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Abstract

We consider the projected gradient algorithm for the nonconvex best subset se-
lection problem that minimizes a given empirical loss function under an £y-norm
constraint. Through decomposing the feasible set of the given sparsity constraint as
a finite union of linear subspaces, we present two acceleration schemes with global
convergence guarantees, one by same-space extrapolation and the other by subspace
identification. The former fully utilizes the problem structure to greatly accelerate
the optimization speed with only negligible additional cost. The latter leads to a
two-stage meta-algorithm that first uses classical projected gradient iterations to
identify the correct subspace containing an optimal solution, and then switches to a
highly-efficient smooth optimization method in the identified subspace to attain
superlinear convergence. Experiments demonstrate that the proposed accelerated
algorithms are magnitudes faster than their non-accelerated counterparts as well as
the state of the art.

1 Introduction

We consider the sparsity-constrained optimization problem in R":

mingea, f(w), (1)
where f is convex with L-Lipschitz continuous gradient, s € N, and A is the sparsity set given by
As ={w e R" : |Jw|o < s}, )

where ||w/||o denotes the £p-norm that indicates the number of nonzero components in w. We further
assume that f is lower-bounded on A;.

A classical problem that fits in the framework of|(1)|is the best subset selection problem in linear
regression [0, [20]. Given a response vector y € " and a design matrix of explanatory variables
X € R"™*", traditional linear regression minimizes a least squares (LS) loss function

fw) = lly = Xwl|®/2. S
However, due to either high dimensionality in terms of the number of features n or having significantly
fewer instances m than features n (i.e., m < n), we often seek a linear model that selects only a
subset of the explanatory variables that will best predict the outcome y. Towards this goal, we can
solve[(T)] with f given by [(3)]to fit the training data while simultaneously selecting the best-s features.
Indeed, such a sparse linear regression problem is fundamental in many scientific applications, such
as high-dimensional statistical learning and signal processing [22]]. The loss in[(3)|can be generalized
to the following linear empirical risk to cover various tasks in machine learning beyond regression

fw) = g(Xw), g(z) =" gi(z), 4)

where g is convex. Such a problem structure makes evaluations of the objective and its derivatives
highly efficient, and such efficient computation is a key motivation for our algorithms for[(T)}
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Related Works. The discontinuous cardinality constraint in makes the problem difficult to
solve. To make the optimization problem easier, a popular approach is to slightly sacrifice the quality
of the solution (either not strictly satisfying the sparsity level constraint or the prediction performance
is deteriorated) to use continuous surrogate functions for the ¢yp-norm, which lead to a continuous
nonlinear programming problem, where abundant algorithms are at our disposal. For instance, using
a convex penalty surrogate such as the ¢;-norm in the case of LASSO [35], the problem|(1)|can be
relaxed into a convex (unconstrained) one that can be efficiently solved by many algorithms. Other
algorithms based on continuous nonconvex relaxations such as the use of smoothly clipped absolute
deviation [15] and the minimax concave penalty [40] regularizers are also popular in scenarios with
a higher level of noise and outliers in the data. However, for applications in which enforcing the
constraints or getting the best prediction performance is of utmost importance, solving the original
problem@] is inevitable. (For a detailed review, we refer the interested reader to [[11}, Section 1].)
Unfortunately, methods for [(T)]are not as well-studied as those for the surrogate problems. Moreover,
existing methods are indeed still preliminary and too slow to be useful in large-scale problems often
faced in modern machine learning tasks.

In view of the present unsatisfactory status for scenarios that simultaneously involve high-volume data
and need to get the best prediction performance, this work proposes efficient algorithms to directly
solve[(1)|with large-scale data. To our knowledge, all the most popular algorithms that directly tackles
[(T)] without the use of surrogates involve using the well-known projected gradient (PG) algorithm, at
least as a major component [10-13| 3]E] [[LO] proved linear convergence of the objective value with
the LS loss function[(3)] for the iterates generated by PG under a scalable restricted isometry property,
which also served as their tool to accelerate PG. However, given any problem instance, it is hard, if
not computationally impossible, to verify whether the said property holds. On the other hand, [[11]]
established global subsequential convergence to a stationary point for the iterates of PG on [(T)] without
the need for such isometry conditions, and their results are valid for general loss functions f beyond
[3)} While some theoretical guarantees are known, the practicality of PG for solving[(T)] remains a
big problem in real-world applications as its empirical convergence speed tends to be slow. The PG
approach is called iterative hard thresholding (IHT) in studies of compressed sensing [[13]] that mainly
focuses on the LS case. To accelerate IHT, several approaches that alternates between a PG step and
a subspace optimization step are also proposed [12} 3], but such methods mainly focus on the LS
case and statistical properties, while their convergence speed is less studied from an optimization
perspective. Recently, “acceleration” approaches for PG on general nonconvex regularized problems
have been studied in 26| 36]. While their proposed algorithms are also applicable to[(T)] the obtained
convergence speed for nonconvex problems is not faster than that of PG.

This work is inspired by our earlier work [[1]], which considered a much broader class of problems
without requiring convexity nor differentiability assumptions for f, and hence obtained only much
weaker convergence results, with barely any convergence rates, for such general problems.

Contributions. In this work, we revisit the PG algorithm for solving the general problem [(T)]and
propose two acceleration schemes by leveraging the combinatorial nature of {y-norm. In particular, we
decompose the feasible set Ay as the finite union of s-dimensional linear subspaces, each representing
a subset of the coordinates {1, ...,n}, as detailed inof Such subspaces are utilized
in devising techniques to efficiently accelerate PG. Our first acceleration scheme is based on a
same-space extrapolation technique such that we conduct extrapolation only when two consecutive
iterates w1 and wy, lie in the same subspace, and the step size for this extrapolation is determined
by a spectral initialization combined with backtracking to ensure sufficient function decrease. This
is motivated by the observation that for[(4)} objective and derivatives at the extrapolated point can
be inferred efficiently through a linear combination of Xwy_; and Xwy. The second acceleration
technique starts with plain PG, and when consecutive iterates stay in the same subspace, it begins to
alternate between a full PG step and a truncated Newton step in the subspace to obtain superlinear
convergence with extremely low computational cost. Our main contributions are as follows:

1. We prove that PG for [(T)]is globally convergent to a local optimum with a local linear rate,
improving upon the sublinear results of Bertsimas et al. [L1]. We emphasize that our framework,
like [[L1]], is applicable to general loss functions f satisfying the convexity and smoothness

M17) proposed an algorithm for a similar optimization problem that minimizes f(w) + C [lw|, for some
C > 0. But whether it is equivalent to is unclear because both problems are nonconvex, and for any
prespecified sparsity level s, it is hard to find C' that leads to a solution w™ with ||w*||, = s.



requirements, and therefore covers not only the classical sparse regression problem but also many
other ones encompassed by the empirical risk minimization (ERM) framework.

2. By decomposing A; as the union of linear subspaces, we further show that PG is provably capable
of identifying a subspace containing a local optimum of [(T)] By exploiting this property, we
propose two acceleration strategies with practical implementation and convergence guarantees
for the general problem class[(T)] Our acceleration provides both computational and theoretical
advantages for convergence, and can in particular obtain superlinear convergence.

3. In comparison with existing acceleration methods for nonconvex problems [26, 36], this work
provides new acceleration schemes with faster theoretical speeds (see and[3.3), and
beyond being applied to the classical PG algorithm, those schemes can also easily be combined
with existing accelerated PG approaches to further make them converge even faster.

4. Numerical experiments exemplify the significant improvement in both iterations and running time
brought by our acceleration methods, in particular over the projected gradient algorithm by [[L1]
as well as the accelerated proximal gradient method for nonconvex problems proposed by [26].

This work is organized as follows. We review the projected gradient algorithm and prove its local
linear convergence and subspace identification for arbitrary smooth loss functions in[Section 2] In

ection 3| we propose the acceleration schemes devised through decomposing the constraint set in
(1)|into subspaces of . Experiments in[Section 4]then illustrate the effectiveness of the proposed
acceleration techniques, and concludes this work. All proofs, details of the experiment
settings, and additional experiments are in the appendices.

2 Projected Gradient Algorithm

The projected gradient algorithm for solving [(T)]is given by the iterations
Wt € TPo (W) = Pa, (w* — AV f(w")), )

where P4, (w) denotes the projection of w onto A, which is set-valued because of the nonconvexity
of As;. When f is given by global linear convergence of this algorithm under a restricted isometry
condition is established in [10]. For a general convex f with L-Lipschitz continuous gradients, that
is,

IVf(w) = V()] < Lllw v Vw,uw" R, (©)
the global subsequential convergence of [(5)]is proved in [[L1]], but neither global nor local rates of
convergence is provided. In this section, we present an alternative proof of global convergence and
more importantly establish its local linear convergence.

A useful observation that we will utilize in the proofs of our coming convergence results is that the
nonconvex set A, given by [(2)|can be decomposed as a finite union of subspaces in ™:

ASzUJeJSAJ’ AJ = Span{ej:jej}v js = {J§{1,27,n}|J|:3}, (7)

where e; is the jth standard unit vector in ™. Throughout this paper, we assume that A € (0, L™1).
Theorem 2.1. Let {w*} be a sequence generated by Then:

(a) (Subsequential convergence) Either { f (w*)} is strictly decreasing, or there exists N > 0 such
that w* = w" for all k > N. In addition, any accumulation point w* of {w"} satisfies
w* € Pa,(w* — AV f(w*)), and is hence a stationary point of [(1)}
(b) (Subspace identification and full convergence) There exists N € N such that
k . o
{w }ZO:N - UJEIw* AJa Iu)* = {J S \75 W oe AJ} (8)
whenever w* — w*. In particular, ifTG (w*) is a singleton for an accumulation point w* of
{wk}, then w* is a local minimumfor wh — w*, andholds.
(c) (Q-linear convergence) Ifo,‘G (w*) is a singleton for an accumulation point w* and w —

w — AV f(w) is a contraction over Aj for all J € T, then {w*} converges to w* at a Q-linear
rate. In other words, there is Ny € N and «y € [0,1) such that

it = w]] < ot = wl, vh 2 N ®



It is well-known that an optimal solution of [(T)]is also a stationary point of it [8, Theorem 2.2], and
therefore (a) proves the global subsequential convergence of PG to candidate solutions of Consider

*

z* = w*—AV f(w*), and let T be a permutation of {1, ..., n} such that z;*(l) > zji(z) > > zi(n).

The requirement of Tf}G(W*) being a singleton in (b) then simply means the mild
condition of 27 ., > 2 (s+1)’ which is almost always true in practice. The requirement for (c) can
be fulfilled when f confined to A is strongly convex, even if f itself is not. This often holds true
in practice when f is of the form [(4)]and we restrict s in[(D)|to be smaller than the number of data
instances m, and is thus also mild. The existence of a stationary point can be guaranteed when {w"}
is a bounded sequence, often guaranteed when f is coercive on A ; for each J € 7.

In comparison to existing results in [T} 2} [14], parts (b) and (c) of are new. In particular,
part (b) provides a full convergence result that usually requires stronger regularity assumptions like
the Kurdyka-t.ojasiewicz (KL) condition [2, [14] (see also that requries the objective value to
decrease proportionally with the minimum-norm subgradient in a neighborhood of the accumulation
point, but we just need the very mild singleton condition right at the accumulation point only. Part (c)
gives a local linear convergence for the PG iterates even if the problem is nonconvex, while the rates
in [[14]] requires a KL condition and the rate is measured in the objective value.

The following result further provides rates of convergence of the objective values even without the
conventional KL assumption. The first rate below follows from [24].

Theorem 2.2. Let {w*} be a sequence generated by Ifwk — w*, such as when T (w*) is a
singleton at an accumulation point w* of [(5)| then

Fh) = f(w) = o(k™). (10)
Moreover, under the hypothesis o (c), the objective converges to f(w*) R-linearly, i.e.,
fwh) = f(w") = O(exp(~k)). (11)

By using we can also easily get rates faster than[(T0)|under a version of the KL condition
that is easier to understand and verify than those assumed in existing works. In particular, existing
analyses require the KL condition to hold in a neighborhood in " of an accumulation point, but we
just need it to hold around w* within A ; for the restriction f|4, for each J € Z,,~. These results are
postponed to in the next section as the PG method is a special case of our acceleration
framework.

3 Accelerated methods

The main focus of this work is the proposal in this section of new techniques with solid convergence
guarantees to accelerate the PG algorithm presented in the preceding section. Our techniques fully
exploit the subspace identification property described by the inclusion|[(8)] as well as the problem
structure of [(4)|to devise efficient algorithms.

We emphasize that the two acceleration strategies described below can be combined together, and
they are also widely applicable such that they can be employed to other existing algorithms for [(T)]as
long as such algorithms have a property similar to|(8)

3.1 Acceleration by extrapolation

Traditional extrapolation techniques are found in the realm of convex optimization to accelerate
algorithms [9, 30] with guaranteed convergence improvements, but were often only adopted as
heuristics in the nonconvex setting, until some recent works showed that theoretical convergence
can also be achieved [26, 36]]. However, unlike the convex case, these extrapolation strategies for
nonconvex problems do not lead to faster convergence speed nor an intuitive reason for doing so.
An extrapolation step proceeds by choosing a positive stepsize along the direction determined by
two consecutive iterates. That is, given two iterates w*~! and w”, an intermediate point z* =
wh + ¢, (w* — w*~1) for some stepsize ¢, > 0 is first calculated before applying the original
algorithmic map (1 in our case)f]

Bit is clear that if ¢ = 0, we reduce back to the original algorithm.



Another popular acceleration scheme for gradient algorithms is the spectral approach pioneered by
[S]. They take the differences of the gradients and of the iterates in two consecutive iterations to
estimate the curvature at the current point, and use it to decide the step size for updating along the
reversed gradient direction. It has been shown in [38] that equipping this step size with a backtracking
procedure leads to significantly faster convergence for proximal gradient on regularized optimization
problems, which includes our PG for[(T)|as a special case.

To describe our proposed double acceleration procedure that combines extrapolation and spectral
techniques, we first observe that all PG iterates lie on A, and that A, can be finitely decomposed as
When two consecutive iterates lie on the same convex subspace A ; for some J € J;, within these
two iterations, we are actually conducting convex optimization. In this case, an extrapolation step
within A is reasonable because it will not violate the constraint, and acceleration can be expected
from the improved rates of accelerated proximal gradient on convex problems in [9,[31]. Judging
from (b), the corresponding J is also a candidate index set that belongs to Z,,«, so
extrapolation within A ; makes further sense. We set ¢, = 0 to skip the extrapolation step if d¥ is
not a descent direction for f at w®. Otherwise, we start from some ¢, > 0 decided by the curvature
information of £, and then execute a backtracking linesearch along d* := w” —w*~1 to set t;, = n't;,
for the smallest integer ¢ > 0 that provides sufficient descent

Fw® +tyd") < f(w) —ati]d"|?, (12)
given parameters 7,0 € (0,1). We then applyto 2P = wk + t1,d* to obtain w1

For the spectral initialization ;, for accelerating the convergence, instead of directly using approaches
of [5) 138] that takes the reversed gradient as the update direction, we need to devise a different
mechanism as our direction d” is not directly related to the gradient. We observe that for the stepsize

ap = (P, M) [ (sF k) L sF =k — P R = V(W) - VI (wF ) (13)
used in [3], the final update —a;, V f (w”) is actually the minimizer of the following subproblem

min  (Vf(w"),d) + |d|*/(20x). (14)

By juxtaposing the above quadratic problem and the upper bound provided by the descent lemma [7,
Lemma 5.7], we can view 04,;1 as an estimate of the local Lipschitz parameter that could be much

smaller than L but still guarantee descent of the objective. We thus follow this idea to decide ¢}, using
such curvature estimate and the descent lemma by

t, = argmin (Vf(w"),td") + thk’|2/(2ak) &ty =—(apVf(w"),d") /HdkH2 (15)
>0

Another interpretation of |(13)|is that a,;ll also serves as an estimate of V2 f (w’“)and the objective
in[(14)]is a low-cost approximation of the second-order Taylor expansion of f. However, we notice
that for problems in the form of |(4){and with d* € A, the exact second-order Taylor expansion

fF +td") = f(wh) +t(V f(w"),d") + ¢ (V? f(wF)d", d") /2 (16)
can be calculated efficiently. In particular, for and any d* € A, we get from Xd* = X : Jd?:

Vi) Td = Vg (Xut) " (X.dY),

7)
(V2f(wh)d*,d*) = ((X.,5d}), Vg (Xw")) (X, 5d}))

which can be calculated in O(ms) time by computing X, ;d* first. This O(ms) cost is much cheaper
than the O(mn) one for evaluating the full gradient of f needed in the PG step, so our extrapolation
plus spectral techniques has only negligible cost. Moreover, for our case of d* = w¥ — w*~1, we
can further reduce the cost of calculate X. ;d% and thus to O(m) by recycling intermediate
computational results needed in evaluating f(w") through X. ;d% = Xw* — Xwk~1. With such

tricks for efficient computation, we therefore consider the more accurate approximation to let #;, be

BAs v f is Lipschitz continuous, it is differentiable almost everywhere. Here, we denote by V> f (wk) a
generalized Hessian of f at w, which is well-defined for f with Lipschitz continuous gradient [19].



the scalar that minimizes the quadratic function on the right-hand side of [(T6)] for problems in the
form [(4)] That is, we use

ty = — (Vf(wh),d") / (V2 f(wF)d¥, d¥) . (18)
Finally, for both and|(15), we safeguard ¢, by
tAk — P[ckocm;n,ckamax] (Ek) (19)

for some fixed amax > @min > 0, where
= [(TH@ NG, G o= — (T F@h)) /([T € 0,11 @0)

We also note that the low cost of evaluating X d* is also the key to making the backtracking in

practical, as each f(w* + n°t,d"*) can be calculated in O(m) time through linear combinations
h

of Xw"* and Xd*. The above procedure is summarized in [Algorithm 1| with global convergence
guaranteed by [Theorem 3.1} In [Theorem 3.2| we establish its full convergence as well as its
convergence rates under a KL condition at w*: there exists neighborhood U C R" of w*, 6 € [0, 1],
and k > 0 such that for every J € Z,,«,

(f(w) = fF(w*)’ < k| (VF())sll, Ywe A;nU. 1)

We denote by n; the number of successful extrapolation steps in the first & iterations of |Algorithm 1

Theorem 3.1. Under the hypotheses of[Theorem 2.1} any accumulation point of a sequence generated
by is a stationary point.
Theorem 3.2. Consider eitheror Algorithm I|\with 1,0, ¢ € (0, 1), and aumax > Qmin > 0, and

suppose that there is an accumulation point w* of the iterates at which the KL condition holds. Then
w”® — w*. Moreover, the following rates hold:

(@) If0 € (1/2,1): f(w") = f(w*) = O((k +ny) "/~ 1),
(b) If0 € (0,1/2]: f(w*) — f(w*) = O(exp(—(k + nx))).
(c) If0 = 0: there is ko > 0 such that f(w*) = f(w*) for all k > k.

We stress that convexity of f is not required in[Theorems 3.1{and except the second half of the
last item of There are several advantages of the proposed extrapolation strategy over

existing ones in [26] 36]. The most obvious one is the faster rates in over PG such
that each successful extrapolation step in our method contributes to the convergence speed, while
existing methods only provide the same convergence speed as PG. Next, existing strategies only
use prespecified step sizes without information from the given problem nor the current progress,
and they only restrict such step sizes to be within [0, 1]. Our method, on the other hand, fully takes
advantage of the function curvature and can allow for arbitrarily large step sizes to better decrease the
objective. In fact, we often observe ¢; > 1 in our numerical experiments. Moreover, our acceleration
techniques utilize the nature of |(/)|and|(4)|to obtain very efficient implementation for ERM problems
such that the per-iteration cost of [Algorithm 1}is almost the same as that of PG, while the approach of
[26] requires evaluating f and V f at two points per iteration, and thus has twice the per-iteration
cost.

A finite termination result similar to (c) is presented in [28] under a Holderian error
bound that is closely related to the KL condition, but their result requires convexity of both the
smooth term and the regularizer, so it is not applicable to[(T)]that involves a nonconvex constraint.

3.2 Subspace Identification

In line with the above discussion, we interpret [(8)| as a theoretical property guaranteeing that the
iterates of the projected gradient algorithm [(3)| will eventually identify the subspaces A ; that contain
a candidate solution w* after a finite number of iterations. Consequently, the task of minimizing f
over the nonconvex set A, can be reduced to a convex optimization problem of minimizing f over
A ;. Motivated by this, we present a two-stage algorithm described in that switches
to a high-order method for smooth convex optimization after a candidate piece A is identified to
obtain even faster convergence. Since V f is assumed to be Lipschitz continuous, the generalized
Hessian of f exists everywhere [19], so we may employ a semismooth Newton (SSN) method [34]
with backtracking linesearch to get a faster convergence speed with low cost (details in [Appendix A).
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Algorithm 1: Accelerated projected gradient algorithm by extrapolation (APG)

Given an initial vector w® € R™ and parameters €, 7, o € (0,1), &max = Qmin > 0,
A€ (0,1/L).
fork=0,1,2,... do
if & > 0; w1 and w* activate the same A;; and (r, > € then
d*F — wk —wk=1, and compute %, fromwith eitheror
for:=0,1,... do
te < n'te
if is satisfied then 2k« w* + t,,d*, and break
else zF «— w”
whtl Tﬁ‘G(zk)

In particular, we reduce the computation costs by considering the restriction of f on the subspace A ;
by treating the coordinates not in J as non-variables so that the problem considered is indeed smooth
and convex. As we cannot know a priori whether I,,- is indeed identified, we adopt the approach
implemented in [23, 27, 23] to consider it identified when w" activates the same A ; for long enough
consecutive iterations. To further safeguard that we are not optimizing over a wrong subspace, we
also incorporate the idea of [37, 4] 27, [23]] to periodically alternate to a PG step [(5)|after switching to
the SSN stage. A detailed description of this two-stage algorithm is in[Algorithm 2]

In the following theorem, we show that superlinear convergence can be obtained for [Algorithm 2
even if we take only one SSN step every time between two steps of [(5)] using a simplified setting of
twice-differentiability. For our next theorem, we need to introduce some additional notations. Given
any w € Ay, weuse f;(wy) := f(w) to denote the function of considering only the coordinates of
w in J as variables and treating the remaining as constant zeros. We assume that the conditions of
(b) hold with w* € Ay, and that f is twice-differentiable around a neighborhood U of
w* with V2 f; Lipschitz continuous in U and V2 f;(w*) positive definite for all J € Z,«.

Theorem 3.3. Suppose that starting after k > N and Pa_(w®) C U, we conduct t Newton steps
between every two steps of [3)for t > 1:

J € Lyk.0,
w0 e Pa (wh), {w T =0, Vi¢J, j=1,...,t—1, Wt e TR ). (22)
wy T = wy! =V f(wy )T L)),

Then w* — w* at a Q-quadratic rate.

In practice, the linear system for obtaining the SSN step is only solved inexactly via a (preconditioned)
conjugate gradient (PCG) method, and with suitable stopping conditions for PCG and proper algo-
rithmic modifications such as those in [39| 29]], superlinear convergence can still be obtained easily.
Interested readers are referred to for a more detailed description of our implementation.

4 Experiments

In this section, we conduct numerical experiments to demonstrate the accelerated techniques presented

in We employ (APG) with[(18)]to accelerate PG, and further accelerate APG

by incorporating subspace identification described in [Algorithm 2| which we denote by APG+E]
Comparisons with the extrapolated PG algorithm of Li and Lin [26], which we denote by PG-LL, are
also presented. PG-LL is a state-of-the-art approach for nonconvex regularized optimization and thus
suitable for ()} For f in[(T)] we consider both LS [(3)]and logistic regression (LR)

flw) = 211 log (1 + exp (—yiz] w)) + pl|wl|?/2, (23)

where (z;,y;) € R" x {=1,1}, i = 1,...,m, are the training instances, and x > 0 is a small
regularization parameter added to make the logistic loss coercive.

B That is, if U nchanged < S in|Algorithm 2| we calculate z* as in|Algorithm 1
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Algorithm 2: Accelerated projected gradient algorithm by subspace identification (PG+)

Given an initial vector w® € R" and S, ¢ € N. Set Unchanged + 0.
fork=0,1,2,... do

if k > 0, and w* =" and w* activate the same component of A, then
Let J € J correspond to the activated component

Unchanged < Unchanged +1

else Unchanged < 0

if Unchanged > S then

y* < P4, (w") and use t steps of SSN described in[Appendix Al starting from y*, to
find z* that approximately minimizes f|4,

if SSN fails then z* < w* and Unchanged « 0.

else 2¥ « w”

wtt T (=)

The alforithms are implemented in MATLAB and tested with public datasets in and [3]

in [Appendix B: All algorithms compared start from w” = 0 and terminate when the first-order
optimality condition

Residual(w) = [lw — Pa, (w = AV (w))[|/ (1 + [wl] + AV f (w)]]) <€ 24)
is met for some given € > 0. More setting and parameter details of our experiments are in[Appendix B]

Comparisons of algorithms for large datasets. To fit the practical scenario of using we
specifically selected high-dimensional datasets with n larger than m. We conduct experiments
with various s to widely test the performance under different scenarios. In particular, we consider
s € {[0.01m], [0.05m], [0.1m]} on all data except for the largest dataset webspam, for which we
set s € {[0.001m], [0.005m], [0.01m]}. The results of the experiment with the smallest s are

summarized in[Figure T} and results of the other two settings of s are in[Appendix C|

Logistic regression

e PG e PG

—APG —APG

—APG+ 102, —APG+
PG-LL ., PG-LL

Residual
Residual
=
5
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100 150 0 2 4 6 8 10 12 0 2000 4000 6000 8000

Time (s) Time (s) Time (s)
(a) news20, s = [0.01m/] (b) revl.binary, s = [0.01m] (c) webspam, s = [0.001m/]
Least square
—APG+ 102 — APG+
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=
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(WY 10° \AY

0 50 100 150 200 250 0 05 1
Time (s) Time (s)

(d) E2006-loglp, s = [0.01m/] (e) E2006-tfidf, s = [0.01m]

Figure 1: Experiment on sparse regularized LR and LS. We present time v.s. residual in

Evidently, the extrapolation procedure in APG provides a significant improvement in the running time
compared with the base algorithm PG, and further incorporating subspace identification as in APG+
results to a very fast algorithm that outperforms PG and APG by magnitudes. Since the per-iteration
cost of PG and APG are almost the same as argued in[Section 3] we note that the convergence of
APG in terms of iterations is also superior to that of PG.



Table 1: Comparison of algorithms for to meet with é = 1076, with and and
with sparsity levels s; = [0.01m] and s; = [0.05m] for all datasets except webspam where
s1 = [0.001m] and s; = [0.005m]. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for[(23)). MSE: mean-squared error (for[(3)). Time with * indicates
that the algorithm is terminated after running 10000 iterations without satisfying [(24)]

S1 So
Dataset  Method CPU GE CG PA CPU GE CG PA
PG <7387 10000 0 0877  +7289 10000 0 0935
APG 1517 1583 0 0877 7583 8428 0 0923
news20  APG+ 5.0 52 63 0853 161 171 67 0923
PG-LL 3667 4682 0 0873 14944 20000 0 0922
APG-LL+ 66 152 88 0854 292 417 89  0.920
PG «584 10000 0 0937 «727 10000 0 0951
APG 126 1120 0 00935 824 6372 0 0934
revl binary APG+ 0.3 21 42 0931 24 192 138 0940
PG-LL 22 3638 0 0935 721 8738 0 0929
APG-LL+ 0.6 99 49 0.930 49 626 236 0939
PG «18660.1 10000 0 0964 307762 10000 0 0978
APG 196834 7682 0 0981 77224 2008 O  0.991
webspam  APG+ 2483 75 88 0.969 6954 164 57 0991
PG-LL 90013 4720 0 0972 101635 3098 0  0.990
APG-LL+ 4473 264 92 0.965 8373 294 90  0.992
CPU GE CG MSE CPU GE CG MSE
PG «2998.6 10000 0 0.167 36441 10000 0 0.161
APG 2706 669 0 0.136 811.8 1757 0  0.133
E2006-loglp APG+ 19.5 40 49 0.141 105.6 222 124 0.132
PG-LL «6049.8 20000 0 0132 26960 7086 0  0.132
APG-LL+ 412 142 38 0142 1075 326 100 0.138
PG «2427 10000 0 0152 #6669 10000 0 0.152
APG 1.3 14 0 0154 33 330 0153
E2006-tfidf APG+ 1.3 8 6 0.141 33 31 7 0.139
PG-LL 110.6 4440 0 0.152 3048 4558 0 0.151
APG-LL+ 17 34 6 0.141 3.7 47 7 0139

We also report the required time and number of gradient evaluations (which is the main computation
at each iteration) for the algorithms to drivebelow ¢ = 1076, For PG, APG, and APG+, one
gradient evaluation is needed per iteration, so the number of gradient evaluations is equivalent to the
iteration count. For PG-LL, two gradient evaluations are needed per iteration, so its cost is twice
of other methods. We also report the prediction performance on the test data, and we in particular
use the test accuracy for [(23)] and the mean-squared error for [3)] Results for the two smaller s
are in while that for the largest s is in [Appendix C It is clear from the results in
that APG outperforms PG-LL for most of the test instances considered, while APG+ is magnitudes
faster than PG-LL. When we equip PG-LL with our acceleration techniques by replacing 75 in
and 2] with the algorithmic map defining PG-LL, we can further speed up PG-LL greatly
as shown under the name APG-LL+ (see [Table T). We do not observe a method that consistently
possesses the best prediction performance, as this is mainly affected by which local optima is found,
while no algorithm is able to find the best local optima among all candidates. With no prediction
performance degradation, we see that APG+ and APG-LL+ reduce the time needed to solve[(T)]to a
level significantly lower than that of the state of the art.




we demonstrate the effect on prediction performance when we vary the residual

(24)| and illustrate that tight residual level is indeed required to obtain better prediction. Comparisons

with a greedy method is shown in

Transition Plots. To demonstrate the behavior of the algorithm for increasing values of s, we fit the
smaller datasets in using logistic loss and least squares loss|(3)|for varying s = [km],
where k = 0.2,0.4,0.6, . . ., 3. The transition plots are presented in We note that the time
is in log scale.

We can see clearly that APG+ and APG-LL+ are consistently magnitudes faster than the baseline PG
method throughout all sparsity levels. On the other hand, the same-subspace extrapolation scheme
of APG is consistently faster than PG and APG-LL and slower than the two Newton acceleration
schemes, although the performance is sometimes closer to APG+/APG-LL+ while sometimes closer
to PG. APG-LL tends to outperform PG in most situations as well, but in several cases when solving
the least square problem, especially when s is small, it can sometimes be slower than PG. Overall
speaking, the results in the transition plots show that our proposed acceleration schemes are indeed
effective for all sparsity levels tested.

Sparse regularized logistic regression
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Figure 2: Transition plots. We present sparsity levels versus running time (in log scale). Top row:
logistic loss. Bottom row: least square loss.

5 Conclusions

In this work, we revisited the projected gradient algorithm for solving ¢y-norm constrained opti-
mization problems. Through a natural decomposition of the constraint set into subspaces and the
proven ability of the projected gradient method to identify a subspace that contains a solution, we
further proposed effective acceleration schemes with provable convergence speed improvements.
Experiments showed that our acceleration strategies improve significantly both the convergence speed
and the running time of the original projected gradient algorithm, and outperform the state of the art
for ¢y-norm constrained problems by a huge margin. We plan to extend our analysis and algorithm to
the setting of a nonconvex objective in the near future.
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A Implementation Details for

We first discuss our implementation for obtaining inexact SSN steps described in Given
any w € Az, We use the notation f;(wy) := f(w) to denote the function of considering only the
coordinates of w in J as variables and treating the remaining as constants equal to zero. For any
p € R®, we use PXJI to denote the vector p € R™ with p; = p and p; = 0 for i ¢ J. Note that since

f7 is Lipschitz-continuously differentiable, a generalized Hessian V2 f; always exists [19]. When
the set of generalized Hessian is not a singleton, we can pick any element in the set.

In large-scale problems often faced in modern machine learning tasks, s can be large even if s < n,
and thus forming the generalized Hessian explicitly and inverting it could still be prohibitively expen-
sive even if we only consider the generalized Hessian in the s-dimensional subspace. Therefore, we
resort to PCG that, given a preconditioner M, iteratively uses the matrix-vector products V2 f;(ws)v
and M ~ ' for given vectors u, v € R?®, which can be of much lower cost especially if M has certain
structures to facilitate the inverse. Details of PCG can be found in, for instance, Nocedal and Wright
[32, Chapter 7]. The PCG approach provides an approximate solution to

pr V2 f(ws) 'V fi(wy),

or equivalently,

p

p = argamin (Qu(piws) = (VFr(ws). )+ 3 0.V s(w0p) ) @s)

In our implementation, inspired by the approach of [21]], we select the diagonal entries of V2 £
as our preconditioner M, which provides better performance in our preliminary test over using no
preconditioner (or equivalently, taking M as the identity matrix). As this choice of M is a diagonal
matrix, its inverse can be computed efficiently in O(s) time.

After obtaining p, given parameters (3,05 € (0, 1), we conduct a backtracking line search procedure
to find the largest nonnegative integer ¢ such that

fr(ws+ B'p) < fr(wy)+ 028 (Vs (ws),p) (26)
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Table 2: Data statistics.

Dataset Loss #training  #features #test

instances (1m) (n) instances
news20 (23) 15,997 1,355,191 3,999
rcvl.binary  [(23) 20,242 47,236 677,399
webspam (23) 280,000 16,609,143 70,000
E2006-loglp 16,087 4,272,227 3,308
E2006-tfidf  |(3)] 16,087 150,360 3,308

and set the step size to @ = S3°. Finally, the iterate is updated by
Wy < Wy + ap.

If « is too small, or this decrease condition cannot be satisfied even when iis already extremely small,
we discard this SSN step and declare that this smooth optimization part has failed in

For the approximation criterion in|(25)} let the i-th iterate of PCG be p and Q; = Q J(p(i); wy),
we follow [16] to terminate PCG either when it reaches s iterations (at which point theoretically it
should have found the exact solution of the right-hand side of [25)) or when the i-th iterate satisfies
3> 1and

Qi Qi min 0.5, /(Y7 (ws), M=V f5(w))) } 27)
where Qo = Q(0;w;) = 0. It has been shown in [16] that such a stopping condition leads to
(2-superlinear convergence to an optimum of f; when V f; is semismooth and f is strongly convex.
In our case that alternates between such an SSN step and a PG step, we will show that with [(27)}

the overall procedure will enjoy superlinear convergence to w* if V f is semismooth around z*; see

[Theorem F.1l for more details.

One concern is that PCG only works when V2 £ is positive definite, but our problem class only
guarantees that it is positive semidefinite. To safeguard this issue, one can add a multiple of the
identity to V2 f; as a damping term to make sure the quadratic term is always positive definite. A
particularly useful way is to use ¢||V f.;(w)||”I as the damping term for some ¢ > 0 and p € (0, 1] in
When f; satisfies a g-metric subregularity condition or an error-bound condition, this damping
is known to produce a superlinear convergence rate of order (1 + p) for a range of ¢ following the
analysis in [39] 29]. In we do not consider any specific scenarios, but just assume
that the smooth optimization subroutine involved itself has a superlinear convergence rate, and show
that such a rate is still retained when this subroutine is combined with our algorithm. Therefore,
discussions of various schemes including truncated Newton, semismooth Newton, and damping, are
all compatible with our general framework to obtain superlinear convergence rates.

B Experimental settings

All experiments are conducted on a machine with 64GB memory and an Intel Xeon Silver 4208
CPU with 8 cores and 2.1GHz. For all algorithms and all experiments, all cores are utilized. The
experiment environment runs Ubuntu 20.04 and MATLAB 2021b. For experiments in
we use public data listed in and E] For the datasets that do not come with a test set, we
manually do a 80/20 split to obtain a test set.

The parameters used in our implementation are as follows. We use ¢ = 10719 in For
Algorithm 1, ¢ = 0.05, 7 = 0.5, € = 107", amin = 1, amax = 100, L is estimated using
MATLAB’s eigs function to approximate the largest eigenvalue of AAT with tolerance 10~3, and

A =0.999/L. In|Algorithm 2| we set t = 1 and S = 5, while for the PCG and SSN subroutines, we
set 5 = 0.5 and o5 = 0.001.

Bpownloaded from http://wuw.csie.ntu.edu.tw/~“cjlin/libsvmtools/datasets/|

15


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 3: Data statistics for small datasets.

Dataset Loss #training instances (m) #features (n) #test instances
colon-cancer (23) 50 2,000 12
duke (23) 38 7,129 6
gisette_scale (23) 1,000 5,000 6,000
leukemia (23) 38 7,129 34

C Additional Experiments

This section provides two sets of additional experiments. We first present results of the datasets in
Section 4| with different settings of s. The second set of additional experiments are on some smaller
datasets that are often considered in existing works for the best subset selection problem like [11].

C.1 Other settings of s

We present the other two settings of s described in[Section 4]in [Figures 3]and 4] and the continuation
of [Table Tis presented in[Table 4] Additional experiments with the setting of s > m are presented in
Tables 5|and[6] which further exemplifies the benefits of our proposed acceleration strategies.

Clearly, for the setting of s3 as well as s > m, our acceleration techniques continue to greatly improve
upon existing methods in almost all cases, with the only excepion being webspam with s > m. After
a thorough check, we found that the reason is that in this setting, due to the high dimensionality of
n and that many pieces of J € J; can lead to a very low objective value, the subspaces in which
each w" lie change very frequently, so our extrapolation barely take place. This is a potential limit
of our method, although in practice we observe that for such easier datasets we probably can avoid
this problem by setting s < m, which would also make the problem much easier to solve in general
(note that with s < m, the prediction performance on webspam is not improving at all, suggesting
that indeed we do not need to consider the more difficult situation of s < m).

We also observe that all for s > m on E2006-loglp, all accelerated methods experience significantly
larger MSE than the base PG method. After a close examination, we find out that all such acceleration
methods provide much lower objective value than PG for the minimization problem, indicating that
this is merely due to overfitting of the training data, and indeed PG is alway terminated without
reaching the prespecified stopping condition for these cases. This indicates that the accelerated
methods are actually performing well from the optimization angle, and this overfitting issue is just a
matter of parameter selection.

For E2006-tfidf, we see that for all settings of s, identification does not show any additional time
improvement in the tables, while the figures clearly show that this is due to that this step kicks in at a
very late stage when the residual is already very close to €, and if we set € to a smaller value, we can
expect observable running time difference between APG and APG+.

C.2 Experiments with smaller datasets

We now consider some other smaller datasets shown in which are also downloaded from the
LIBSVM website. Note that for gisette_scale, we interchanged the training and the test sets to make
m < n. For the setting of s < m, we consider s € {[0.01m], [0.05m], [0.1m], [0.5m]}, while for
the setting of s > m, we consider s € {m, [1.1m], [1.5m], 2m}. The results of least-square loss in

(3))are shown in [Tables 7]and 8] while the results of the logistic loss in[(23)| are shown in[Tables 9|
and

We can clearly see from these results that our acceleration schemes are also effective on smaller
datasets to reduce the running time to magnitudes shorter. However, there are several cases that the
running time is too short such that the digits in the tables are unable to show difference between
APG and APG+. We do not try to increase the number of digits in such cases, as the running time is
anyway already extremely short, and the difference would not make much difference for problems
that can be solved with such high efficiency.
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Table 4: Comparison of algorithms forto meet with € < 1075, with and|(3)|and with
sparsity level s3 = [0.1m/] for all datasets except webspam where s3 = [0.01m]. CPU: CPU time
in seconds. GE: number of gradient evaluations. In one iteration, PG, APG, and APG+ needs one
gradient evaluation , while PG-LL and PG-LL+ needs two. CG: number of Hessian-vector products in
the PCG procedure for obtaining SSN steps. PA: prediction accuracy (for[(23)). MSE: mean-squared
error (for[3)). Time with * indicates that the algorithm is terminated after running 10000 iterations
without satisfying[(24)]

Dataset 53

Method CPU GE CG PA
PG «8068 10000 0 0.947
APG 5627 5972 0 0927
news20 APG+ 198 209 133 00918
PG-LL 3566 4578 0 0.930
APG-LL+ 232 463 223 0918
PG «812 10000 0 00953
APG 336 2556 0 0943
rcvl.binary APG+ 2.2 173 93 0.936
PG-LL 200 2292 0 0.940
APG-LL+ 45 542 106 0.933
PG «424875 10000 0 0.980
APG 112151 2242 0 0993
webspam APG+ 16647 313 83 0994
PG-LL 142039 3176 0 0992
APG-LL+ 15653 367 61 0994
Dataset 53
Method CPU GE CG MSE
PG «41627 10000 0 0.160
APG 5509 1084 0 0.142
E2006-loglp APG+ 1388 252 122 0.141
PG-LL 19965 4532 0 0.141
APG-LL+ 2625 601 81 0.139
PG «10863 10000 0 0.152
APG 47 330 0153
E2006-tfidf  APG+ 47 317 0139
PG-LL 5123 4602 0 0.151
APG-LL+ 8.6 75 7 0.139
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Table 5: Comparison of algorithms for [(1)|to meet[24)| with ¢ = 10~6, with and[(3)]and with
sparsity levels s € {m, [1.1m]}, i.e. s > m. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for[(23)). MSE: mean-squared error (for[(3)). Time with * indicates
that the algorithm is terminated after running 10000 iterations without satisfying [(24)] Time with }
indicates that the algorithm is terminated after exceeding 12 hours of running time without satisfying

25

Dataset Method

s=m s=[1.1m]
CPU GE CG PA CPU GE CG PA

PG *871.2 10000 0 0.963 x869.0 10000 0 0963
APG 142.9 1482 0 0.962 191.6 1964 0 0.963
news20 APG+ 58.3 619 24 0.966 64.8 684 26 0.969
PG-LL 156.5 1804 0 0.961 151.8 1778 0 0.961
APG-LL+ 47.7 555 9 0.958 66.2 743 9 0955
PG *81.9 10000 0 0.959 x82.6 10000 0 0.959
APG 22.6 1859 0 0.956 18.5 1575 0 0.956
rcvl.binary APG+ 5.1 468 47 0.952 5.4 524 47 0953
PG-LL 15.7 1780 0 0.955 16.0 1784 0 0955
APG-LL+ 4.9 539 29 0951 4.6 490 38 0.951
PG 143206.6 3902 0 0977 143203.1 3870 0 0977
APG 143207.8 3866 0 0985 143202.0 3852 0 0982
webspam  APG+ 143207.5 3846 0 0986 1432109 3879 0 0983
PG-LL 35753.0 3190 0 0995 357764 3190 0 0.99
APG-LL+  36561.7 3190 0 0995 36494.1 3190 0 0.99
CPU GE CG MSE CPU GE CG MSE
PG x7039.7 10000 0 0.155 71727 10000 0 0.155
APG 4588.4 5819 0 0.207 50115 6275 0 0213
E2006-loglp APG+ 1050.0 1362 169 0.344 1320.0 1696 172  0.375
PG-LL 2261.4 3046 0 0238 2292.0 3040 0 0.238
APG-LL+ 1220.1 1725 171 0.380 12823 1751 111  0.340
PG x1821.0 10000 0 0.152  %1819.9 10000 0 0.152
APG 67.4 353 0 0.155 69.0 363 0 0.155
E2006-tfidf APG+ 67.8 351 8 0.151 69.4 361 8 0.151
PG-LL 906.8 4832 0 0.151 909.6 4836 0 0.151
APG-LL+ 69.3 370 8 0.148 72.8 384 0 0.154
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Table 6: Comparison of algorithms for [(1)|to meet[(24)| with ¢ = 10~6, with and[(3)]and with
sparsity levels s € {[1.5m], [2m]},i.e. s > m. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for[(23)). MSE: mean-squared error (for[(3)). Time with * indicates
that the algorithm is terminated after running 10000 iterations without satisfying [(24)] Time with }
indicates that the algorithm is terminated after exceeding 12 hours of running time without satisfying
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Dataset Method

s = [1.5m] s =[2m]

CPU GE CG PA CPU GE CG PA
PG x885.0 10000 0 0.964 x904.5 10000 0 0.966
APG 208.2 2072 0 0.964 217.1 2170 0 0964
news20 APG+ 78.3 826 17 0.967 86.4 875 18  0.967
PG-LL 155.8 1736 0 0.963 153.1 1700 0 0963
APG-LL+ 64.6 690 6 0.962 80.4 846 2 0962
PG x84.8 10000 0 0.959 x87.8 10000 0 0.959
APG 19.6 1554 0 0.954 15.9 1317 0 0955
rcvl.binary APG+ 44 412 42 0.953 4.7 442 59  0.949
PG-LL 16.2 1784 0 0.956 16.6 1786 0 0.956
APG-LL+ 4.7 512 22 0952 5.5 562 14 0952
PG 143201.3 3809 0 0977 1432079 3807 0 0977
APG 143203.8 3815 0 0978 143201.7 3792 0 0.983
webspam  APG+ 143202.7 3828 0 0978 143205.0 3783 0 0983
PG-LL 36340.5 3190 0 0995 36325.1 3190 0 0.99
APG-LL+  36380.0 3190 0 0995 31177.7 2716 24  0.995
CPU GE CG MSE CPU GE CG MSE
PG x7617.3 10000 0 0.154  %8003.0 10000 0 0.154
APG 5686.2 6781 0 0.209 6375.8 7300 0 0.201
E2006-loglp APG+ 1697.5 2104 118 0.279 2098.5 2496 108  0.280
PG-LL 2398.6 3002 0 0.231 2460.1 2946 0 0225
APG-LL+ 1362.7 1744 94 0.313 16721 2057 101  0.299
PG x1870.2 10000 0 0.152  x1894.5 10000 0 0.152
APG 89.0 465 0 0.155 97.0 500 0 0.155
E2006-tfidf APG+ 89.5 463 8 0.153 97.2 498 8 0.155
PG-LL 927.8 4848 0 0.151 948.6 4856 0 0.151
APG-LL+ 72.8 382 8 0.151 75.0 390 8 0.153
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Table 7: Comparison of algorithms forto meet with é = 1076, with[(3)[ with sparsity levels
s € {[0.01m], [0.05m], [0.1m], [0.5m|}. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. MSE: mean-squared error (for[(3)). Time with * indicates that the algorithm is terminated after
running 10000 iterations without satisfying[(24)]

s =[0.01m] s =[0.05m]

Dataset Method CPU GE CG MSE CPU GE CG MSE
PG 044 2081 0 1125 077 3162 0 0645
APG 0.01 5 0 1125 014 185 0 0.645
colon-cancer APG+ 0.01 5 0 1.125 0.01 8 3 0.645
PG-LL 021 664 0 1125 019 768 0 0.645
APG-LL+  0.01 10 0 1125  0.01 16 2 0646
PG «4.07 10000 0 1568 +4.18 10000 0  1.145
APG 0.01 5 0 1581  0.01 8 0 1.140
duke APG+ 0.01 5 0 1581 001 8 2 1.140
PG-LL 019 382 0 1579 075 1514 0 1.141
APG-LL+  0.01 10 0 1581  0.01 16 2 1.140
PG <1335 10000 0 0465 1470 10000 0 0304
APG 408 1526 0 0464 363 1286 0 0303
gisette_scale  APG+ 0.07 11 18 0464  0.08 13 38 0334
PG-LL 245 1758 0 0466 #30.15 20000 0 0268
APG-LL+  0.07 32 18 0464  0.08 37 23 0337
PG 367 8768 0 0595 280 6726 0 0566
APG 0.01 5 0 0595 001 8 0 0566
leukemia APG+ 0.01 5 0 059  0.01 8 2 0566
PG-LL 014 302 0 0595 077 1632 0 0.566
APG-LL+  0.01 10 0 0595  0.01 16 2 0566
s=10.1m] s = [0.5m]
Dataset Method  “cp;" GE cG MSE CPU GE CG MSE
PG 159 6951 0 0652 #2501 10000 O 1.855
APG 013 320 0 0599 148 3268 0 2461
colon-cancer APG+ 0.01 10 10 0.599 0.02 18 27 1.345
PG-LL 052 2990 0 0656 626 20000 0 1.895
APG-LL+  0.01 2410 0599  0.02 61 31 1723
PG «428 10000 0 0860 418 10000 0 0.864
APG 0.02 22 0 0882 126 1749 0 0569
duke APG+ 0.01 9 5 0882  0.01 11 14 1.060
PG-LL 084 1670 0 0880 105 2284 0 1.089
APG-LL+ 002 19 5 0882  0.01 28 14 1.060
PG «15.63 10000 0 0243 23.63 10000 0 0220
APG 783 2697 0 0212 1497 3922 0 0292
gisette_scale APG+ 0.08 13 41 0.260 0.22 43 108  0.253
PG-LL 537 32904 0 0238 #5085 20000 O 0364
APG-LL+  0.09 54 40 0259 048 271 149 0258
PG «435 10000 0 0523 447 10000 0 0582
APG 099 1263 0 0524 063 86 0 1277
leukemia APG+ 0.01 9 5 0524 001 10 16 1676
PG-LL 093 1966 0 0524 979 20000 0 1226
APG-LL+  0.01 19 5 0524  0.01 30 16 1.676
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Table 8: Comparison of algorithms forto meetwith €=1075, withwith sparsity levels
s € {m, [1.1m], [1.5m], 2m}. CPU: CPU time in seconds. GE: number of gradient evaluations. In
one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and PG-LL+ needs
two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN steps. MSE:
mean-squared error (for[(3)). Time with * indicates that the algorithm is terminated after running

10000 iterations without satisfying [(24)]

s=m s=[1.1m]
Dataset Method CPU GE CG MSE CPU GE CG MSE
PG 245 10000 0 3.161 261 10000 0 3.048
APG 178 3272 0 2994 052 1564 0 3311
colon-cancer APG+ 0.03 39 169 10.643 0.02 26 100 6.470
PG-LL 108 5614 0 4905 387 13116 0 4510
APG-LL+ 003 192 128 12519 003 137 101 5062
PG «4.18 10000 0 0554 %425 10000 0  0.549
APG 142 1945 0 1531 124 1631 0  0.505
duke APG+ 0.01 13 58 0209 0.1 11 39 206l
PG-LL 180 3782 0 0635 147 3104 0 0281
APG-LL+ 002 101 87 6685 0.1 S8 44 0831
PG 3583 10000 0 0226 4006 10000 0 0225
APG 1650 3326 0 0298 1555 3000 O 0308
gisette_scale  APG+ 0.58 78 247 0499 120 200 203 0347
PG-LL 2109 5364 0 0367 1891 4462 0 0359
APG-LL+ 099 330 144 0341 159 449 203  0.508
PG «422 10000 0 0649 %430 10000 0 0.703
APG 105 1202 0 0967 106 1445 0 0980
leukemia APG+ 0.02 15 104 4722  0.02 17 98 9202
PG-LL «9.64 20000 0 1050 187 3968 0 1718
APG-LL+ 002 118 104 4722 002 112 98 9202
s = [1.5m] 5=2m
Dataset Method  “cp; GE G MSE CPU GE CG MSE
PG «271 10000 0 3277 203 8195 0 3.062
APG 027 805 0 2836 02 614 0 3016
colon-cancer APG+ 0.02 27 79 3.092 0.02 42 44 3.131
PG-LL 352 14734 0 3016 066 3024 0 2964
APG-LL+ 003 139 67 3279 003 123 63 3.032
PG «430 10000 0 0392 428 10000 0 0333
APG 084 1162 0 0271 051 687 0 0301
duke APG+ 0.01 1340 0259  0.01 12 33 0564
PG-LL 179 3740 0 0373 149 2990 0 0.539
APG-LL+  0.02 48 34 0308 0.2 47 33 0564
PG «23.09 10000 0 0230 +23.08 10000 0 0237
APG 740 2057 0 0284 503 1443 0 0282
gisette_scale  APG+ 0.52 118 133 0.339 1.32 357 143 0.319
PG-LL 788 3242 0 0347 698 2860 0 0328
APG-LL+ 1.5 500 150 0387 113 488 128 0336
PG «436 10000 0 0730 430 10000 0 0.704
APG 069 85 0 0694 047 574 0 0619
leukemia APG+ 0.02 19 53 1369  0.01 12 42 0944
PG-LL 192 3952 0 1074 138 282 0 0714
APG-LL+ 003 81 49 1230  0.01 43 29 0926
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Table 9: Comparison of algorithms forto meet with é = 1076, with with sparsity levels
s € {[0.01m], [0.05m], [0.1m], [0.5m|}. CPU: CPU time in seconds. GE: number of gradient
evaluations. In one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL and
PG-LL+ needs two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN
steps. PA: prediction accuracy (for[(23)). Time with * indicates that the algorithm is terminated after
running 10000 iterations without satisfying[(24)]

s = [0.01m] s =10.05m]

Dataset Method CPU GE CG PA CPU GE CG PA
PG 169 7560 0 0667 264 10000 0 0.833
APG 0.01 12 0 0667 093 1526 0 0833
colon-cancer APG+ 0.01 9 2 0.667 0.01 10 8 0.833
PG-LL 006 226 0 0667 040 1728 0 0833
APG-LL+  0.01 16 2 0667 002 2 8 0833
PG «452 10000 0 0000 472 10000 0 0.500
APG 0.01 11 0 0000  0.01 12 0 0500
duke APG+ 0.01 8 1 0000 001 8 2 0500
PG-LL 047 958 0 0000 058 1038 0 0.500
APG-LL+  0.01 15 1 0000  0.01 16 2 0500
PG «16.11 10000 0 0839 %1750 10000 0 0912
APG 1162 3600 0 0888 681 1980 0 0916
gisette_scale  APG+ 0.07 10 15 0851  0.08 11 23 0900
PG-LL #3411 20000 0 0863 534 2780 0 0916
APG-LL+  0.08 29 15 0851 0.9 38 24 0.898
PG «460 10000 0 0824 481 10000 0 0.882
APG 0.01 9 0 0824 005 46 0 0853
leukemia APG+ 0.01 9 2 0824 001 10 6 0853
PG-LL 081 1612 0 0824 123 2278 0 0853
APG-LL+  0.01 16 2 0824  0.01 20 6 0853

s =[0.1m] s = [0.5m]

Dataset Method

CPU GE CG PA CPU GE CG PA
PG x2.48 10000 0 0.833 x2.21 10000 0 0.833
APG 2.51 3651 0 0.833 0.20 255 0 0.833
colon-cancer APG+ 0.02 11 12 0.833 0.02 14 55 0.833
PG-LL x5.79 20000 0 0.833 0.29 1376 0 0.833
APG-LL+ 0.02 29 15 0.833 0.02 58 44 0.833
PG x4.71 10000 0 0750 *4.81 10000 0 0.750
APG 0.03 33 0 0.500 0.43 431 0 0.750
duke APG+ 0.01 10 8 0.500 0.01 11 11 0.750
PG-LL 1.22 2352 0 0.500 0.99 1800 0 0.750
APG-LL+ 0.01 22 8 0.500 0.02 25 11 0.750
PG x18.31 10000 0 0928 x27.24 10000 0 0.951
APG 4.79 1329 0 0934 2.62 608 0 0.960
gisette_scale APG+ 0.09 12 42 0923 0.23 48 34 0.956
PG-LL 6.40 3190 0 0.936 7.18 2324 0 0.955
APG-LL+ 0.09 56 42 0923 0.14 59 45 0.955
PG x4.79 10000 0 0912 *4.81 10000 0 0912
APG 0.54 522 0 0.824 0.29 304 0 0.882
leukemia APG+ 0.01 11 10 0.853 0.01 11 9 0912
PG-LL 1.50 2726 0 0912 0.92 1698 0 0912
APG-LL+ 0.02 21 7 0.853 0.02 24 10 0912
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Table 10: Comparison of algorithms for[(1)|to meet with é = 1076, with|(23)
s € {m,[1.1m], [1.5m], 2m}. CPU: CPU time in seconds. GE: number of grad
one iteration, PG, APG, and APG+ needs one gradient evaluation , while PG-LL

with sparsity levels
ient evaluations. In
and PG-LL+ needs

two. CG: number of Hessian-vector products in the PCG procedure for obtaining SSN steps. PA:
prediction accuracy (for [23)). Time with * indicates that the algorithm is terminated after running

10000 iterations without satisfying [(24)]

s=m s = [1.1m]

Dataset Method  “cp; GE cG PA CPU GE CG PA
PG x2.46 10000 0 0.833 *2.33 10000 0 0.833
APG 0.17 369 0 0.833 0.09 118 0 0.833
colon-cancer APG+ 0.02 14 34  0.833 0.02 19 35 0.833
PG-LL 0.32 1336 0 0.750 0.34 1364 0 0.750
APG-LL+ 0.02 73 37 0.833 0.02 53 39 0.833
PG *4.82 10000 0 0.750 *4.81 10000 0 0.750
APG 0.03 31 0 0.750 0.33 351 0 0.500
duke APG+ 0.01 11 9 0.750 0.01 11 9 0.750
PG-LL 0.81 1558 0 0.750 0.80 1540 0 0.750
APG-LL+ 0.02 23 9 0.750 0.02 23 9 0.750
PG *40.08 10000 0 0956 %42.05 10000 0 00957
APG 1.96 366 0 0.960 3.94 668 0 0.957
gisette_scale  APG+ 0.61 102 28  0.962 0.45 69 35 0962
PG-LL 8.03 1862 0 0.962 8.19 1794 0 0.961
APG-LL+ 0.25 57 33  0.959 0.92 192 28 0.962
PG x4.79 10000 0 0912 *4.75 10000 0 0912
APG 0.43 439 0 0971 0.25 265 0 0.912
leukemia APG+ 0.01 11 8 0912 0.02 11 8 0.941
PG-LL 0.83 1538 0 0912 0.80 1516 0 0.912
APG-LL+ 0.02 22 8 0912 0.02 22 8 0941

s = [1.5m] 5=2m

Dataset Method  “cpy ™ GE G PA CPU GE CG PA
PG x2.69 10000 0 0.833 x2.39 10000 0 0.833
APG 0.09 219 0 0.667 0.23 304 0 0.833
colon-cancer APG+ 0.02 28 25 0.833 0.03 40 20 0.833
PG-LL 0.37 1282 0 0.833 0.30 1298 0 0.833
APG-LL+ 0.02 47 33 0.750 0.02 55 25 0.750
PG x4.80 10000 0 0.750 x4.83 10000 0 0.750
APG 0.04 43 0 0.750 0.11 104 0 0.750
duke APG+ 0.01 11 9 0.750 0.01 12 11 0.750
PG-LL 0.84 1496 0 0.750 0.81 1416 0 0.750
APG-LL+ 0.02 30 6 0.750 0.02 25 11 0.750
PG x26.10 10000 0 0956 %26.29 10000 0 0.956
APG 2.55 583 0 0.958 1.53 365 0 0.944
gisette_scale APG+ 0.48 107 25 0.960 0.69 159 23 0.956
PG-LL 4.66 1658 0 0.958 4.42 1568 0 0.959
APG-LL+ 0.63 193 15  0.960 0.74 242 12 0.958
PG x4.67 10000 0 0912 *4.75 10000 0 0.912
APG 0.44 435 0 0971 0.03 36 0 0.941
leukemia APG+ 0.02 12 11 0.941 0.01 12 11 0.941
PG-LL 0.81 1480 0 0912 0.78 1406 0 0.941
APG-LL+ 0.02 25 11 0.941 0.02 25 11 0.941
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C.3 Prediction accuracy for varying residuals

We present in[Figure 3| the effect of varying the tolerance level ¢ for the residual We can clearly
see that in all cases, the prediction performance of all methods keeps improving up to é = 107,
which indicates that our choice of a rather tight stopping condition is indeed a suitable one for getting
better prediction performance. Note that in terms of comparison between different algorithms, the

results in are consistent with that in
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Figure 5: Prediction performance of different methods for sparse logistic regression (news20,
rcvl.binary, webspam) and least squares regression (E2006-loglp) across varying levels of residuals
e =10"%, with k = 1,2, ...,6. Generated plots correspond to sparsity level of s = [0.01m].

C.4 Numerical comparison with a greedy method

We present in [Figure 6]results of numerical comparisons of our methods with the GraSP algorithm of
Bahmani et al. [3], which is designed to solve our target problem [(T)| for general loss functions f.
Each iteration of GraSP involves a restricted minimization problem along a subspace of dimension at
most 3s, which is solved by a quasi-Newton approachﬂ Note that GraSP is not ideal for large-scale
datasets for its prohibitive memory consumption. For instance, it failed to fit the webspam dataset
even with the smallest sparsity level s = [0.001m] on our machine with 64GB memory with an
out of memory error, whereas our proposed algorithm performs quite well for this instance. For a
medium-sized dataset such as news20, we see from [Figure 6] that GraSP performs significantly slower
than our proposed accelerated algorithm. In particular, its initial convergence is extremely fast, but it
then becomes stagnant after reaching a low-to-medium precision.

BWe use their code for regularized sparse logistic regression downloaded from https://sbahmani.ece)
gatech.edu/GraSP.html.
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Figure 6: Comparison of non-accelerated and accelerated projected gradient methods with GraSP for
solving regularized sparse logistic regression.

26



D Proofs of Results in [Section 2|
D.1 Proof of[Theorem 2.1|

Proof of part (a). We note that the iterates of [(5)| are confined to A,. Consider any accumulation
point w* of {w*}. For any given convergent subsequence {w"} with w*> — w*, we obtain from
the finiteness of 7, that there is J € 7, such that

Wt = Py, (wh — AV f(w"7)) (28)

for infinitely many . By taking subsequences if necessary, we assume that[(28)|holds for all r without
loss of generality. Meanwhile, the PG iterates [(5)| can alternatively be written as

1

whtt € argmin (Vf(w¥),y — w*) + ||y — w"|. (29)
yEA; 2

‘We also use the fact that@implies the well-known descent lemma [see for example, [7, Lemma 5.7]

L
flw) < (') + (Vf(w'),w = w') + Fllw = w'l?, Yw,w' e R (30)
Noting that A € (0, L~1!), we have
flwh*h)

)+ ()t -y ¢ D e e

= Ff) 4 (V) b ) b b b (AL”) kT — w2

2X 2)
(1)) AL -1
< S+ Tt — w2,
2)
That is,
1-AL, . :
oy It — Wt < () = fwth). 31

If w™ = w™+! for some N, then it is clear from that w* = w" for all k£ > N. Otherwise,
{f(w*)} is strictly decreasing, proving the first claim of part (a). Noting that V f and P4, are
continuous as A is closed and convex, we obtain fromthat whrtl — Py (w* — AV f(w*))
as 7 — oo. On the other hand, we see from and the lower boundedness of f that ||w* —
wF*1| — 0, which, by means of the triangle inequality, implies that w*+! — w*. Hence, we
have w* = Py, (w* — AV f(w*)). To complete the proof of part (a), we only need to show that

Py, (w* — AV f(w*)) € Pa, (w* — AV f(w*)). But from and [5)} we have that for all r,

wkr € D, where

Dy ={zeR" :dist(z — A\Vf(2),A;s) = dist(z — AV f(2), 4A5)}, (32)
where for any point = and any set A, dist(x, A) is the distance from x to A, defined as
dist(z, A) = inf ||z — y||.
ist(z, A) Jnf [z —yll
Since Ay is closed, it follows that D is a closed set as well, and therefore w* € D ;. That is,
Pa, (w* = AV f(w*)) € Pg, (w* — AV f(w*)), as desired.
Finally, we note that by representing [(T)]as
min  f(w) + 54, (w),
where d 4, is the indicator function of A, that outputs 0 when w € A, and infinity otherwise, a point
w* is called stationary for|(1)|if
0€df(w*)+ 0, (w),

where Jg is the limiting subdifferential in the sense of Clarke. On the other hand, the optimality
condition of w* € Py, (w* — AV f(w*)) implies that

0w —(w* = AVf(w")) + 004, (w*) & 0€AVf(w")+dda, (w).
Since Ad4, = 4, for any ), the result above further implies that
A0 =0¢€ Vf(w*) +9da, (w*),
showing that w* is indeed a stationary point of [(T)] O
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Proof of part (b). Suppose that w* — w* and define I, as in The finiteness of 7, implies that
there exists § > 0 such that

Bs(w)NAy =0, YJ¢I,-, (33)
where Bs(w*) = {w € R" : ||lw — w*|| < §}. Since w* — w*, we can find N > 0 such that
w* € Bs(w*) for all k > N. Hence, immediately follows.

Now, suppose that Tpg (w*) is a singleton for some accumulation point w*. Together with
(a), we have

Py (w* = AV f(w")) = {w"} 34)
It is easy to verify that[(34)| implies that
w* = Py, (w* = AV f(w*)) VJ € L. (35)

That is, w* is a global minimum of f over A for all J € I,,~ due to the convexity of f. Now let
d > 0 be as defined in the preceding paragraph and z € A; N Bs(w*). It then follows from that
z € Ay for some J € I« . By the global minimality of w* for f|4,, it follows that f(w*) < f(z)
forall z € Ay N Bs(w™*). That is, w* is a local minimum of f over A,.

It remains to show that the full sequence {w"} converges to w*. To this end, choose v > 0 sufficientl
small such that z € Dy N B, (w*) for some J implies w* € D, where D is defined as in
Note that such a v exists as the collection {D; : J € J,} is finite and consists of closed sets.
Let {w*}2° ; be a subsequence converging to w*. We may assume without loss of generality that
whr € B, (w*) for all r > 0. First, we show that w*o ! € B, (w*). Note that the convexity of f and
result to nonexpansiveness of the mapping w + w — AV f(w) because A < L~! [7, Theorem
5.8]. From whott = Py (wko — AV f(w*0)) for some J. By the choice of v and the fact that

T (w*) consists of one element, we see that w* = P4, (w* — AV f(w*)). With these, we have

[kt —w*|| = [|Pa, (w** = AV f(w")) = Pa, (w* = AV f(w"))]

< [[(w* = AV f(w*) = (w* — AV f(w™))]| (36)
< Jlwho —w*|
<v,

where [(36)] follows from the nonexpansiveness of projection mappings onto closed convex sets,
while the second inequality follows from the nonexpansiveness of w — w — AV f(w). Proceeding
inductively, we see that w* € B, (w*) forall k > ko and {[w"* —w*|[}32,, is a decreasing sequence.

As its subsequence {||w"* — w*||} converges to zero, it follows that w* — w*, as desired. O

Proof of part (c). Note that w — w— AV f(w) being a contraction implies that there exists v € [0, 1)
such that
[(w* = AV f(w*) — (w* = AV f(w*))|| < ylJw*® —w*]. 37

We then obtain the desired inequality [(9)|by combining [(37)]and [36)] O
D.2 Proof of[Theorem 2.2

Proof. We first prove[(10)] We have from [Theorem 2.1 (b) that there exists N > 0 such that[(8)|holds.
Moreover, recall from the proof of [Theorem 2.1 that

) _ _ 1 _
w® € argmin <Vf(wk 1),y7wk 1>+*||y*wk Y12+ 04, (y), (38)
yeER™ 2\

where J 4, is the indicator function of Ag. If Ji, € J; satisfies wke A J.» We can alternatively write

[(38) as

. - _ _ 1 _
wkeargegnn ’}kl(y) = <Vf(wk D,y —w” 1>+5Hy—wk 1H2+5AJk(y). 39)
yeRn

Recognizing the right-hand side of [[(39)]as a strongly convex function of y, we obtain

- _ 1
Q) — Q5 (W) 2 oy lly — WPy € Ay (40)
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Consequently, for any k¥ > N, we have fromthat Ji € I, and so w* € Ay, , which together
with [(40)| implies
1, s _ 1 "
o w) = Q5 T (wh) > —~[w* — wF|? VE > N. (41)

Meanwhile, by the descent lemma and by noting that A € (0,L~1), we have f(w*~1) +
Qﬁk_l(wk) > f(w"). Thus, forall k > N,

wh? < Q5N (w") + f(w ) — f(w")

(9 F@A ) = by 4 w2 )~ fut)

ﬁ”w -

< fw) = Ft) + o[t — L

where the last inequality holds by the convexity of f. Thus, we have

k

S () — fw) < 55 (lw* = w |~ fur —wh]P). @2)

j=N+1

Hence, |(10){immediately follows by noting that { f (w*)} is monotonically decreasing, as proved in
eorem 2.1|(a), and applying [24, Lemma 1].

Now we turn to[(11)] From the convexity of f, we have that
Fw®) = f(w*) < (Vf(wh), v —w"). 43)
By|(35)] we can easily conclude that
(Vf(w*)y=0 VJ € L. (44)

Meanwhile, through there exists N such that for all ¥ > N, we can find J;, € Z,,~ such that
w* € Ay,. Thus, we see that

(Vf(w*),w* —w*y=0, Vk>N, (45)

because only entries of V f(w*) outside Jj € I,,~ could be nonzero, but those entries are identically
0 for both w* and w*, that is, w¥ = w} = 0 for all i ¢ .J;. We therefore proceed on with|(43)|as
follows:

(45)

Fw) = fw) < (Vfwh) = Vfw*), w* —w*)
[V £ () =V f )| [|w* = w|

AE

& A

LHwk—w* ’, Vk>N, (46)

where the second inequality is from the Cauchy-Schwarz inequality. Finally, [(TT)]is proven by

inserting [(9)]into [(46)] O
E Proof of Results in[Section 3|

E.1 Proof of[Theorem 3.1
Proof. Note that for any k£ > 0, we have from that

o
FER) < fh) = SEllaT?, oM = wh (47)

where ¢, is defined to be zero if the condition in|Line 3|of |Algorithm 1|is not satisfied. Analogous to
(31) we have from w**1 € T (z*) that

1—AL
2\

|28 — wF 2 < f(2R) — flwhTh). (48)
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Using[(48)] together with[(47)] we have
SR < Fh) = fltth). (49)
Then { f(w*)} is decreasing, and since f is bounded below over A, we have
tz|d*||* — o. (50)
Now, assume that {w*"} is a subsequence of a sequence generated bylm that converges to
w*, and as in the proof of we assume that there exists J € J, such that
whr Tt = Py (2 — AV f(2F7) (51)

for all r. Then from|(50)|, we have that 2% — w* so that w***1 — P4, (w*—AV f(w*)). Meanwhile,
(48)[gives ||2* — wk*1|| — 0, and therefore w*+1 — w*. Hence, w* = Pa, (w* — AV f(w*)). The
rest now follows from exactly the same arguments used in the latter part of the proof of
(a). L]

E.2 Proof of[Theorem 3.2

Proof. We consider the sequence {w?, 20, w!, 2, w?, 22,... w”, 2*, ...} and remove those z* with

2% = w" from the sequence, and call the resulting sequence {w™}. We will show that actually
w™ — w*, and since {w*} is a subsequence of {w™}, its convergence to the same point will
ensue. Note that if nj, denotes the number of successful extrapolation steps in the first & iterations of
then w® = wk*"* , Moreover, it is easy to check that w* is likewise an accumulation

point of {w™}.
To prove the desired result, we first show that the following properties are satisfied:

(H1) There exists a > 0 such that

F@™) < f@™ ) — allo™ - @™ Y ¥meN. (52)
(H2) There exists b > 0 such that for all m € N, there is a vector v™ € 904, (@w™) satisfying
IV f(@™) + o™ <bf|@™ — @™ 1. (53)

To this end, fix m € N, and we separately consider two cases: W™ = w” for some k and @™ = z*

for some k.

Case I: o™ = wk.

First, suppose that w™ = w¥ for some k. Then w™ ! € {wkfl, zk’l}. In either case, we have from
[BT) or [(48)] that _y
—-m —m— — —m —m—1]|2
F@m™) < ™) = —=|la™ =" [, 54)

that is, is satisfied with @ = (1 — AL)/(2)). On the other hand, since @™ € Tag(w™ 1),
similar to|(39), we have

m . e . 1 .
@™ =argmin (Vf(@" ),y — ") + Sy 0"+ 04, (9), 659
yE%"

where Jj, € J, satisfies w™ = w* € A, . From the optimality condition of (55), we have
1
0e Vf(,wm—l) 4 X (,wm _ wm—l) 4 8614‘],6 (,u—}m). (56)

That is, )
o™= —V (@™ !) — 3 (@™ —w™ ") € 064, (@™).

From [[18] Equation (19)], the above equation implies v € 3J 4, (w™). Moreover,

V5@ +oml = [Or@n) - i@ - § @ - )|
2 (L n i) o™ —am (57)
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that is, is satisfied with b = L + A~ L.

Case II: 0™ = 2F.

We now consider the other possibility that @™ = z*, in which case, we necessarily have w™ ! = w”*,
d* #0,and t;, > 0. By|( mls already satisfied with a = o. To prove that (H2) holds, we first
bound the final step size ¢, in the line search procedure. Using[(30)] we see that[(12)]is satisfied if

2
(V). 04) + S| < ot
or equivalently, recalling that ¢;, > 0, we have
—(Vf(wh),d*) > (;+o))t||dk||2. (58)

Therefore, [(12)]is satisfied whenever

_(V/(wh),d¥)

ty <

\d’“ll ( +0)
aea,  ((VEwh)s, (d")s)
ld|? (%+0)
Cel|(V f(w")) s | (59)
(5 +0) lldv]
By applying the condition of (; > € to (39), we get thatmis satisfied whenever
el (vl

"Lt o) [ldr]

Therefore, we see that ¢, is lower-bounded by

N

tr > min {Ckamlm W
(I el sy
CkHdkH (L o) [|ab)|

(82| e
Z ||dkH ln amlm <£ —|—U’) J

where the factor of 7 is to consider the possibility of overshooting and the last inequality is from that
¢k € (0,1] 1nm We thus conclude that for the final update td®, we have

[txd® || > (V@) ||t = min{amin, (gnfa)} (60)
We then get from [(6)|and [(60)] that
V£ < T FGH) — (T + [TF@ ] < (L + £~ b 6D
We now furnish the vector requ1red in (H2). Let v™ € 9d4,(w™) such that (v™); = 0 and
(v™) je == —(V f(2*)) se. Then by it is clear that

IVf(@™) + o™ = [[(VFE*) | < (L +t7Y]a™ — ™.

Setting @ = min {(1 — AL)/(2A),0} and b = max {L + A~', L 4+ t~'}, we see that (H1) and (H2)
are both satisfied for case I and case II.

The rest of the proof for convergence to w* will follow from arguments analogous to those used in
[2]], with the only deviation that our condition @ is weaker than the KL condition assumed in [2].
Through a careful inspection of the proof of [2, Lemma 2.6,Corollary 2.8], we see that

(f(@™) = f(w*))? < bsl|w™ —a™ |, YmeN (62)
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is a key inequality for the proof. The above inequality clearly holds when the conventional KL
condition holds, and here we will show how [(62)] will still hold under[(2T)|so all remaining arguments
in the proof of [2, Lemma 2.6,Corollary 2.8] ensue to be valid. In either case I or case II above, note
that the vector v™ in (H2) has the property that (v"); = 0, where J € J is the index set satisfying
w™ € Ay. It follows that (V f(@™)) s is a subvector of V f(@™) + v™, so

(V@) sl < IV f(@™) + 0™ (63)
Using[21)] [(33)] and[(63)] we immediately obtain [(62)] as desired. The convergence of the iterates
then follows from [2, Theorem 2.9].
As for the rates, we have from and that
a(f(@™) = f(w*))?’ <O (f(@™1) = f(@™)).

aD¥ < b’ :*(Dy_1 — Dyy), Dy = f(@™) — f(w*). (64)
We now separately consider different values of . One result that is being used repeatedly in our
discussion below is that we have from @™ — w* and the continuity of f that

Dy, 1 0. (65)
Our proof for § € (1/2,1) is inspired by the proof of Lemma 6 in [33] Chapter 2.2].

(a) When 6 € (1/2, 1),implies
a

Dun (/121)2
and since 260 — 1 € (0, 1), leads to

That is,

DX 1) < Dy, (66)

—(26—1) a 291
D (1 + 55 D

and we have from|(65)|that D2—1 | 0. Therefore, we can find ko > 0 such that

@ 20-1
As —(20 — 1) € (—1,0), form > ko we get
a_ og1) (207D
(1 + K22 Do )
By combining and[(68)] we get that for m > ko,

—(20-1 1-20y @ —(20-1)
D70 —(1-2 )W > D, . (69)

We note that for § € (1/2,1), 27201 € (1/2,1), so
_ a
C@ = (1 —2 20+1)W > 0.
Thus, by summing[(69)]for m = ko + 1, ko + 1,...,k + ny and telescoping, we get

=1 _
Dyin, < ((k +ng — ko)Co + Dkfo(w*l)) L _0 ((k + nk)ﬁ) ,

(67)

m—1 ’

)’(20*1) > D7(2071)

<14 (272041 1)#03,?—1. (68)

as desired.
(b) When 6 = 1/2, we see that reduces to
bk?
(a+ b%k2)
which shows a )-linear convergence rate (as a > 0) that directly implies the desired exponential
bound.
For 0 € (0,1/2), we get 20 < 1, and Thus, by the monotonicity of { f (™)}, we can find kg > 0
such that D,,, < 1 for all m > k. For such m,[(64)| gets us
aD,, < aD* <b*k* (D1 — Dp), Vm > ko,
and the same )-linear rate and exponential bound then follow from [(70)|and the argument that

followed it.
(c) When 6 = 0,[(64)| becomes

(a+0°k%) Dy <V*k°Dpy & Dy, < Dy, (70)

a
W S (Dmfl - Dm) .

Hence, noting that D,,, 1 — D,,, — 0 by and a/(k%b%) > 0, there must be ky > 0 such that
D,, = 0forallm > k.

O
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E.3 Proof of[Theorem 3.3

Proof. We will first establish the quadratic convergence of {w"7} j tow* when t approaches infinity.
The overall quadratic convergence can then be obtained by showing that the iterates will all stay
within the same A ; and applying[Theorem F.1|in[Appendix H

For the part of {w"*+}; for a given k, we note that since V2 f;(w*) is positive definite and w** €
U N Ay, w is an isolated global optimum of f; (as f is convex). Moreover, the algorithm in
clearly treats coordinates not in .J as nonvariables, and thus the whole sequence of {w"}; stays

in A;. Therefore, {w*7} converges quadratically to w* following standard analysis for Newton
methods; see, for example, [32, Chapter 3]. To satisfy the conditions of we just need
to notice that if we group ¢ > 1 consecutive Newton iterations as the operation 75, the convergence
speed is 2t > 2, so the quadratic convergence assumption is still satisfied. It is also clear that since
w* is stationary for V fs(w%) = 0 and thus w* is a fixed point for the Newton steps. For
clearly these suffice for our usage of to reach the conclusion. O

F Superlinear convergence of

In this section, we state and prove a general result of a two-step superlinear convergence of
[rithm 2] that is similar in spirit to that in [4] to simply assume that we have a superlinearly convergent
subroutine. We consider this abstract form to demonstrate the versatility of our framework and to
allow full flexibility to accommodate different problem conditions of f|4,, and also to fit various
algorithms like inexact damped/regularized (semismooth) Newton or quasi-Newton methods, instead
of giving the impression that we are restricted to a certain algorithm.

Theorem F.1. Assume that we have a mapping T (w) such that its generated iterates {w*} with
whtl € Ty (wk) converge to a stationary point w* of [(1)|and

= Ti(w")]| < Jlw — w*]l, Vi € Ty (w) )

Sfor all w in a neighborhood U of w* and in some Ay with J satisfying J € L+, and that there is
another mapping Ty that, when given an initial point w® € A, generates iterates that are all in Ay
and superlinearly convergent to w* within U for each J € T,,» with To(w*) = w*, then the iterates
generated by

Wt e Ty (Ty (wh)) (72)

converge to w* at the same superlinear rate as that of Tb.
Proof. We assume without loss of generality that

T (w) — w*|| < elfw — w7 (73)
for some ¢, p > O forall w € Ay NU forall J € Z,,». Then by [(7T)} and by denoting

WPt e Ty (wh),

as the element in 7} (w*) leading to w**1, we obtain
[l —w|f = |72 (%) — o
< ef|a® —wr| "
= cHTl(wk) — ||t
T

= CH’U}k —w

)

where the the first inequality is from[(73)] Therefore, the conclusion of the theorem is proven.  []
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