ∈ PAs(w

∗ − λ∇f(w∗)), and is hence a stationary point of (1).
(b) (Subspace identification and full convergence) There exists N ∈ N such that

{wk}∞k=N ⊆
⋃

J∈Iw∗
AJ , Iw∗ := {J ∈ Js : w∗ ∈ AJ}. (8)

whenever wk → w∗. In particular, if Tλ
PG(w

∗) is a singleton for an accumulation point w∗ of
{wk}, then w∗ is a local minimum for (1), wk → w∗, and (8) holds.

(c) (Q-linear convergence) If Tλ
PG(w

∗) is a singleton for an accumulation point w∗ and w 7→
w − λ∇f(w) is a contraction over AJ for all J ∈ Iw∗ , then {wk} converges to w∗ at a Q-linear
rate. In other words, there is N2 ∈ N and γ ∈ [0, 1) such that∥∥wk+1 − w∗∥∥ ≤ γ

∥∥wk − w∗∥∥, ∀k ≥ N2. (9)
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It is well-known that an optimal solution of (1) is also a stationary point of it [8, Theorem 2.2], and
therefore (a) proves the global subsequential convergence of PG to candidate solutions of (1). Consider
z∗ := w∗−λ∇f(w∗), and let τ be a permutation of {1, . . . , n} such that z∗τ(1) ≥ z∗τ(2) ≥ · · · ≥ z∗τ(n).
The requirement of Tλ

PG(w
∗) being a singleton in Theorem 2.1 (b) then simply means the mild

condition of z∗τ(s) > z∗τ(s+1), which is almost always true in practice. The requirement for (c) can
be fulfilled when f confined to AJ is strongly convex, even if f itself is not. This often holds true
in practice when f is of the form (4) and we restrict s in (1) to be smaller than the number of data
instances m, and is thus also mild. The existence of a stationary point can be guaranteed when {wk}
is a bounded sequence, often guaranteed when f is coercive on AJ for each J ∈ Js.

In comparison to existing results in [11, 2, 14], parts (b) and (c) of Theorem 2.1 are new. In particular,
part (b) provides a full convergence result that usually requires stronger regularity assumptions like
the Kurdyka-Łojasiewicz (KL) condition [2, 14] (see also (21)) that requries the objective value to
decrease proportionally with the minimum-norm subgradient in a neighborhood of the accumulation
point, but we just need the very mild singleton condition right at the accumulation point only. Part (c)
gives a local linear convergence for the PG iterates even if the problem is nonconvex, while the rates
in [14] requires a KL condition and the rate is measured in the objective value.

The following result further provides rates of convergence of the objective values even without the
conventional KL assumption. The first rate below follows from [24].
Theorem 2.2. Let {wk} be a sequence generated by (5). If wk → w∗, such as when Tλ

PG(w
∗) is a

singleton at an accumulation point w∗ of (5), then

f(wk)− f(w∗) = o(k−1). (10)

Moreover, under the hypothesis of Theorem 2.1 (c), the objective converges to f(w∗) R-linearly, i.e.,

f(wk)− f(w∗) = O(exp(−k)). (11)

By using Theorem 2.1, we can also easily get rates faster than (10) under a version of the KL condition
that is easier to understand and verify than those assumed in existing works. In particular, existing
analyses require the KL condition to hold in a neighborhood in ℜn of an accumulation point, but we
just need it to hold around w∗ within AJ for the restriction f |AJ

for each J ∈ Iw∗ . These results are
postponed to Theorem 3.2 in the next section as the PG method is a special case of our acceleration
framework.

3 Accelerated methods

The main focus of this work is the proposal in this section of new techniques with solid convergence
guarantees to accelerate the PG algorithm presented in the preceding section. Our techniques fully
exploit the subspace identification property described by the inclusion (8), as well as the problem
structure of (4) to devise efficient algorithms.

We emphasize that the two acceleration strategies described below can be combined together, and
they are also widely applicable such that they can be employed to other existing algorithms for (1) as
long as such algorithms have a property similar to (8).

3.1 Acceleration by extrapolation

Traditional extrapolation techniques are found in the realm of convex optimization to accelerate
algorithms [9, 30] with guaranteed convergence improvements, but were often only adopted as
heuristics in the nonconvex setting, until some recent works showed that theoretical convergence
can also be achieved [26, 36]. However, unlike the convex case, these extrapolation strategies for
nonconvex problems do not lead to faster convergence speed nor an intuitive reason for doing so.
An extrapolation step proceeds by choosing a positive stepsize along the direction determined by
two consecutive iterates. That is, given two iterates wk−1 and wk, an intermediate point zk :=
wk + tk(w

k − wk−1) for some stepsize tk ≥ 0 is first calculated before applying the original
algorithmic map (Tλ

PG in our case).2

2 it is clear that if tk ≡ 0, we reduce back to the original algorithm.
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Another popular acceleration scheme for gradient algorithms is the spectral approach pioneered by
[5]. They take the differences of the gradients and of the iterates in two consecutive iterations to
estimate the curvature at the current point, and use it to decide the step size for updating along the
reversed gradient direction. It has been shown in [38] that equipping this step size with a backtracking
procedure leads to significantly faster convergence for proximal gradient on regularized optimization
problems, which includes our PG for (1) as a special case.

To describe our proposed double acceleration procedure that combines extrapolation and spectral
techniques, we first observe that all PG iterates lie on As, and that As can be finitely decomposed as
(7). When two consecutive iterates lie on the same convex subspace AJ for some J ∈ Js, within these
two iterations, we are actually conducting convex optimization. In this case, an extrapolation step
within AJ is reasonable because it will not violate the constraint, and acceleration can be expected
from the improved rates of accelerated proximal gradient on convex problems in [9, 31]. Judging
from Theorem 2.1 (b), the corresponding J is also a candidate index set that belongs to Iw∗ , so
extrapolation within AJ makes further sense. We set tk = 0 to skip the extrapolation step if dk is
not a descent direction for f at wk. Otherwise, we start from some t̂k > 0 decided by the curvature
information of f , and then execute a backtracking linesearch along dk := wk−wk−1 to set tk = ηit̂k
for the smallest integer i ≥ 0 that provides sufficient descent

f(wk + tkd
k) ≤ f(wk)− σt2k∥dk∥2, (12)

given parameters η, σ ∈ (0, 1). We then apply (5) to zk = wk + tkd
k to obtain wk+1.

For the spectral initialization t̂k for accelerating the convergence, instead of directly using approaches
of [5, 38] that takes the reversed gradient as the update direction, we need to devise a different
mechanism as our direction dk is not directly related to the gradient. We observe that for the stepsize

αk :=
〈
sk, sk

〉
/
〈
sk, rk

〉
, sk := wk − wk−1, rk := ∇f(wk)−∇f(wk−1) (13)

used in [5], the final update −αk∇f(wk) is actually the minimizer of the following subproblem

min
d∈ℜn

〈
∇f(wk), d

〉
+ ∥d∥2/(2αk). (14)

By juxtaposing the above quadratic problem and the upper bound provided by the descent lemma [7,
Lemma 5.7], we can view α−1

k as an estimate of the local Lipschitz parameter that could be much
smaller than L but still guarantee descent of the objective. We thus follow this idea to decide t̂k using
such curvature estimate and the descent lemma by

t̂k = argmin
t≥0

〈
∇f(wk), tdk

〉
+
∥∥tdk∥∥2/(2αk) ⇔ t̂k = −

〈
αk∇f(wk), dk

〉
/
∥∥dk∥∥2. (15)

Another interpretation of (13) is that α−1
k I also serves as an estimate of∇2f(wk),3 and the objective

in (14) is a low-cost approximation of the second-order Taylor expansion of f . However, we notice
that for problems in the form of (4) and with dk ∈ AJ , the exact second-order Taylor expansion

f(wk + tdk) ≈ f(wk) + t
〈
∇f(wk), dk

〉
+ t2

〈
∇2f(wk)dk, dk

〉
/2 (16)

can be calculated efficiently. In particular, for (4) and any dk ∈ AJ , we get from Xdk = X:,Jd
k
J :

∇f(wk)⊤dk = ∇g
(
(Xwk)

)⊤ (
X:,Jd

k
J

)
,〈

∇2f(wk)dk, dk
〉
=

〈
(X:,Jd

k
J),∇2g

(
(Xwk)

)
(X:,Jd

k
J)
〉
,

(17)

which can be calculated in O(ms) time by computing X:,Jd
k
J first. This O(ms) cost is much cheaper

than the O(mn) one for evaluating the full gradient of f needed in the PG step, so our extrapolation
plus spectral techniques has only negligible cost. Moreover, for our case of dk = wk − wk−1, we
can further reduce the cost of calculate X:,Jd

k
J and thus (17) to O(m) by recycling intermediate

computational results needed in evaluating f(wk) through X:,Jd
k
J = Xwk −Xwk−1. With such

tricks for efficient computation, we therefore consider the more accurate approximation to let t̂k be

3 As ∇f is Lipschitz continuous, it is differentiable almost everywhere. Here, we denote by ∇2f(wk) a
generalized Hessian of f at w, which is well-defined for f with Lipschitz continuous gradient [19].
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the scalar that minimizes the quadratic function on the right-hand side of (16) for problems in the
form (4). That is, we use

t̂k := −
〈
∇f(wk), dk

〉
/
〈
∇2f(wk)dk, dk

〉
. (18)

Finally, for both (18) and (15), we safeguard t̂k by

t̂k ← P[ckαmin,ckαmax]

(
t̂k
)

(19)

for some fixed αmax ≥ αmin > 0, where

ck :=
∥∥(∇f(wk))J

∥∥/(ζk∥∥dk∥∥), ζk := −
〈
dk,∇f(wk)

〉
/(
∥∥dk∥∥∥∥(∇f(wk))J

∥∥) ∈ (0, 1]. (20)

We also note that the low cost of evaluating Xdk is also the key to making the backtracking in
(12) practical, as each f(wk + ηit̂kd

k) can be calculated in O(m) time through linear combinations
of Xwk and Xdk. The above procedure is summarized in Algorithm 1 with global convergence
guaranteed by Theorem 3.1. In Theorem 3.2, we establish its full convergence as well as its
convergence rates under a KL condition at w∗: there exists neighborhood U ⊂ ℜn of w∗, θ ∈ [0, 1],
and κ > 0 such that for every J ∈ Iw∗ ,

(f(w)− f(w∗))
θ ≤ κ∥(∇f(w))J∥, ∀w ∈ AJ ∩ U. (21)

We denote by nk the number of successful extrapolation steps in the first k iterations of Algorithm 1.
Theorem 3.1. Under the hypotheses of Theorem 2.1, any accumulation point of a sequence generated
by Algorithm 1 is a stationary point.
Theorem 3.2. Consider either (5) or Algorithm 1 with η, σ, ϵ ∈ (0, 1), and αmax ≥ αmin > 0, and
suppose that there is an accumulation point w∗ of the iterates at which the KL condition holds. Then
wk → w∗. Moreover, the following rates hold:

(a) If θ ∈ (1/2, 1): f(wk)− f(w∗) = O((k + nk)
−1/(2θ−1)).

(b) If θ ∈ (0, 1/2]: f(wk)− f(w∗) = O(exp(−(k + nk))).
(c) If θ = 0: there is k0 ≥ 0 such that f(wk) = f(w∗) for all k ≥ k0.

We stress that convexity of f is not required in Theorems 3.1 and 3.2 except the second half of the
last item of Theorem 3.2. There are several advantages of the proposed extrapolation strategy over
existing ones in [26, 36]. The most obvious one is the faster rates in Theorem 3.2 over PG such
that each successful extrapolation step in our method contributes to the convergence speed, while
existing methods only provide the same convergence speed as PG. Next, existing strategies only
use prespecified step sizes without information from the given problem nor the current progress,
and they only restrict such step sizes to be within [0, 1]. Our method, on the other hand, fully takes
advantage of the function curvature and can allow for arbitrarily large step sizes to better decrease the
objective. In fact, we often observe tk ≫ 1 in our numerical experiments. Moreover, our acceleration
techniques utilize the nature of (7) and (4) to obtain very efficient implementation for ERM problems
such that the per-iteration cost of Algorithm 1 is almost the same as that of PG, while the approach of
[26] requires evaluating f and ∇f at two points per iteration, and thus has twice the per-iteration
cost.

A finite termination result similar to Theorem 3.2 (c) is presented in [28] under a Hölderian error
bound that is closely related to the KL condition, but their result requires convexity of both the
smooth term and the regularizer, so it is not applicable to (1) that involves a nonconvex constraint.

3.2 Subspace Identification

In line with the above discussion, we interpret (8) as a theoretical property guaranteeing that the
iterates of the projected gradient algorithm (5) will eventually identify the subspaces AJ that contain
a candidate solution w∗ after a finite number of iterations. Consequently, the task of minimizing f
over the nonconvex set As can be reduced to a convex optimization problem of minimizing f over
AJ . Motivated by this, we present a two-stage algorithm described in Algorithm 2 that switches
to a high-order method for smooth convex optimization after a candidate piece AJ is identified to
obtain even faster convergence. Since ∇f is assumed to be Lipschitz continuous, the generalized
Hessian of f exists everywhere [19], so we may employ a semismooth Newton (SSN) method [34]
with backtracking linesearch to get a faster convergence speed with low cost (details in Appendix A).
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Algorithm 1: Accelerated projected gradient algorithm by extrapolation (APG)

1 Given an initial vector w0 ∈ ℜn and parameters ϵ, η, σ ∈ (0, 1), αmax ≥ αmin > 0,
λ ∈ (0, 1/L).

2 for k = 0, 1, 2, . . . do
3 if k > 0; wk−1 and wk activate the same AJ ; and ζk ≥ ϵ then
4 dk ← wk − wk−1, and compute t̂k from (19) with either (15) or (18)
5 for i = 0, 1, . . . do
6 tk ← ηit̂k
7 if (12) is satisfied then zk ← wk + tkd

k, and break
8 else zk ← wk

9 wk+1 ← Tλ
PG(z

k)

In particular, we reduce the computation costs by considering the restriction of f on the subspace AJ

by treating the coordinates not in J as non-variables so that the problem considered is indeed smooth
and convex. As we cannot know a priori whether Iw∗ is indeed identified, we adopt the approach
implemented in [25, 27, 23] to consider it identified when wk activates the same AJ for long enough
consecutive iterations. To further safeguard that we are not optimizing over a wrong subspace, we
also incorporate the idea of [37, 4, 27, 23] to periodically alternate to a PG step (5) after switching to
the SSN stage. A detailed description of this two-stage algorithm is in Algorithm 2.

In the following theorem, we show that superlinear convergence can be obtained for Algorithm 2
even if we take only one SSN step every time between two steps of (5), using a simplified setting of
twice-differentiability. For our next theorem, we need to introduce some additional notations. Given
any w ∈ AJ , we use fJ(wJ) := f(w) to denote the function of considering only the coordinates of
w in J as variables and treating the remaining as constant zeros. We assume that the conditions of
Theorem 2.1 (b) hold with w∗ ∈ As, and that f is twice-differentiable around a neighborhood U of
w∗ with∇2fJ Lipschitz continuous in U and∇2fJ(w

∗) positive definite for all J ∈ Iw∗ .

Theorem 3.3. Suppose that starting after k ≥ N and PAs
(wk) ⊂ U , we conduct t Newton steps

between every two steps of (5) for t ≥ 1:

wk,0 ∈ PAs(w
k),


J ∈ Iwk,0 ,

wk,j+1
i = 0, ∀i /∈ J, j = 1, . . . , t− 1,

wk,j+1
J = wk,j

J −∇2fJ(w
k,j
J )−1∇fJ(wk,j

J ),

wk+1 ∈ Tλ
PG(w

k,t). (22)

Then wk → w∗ at a Q-quadratic rate.

In practice, the linear system for obtaining the SSN step is only solved inexactly via a (preconditioned)
conjugate gradient (PCG) method, and with suitable stopping conditions for PCG and proper algo-
rithmic modifications such as those in [39, 29], superlinear convergence can still be obtained easily.
Interested readers are referred to Appendix A for a more detailed description of our implementation.

4 Experiments

In this section, we conduct numerical experiments to demonstrate the accelerated techniques presented
in Section 3. We employ Algorithm 1 (APG) with (18) to accelerate PG, and further accelerate APG
by incorporating subspace identification described in Algorithm 2, which we denote by APG+.4
Comparisons with the extrapolated PG algorithm of Li and Lin [26], which we denote by PG-LL, are
also presented. PG-LL is a state-of-the-art approach for nonconvex regularized optimization and thus
suitable for (1). For f in (1), we consider both LS (3) and logistic regression (LR)

f(w) =
∑m

i=1
log

(
1 + exp

(
−yix⊤

i w
))

+ µ∥w∥2/2, (23)

where (xi, yi) ∈ ℜn × {−1, 1}, i = 1, . . . ,m, are the training instances, and µ > 0 is a small
regularization parameter added to make the logistic loss coercive.

4 That is, if Unchanged < S in Algorithm 2, we calculate zk as in Algorithm 1
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Algorithm 2: Accelerated projected gradient algorithm by subspace identification (PG+)

1 Given an initial vector w0 ∈ ℜn and S, t ∈ N. Set Unchanged← 0.
2 for k = 0, 1, 2, . . . do
3 if k > 0, and wk−1 and wk activate the same component of As then
4 Let J ∈ Js correspond to the activated component
5 Unchanged← Unchanged +1
6 else Unchanged← 0
7 if Unchanged ≥ S then
8 yk ← PAJ

(wk) and use t steps of SSN described in Appendix A, starting from yk, to
find zk that approximately minimizes f |AJ

9 if SSN fails then zk ← wk and Unchanged← 0.
10 else zk ← wk

11 wk+1 ← Tλ
PG(z

k)

The algorithms are implemented in MATLAB and tested with public datasets in Tables 2 and 3
in Appendix B. All algorithms compared start from w0 = 0 and terminate when the first-order
optimality condition

Residual(w) := ∥w − PAs
(w − λ∇f (w))∥/(1 + ∥w∥+ λ∥∇f (w)∥) < ϵ̂ (24)

is met for some given ϵ̂ > 0. More setting and parameter details of our experiments are in Appendix B.

Comparisons of algorithms for large datasets. To fit the practical scenario of using (1), we
specifically selected high-dimensional datasets with n larger than m. We conduct experiments
with various s to widely test the performance under different scenarios. In particular, we consider
s ∈ {⌈0.01m⌉, ⌈0.05m⌉, ⌈0.1m⌉} on all data except for the largest dataset webspam, for which we
set s ∈ {⌈0.001m⌉, ⌈0.005m⌉, ⌈0.01m⌉}. The results of the experiment with the smallest s are
summarized in Figure 1, and results of the other two settings of s are in Appendix C.
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(a) news20, s = ⌈0.01m⌉
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(b) rcv1.binary, s = ⌈0.01m⌉
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(c) webspam, s = ⌈0.001m⌉
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(d) E2006-log1p, s = ⌈0.01m⌉
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(e) E2006-tfidf, s = ⌈0.01m⌉

Figure 1: Experiment on sparse regularized LR and LS. We present time v.s. residual in (24).

Evidently, the extrapolation procedure in APG provides a significant improvement in the running time
compared with the base algorithm PG, and further incorporating subspace identification as in APG+
results to a very fast algorithm that outperforms PG and APG by magnitudes. Since the per-iteration
cost of PG and APG are almost the same as argued in Section 3, we note that the convergence of
APG in terms of iterations is also superior to that of PG.
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Table 1: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (23) and (3) and
with sparsity levels s1 = ⌈0.01m⌉ and s2 = ⌈0.05m⌉ for all datasets except webspam where
s1 = ⌈0.001m⌉ and s2 = ⌈0.005m⌉. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for (23)). MSE: mean-squared error (for (3)). Time with ∗ indicates
that the algorithm is terminated after running 10000 iterations without satisfying (24).

Dataset Method
s1 s2

CPU GE CG PA CPU GE CG PA

news20

PG ∗738.7 10000 0 0.877 ∗728.9 10000 0 0.935
APG 151.7 1583 0 0.877 758.3 8428 0 0.923
APG+ 5.0 52 63 0.853 16.1 171 67 0.923
PG-LL 366.7 4682 0 0.873 ∗1494.4 20000 0 0.922
APG-LL+ 6.6 152 88 0.854 29.2 417 89 0.920

rcv1.binary

PG ∗58.4 10000 0 0.937 ∗72.7 10000 0 0.951
APG 12.6 1120 0 0.935 82.4 6372 0 0.934
APG+ 0.3 21 42 0.931 2.4 192 138 0.940
PG-LL 22.2 3638 0 0.935 72.1 8738 0 0.929
APG-LL+ 0.6 99 49 0.930 4.9 626 236 0.939

webspam

PG ∗18660.1 10000 0 0.964 ∗30776.2 10000 0 0.978
APG 19683.4 7682 0 0.981 7722.4 2008 0 0.991
APG+ 248.3 75 88 0.969 695.4 164 57 0.991
PG-LL 9001.3 4720 0 0.972 10163.5 3098 0 0.990
APG-LL+ 447.3 264 92 0.965 837.3 294 90 0.992

CPU GE CG MSE CPU GE CG MSE

E2006-log1p

PG ∗2998.6 10000 0 0.167 ∗3644.1 10000 0 0.161
APG 270.6 669 0 0.136 811.8 1757 0 0.133
APG+ 19.5 40 49 0.141 105.6 222 124 0.132
PG-LL ∗6049.8 20000 0 0.132 2696.0 7086 0 0.132
APG-LL+ 41.2 142 38 0.142 107.5 326 100 0.138

E2006-tfidf

PG ∗242.7 10000 0 0.152 ∗666.9 10000 0 0.152
APG 1.3 14 0 0.154 3.3 33 0 0.153
APG+ 1.3 8 6 0.141 3.3 31 7 0.139
PG-LL 110.6 4440 0 0.152 304.8 4558 0 0.151
APG-LL+ 1.7 34 6 0.141 3.7 47 7 0.139

We also report the required time and number of gradient evaluations (which is the main computation
at each iteration) for the algorithms to drive (24) below ϵ̂ = 10−6. For PG, APG, and APG+, one
gradient evaluation is needed per iteration, so the number of gradient evaluations is equivalent to the
iteration count. For PG-LL, two gradient evaluations are needed per iteration, so its cost is twice
of other methods. We also report the prediction performance on the test data, and we in particular
use the test accuracy for (23) and the mean-squared error for (3). Results for the two smaller s
are in Table 1 while that for the largest s is in Appendix C. It is clear from the results in Table 1
that APG outperforms PG-LL for most of the test instances considered, while APG+ is magnitudes
faster than PG-LL. When we equip PG-LL with our acceleration techniques by replacing Tλ

PG in
Algorithms 1 and 2 with the algorithmic map defining PG-LL, we can further speed up PG-LL greatly
as shown under the name APG-LL+ (see Table 1). We do not observe a method that consistently
possesses the best prediction performance, as this is mainly affected by which local optima is found,
while no algorithm is able to find the best local optima among all candidates. With no prediction
performance degradation, we see that APG+ and APG-LL+ reduce the time needed to solve (1) to a
level significantly lower than that of the state of the art.
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In Appendix C.3, we demonstrate the effect on prediction performance when we vary the residual
(24) and illustrate that tight residual level is indeed required to obtain better prediction. Comparisons
with a greedy method is shown in Appendix C.4.

Transition Plots. To demonstrate the behavior of the algorithm for increasing values of s, we fit the
smaller datasets in Table 3 using logistic loss (23) and least squares loss (3) for varying s = ⌈km⌉,
where k = 0.2, 0.4, 0.6, . . . , 3. The transition plots are presented in Figure 2. We note that the time
is in log scale.

We can see clearly that APG+ and APG-LL+ are consistently magnitudes faster than the baseline PG
method throughout all sparsity levels. On the other hand, the same-subspace extrapolation scheme
of APG is consistently faster than PG and APG-LL and slower than the two Newton acceleration
schemes, although the performance is sometimes closer to APG+/APG-LL+ while sometimes closer
to PG. APG-LL tends to outperform PG in most situations as well, but in several cases when solving
the least square problem, especially when s is small, it can sometimes be slower than PG. Overall
speaking, the results in the transition plots show that our proposed acceleration schemes are indeed
effective for all sparsity levels tested.
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Sparse least squares regression
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Figure 2: Transition plots. We present sparsity levels versus running time (in log scale). Top row:
logistic loss. Bottom row: least square loss.

5 Conclusions

In this work, we revisited the projected gradient algorithm for solving ℓ0-norm constrained opti-
mization problems. Through a natural decomposition of the constraint set into subspaces and the
proven ability of the projected gradient method to identify a subspace that contains a solution, we
further proposed effective acceleration schemes with provable convergence speed improvements.
Experiments showed that our acceleration strategies improve significantly both the convergence speed
and the running time of the original projected gradient algorithm, and outperform the state of the art
for ℓ0-norm constrained problems by a huge margin. We plan to extend our analysis and algorithm to
the setting of a nonconvex objective in the near future.
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A Implementation Details for Section 3.2

We first discuss our implementation for obtaining inexact SSN steps described in Section 3.2. Given
any w ∈ AJ , We use the notation fJ(wJ) := f(w) to denote the function of considering only the
coordinates of w in J as variables and treating the remaining as constants equal to zero. For any
p ∈ ℜs, we use P−1

AJ
to denote the vector p̂ ∈ ℜn with p̂J = p and p̂i = 0 for i /∈ J . Note that since

fJ is Lipschitz-continuously differentiable, a generalized Hessian ∇2fJ always exists [19]. When
the set of generalized Hessian is not a singleton, we can pick any element in the set.

In large-scale problems often faced in modern machine learning tasks, s can be large even if s≪ n,
and thus forming the generalized Hessian explicitly and inverting it could still be prohibitively expen-
sive even if we only consider the generalized Hessian in the s-dimensional subspace. Therefore, we
resort to PCG that, given a preconditioner M , iteratively uses the matrix-vector products∇2fJ(wJ)v
and M−1u for given vectors u, v ∈ ℜs, which can be of much lower cost especially if M has certain
structures to facilitate the inverse. Details of PCG can be found in, for instance, Nocedal and Wright
[32, Chapter 7]. The PCG approach provides an approximate solution to

p ≈ ∇2fJ(wJ)
−1∇fJ(wJ),

or equivalently,

p ≈ argmin
p̄

(
QJ(p̄;wJ) := ⟨∇fJ(wJ), p̄⟩+

1

2

〈
p̄,∇2fJ(wJ)p̄

〉)
. (25)

In our implementation, inspired by the approach of [21], we select the diagonal entries of ∇2fJ
as our preconditioner M , which provides better performance in our preliminary test over using no
preconditioner (or equivalently, taking M as the identity matrix). As this choice of M is a diagonal
matrix, its inverse can be computed efficiently in O(s) time.

After obtaining p, given parameters β, σ2 ∈ (0, 1), we conduct a backtracking line search procedure
to find the largest nonnegative integer i such that

fJ
(
wJ + βip

)
≤ fJ (wJ) + σ2β

i ⟨∇fJ (wJ) , p⟩ (26)
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Table 2: Data statistics.
Dataset Loss #training #features #test

instances (m) (n) instances

news20 (23) 15,997 1,355,191 3,999
rcv1.binary (23) 20,242 47,236 677,399
webspam (23) 280,000 16,609,143 70,000

E2006-log1p (3) 16,087 4,272,227 3,308
E2006-tfidf (3) 16,087 150,360 3,308

and set the step size to α = βi. Finally, the iterate is updated by

wJ ← wJ + αp.

If α is too small, or this decrease condition cannot be satisfied even when βi is already extremely small,
we discard this SSN step and declare that this smooth optimization part has failed in Algorithm 2.

For the approximation criterion in (25), let the i-th iterate of PCG be p(i) and Qi := QJ(p
(i);wJ),

we follow [16] to terminate PCG either when it reaches s iterations (at which point theoretically it
should have found the exact solution of the right-hand side of (25)) or when the i-th iterate satisfies
i ≥ 1 and

Qi −Qi−1

Qi

i

≤ min
{
0.5,

√
⟨∇fJ(wJ),M−1∇fJ(wJ)⟩

}
, (27)

where Q0 := Q(0;wJ) = 0. It has been shown in [16] that such a stopping condition leads to
Q-superlinear convergence to an optimum of fJ when ∇fJ is semismooth and f is strongly convex.
In our case that alternates between such an SSN step and a PG step, we will show that with (27),
the overall procedure will enjoy superlinear convergence to w∗ if∇f is semismooth around x∗; see
Theorem F.1 for more details.

One concern is that PCG only works when ∇2fJ is positive definite, but our problem class only
guarantees that it is positive semidefinite. To safeguard this issue, one can add a multiple of the
identity to ∇2fJ as a damping term to make sure the quadratic term is always positive definite. A
particularly useful way is to use c∥∇fJ(wJ)∥ρI as the damping term for some c > 0 and ρ ∈ (0, 1] in
(27). When fJ satisfies a q-metric subregularity condition or an error-bound condition, this damping
is known to produce a superlinear convergence rate of order (1 + ρ) for a range of q following the
analysis in [39, 29]. In Theorem F.1, we do not consider any specific scenarios, but just assume
that the smooth optimization subroutine involved itself has a superlinear convergence rate, and show
that such a rate is still retained when this subroutine is combined with our algorithm. Therefore,
discussions of various schemes including truncated Newton, semismooth Newton, and damping, are
all compatible with our general framework to obtain superlinear convergence rates.

B Experimental settings

All experiments are conducted on a machine with 64GB memory and an Intel Xeon Silver 4208
CPU with 8 cores and 2.1GHz. For all algorithms and all experiments, all cores are utilized. The
experiment environment runs Ubuntu 20.04 and MATLAB 2021b. For experiments in Section 4,
we use public data listed in Tables 2 and 3. 5 For the datasets that do not come with a test set, we
manually do a 80/20 split to obtain a test set.

The parameters used in our implementation are as follows. We use µ = 10−10 in (23). For
Algorithm 1, σ = 0.05, η = 0.5, ϵ = 10−20, αmin = 1, αmax = 100, L is estimated using
MATLAB’s eigs function to approximate the largest eigenvalue of AAT with tolerance 10−3, and
λ = 0.999/L. In Algorithm 2, we set t = 1 and S = 5, while for the PCG and SSN subroutines, we
set β = 0.5 and σ2 = 0.001.

5 Downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 3: Data statistics for small datasets.
Dataset Loss #training instances (m) #features (n) #test instances

colon-cancer (3)&(23) 50 2,000 12
duke (3)&(23) 38 7,129 6
gisette_scale (3)&(23) 1,000 5,000 6,000
leukemia (3)&(23) 38 7,129 34

C Additional Experiments

This section provides two sets of additional experiments. We first present results of the datasets in
Section 4 with different settings of s. The second set of additional experiments are on some smaller
datasets that are often considered in existing works for the best subset selection problem like [11].

C.1 Other settings of s

We present the other two settings of s described in Section 4 in Figures 3 and 4, and the continuation
of Table 1 is presented in Table 4. Additional experiments with the setting of s > m are presented in
Tables 5 and 6, which further exemplifies the benefits of our proposed acceleration strategies.

Clearly, for the setting of s3 as well as s > m, our acceleration techniques continue to greatly improve
upon existing methods in almost all cases, with the only excepion being webspam with s > m. After
a thorough check, we found that the reason is that in this setting, due to the high dimensionality of
n and that many pieces of J ∈ Js can lead to a very low objective value, the subspaces in which
each wk lie change very frequently, so our extrapolation barely take place. This is a potential limit
of our method, although in practice we observe that for such easier datasets we probably can avoid
this problem by setting s < m, which would also make the problem much easier to solve in general
(note that with s < m, the prediction performance on webspam is not improving at all, suggesting
that indeed we do not need to consider the more difficult situation of s < m).

We also observe that all for s ≥ m on E2006-log1p, all accelerated methods experience significantly
larger MSE than the base PG method. After a close examination, we find out that all such acceleration
methods provide much lower objective value than PG for the minimization problem, indicating that
this is merely due to overfitting of the training data, and indeed PG is alway terminated without
reaching the prespecified stopping condition for these cases. This indicates that the accelerated
methods are actually performing well from the optimization angle, and this overfitting issue is just a
matter of parameter selection.

For E2006-tfidf, we see that for all settings of s, identification does not show any additional time
improvement in the tables, while the figures clearly show that this is due to that this step kicks in at a
very late stage when the residual is already very close to ϵ̂, and if we set ϵ̂ to a smaller value, we can
expect observable running time difference between APG and APG+.

C.2 Experiments with smaller datasets

We now consider some other smaller datasets shown in Table 3, which are also downloaded from the
LIBSVM website. Note that for gisette_scale, we interchanged the training and the test sets to make
m < n. For the setting of s < m, we consider s ∈ {⌈0.01m⌉, ⌈0.05m⌉, ⌈0.1m⌉, ⌈0.5m⌉}, while for
the setting of s ≥ m, we consider s ∈ {m, ⌈1.1m⌉, ⌈1.5m⌉, 2m}. The results of least-square loss in
(3) are shown in Tables 7 and 8, while the results of the logistic loss in (23) are shown in Tables 9
and 10.

We can clearly see from these results that our acceleration schemes are also effective on smaller
datasets to reduce the running time to magnitudes shorter. However, there are several cases that the
running time is too short such that the digits in the tables are unable to show difference between
APG and APG+. We do not try to increase the number of digits in such cases, as the running time is
anyway already extremely short, and the difference would not make much difference for problems
that can be solved with such high efficiency.
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(f) webspam, s = ⌈0.01m⌉

Figure 3: Sparse regularized logistic loss regression.
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(c) E2006-tfidf, s = ⌈0.05m⌉
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(d) E2006-tfidf, s = ⌈0.1m⌉

Figure 4: Sparse least squares regression.
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Table 4: Comparison of algorithms for (1) to meet (24) with ϵ̂ < 10−6, with (23) and (3) and with
sparsity level s3 = ⌈0.1m⌉ for all datasets except webspam where s3 = ⌈0.01m⌉. CPU: CPU time
in seconds. GE: number of gradient evaluations. In one iteration, PG, APG, and APG+ needs one
gradient evaluation , while PG-LL and PG-LL+ needs two. CG: number of Hessian-vector products in
the PCG procedure for obtaining SSN steps. PA: prediction accuracy (for (23)). MSE: mean-squared
error (for (3)). Time with ∗ indicates that the algorithm is terminated after running 10000 iterations
without satisfying (24).

Dataset Method
s3

CPU GE CG PA

news20

PG ∗806.8 10000 0 0.947
APG 562.7 5972 0 0.927
APG+ 19.8 209 133 0.918
PG-LL 356.6 4578 0 0.930
APG-LL+ 23.2 463 223 0.918

rcv1.binary

PG ∗81.2 10000 0 0.953
APG 33.6 2556 0 0.943
APG+ 2.2 173 93 0.936
PG-LL 21.0 2292 0 0.940
APG-LL+ 4.5 542 106 0.933

webspam

PG ∗42487.5 10000 0 0.980
APG 11215.1 2242 0 0.993
APG+ 1664.7 313 83 0.994
PG-LL 14203.9 3176 0 0.992
APG-LL+ 1565.3 367 61 0.994

Dataset Method
s3

CPU GE CG MSE

E2006-log1p

PG ∗4162.7 10000 0 0.160
APG 559.9 1084 0 0.142
APG+ 138.8 252 122 0.141
PG-LL 1996.5 4532 0 0.141
APG-LL+ 262.5 601 81 0.139

E2006-tfidf

PG ∗1086.3 10000 0 0.152
APG 4.7 33 0 0.153
APG+ 4.7 31 7 0.139
PG-LL 512.3 4602 0 0.151
APG-LL+ 8.6 75 7 0.139
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Table 5: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (23) and (3) and with
sparsity levels s ∈ {m, ⌈1.1m⌉}, i.e. s ≥ m. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for (23)). MSE: mean-squared error (for (3)). Time with ∗ indicates
that the algorithm is terminated after running 10000 iterations without satisfying (24). Time with †
indicates that the algorithm is terminated after exceeding 12 hours of running time without satisfying
(24).

Dataset Method
s = m s = ⌈1.1m⌉

CPU GE CG PA CPU GE CG PA

news20

PG ∗871.2 10000 0 0.963 ∗869.0 10000 0 0.963
APG 142.9 1482 0 0.962 191.6 1964 0 0.963
APG+ 58.3 619 24 0.966 64.8 684 26 0.969
PG-LL 156.5 1804 0 0.961 151.8 1778 0 0.961
APG-LL+ 47.7 555 9 0.958 66.2 743 9 0.955

rcv1.binary

PG ∗81.9 10000 0 0.959 ∗82.6 10000 0 0.959
APG 22.6 1859 0 0.956 18.5 1575 0 0.956
APG+ 5.1 468 47 0.952 5.4 524 47 0.953
PG-LL 15.7 1780 0 0.955 16.0 1784 0 0.955
APG-LL+ 4.9 539 29 0.951 4.6 490 38 0.951

webspam

PG †43206.6 3902 0 0.977 †43203.1 3870 0 0.977
APG †43207.8 3866 0 0.985 †43202.0 3852 0 0.982
APG+ †43207.5 3846 0 0.986 †43210.9 3879 0 0.983
PG-LL 35753.0 3190 0 0.995 35776.4 3190 0 0.995
APG-LL+ 36561.7 3190 0 0.995 36494.1 3190 0 0.995

CPU GE CG MSE CPU GE CG MSE

E2006-log1p

PG ∗7039.7 10000 0 0.155 ∗7172.7 10000 0 0.155
APG 4588.4 5819 0 0.207 5011.5 6275 0 0.213
APG+ 1050.0 1362 169 0.344 1320.0 1696 172 0.375
PG-LL 2261.4 3046 0 0.238 2292.0 3040 0 0.238
APG-LL+ 1220.1 1725 171 0.380 1282.3 1751 111 0.340

E2006-tfidf

PG ∗1821.0 10000 0 0.152 ∗1819.9 10000 0 0.152
APG 67.4 353 0 0.155 69.0 363 0 0.155
APG+ 67.8 351 8 0.151 69.4 361 8 0.151
PG-LL 906.8 4832 0 0.151 909.6 4836 0 0.151
APG-LL+ 69.3 370 8 0.148 72.8 384 0 0.154

19



Table 6: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (23) and (3) and with
sparsity levels s ∈ {⌈1.5m⌉, ⌈2m⌉}, i.e. s > m. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for (23)). MSE: mean-squared error (for (3)). Time with ∗ indicates
that the algorithm is terminated after running 10000 iterations without satisfying (24). Time with †
indicates that the algorithm is terminated after exceeding 12 hours of running time without satisfying
(24).

Dataset Method
s = ⌈1.5m⌉ s = ⌈2m⌉

CPU GE CG PA CPU GE CG PA

news20

PG ∗885.0 10000 0 0.964 ∗904.5 10000 0 0.966
APG 208.2 2072 0 0.964 217.1 2170 0 0.964
APG+ 78.3 826 17 0.967 86.4 875 18 0.967
PG-LL 155.8 1736 0 0.963 153.1 1700 0 0.963
APG-LL+ 64.6 690 6 0.962 80.4 846 2 0.962

rcv1.binary

PG ∗84.8 10000 0 0.959 ∗87.8 10000 0 0.959
APG 19.6 1554 0 0.954 15.9 1317 0 0.955
APG+ 4.4 412 42 0.953 4.7 442 59 0.949
PG-LL 16.2 1784 0 0.956 16.6 1786 0 0.956
APG-LL+ 4.7 512 22 0.952 5.5 562 14 0.952

webspam

PG †43201.3 3809 0 0.977 †43207.9 3807 0 0.977
APG †43203.8 3815 0 0.978 †43201.7 3792 0 0.983
APG+ †43202.7 3828 0 0.978 †43205.0 3783 0 0.983
PG-LL 36340.5 3190 0 0.995 36325.1 3190 0 0.995
APG-LL+ 36380.0 3190 0 0.995 31177.7 2716 24 0.995

CPU GE CG MSE CPU GE CG MSE

E2006-log1p

PG ∗7617.3 10000 0 0.154 ∗8003.0 10000 0 0.154
APG 5686.2 6781 0 0.209 6375.8 7300 0 0.201
APG+ 1697.5 2104 118 0.279 2098.5 2496 108 0.280
PG-LL 2398.6 3002 0 0.231 2460.1 2946 0 0.225
APG-LL+ 1362.7 1744 94 0.313 1672.1 2057 101 0.299

E2006-tfidf

PG ∗1870.2 10000 0 0.152 ∗1894.5 10000 0 0.152
APG 89.0 465 0 0.155 97.0 500 0 0.155
APG+ 89.5 463 8 0.153 97.2 498 8 0.155
PG-LL 927.8 4848 0 0.151 948.6 4856 0 0.151
APG-LL+ 72.8 382 8 0.151 75.0 390 8 0.153
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Table 7: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (3) with sparsity levels
s ∈ {⌈0.01m⌉, ⌈0.05m⌉, ⌈0.1m⌉, ⌈0.5m⌉}. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. MSE: mean-squared error (for (3)). Time with ∗ indicates that the algorithm is terminated after
running 10000 iterations without satisfying (24).

Dataset Method
s = ⌈0.01m⌉ s = ⌈0.05m⌉

CPU GE CG MSE CPU GE CG MSE

colon-cancer

PG 0.44 2081 0 1.125 0.77 3162 0 0.645
APG 0.01 5 0 1.125 0.14 185 0 0.645
APG+ 0.01 5 0 1.125 0.01 8 3 0.645
PG-LL 0.21 664 0 1.125 0.19 768 0 0.645
APG-LL+ 0.01 10 0 1.125 0.01 16 2 0.646

duke

PG ∗4.07 10000 0 1.568 ∗4.18 10000 0 1.145
APG 0.01 5 0 1.581 0.01 8 0 1.140
APG+ 0.01 5 0 1.581 0.01 8 2 1.140
PG-LL 0.19 382 0 1.579 0.75 1514 0 1.141
APG-LL+ 0.01 10 0 1.581 0.01 16 2 1.140

gisette_scale

PG ∗13.35 10000 0 0.465 ∗14.70 10000 0 0.304
APG 4.08 1526 0 0.464 3.63 1286 0 0.303
APG+ 0.07 11 18 0.464 0.08 13 38 0.334
PG-LL 2.45 1758 0 0.466 ∗30.15 20000 0 0.268
APG-LL+ 0.07 32 18 0.464 0.08 37 23 0.337

leukemia

PG 3.67 8768 0 0.595 2.80 6726 0 0.566
APG 0.01 5 0 0.595 0.01 8 0 0.566
APG+ 0.01 5 0 0.595 0.01 8 2 0.566
PG-LL 0.14 302 0 0.595 0.77 1632 0 0.566
APG-LL+ 0.01 10 0 0.595 0.01 16 2 0.566

Dataset Method
s = ⌈0.1m⌉ s = ⌈0.5m⌉

CPU GE CG MSE CPU GE CG MSE

colon-cancer

PG 1.59 6951 0 0.652 ∗2.51 10000 0 1.855
APG 0.13 320 0 0.599 1.48 3268 0 2.461
APG+ 0.01 10 10 0.599 0.02 18 27 1.345
PG-LL 0.52 2990 0 0.656 ∗6.26 20000 0 1.895
APG-LL+ 0.01 24 10 0.599 0.02 61 31 1.723

duke

PG ∗4.28 10000 0 0.860 ∗4.18 10000 0 0.864
APG 0.02 23 0 0.882 1.26 1749 0 0.569
APG+ 0.01 9 5 0.882 0.01 11 14 1.060
PG-LL 0.84 1670 0 0.880 1.05 2284 0 1.089
APG-LL+ 0.02 19 5 0.882 0.01 28 14 1.060

gisette_scale

PG ∗15.63 10000 0 0.243 ∗23.63 10000 0 0.220
APG 7.83 2697 0 0.212 14.97 3922 0 0.292
APG+ 0.08 13 41 0.260 0.22 43 108 0.253
PG-LL 5.37 3294 0 0.238 ∗50.85 20000 0 0.364
APG-LL+ 0.09 54 40 0.259 0.48 271 149 0.258

leukemia

PG ∗4.35 10000 0 0.523 ∗4.47 10000 0 0.582
APG 0.99 1263 0 0.524 0.63 876 0 1.277
APG+ 0.01 9 5 0.524 0.01 10 16 1.676
PG-LL 0.93 1966 0 0.524 ∗9.79 20000 0 1.226
APG-LL+ 0.01 19 5 0.524 0.01 30 16 1.676
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Table 8: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (3) with sparsity levels
s ∈ {m, ⌈1.1m⌉, ⌈1.5m⌉, 2m}. CPU: CPU time in seconds. GE: number of gradient evaluations. In
one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and PG-LL+ needs
two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN steps. MSE:
mean-squared error (for (3)). Time with ∗ indicates that the algorithm is terminated after running
10000 iterations without satisfying (24).

Dataset Method
s = m s = ⌈1.1m⌉

CPU GE CG MSE CPU GE CG MSE

colon-cancer

PG ∗2.45 10000 0 3.161 ∗2.61 10000 0 3.048
APG 1.78 3272 0 2.994 0.52 1564 0 3.311
APG+ 0.03 39 169 10.643 0.02 26 100 6.470
PG-LL 1.08 5614 0 4.905 3.87 13116 0 4.510
APG-LL+ 0.03 192 128 12.519 0.03 137 101 5.062

duke

PG ∗4.18 10000 0 0.554 ∗4.25 10000 0 0.549
APG 1.42 1945 0 1.531 1.24 1631 0 0.505
APG+ 0.01 13 58 0.209 0.01 11 39 2.061
PG-LL 1.80 3782 0 0.635 1.47 3104 0 0.281
APG-LL+ 0.02 101 87 6.685 0.01 58 44 0.831

gisette_scale

PG ∗35.83 10000 0 0.226 ∗40.06 10000 0 0.225
APG 16.50 3326 0 0.298 15.55 3000 0 0.308
APG+ 0.58 78 247 0.499 1.20 200 203 0.347
PG-LL 21.09 5364 0 0.367 18.91 4462 0 0.359
APG-LL+ 0.99 330 144 0.341 1.59 449 203 0.508

leukemia

PG ∗4.22 10000 0 0.649 ∗4.30 10000 0 0.703
APG 1.05 1202 0 0.967 1.06 1445 0 0.980
APG+ 0.02 15 104 4.722 0.02 17 98 9.202
PG-LL ∗9.64 20000 0 1.050 1.87 3968 0 1.718
APG-LL+ 0.02 118 104 4.722 0.02 112 98 9.202

Dataset Method
s = ⌈1.5m⌉ s = 2m

CPU GE CG MSE CPU GE CG MSE

colon-cancer

PG ∗2.71 10000 0 3.277 2.03 8195 0 3.062
APG 0.27 805 0 2.836 0.22 614 0 3.016
APG+ 0.02 27 79 3.092 0.02 42 44 3.131
PG-LL 3.52 14734 0 3.016 0.66 3024 0 2.964
APG-LL+ 0.03 139 67 3.279 0.03 123 63 3.032

duke

PG ∗4.30 10000 0 0.392 ∗4.28 10000 0 0.333
APG 0.84 1162 0 0.271 0.51 687 0 0.301
APG+ 0.01 13 40 0.259 0.01 12 33 0.564
PG-LL 1.79 3740 0 0.373 1.49 2990 0 0.539
APG-LL+ 0.02 48 34 0.308 0.02 47 33 0.564

gisette_scale

PG ∗23.09 10000 0 0.230 ∗23.08 10000 0 0.237
APG 7.40 2057 0 0.284 5.03 1443 0 0.282
APG+ 0.52 118 133 0.339 1.32 357 143 0.319
PG-LL 7.88 3242 0 0.347 6.98 2860 0 0.328
APG-LL+ 1.15 500 150 0.387 1.13 488 128 0.336

leukemia

PG ∗4.36 10000 0 0.730 ∗4.30 10000 0 0.704
APG 0.69 865 0 0.694 0.47 574 0 0.619
APG+ 0.02 19 53 1.369 0.01 12 42 0.944
PG-LL 1.92 3952 0 1.074 1.38 2862 0 0.714
APG-LL+ 0.03 81 49 1.230 0.01 43 29 0.926
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Table 9: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (23) with sparsity levels
s ∈ {⌈0.01m⌉, ⌈0.05m⌉, ⌈0.1m⌉, ⌈0.5m⌉}. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for (23)). Time with ∗ indicates that the algorithm is terminated after
running 10000 iterations without satisfying (24).

Dataset Method
s = ⌈0.01m⌉ s = ⌈0.05m⌉

CPU GE CG PA CPU GE CG PA

colon-cancer

PG 1.69 7560 0 0.667 ∗2.64 10000 0 0.833
APG 0.01 12 0 0.667 0.93 1526 0 0.833
APG+ 0.01 9 2 0.667 0.01 10 8 0.833
PG-LL 0.06 226 0 0.667 0.40 1728 0 0.833
APG-LL+ 0.01 16 2 0.667 0.02 22 8 0.833

duke

PG ∗4.52 10000 0 0.000 ∗4.72 10000 0 0.500
APG 0.01 11 0 0.000 0.01 12 0 0.500
APG+ 0.01 8 1 0.000 0.01 8 2 0.500
PG-LL 0.47 958 0 0.000 0.58 1038 0 0.500
APG-LL+ 0.01 15 1 0.000 0.01 16 2 0.500

gisette_scale

PG ∗16.11 10000 0 0.839 ∗17.50 10000 0 0.912
APG 11.62 3600 0 0.888 6.81 1980 0 0.916
APG+ 0.07 10 15 0.851 0.08 11 23 0.900
PG-LL ∗34.11 20000 0 0.863 5.34 2780 0 0.916
APG-LL+ 0.08 29 15 0.851 0.09 38 24 0.898

leukemia

PG ∗4.60 10000 0 0.824 ∗4.81 10000 0 0.882
APG 0.01 9 0 0.824 0.05 46 0 0.853
APG+ 0.01 9 2 0.824 0.01 10 6 0.853
PG-LL 0.81 1612 0 0.824 1.23 2278 0 0.853
APG-LL+ 0.01 16 2 0.824 0.01 20 6 0.853

Dataset Method
s = ⌈0.1m⌉ s = ⌈0.5m⌉

CPU GE CG PA CPU GE CG PA

colon-cancer

PG ∗2.48 10000 0 0.833 ∗2.21 10000 0 0.833
APG 2.51 3651 0 0.833 0.20 255 0 0.833
APG+ 0.02 11 12 0.833 0.02 14 55 0.833
PG-LL ∗5.79 20000 0 0.833 0.29 1376 0 0.833
APG-LL+ 0.02 29 15 0.833 0.02 58 44 0.833

duke

PG ∗4.71 10000 0 0.750 ∗4.81 10000 0 0.750
APG 0.03 33 0 0.500 0.43 431 0 0.750
APG+ 0.01 10 8 0.500 0.01 11 11 0.750
PG-LL 1.22 2352 0 0.500 0.99 1800 0 0.750
APG-LL+ 0.01 22 8 0.500 0.02 25 11 0.750

gisette_scale

PG ∗18.31 10000 0 0.928 ∗27.24 10000 0 0.951
APG 4.79 1329 0 0.934 2.62 608 0 0.960
APG+ 0.09 12 42 0.923 0.23 48 34 0.956
PG-LL 6.40 3190 0 0.936 7.18 2324 0 0.955
APG-LL+ 0.09 56 42 0.923 0.14 59 45 0.955

leukemia

PG ∗4.79 10000 0 0.912 ∗4.81 10000 0 0.912
APG 0.54 522 0 0.824 0.29 304 0 0.882
APG+ 0.01 11 10 0.853 0.01 11 9 0.912
PG-LL 1.50 2726 0 0.912 0.92 1698 0 0.912
APG-LL+ 0.02 21 7 0.853 0.02 24 10 0.912
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Table 10: Comparison of algorithms for (1) to meet (24) with ϵ̂ = 10−6, with (23) with sparsity levels
s ∈ {m, ⌈1.1m⌉, ⌈1.5m⌉, 2m}. CPU: CPU time in seconds. GE: number of gradient evaluations. In
one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and PG-LL+ needs
two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN steps. PA:
prediction accuracy (for (23)). Time with ∗ indicates that the algorithm is terminated after running
10000 iterations without satisfying (24).

Dataset Method
s = m s = ⌈1.1m⌉

CPU GE CG PA CPU GE CG PA

colon-cancer

PG ∗2.46 10000 0 0.833 ∗2.33 10000 0 0.833
APG 0.17 369 0 0.833 0.09 118 0 0.833
APG+ 0.02 14 34 0.833 0.02 19 35 0.833
PG-LL 0.32 1336 0 0.750 0.34 1364 0 0.750
APG-LL+ 0.02 73 37 0.833 0.02 53 39 0.833

duke

PG ∗4.82 10000 0 0.750 ∗4.81 10000 0 0.750
APG 0.03 31 0 0.750 0.33 351 0 0.500
APG+ 0.01 11 9 0.750 0.01 11 9 0.750
PG-LL 0.81 1558 0 0.750 0.80 1540 0 0.750
APG-LL+ 0.02 23 9 0.750 0.02 23 9 0.750

gisette_scale

PG ∗40.08 10000 0 0.956 ∗42.05 10000 0 0.957
APG 1.96 366 0 0.960 3.94 668 0 0.957
APG+ 0.61 102 28 0.962 0.45 69 35 0.962
PG-LL 8.03 1862 0 0.962 8.19 1794 0 0.961
APG-LL+ 0.25 57 33 0.959 0.92 192 28 0.962

leukemia

PG ∗4.79 10000 0 0.912 ∗4.75 10000 0 0.912
APG 0.43 439 0 0.971 0.25 265 0 0.912
APG+ 0.01 11 8 0.912 0.02 11 8 0.941
PG-LL 0.83 1538 0 0.912 0.80 1516 0 0.912
APG-LL+ 0.02 22 8 0.912 0.02 22 8 0.941

Dataset Method
s = ⌈1.5m⌉ s = 2m

CPU GE CG PA CPU GE CG PA

colon-cancer

PG ∗2.69 10000 0 0.833 ∗2.39 10000 0 0.833
APG 0.09 219 0 0.667 0.23 304 0 0.833
APG+ 0.02 28 25 0.833 0.03 40 20 0.833
PG-LL 0.37 1282 0 0.833 0.30 1298 0 0.833
APG-LL+ 0.02 47 33 0.750 0.02 55 25 0.750

duke

PG ∗4.80 10000 0 0.750 ∗4.83 10000 0 0.750
APG 0.04 43 0 0.750 0.11 104 0 0.750
APG+ 0.01 11 9 0.750 0.01 12 11 0.750
PG-LL 0.84 1496 0 0.750 0.81 1416 0 0.750
APG-LL+ 0.02 30 6 0.750 0.02 25 11 0.750

gisette_scale

PG ∗26.10 10000 0 0.956 ∗26.29 10000 0 0.956
APG 2.55 583 0 0.958 1.53 365 0 0.944
APG+ 0.48 107 25 0.960 0.69 159 23 0.956
PG-LL 4.66 1658 0 0.958 4.42 1568 0 0.959
APG-LL+ 0.63 193 15 0.960 0.74 242 12 0.958

leukemia

PG ∗4.67 10000 0 0.912 ∗4.75 10000 0 0.912
APG 0.44 435 0 0.971 0.03 36 0 0.941
APG+ 0.02 12 11 0.941 0.01 12 11 0.941
PG-LL 0.81 1480 0 0.912 0.78 1406 0 0.941
APG-LL+ 0.02 25 11 0.941 0.02 25 11 0.941
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C.3 Prediction accuracy for varying residuals

We present in Figure 5 the effect of varying the tolerance level ϵ̂ for the residual (24). We can clearly
see that in all cases, the prediction performance of all methods keeps improving up to ϵ̂ = 10−5,
which indicates that our choice of a rather tight stopping condition is indeed a suitable one for getting
better prediction performance. Note that in terms of comparison between different algorithms, the
results in Figure 5 are consistent with that in Table 1.
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Figure 5: Prediction performance of different methods for sparse logistic regression (news20,
rcv1.binary, webspam) and least squares regression (E2006-log1p) across varying levels of residuals
ϵ = 10−k, with k = 1, 2, . . . , 6. Generated plots correspond to sparsity level of s = ⌈0.01m⌉.

C.4 Numerical comparison with a greedy method

We present in Figure 6 results of numerical comparisons of our methods with the GraSP algorithm of
Bahmani et al. [3], which is designed to solve our target problem (1) for general loss functions f .
Each iteration of GraSP involves a restricted minimization problem along a subspace of dimension at
most 3s, which is solved by a quasi-Newton approach.6 Note that GraSP is not ideal for large-scale
datasets for its prohibitive memory consumption. For instance, it failed to fit the webspam dataset
even with the smallest sparsity level s = ⌈0.001m⌉ on our machine with 64GB memory with an
out of memory error, whereas our proposed algorithm performs quite well for this instance. For a
medium-sized dataset such as news20, we see from Figure 6 that GraSP performs significantly slower
than our proposed accelerated algorithm. In particular, its initial convergence is extremely fast, but it
then becomes stagnant after reaching a low-to-medium precision.

6 We use their code for regularized sparse logistic regression downloaded from https://sbahmani.ece.
gatech.edu/GraSP.html.
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(d) rcv1.binary, s = ⌈0.01m⌉
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Figure 6: Comparison of non-accelerated and accelerated projected gradient methods with GraSP for
solving regularized sparse logistic regression.
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D Proofs of Results in Section 2

D.1 Proof of Theorem 2.1

Proof of part (a). We note that the iterates of (5) are confined to As. Consider any accumulation
point w∗ of {wk}. For any given convergent subsequence {wkr} with wkr → w∗, we obtain from
the finiteness of Js that there is J ∈ Js such that

wkr+1 = PAJ
(wkr − λ∇f(wkr )) (28)

for infinitely many r. By taking subsequences if necessary, we assume that (28) holds for all r without
loss of generality. Meanwhile, the PG iterates (5) can alternatively be written as

wk+1 ∈ argmin
y∈As

〈
∇f(wk), y − wk

〉
+

1

2λ
∥y − wk∥2. (29)

We also use the fact that (6) implies the well-known descent lemma [see for example, 7, Lemma 5.7]

f(w) ≤ f(w′) + ⟨∇f(w′), w − w′⟩+ L

2
∥w − w′∥2, ∀w,w′ ∈ ℜn. (30)

Noting that λ ∈ (0, L−1), we have

f(wk+1)
(30)
≤ f(wk) +

〈
∇f(wk), wk+1 − wk

〉
+

L

2
∥wk+1 − wk∥2

= f(wk) +
〈
∇f(wk), wk+1 − wk

〉
+

1

2λ
∥wk+1 − wk∥2 +

(
λL− 1

2λ

)
∥wk+1 − wk∥2

(29)
≤ f(wk) +

(
λL− 1

2λ

)
∥wk+1 − wk∥2.

That is,
1− λL

2λ
∥wk − wk+1∥2 ≤ f(wk)− f(wk+1). (31)

If wN = wN+1 for some N , then it is clear from (31) that wk = wN for all k ≥ N . Otherwise,
{f(wk)} is strictly decreasing, proving the first claim of part (a). Noting that ∇f and PAJ

are
continuous as AJ is closed and convex, we obtain from (28) that wkr+1 → PAJ

(w∗ − λ∇f(w∗))
as r → ∞. On the other hand, we see from (31) and the lower boundedness of f that ∥wk −
wk+1∥ → 0, which, by means of the triangle inequality, implies that wkr+1 → w∗. Hence, we
have w∗ = PAJ

(w∗ − λ∇f(w∗)). To complete the proof of part (a), we only need to show that
PAJ

(w∗ − λ∇f(w∗)) ∈ PAs
(w∗ − λ∇f(w∗)). But from (28) and (5), we have that for all r,

wkr ∈ DJ , where
DJ := {z ∈ ℜn : dist(z − λ∇f(z), AJ) = dist(z − λ∇f(z), As)}, (32)

where for any point x and any set A, dist(x,A) is the distance from x to A, defined as
dist(x,A) = inf

y∈A
∥x− y∥.

Since AJ is closed, it follows that DJ is a closed set as well, and therefore w∗ ∈ DJ . That is,
PAJ

(w∗ − λ∇f(w∗)) ∈ PAs
(w∗ − λ∇f(w∗)), as desired.

Finally, we note that by representing (1) as
min
w

f(w) + δAs
(w),

where δAs
is the indicator function of As that outputs 0 when w ∈ As and infinity otherwise, a point

w∗ is called stationary for (1) if
0 ∈ ∂f(w∗) + ∂δAs

(w),

where ∂g is the limiting subdifferential in the sense of Clarke. On the other hand, the optimality
condition of w∗ ∈ PAs

(w∗ − λ∇f(w∗)) implies that
0 ∈ w∗ − (w∗ − λ∇f(w∗)) + ∂δAs(w

∗) ⇔ 0 ∈ λ∇f(w∗) + ∂δAs(w
∗).

Since λδAs
= δAs

for any λ, the result above further implies that

λ−10 = 0 ∈ ∇f(w∗) + ∂δAs
(w∗),

showing that w∗ is indeed a stationary point of (1).
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Proof of part (b). Suppose that wk → w∗ and define Iw∗ as in (8). The finiteness of Js implies that
there exists δ > 0 such that

Bδ(w
∗) ∩AJ = ∅, ∀J /∈ Iw∗ , (33)

where Bδ(w
∗) := {w ∈ ℜn : ∥w − w∗∥ < δ}. Since wk → w∗, we can find N > 0 such that

wk ∈ Bδ(w
∗) for all k ≥ N . Hence, (8) immediately follows.

Now, suppose that TPG(w
∗) is a singleton for some accumulation point w∗. Together with Theo-

rem 2.1 (a), we have
PAs(w

∗ − λ∇f(w∗)) = {w∗} (34)
It is easy to verify that (34) implies that

w∗ = PAJ
(w∗ − λ∇f(w∗)) ∀J ∈ Iw∗ . (35)

That is, w∗ is a global minimum of f over AJ for all J ∈ Iw∗ due to the convexity of f . Now let
δ > 0 be as defined in the preceding paragraph and z ∈ As ∩Bδ(w

∗). It then follows from (33) that
z ∈ AJ for some J ∈ Iw∗ . By the global minimality of w∗ for f |AJ

, it follows that f(w∗) ≤ f(z)
for all z ∈ As ∩Bδ(w

∗). That is, w∗ is a local minimum of f over As.

It remains to show that the full sequence {wk} converges to w∗. To this end, choose ν > 0 sufficiently
small such that z ∈ DJ ∩ Bν(w

∗) for some J implies w∗ ∈ DJ , where DJ is defined as in (32).
Note that such a ν exists as the collection {DJ : J ∈ Js} is finite and consists of closed sets.
Let {wkr}∞r=0 be a subsequence converging to w∗. We may assume without loss of generality that
wkr ∈ Bν(w

∗) for all r ≥ 0. First, we show that wk0+1 ∈ Bν(w
∗). Note that the convexity of f and

(6) result to nonexpansiveness of the mapping w 7→ w − λ∇f(w) because λ ≤ L−1 [7, Theorem
5.8]. From (5), wk0+1 = PAJ

(
wk0 − λ∇f(wk0)

)
for some J . By the choice of ν and the fact that

Tλ
PG(w

∗) consists of one element, we see that w∗ = PAJ
(w∗ − λ∇f(w∗)). With these, we have

∥wk0+1 − w∗∥ = ∥PAJ

(
wk0 − λ∇f(wk0)

)
− PAJ

(w∗ − λ∇f(w∗))∥
≤ ∥(wk0 − λ∇f(wk0)− (w∗ − λ∇f(w∗))∥ (36)

≤ ∥wk0 − w∗∥
< ν,

where (36) follows from the nonexpansiveness of projection mappings onto closed convex sets,
while the second inequality follows from the nonexpansiveness of w 7→ w − λ∇f(w). Proceeding
inductively, we see that wk ∈ Bν(w

∗) for all k ≥ k0 and {∥wk−w∗∥}∞k=k0
is a decreasing sequence.

As its subsequence {∥wkr − w∗∥} converges to zero, it follows that wk → w∗, as desired.

Proof of part (c). Note that w 7→ w−λ∇f(w) being a contraction implies that there exists γ ∈ [0, 1)
such that

∥(wk0 − λ∇f(wk0)− (w∗ − λ∇f(w∗))∥ ≤ γ∥wk0 − w∗∥. (37)
We then obtain the desired inequality (9) by combining (37) and (36).

D.2 Proof of Theorem 2.2

Proof. We first prove (10). We have from Theorem 2.1 (b) that there exists N > 0 such that (8) holds.
Moreover, recall from the proof of Theorem 2.1 that

wk ∈ argmin
y∈ℜn

〈
∇f(wk−1), y − wk−1

〉
+

1

2λ
∥y − wk−1∥2 + δAs

(y), (38)

where δAs is the indicator function of As. If Jk ∈ Js satisfies wk ∈ AJk
, we can alternatively write

(38) as

wk ∈ argmin
y∈ℜn

Qk−1
Jk

(y) :=
〈
∇f(wk−1), y − wk−1

〉
+

1

2λ
∥y − wk−1∥2 + δAJk

(y). (39)

Recognizing the right-hand side of (39) as a strongly convex function of y, we obtain

Qk−1
Jk

(y)−Qk−1
Jk

(wk) ≥ 1

2λ
∥y − wk∥2, ∀y ∈ AJk

. (40)
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Consequently, for any k ≥ N , we have from (8) that Jk ∈ Iw∗ and so w∗ ∈ AJk
, which together

with (40) implies

Qk−1
Jk

(w∗)−Qk−1
Jk

(wk) ≥ 1

2λ
∥w∗ − wk∥2 ∀k ≥ N. (41)

Meanwhile, by the descent lemma (30) and by noting that λ ∈ (0, L−1), we have f(wk−1) +

Qk−1
Jk

(wk) ≥ f(wk). Thus, for all k ≥ N ,

1

2λ
∥w∗ − wk∥2 ≤ Qk−1

Jk
(w∗) + f(wk−1)− f(wk)

(39)
=

〈
∇f(wk−1), w∗ − wk−1

〉
+

1

2λ
∥w∗ − wk−1∥2 + f(wk−1)− f(wk)

≤ f(w∗)− f(wk) +
1

2λ
∥w∗ − wk−1∥2

where the last inequality holds by the convexity of f . Thus, we have

k∑
j=N+1

(
f(wj)− f(w∗)

)
≤ 1

2λ

(
∥w∗ − wN∥2 − ∥w∗ − wk∥2

)
. (42)

Hence, (10) immediately follows by noting that {f(wk)} is monotonically decreasing, as proved in
Theorem 2.1 (a), and applying [24, Lemma 1].

Now we turn to (11). From the convexity of f , we have that

f(wk)− f(w∗) ≤
〈
∇f(wk), wk − w∗〉 . (43)

By (35), we can easily conclude that

(∇f(w∗))J = 0 ∀J ∈ Iw∗ . (44)

Meanwhile, through (8), there exists N such that for all k ≥ N , we can find Jk ∈ Iw∗ such that
wk ∈ AJk

. Thus, we see that 〈
∇f(w∗), wk − w∗〉 = 0, ∀k ≥ N, (45)

because only entries of ∇f(w∗) outside Jk ∈ Iw∗ could be nonzero, but those entries are identically
0 for both wk and w∗, that is, wk

i = w∗
i = 0 for all i /∈ Jk. We therefore proceed on with (43) as

follows:

f(wk)− f(w∗)
(45)
≤

〈
∇f(wk)−∇f(w∗), wk − w∗〉

≤
∥∥∇f(wk)−∇f(w∗)

∥∥∥∥wk − w∗∥∥
(6)
≤ L

∥∥wk − w∗∥∥2, ∀k ≥ N, (46)

where the second inequality is from the Cauchy-Schwarz inequality. Finally, (11) is proven by
inserting (9) into (46).

E Proof of Results in Section 3

E.1 Proof of Theorem 3.1

Proof. Note that for any k ≥ 0, we have from (12) that

f(zk) ≤ f(wk)− σ

2
t2k∥dk∥2, zk := wk + tkd

k, (47)

where tk is defined to be zero if the condition in Line 3 of Algorithm 1 is not satisfied. Analogous to
(31), we have from wk+1 ∈ Tλ

PG(z
k) that

1− λL

2λ
∥zk − wk+1∥2 ≤ f(zk)− f(wk+1). (48)
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Using (48) together with (47), we have
σ

2
t2k∥dk∥2 ≤ f(wk)− f(wk+1). (49)

Then {f(wk)} is decreasing, and since f is bounded below over As, we have

t2k∥dk∥2 → 0. (50)

Now, assume that {wkr} is a subsequence of a sequence generated by Algorithm 1 that converges to
w∗, and as in the proof of Theorem 2.1, we assume that there exists J ∈ Js such that

wkr+1 = PAJ
(zkr − λ∇f(zkr )) (51)

for all r. Then from (50), we have that zkr → w∗ so that wkr+1 → PAJ
(w∗−λ∇f(w∗)). Meanwhile,

(48) gives ∥zk−wk+1∥ → 0, and therefore wkr+1 → w∗. Hence, w∗ = PAJ
(w∗−λ∇f(w∗)). The

rest now follows from exactly the same arguments used in the latter part of the proof of Theorem 2.1
(a).

E.2 Proof of Theorem 3.2

Proof. We consider the sequence {w0, z0, w1, z1, w2, z2, . . . , wk, zk, . . . } and remove those zk with
zk = wk from the sequence, and call the resulting sequence {w̄m}. We will show that actually
w̄m → w∗, and since {wk} is a subsequence of {w̄m}, its convergence to the same point will
ensue. Note that if nk denotes the number of successful extrapolation steps in the first k iterations of
Algorithm 1, then wk = w̄k+nk . Moreover, it is easy to check that w∗ is likewise an accumulation
point of {w̄m}.
To prove the desired result, we first show that the following properties are satisfied:

(H1) There exists a > 0 such that

f(w̄m) ≤ f(w̄m−1)− a
∥∥w̄m − w̄m−1

∥∥2 ∀m ∈ N. (52)

(H2) There exists b > 0 such that for all m ∈ N, there is a vector vm ∈ ∂δAs
(w̄m) satisfying

∥∇f(w̄m) + vm∥ ≤ b
∥∥w̄m − w̄m−1

∥∥. (53)

To this end, fix m ∈ N, and we separately consider two cases: w̄m = wk for some k and w̄m = zk

for some k.

Case I: w̄m = wk.
First, suppose that w̄m = wk for some k. Then w̄m−1 ∈ {wk−1, zk−1}. In either case, we have from
(31) or (48) that

f(w̄m) ≤ f(w̄m−1)− 1− λL

2λ

∥∥w̄m − w̄m−1
∥∥2, (54)

that is, (52) is satisfied with a = (1 − λL)/(2λ). On the other hand, since w̄m ∈ Tλ
PG(w̄

m−1),
similar to (39), we have

w̄m = argmin
y∈ℜn

〈
∇f(w̄m−1), y − w̄m−1

〉
+

1

2λ
∥y − w̄m−1∥2 + δAJk

(y), (55)

where Jk ∈ Js satisfies w̄m = wk ∈ AJk
. From the optimality condition of (55), we have

0 ∈ ∇f(w̄m−1) +
1

λ

(
w̄m − w̄m−1

)
+ ∂δAJk

(w̄m). (56)

That is,

vm := −∇f(w̄m−1)− 1

λ

(
w̄m − w̄m−1

)
∈ ∂δAJk

(w̄m).

From [18, Equation (19)], the above equation implies vm ∈ ∂δAs
(w̄m). Moreover,

∥∇f(w̄m) + vm∥ =

∥∥∥∥∇f(w̄m)−∇f(w̄m−1)− 1

λ

(
w̄m − w̄m−1)

)∥∥∥∥
(6)
≤

(
L+

1

λ

)∥∥w̄m − w̄m−1
∥∥, (57)
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that is, (53) is satisfied with b = L+ λ−1.

Case II: w̄m = zk.
We now consider the other possibility that w̄m = zk, in which case, we necessarily have w̄m−1 = wk,
dk ̸= 0, and tk > 0. By (12), (52) is already satisfied with a = σ. To prove that (H2) holds, we first
bound the final step size tk in the line search procedure. Using (30), we see that (12) is satisfied if

tk
〈
∇f(wk), dk

〉
+

t2kL

2

∥∥dk∥∥2 ≤ −σt2k∥∥dk∥∥2
or equivalently, recalling that tk > 0, we have

−
〈
∇f(wk), dk

〉
≥

(
L

2
+ σ)

)
t
∥∥dk∥∥2. (58)

Therefore, (12) is satisfied whenever

tk
(58)
≤ −

〈
∇f(wk), dk

〉
∥dk∥2

(
L
2 + σ

)
dk∈AJ= −

〈
(∇f(wk))J , (d

k)J
〉

∥dk∥2
(
L
2 + σ

)
(20)
=

ζk
∥∥(∇f(wk))J

∥∥(
L
2 + σ

)
∥dk∥

. (59)

By applying the condition of ζk ≥ ϵ to (59), we get that (12) is satisfied whenever

tk ≤
ϵ
∥∥(∇f(wk))J

∥∥(
L
2 + σ

)
∥dk∥

.

Therefore, we see that tk is lower-bounded by

tk ≥ min

{
ckαmin,

ηϵ
∥∥(∇f(wk))J

∥∥(
L
2 + σ

)
∥dk∥

}
(20)
= min

{∥∥(∇f(wk))J
∥∥

ζk∥dk∥
αmin,

ηϵ
∥∥(∇f(wk))J

∥∥(
L
2 + σ

)
∥dk∥

}

≥
∥∥(∇f(wk))J

∥∥
∥dk∥

min

{
αmin,

ηϵ(
L
2 + σ

)} ,

where the factor of η is to consider the possibility of overshooting and the last inequality is from that
ζk ∈ (0, 1] in (20). We thus conclude that for the final update tkd

k, we have∥∥tkdk∥∥ ≥ ∥∥(∇f(wk))J
∥∥t, t := min

{
αmin,

ηϵ(
L
2 + σ

)} . (60)

We then get from (6) and (60) that∥∥(∇f(zk))J∥∥ ≤ ∥∥(∇f(zk))J − (∇f(wk))J
∥∥+

∥∥(∇f(wk))J
∥∥ ≤ (L+ t−1)

∥∥zk − wk
∥∥. (61)

We now furnish the vector required in (H2). Let vm ∈ ∂δAs(w̄
m) such that (vm)J = 0 and

(vm)Jc := −(∇f(zk))Jc . Then by (61), it is clear that

∥∇f(w̄m) + vm∥ =
∥∥(∇f(zk))J∥∥ ≤ (L+ t−1)

∥∥w̄m − w̄m−1
∥∥.

Setting a = min {(1− λL)/(2λ), σ} and b = max
{
L+ λ−1, L+ t−1

}
, we see that (H1) and (H2)

are both satisfied for case I and case II.

The rest of the proof for convergence to w∗ will follow from arguments analogous to those used in
[2], with the only deviation that our condition (21) is weaker than the KL condition assumed in [2].
Through a careful inspection of the proof of [2, Lemma 2.6,Corollary 2.8], we see that

(f(w̄m)− f(w∗))θ ≤ bκ
∥∥w̄m − w̄m−1

∥∥, ∀m ∈ N (62)
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is a key inequality for the proof. The above inequality clearly holds when the conventional KL
condition holds, and here we will show how (62) will still hold under (21) so all remaining arguments
in the proof of [2, Lemma 2.6,Corollary 2.8] ensue to be valid. In either case I or case II above, note
that the vector vm in (H2) has the property that (vm)J = 0, where J ∈ Js is the index set satisfying
w̄m ∈ AJ . It follows that (∇f(w̄m))J is a subvector of ∇f(w̄m) + vm, so

∥(∇f(w̄m))J∥ ≤ ∥∇f(w̄m) + vm∥. (63)
Using (21), (53), and (63), we immediately obtain (62), as desired. The convergence of the iterates
then follows from [2, Theorem 2.9].

As for the rates, we have from (62) and (52) that
a(f(w̄m)− f(w∗))2θ ≤ b2κ2

(
f(w̄m−1)− f(w̄m)

)
.

That is,
aD2θ

m ≤ b2κ2(Dm−1 −Dm), Dm := f(w̄m)− f(w∗). (64)
We now separately consider different values of θ. One result that is being used repeatedly in our
discussion below is that we have from w̄m → w∗ and the continuity of f that

Dm ↓ 0. (65)
Our proof for θ ∈ (1/2, 1) is inspired by the proof of Lemma 6 in [33, Chapter 2.2].

(a) When θ ∈ (1/2, 1), (64) implies

Dm

( a

κ2b2
D2θ−1

m + 1
)
≤ Dm−1, (66)

and since 2θ − 1 ∈ (0, 1), (66) leads to

D−(2θ−1)
m

(
1 +

a

κ2b2
D2θ−1

m

)−(2θ−1)

≥ D
−(2θ−1)
m−1 , (67)

and we have from (65) that D2θ−1
m ↓ 0. Therefore, we can find k0 ≥ 0 such that

a

κ2b2
D2θ−1

m < 1, ∀m ≥ k0.

As −(2θ − 1) ∈ (−1, 0), for m ≥ k0 we get(
1 +

a

κ2b2
D2θ−1

m

)−(2θ−1)

≤ 1 + (2−2θ+1 − 1)
a

κ2b2
D2θ−1

m . (68)

By combining (67) and (68), we get that for m ≥ k0,

D−(2θ−1)
m − (1− 21−2θ)

a

κ2b2
≥ D

−(2θ−1)
m−1 . (69)

We note that for θ ∈ (1/2, 1), 2−2θ+1 ∈ (1/2, 1), so

Cθ := (1− 2−2θ+1)
a

κ2b2
> 0.

Thus, by summing (69) for m = k0 + 1, k0 + 1, . . . , k + nk and telescoping, we get

Dk+nk
≤

(
(k + nk − k0)Cθ +D

−(2θ−1)
k0

) −1
2θ−1

= O
(
(k + nk)

−1
2θ−1

)
,

as desired.
(b) When θ = 1/2, we see that (64) reduces to(

a+ b2κ2
)
Dm ≤ b2κ2Dm−1 ⇔ Dm ≤

b2κ2

(a+ b2κ2)
Dm−1, (70)

which shows a Q-linear convergence rate (as a > 0) that directly implies the desired exponential
bound.
For θ ∈ (0, 1/2), we get 2θ < 1, and Thus, by the monotonicity of {f(w̄m)}, we can find k0 > 0
such that Dm ≤ 1 for all m ≥ k0. For such m, (64) gets us

aDm ≤ aD2θ
m ≤ b2κ2 (Dm−1 −Dm) , ∀m ≥ k0,

and the same Q-linear rate and exponential bound then follow from (70) and the argument that
followed it.

(c) When θ = 0, (64) becomes
a

κ2b2
≤ (Dm−1 −Dm) .

Hence, noting that Dm−1 −Dm → 0 by (65) and a/(κ2b2) > 0, there must be k0 ≥ 0 such that
Dm = 0 for all m ≥ k0.
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E.3 Proof of Theorem 3.3

Proof. We will first establish the quadratic convergence of {wk,j}j to w∗ when t approaches infinity.
The overall quadratic convergence can then be obtained by showing that the iterates will all stay
within the same AJ and applying Theorem F.1 in Appendix F.

For the part of {wk,j}j for a given k, we note that since ∇2fJ(w
∗) is positive definite and wk,0 ∈

U ∩AJ , w∗
J is an isolated global optimum of fJ (as fJ is convex). Moreover, the algorithm in (22)

clearly treats coordinates not in J as nonvariables, and thus the whole sequence of {wk,j}j stays
in AJ . Therefore, {wk,j} converges quadratically to w∗ following standard analysis for Newton
methods; see, for example, [32, Chapter 3]. To satisfy the conditions of Theorem F.1, we just need
to notice that if we group t ≥ 1 consecutive Newton iterations as the operation T2, the convergence
speed is 2t ≥ 2, so the quadratic convergence assumption is still satisfied. It is also clear that since
w∗ is stationary for (1), ∇fJ(w∗

J) = 0 and thus w∗ is a fixed point for the Newton steps. For (5),
clearly these suffice for our usage of Theorem F.1 to reach the conclusion.

F Superlinear convergence of Algorithm 2

In this section, we state and prove a general result of a two-step superlinear convergence of Algo-
rithm 2 that is similar in spirit to that in [4] to simply assume that we have a superlinearly convergent
subroutine. We consider this abstract form to demonstrate the versatility of our framework and to
allow full flexibility to accommodate different problem conditions of f |AJ

, and also to fit various
algorithms like inexact damped/regularized (semismooth) Newton or quasi-Newton methods, instead
of giving the impression that we are restricted to a certain algorithm.
Theorem F.1. Assume that we have a mapping T1(w) such that its generated iterates {wk} with
wk+1 ∈ T1(w

k) converge to a stationary point w∗ of (1) and

∥ŵ − T1(w
∗)∥ ≤ ∥w − w∗∥, ∀ŵ ∈ T1 (w) (71)

for all w in a neighborhood U of w∗ and in some AJ with J satisfying J ∈ Iw∗ , and that there is
another mapping T2 that, when given an initial point w0 ∈ AJ , generates iterates that are all in AJ

and superlinearly convergent to w∗ within U for each J ∈ Iw∗ with T2(w
∗) = w∗, then the iterates

generated by
wk+1 ∈ T2

(
T1

(
wk

))
(72)

converge to w∗ at the same superlinear rate as that of T2.

Proof. We assume without loss of generality that

∥T2(w)− w∗∥ ≤ c∥w − w∗∥1+ρ (73)

for some c, ρ > 0 for all w ∈ AJ ∩ U for all J ∈ Iw∗ . Then by (71), and by denoting

ŵk+1 ∈ T1(w
k),

as the element in T1(w
k) leading to wk+1, we obtain∥∥wk+1 − w∗∥∥ =

∥∥T2

(
ŵk

)
− w∗∥∥

≤ c
∥∥ŵk − w∗∥∥1+ρ

= c
∥∥T1(w

k)− w∗∥∥1+ρ

= c
∥∥wk − w∗∥∥1+ρ

,

where the the first inequality is from (73). Therefore, the conclusion of the theorem is proven.
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