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Abstract We propose a data-driven scheme for multistage stochastic linear programming with Markovian
random parameters by extending the stochastic dual dynamic programming (SDDP) algorithm. In our
data-driven setting, only a finite number of historical trajectories are available. The proposed SDDP scheme
evaluates the cost-to-go functions only at the observed sample points, where the conditional expectations
are estimated empirically using kernel regression. The scheme thus avoids the construction of scenario trees,
which may incur exponential time complexity during the backward induction step. However, if the training
data is sparse, the resulting SDDP algorithm exhibits a high optimistic bias that gives rise to poor out-
of-sample performances. To mitigate the small sample effects, we adopt ideas from the distributionally
robust optimization (DRO), which replaces the empirical conditional expectation in the cost-to-go function
with a worst-case conditional expectation over a polyhedral ambiguity set. We derive the theoretical out-of-
sample performance guarantee of the data-driven SDDP scheme and show that the dependence of its sample
complexity on the number of time stages is merely polynomial. Finally, we validate the effectiveness of the
proposed algorithm and demonstrate its superiority over existing data-driven schemes through extensive
numerical experiments.

Keywords stochastic optimization - multistage stochastic linear program - stochastic dual dynamic
programming - distributionally robust optimization - Nadaraya-Watson estimator - Markov dependence

1 Introduction

Multistage stochastic linear programming (MSLP) is a framework for sequential decision making under
uncertainty with linear objective functions and constraints. At each stage, the decision is made based on
realizations of random parameters available up to that stage. This framework has been adopted to model
various real-world applications, such as hydrothermal scheduling [17,45,46,60], unit commitment [4, 14,29,

], portfolio optimization [11,12,16,27,42], and manufacturing and capacity planning [2,3,23,62]. Despite
such exceptional modeling power, the general consensus is that multistage stochastic programs are very
difficult to solve [36,59].

One popular approach to solve MSLP problems is a sampling-based Benders decomposition method
called stochastic dual dynamic programming (SDDP). It was developed by Pereira and Pinto in 1991 as
an effort to solve a large-scale hydrothermal scheduling problem [46] and is still considered as the state-
of-the-art solution method. This algorithm iteratively approximates the expected (i.e., risk-neutral) cost-
to-go functions of the dynamic programming equations by piecewise linear functions called cuts during the
forward and backward steps. Since such cuts allow the cost-to-go function to be evaluated at well-chosen
candidate solutions, the intractability arising from discretizing the state variables, known as the curse of
dimensionality, can be alleviated. Asymptotic convergence of the algorithm is established in [15,25,50,55],
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while its computational complexity is recently investigated in [37,068]. The standard SDDP framework is
extended to risk-averse cases [55,60], and convex [66,67] and nonconvex cost-to-go functions [1,20,69,70].

In the literature on the SDDP framework, it is commonly assumed that the underlying distribution
of the uncertain data is known and the data process is stagewise independent. While these assumptions
are not entirely realistic, they are crucial for several reasons. First, a known distribution assumption en-
ables to sample scenarios in the forward step and construct a finite representation of the true problem by
approximating the underlying stochastic process using a scenario tree [53]. Second, under the stagewise
independent data process, we can avoid a scenario tree that grows exponentially with the number of time
stages as it collapses to a recombining scenario tree, where nodes between any consecutive stages are fully
connected via unconditional transition probabilities. Such a structure allows us to evaluate only one un-
conditional expected cost-to-go at each stage. In reality, however, there is often a correlation over time in
the data process. Under stagewise dependence, the aforementioned approach is no longer valid as we have
to take a new set of samples conditional on the whole history of the data process up to the current stage,
which makes evaluating the conditional expected cost-to-go functions intractable [?,7,56]. To alleviate such
an intractability, several papers instead assume Markov dependence (i.e., interstage dependence) with the
purpose of exploiting some degree of correlation in the data process.

In a data-driven setting, where only historical data is available while the true distribution is unknown,
there are two approaches to incorporate Markov dependence. One is to reformulate the random parameter
as a first-order time series model with additional state variables and assume that the noise term is stagewise
independent [32]. However, the time series approach requires adding auxiliary variables to state variables,
which aggravates the curse of dimensionality. In addition, from a modeling perspective, this approach is
limited in that uncertainty should appear only on the right-hand side of the constraints. Otherwise, the
convexity of the cost-to-go is destroyed. A more general approach, known as Markov chain discretization,
is to construct a recombining scenario tree and approximate the true conditional distribution using optimal
quantization to reflect Markov dependence [10,13,26,38,39,48]. Unlike the time series approach, the Markov
chain approach does not require the auxiliary variables and allows uncertainty in any parameters, e.g.,
objective function coefficients, a recourse matrix, etc, and therefore it can model a broader range of problems,
such as portfolio optimization and inventory management. Lohndorf and Shapiro [38] demonstrate that the
SDDP based on the Markov chain approach provides tighter lower bounds and improved policies for the
hydrothermal scheduling problem compared to the time series approach. Unfortunately, despite the better
empirical performance shown in the previous works, there has been no rigorous sample complexity analysis
of this method, i.e., it is not clear whether the Markov chain discretization can generalize to out-of-sample
data and provide asymptotically consistent policies.

Whichever approach is adopted, such data-driven schemes often suffer from overfitting issues, causing
poor out-of-sample performance. The issue is aggravated particularly when the available data is limited. As
a remedy for this small sample effect, distributionally robust optimization (DRO) has garnered significant
attention recently. DRO relaxes the stringent assumption of known distribution by constructing an ambiguity
set of plausible distributions consistent with the available information. Using DRO, an MSLP problem is
formulated as a min-max problem at each stage, which yields a policy that performs best under the worst-
case distribution that maximizes the expected cost-to-go. Ambiguity sets are commonly categorized into two
types: moment-based [18,51,57,71] and discrepancy-based ambiguity sets [5,8,35,40,41,65]. Particularly in
the distributionally robust MSLP setting, SDDP frameworks with different discrepancy-based ambiguity sets
have been proposed [22,31,49,61]. Similar to this paper, Philpott et al. [49] use the modified x* ambiguity
set [7]. They derive a closed-form solution for the inner maximization problem and use the resulting worst-
case distribution to generate a cut during the backward step. They assume that the data process is stagewise
independent and impose randomness only on the right-hand side. Silva et al. [61] consider a more general
distributionally robust MSLP problem where the random recourse matrix has Markov dependence. They
use a hidden Markov model (HMM) to capture unobservable states characterizing the distribution of the
random parameters (in the recourse matrix) and then use the total variation ambiguity set to account for
estimation errors of the transition probabilities among the unobservable states. In Table 1, we compare our
proposed method with the existing SDDP algorithms for the distributionally robust MSLP.

This paper focuses on the incorporation of Markov dependence into risk-neutral and risk-averse MSLP
problems in a data-driven setting and the sample complexity analysis of the proposed Markov discretization
method. From the modeling aspect, our work is similar to [29] where the authors use the Nadaraya-Watson
(NW) kernel regression estimator [43,04] for stochastic optimal control problems with endogenous state
variables. However, as their stochastic dynamic programming scheme requires discretizing the endogenous
state variables, it only works for low-dimensional settings. To deal with large-scale MSLP problems, we
propose a data-driven SDDP framework using the NW regression under Markov dependence. Srivastava
et al. [63] derive generalization bounds for the NW approximation of a static stochastic program. From a
theoretical aspect, therefore, our work extends the out-of-sample guarantee derived in [63] to multistage
settings.
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Table 1 Comparison of distributionally robust SDDP algorithm variants

Algorithms Hlﬁ?ﬁ% ([et ?.l., Phizlgfgt[et]al., Duqugoas})d[M]orton, Si21(‘),2ale1[; a%., This Paper
Ambiguity Set oo-norm modified x? Wasserstein total variation polyhiqfiiilozsg)é)crgx;(rznamon
Random RHS v v v v v
Random Technology Matrix v - - v v
Random Recourse Matrix v - - v v
Random Obj. Func. Coeff. v - - v v
Markov Dependence - - - v v
Stopping Criterion stochastic gap maximum iteration maximum iteration deterministic gap deterministic gap
Out-of-Sample Guarantee - - - - v

The main contributions of this paper can be summarized as follows:

1. We propose a data-driven SDDP framework for risk-neutral and risk-averse MSLP problems under the
Markov dependence assumption. To incorporate Markov dependence, the true conditional probability
is estimated using the Nadaraya-Watson kernel regression. Unlike other Markov chain discretization
approaches that do not have convergence guarantees, the proposed discretization provides convergence
to the true optimal policy as the number of data tends to infinity.

2. Leveraging the generalization bounds for a static stochastic program established in [63], we derive for
the first time a theoretical out-of-sample guarantee for the data-driven risk-neutral MSLP problem un-
der Markov dependence. Our result indicates that the out-of-sample suboptimality bound is at most

5p(T% /Nﬁ ),2 where T is the number of time stages. This mild (polynomial) dependence on T' suggests
that our scheme is applicable to solve MSLP problems with a large number of stages. The result is sur-
prising since existing analysis [59] suggests that the theoretical suboptimality bound drastically worsens
as the number of stages increases.

3. Our theoretical guarantee suggests the use of a variance-based regularization scheme for improving out-
of-sample performance. Unfortunately, the scheme is intractable due to nonconvexity. As a tractable
alternative, we develop a conservative MSLP problem using a DRO formulation with a polyhedral
outer approximation of the modified x? ambiguity set. We further prove that the DRO formulation
asymptotically converges to the variance regularization scheme.

4. Numerical experiments in the context of portfolio optimization and wind energy commitment problems
demonstrate that our data-driven schemes are superior to the stagewise independent scheme and the
benchmark schemes proposed in the literature in terms of out-of-sample performance.

Notation and terminology. We use bold letters for vectors and regular fonts for scalars. We define e as
the vector of all ones—its dimension will be clear from the context. The tilde symbol is used to denote
random variables (e.g., €;) to differentiate from their realizations (e.g., &;). For any t € N, we define [{] as
the index set {1,...,t}. A sequence of realizations of the random data process up to stage ¢ is denoted as
&y = (&1,.-.,&;). For a random variable Z, E[Z] and V|[Z] denote its expectation and variance, respectively.
The indicator function of a subset X is defined through 1x(z) =0 if € € X and 1y (x) = +oo otherwise.
The Dirac distribution, which assigns unit mass on ;, is denoted by d¢, . In asymptotic analysis, we use the
standard O notations for the convergence of sets of ordinary numbers and O, for the convergence of sets of
random variables. In addition, 0,, is used to suppress multiplicative terms with logarithmic dependence on
n in the sense of convergence in probability.

2 Problem Statement

Consider the following risk-neutral MSLP problem under Markov dependence:
. -7
min crxT

zre€XT(TT-1,€7)

min clel—l—IE min é;mg—f—E o+ E

1 €EX (x0,€,) T2EX> (x1,€5)

gT_l}

Here, the problem parameters are summarized by the random vectors &, = (&b, Ay, B;) for every ¢ €
[T]\ {1} governed by an (unknown) continuous joint distribution while the first stage parameters &, =
(e1,b1, A1, B1) are deterministic with the initial state xo is given as input. Here, the decision space is
defined as the polytope Xt(mt_l,ét) ={x € ]Ri‘ : Ayxy + Bixy—1 = l;t} and the risk measures are given
by conditional expectations E[ - |£&;]. In this setting, the decision maker takes sequential decisions in a

52:| ’51:| ’ (21)

2N denotes the number of samples and p is the dimension of random parameters in an MSLP problem.
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nonanticipative manner as the realization of the random parameter vector ét = (et, be, Ag, Bt) is revealed
at each time period. More precisely, when the decision maker takes the first-stage decision @; from the
deterministic feasible region X; (xo, £, ), the decision incurs an immediate cost ¢f 1. Next, at the beginning
of the second stage, the realization &, of the random parameter vector 52 is revealed and the second-stage
decision x3 is chosen from the feasible region Xz (x1,€&5) with a cost chacg. The process continues until the
terminal stage T. The goal of the problem is to optimize a sequence of functions {x+(¢ [t])}thl called policies
that minimize the expected total cost over the T' stages. Here, each x¢(§y) is a function of the realizations
&y = (€1,---,&;) of random parameter vectors up to stage ¢. In our setting, we refer to (2.1) as the true
problem where the random process & (7] (i-e., the evolution of the random parameter vector) is governed by
a continuous state Markov process. Using the Bellman’s optimality principle [6], the true problem (2.1) at
stage t € [T] can equivalently be expressed as the dynamic program

Qt(@e—1,&,) = min ¢f 2 + Quy1 (24,&,)
s.t. @t € Rdt7 (2'2)
Atz + Bixi—1 = by,

where Qiy1(zt,&;) = E[Q41(z¢,€,41) | &] is the expected cost-to-go function. Here, for ¢ € [T], the cost-
to-go function Q¢(x:i—1,&,;) in (2.2) represents the minimum future expected cost accrued from stage t to
the terminal stage T' given that the previous decision @;— is taken and the current stage parameter vector
&, is realized. For simplicity, we assume the terminal cost Q74 1(-) = 0. In the remainder of this paper, we
focus on the dynamic programming equation since the solution scheme proposed in Section 3 is based on a
cutting plane approximation of the expected cost-to-go functions in (2.2).

2.1 Assumptions

In the previous works studying MSLP, it is commonly assumed that i) the probability distribution of random
parameters at each stage is known and ii) the data process is stagewise independent. In this paper, we depart
from those assumptions with the purpose of developing a practically meaningful data-driven scheme for the
MSLP problem (2.2). We make the following assumptions throughout the main paper:

(A1) Markovian Random Parameters. The first stage parameters £&; = (e1, b1, A1, B1) are deterministic,
whereas the subsequent stage parameters €, = (&, by, Ay, By) for t € [T]\ {1} are stochastic with support
Z; C RP. Furthermore, the stochastic process & (] = (&4,...,&r) satisfies the Markov property. That
is, the conditional distribution of &, given the data process €y = (&1,...,¢&;) up to time t does not
depend on £, ) = (&1, ,&_1).

(A2) Unknown Distribution. The true joint distribution of é[T] = (&,,€&,,...,&7) is unknown and only
N independent and identically distributed (i.i.d.) historical trajectories £fT] = (&,,85,...,€%), i e [N],
from the stochastic process are available. In this paper, we denote the empirical uncertainty sets by
Z1={¢&}and 5 = {€ : i € [N]} for every t € [T] \ {1}.

(A3) Relatively Complete Recourse and Compactness. For each stage ¢ € [T], the feasible region
Xe(xi—1,&,;) is nonempty and compact for any feasible x;_1 and any &, € =;.

2.2 Discretized Problem

It is impossible to solve the true problem (2.2) exactly under assumptions (A1) and (A2) since the expected
cost-to-go functions Qiy1(xt, &) for every t € [T — 1] cannot be evaluated without full knowledge of the
underlying (conditional) distribution. Even if we knew the true distribution, evaluating the multivariate
(conditional) expectation and optimizing over the continuum of the state variables z; make the true problem
intractable to solve. To address these fundamental challenges, in this paper, we propose to estimate the true
conditional probability using the historical data via the Nadaraya-Watson (NW) kernel regression [413,64]
defined as follows:

| c(874)
i} (€,) = ~  Vie[N]. (23)
(s

Here, K is a kernel function of choice and h > 0 is a smoothing parameter called bandwidth. In this paper,
we use the exponential kernel function of the form K(p) = exp(—||p||2). The bandwidth parameter h controls
the smoothness of the estimator (2.3). A too small h leads to undersmoothing, meaning that most weights
are assigned to points close to &,. On the other hand, an extremely large h reduces the weights 0 (¢&,) to
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Fig. 1 Recombining scenario tree using N historical trajectories.

1/N, Vi € [N]. Gyorfi et al. [28] establish that the bandwidth scaling h = O(l/Nﬁ) minimizes the expected
estimation errors, which we adopt throughout the paper.

In our data-driven setting, the sample space of the true random process is discretized by i.i.d. historical
trajectories {Ei}thl for every 4 € [N], giving rise to a recombining scenario tree depicted in Figure 1. Here,
the true conditional distribution of 5% 11 given ¢! is approximated by the NW estimator (2.3). We refer to
the MSLP problem represented by Figure 1 as the discretized problem. Similar to the true problem (2.2),
usingAthe dynamic programming equation, we present the discretized problem for stage ¢ € [T] and each
£, €5t as

Qe(mi—1,&,) = min ¢f ¢ + Qr1 (2, &)
s.t. 2 € RY, (2.4)
Az + Bixi—1 = by,

and Q71 (-) = 0. Here, the approximate expected cost-to-go function Qi r1(w¢,&,) is defined as

Orr1(xi &) =E [QtJrl(wt»ét—i-l) ‘ £t} = > Wi(&) - Qrar (e, €41a)- (2.5)

i€[N]

Note that the approximate conditional expectation Q11 (x4, £;) is taken with respect to N data points, using
the NW estimator in (2.3) and this weighted sum replaces the true expected cost-to-go function Q¢4 1(w¢, &;)
in (2.2). This implies that the results from solving the discretized problem are not necessarily valid for the
true problem. In addition, even with this drastic simplification, the discretized problem remains hard since
the approximate cost-to-go functions still need to be evaluated for every x: € Xi(wi—1,€&;), which makes
the discretized problem intractable. In Section 3, we discuss the stochastic dual dynamic programming
algorithm that can deal with this kind of intractability.

2.3 Out-of-Sample Performance Guarantee

Data-driven solutions obtained from solving the discretized problem (2.4) can be suboptimal for the true
problem due to the estimation errors from the NW estimator. In this paper, we are interested in under-
standing how well the data-driven scheme approximates the true problem and provides a reasonably good
solution with a high probability.

Srivastava et al. [03] investigate the out-of-sample guarantee for the static stochastic problem with side
information. In this section, we extend their result to the multi-stage setting. We state the following mild
regularity conditions required for the generalization bound.

(A4) Compact Uncertainty Set. For each stage t € [T], the random parameter vector £, is supported on
a compact set =.

(A5) Differentiability. For each stage ¢ € [T, the joint density function f(&;,&,_;) is twice differentiable
with continuous and bounded partial derivatives and the marginal density f(&, | €,_;) is non-zero for
every §;_; € ét—l-

(A6) Bandwidth. The bandwidth parameter h for the kernel function K is scaled such that limy_, oo hy =0
and limy_, o NAY, = oo.

The assumptions (A4)-(A6) are common in kernel regression estimation. The condition about the marginal
density in the assumption (A5) ensures that the conditional probability is always positive throughout the
time horizon. The condition about the bandwidth h in the assumption (A6) guarantees that the NW
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estimates asymptotically converge to the true conditional distribution. Moreover, in view of the assumption
(A4), we can establish the following Lipschitz continuity condition for the cost-to-go fucntions.

Lemma 1 (Lipschitz Cost-to-go Function) For each stage t € [T], the true cost-to-go function Q¢(xt—1,&;)
and the approzimate cost-to-go function Q¢(xi—1,&;) are Li-Lipschitz continuous in ®i—1. That is, there exists a
constant Ly > 0 such that

|Qt(,&;) — Qu(a’,&)| < Liflz — || Vo, 2’ € X1 (wi—2,& 1) V& € 5,

‘Qt(%ﬁt) - Qt(mlygt)’ < Lille — 2| Ve, x' € X1 (xi-2,&_ 1) V& € =0

The proof of Lemma 1 can be found in Appendix A.1. Based on the result, we obtain the following corollary
on the Lipschitz continuity of the expected cost-to-go functions.

Lemma 2 At stage t € [T]\ {1}, for any &,_, we have

E[Qi(x,€&,) | &-1] —E[Qi(z', &) | &-1]] < Lellw — 2| Ve, z’ € X1 (zi-2,641)
EQu@&) | & 1] ~E[Qi@ &) | &) S Lile—a| Voo’ € X (212,60 1).
@ &) | &) ~E[Q@ &) |&n]|<bile—ol Voo € X (wio28ia),
BlQi@&) 6] ~E[Q@ &) |&]| <Ll Ve el (w26 )

Lemma 2 can be verified by directly applying Lemma 1. Based on the assumption (A4), we also have the
following lemma that plays an important role in deriving our generalization bound in Theorem 3.

Lemma 3 (Bounded Conditional Variance) For each stage t € [T], there exists a constant af_H > 0 such
that for any x; € Xi(wi—1,€&,) and all feasible ¢¢—1, and all &, it holds that V[Q41(z¢,€441) | &) < 0741

Under these assumptions and lemmas, we can use Theorem 1 in [63] to obtain the following generalization
bound on the error of the NW estimate for any fixed state variables.

Theorem 1 (Generalization Bound for Fixed State Variables x;) At stage t € [T, for any fived x¢ €
Xe(zi—1,€&;) and any &, € =y, we have

xy, € _T x, & [Q“rl(wtvst-s-l ‘Et} o 1
[Bl@e(medin) [ 6] ~B[@ualen &) | 6] < ZmE mmt (7)€

with probability at least 1 — dt41. Here,

f(§t+1 | &)

g(gt) = 2pr /Cz(p)dp

is the scaled marginal density of ét-

Theorem 1 provides some insights about the error bound of the NW estimator: a small conditional variance
V[Qi41(me, &4 1) | &) or a large scaled density g(&;) can provide us a better bound. Now we extend the
result to obtain a uniform generalization bound for every state variable in a continuous and bounded set
under the assumptions (A4)-(A6).

Theorem 2 (Generalization Bound for a Continuous and Bounded Feasible Region) At stage t € [T,
for any fized tolerance level n > 0 and §; € =%, we have

’ [Qir1(ze,€041) | €] — E [Qear (e, Erpq) | €] ‘

log (W)
< Ut2+1 Ot+1 +2Lip1n Vo € X (wi—1,&,), (2.7)

O(NTT)(1+0(1))g(£,)

with probability at least 1 — 6;11. Here, Ly11 is a Lipschitz constant for Qi1 (w¢,&;, 1) defined in Lemma 1 and
Dy is a positive constant satisfying

sup ||:1:t — (I:Q” < D¢ Vxiq vEt‘
Ty, @ €EXy(Te—1,€,)
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We defer the proof of Theorem 2 to Appendix A.2. We note that Theorems 1 and 2 only provide bounds
on errors purely due to the NW estimator. In this paper, we want to determine the errors between the
true expected cost-to-go and the approximate expected cost-to-go that result from solving the discretized
problem (2.4). Let 1 and &1 be optimal solutions to the true problem and the discretized problem, respec-
tively. By recursively applying Theorem 2 from the terminal stage to the first stage, we derive the desired
suboptimality bound in the following theorem.

Theorem 3 (Out-of-Sample Performance Guarantee) For a fized tolerance level n > 0, with probability at
least 1 — 23:2 ¢, we have

(el @1 +E[Qu@1,8) [ &1]) - (el 2l +E [Qa(a. &) | €1])

log (0(1>NH [121 (Ds/m)% )

d¢

T
<2) | |0 +2Lim |, (2.8)
t=2

O(N7+)(1+o(1))g_,

where Lyt is a Lipschitz constant for Q¢ (zt—1,&;) defined in Lemma 1, Dy is the finite diameter defined in Theo-
rem 2, and g;_; = min;e[n) 9(&i—1)-

Proof We proceed by backward induction in the stages.
Stage t = T: We have Q1 (-, &7) = Qr(-,&€7) for every &€ due to the fact that Q7 1(-) = 0. From Theorem 2,
for any fixed @p_o and &r_; we have

T

log (O(l)(DTé_l/defl )
+ 2L

‘E [Qr(zr_1.67) | €7 _1] - E [QT(CBT—L%T) ‘ £T71H < U%O(Ni)(l o W)eEr)
pa 0 T-1

Vap_1 € Xp_q (xp_2,&r_1)

with probability at least 1 — §p. Taking minimization over Xp_4, for any fixed @p_5 and &€r_; we have

min erazr—1 +E[Qr(zr_1,€r) | €r_1]
xr 1 €XT 1 (T 2.6 4

— min c;_lmT,1 —l—fE [QT(mTflvéT) ‘ §T—1}
:l‘:TfleXT—l(mT727£T—1

log (0<1><DTgl/n>dT—1 )

T

= ‘QT—l(mT—27£T—1) —Qr-1(2r—2.€p_1)| < || 03 +2L7n

TONT)(1 4 o(1))g(€r_1)

with probability at least 1 — 7. Applying union bound over the N sample points E%’—1 €Ep_q, i€ [N], for
any fixed @p_5, we have

log (O(l)N(Dg_l/deﬂ )
2

Qr—1(r—2,87_1) — Qr_1(r_0,€_1)| < or .

i + 2LT’I’]
O(N7+1)(1 +o(1))gr—1

V&r_1 € Zroq, i €[N] (2.9)

with probability at least 1 — d7 and gp_; = min;e[n g(€h_ ).
Stage t =T — 1: From Theorem 1, for any fixed &7 _5 and &_,, we have

log ( 5T17 - )

O(N77)(1 + 0(1))g(€7_s)
(2.10)

‘E [QT—l(iBT—Q»éTﬂ) ‘ Esz] ~E [QT—l(iBT—mgTﬂ) } Eng]‘ < Lok,

with probability at least 1 — §7_;. Note that E [QT,l(mT,Q,ET_l) ’ £T_2] in (2.10) is not the approx-
imate expected cost-to-go defined in (2.5). Therefore, we use (2.9) to replace Qr_1(x7_o,&€7_1) with
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Qr_1(x7_2,&p_,). Applying union bound to (2.9) and (2.10), for any fixed @7_ and &p_, we have

’]E [QT—l(mT—%éT—l) ‘ §T—2] - E [QT—l(“@T—%ET—l) ’ £T—2} ’

dp_
log (O(l)N(Dg;l/n) T 1) ) log <5T1—1)

oW1+ o1)a(er—2)

<. |o? 1
"\ T oE) (1 +o(1))gr_s

+2Lpn  (2.11)

with probability at least 1 — 7 — d7_1. Since the cost-to-go function Qr_1(xr_2,&p_1) is Ly_1-Lipschitz
continuous in xp_o, Lemma 2 implies that for any zp_o € Xp_o(zr_3,&€p_5), there exists =, €
X} _y(®1_3,€7_3), [[®7—2 — ®p_,|| <, such that:

|E [Qr—1(zr—2,&r 1) | &r o] —E[Qr_1(x7—2.€7_1) | €7 _o]| < Lr_1n (2.12)

Furthermore, applying union bound to (2.11) over @7 _, € X ,(wp_3,€7_5), we get

’E [QTﬂ(mlT—Q»ET—J ‘ Er_o| — E [QTfl(m’/T—%éT—l) ’ £T—2} ’

log (O<1>N<DT_1/n>d6TTfl (D /n)*T-2 )

dp_
log (O(l)w?;ff") T 2)
o7

2L7n

2
by

“LO(NT) (1 + o(1))g(€r_s)
Ve o € X, (er_3,67_5) (2.13)

O(N7)(1 + o(1))gr_y

with probability at least 1 — 7 — 7. Using the Lipschitz continuity of Qr_1(®r_2,&r_1) and
Qr—1(zr_2,€7_1), We obtain

’E [Qr—1(zr_2,€1_1) | €r_s] — E [QTfl(mTf%éTfl) ’ Esz} ’

log (O(I)N(DT—I/"])d&T_l (Dr—2/n)T-2 ) log (0(1)(DT,2/n)dT—2 )
2

T O0r—1

< or o + 2LT77 + 2LT—177

TLONF) (1 4 o(1))g(€p_s)

Ver_o € X1_o («’BT—&ET—Q)

O(N7)(1+o(1))gr_

with probability at least 1 — d7 — d7—_;. Then minimizing over Xp_o, for any fixed £&7_5 and xp_3, we have

min et _o®r_o +E [Q@r—1(zr—2,&1_1) | €75
@r 2€Xr _o(Tr 3,6,

_ min C;E,ngfz + E [QTfl(wa%éT*l) ‘ ET%}
o7 _2€XT_2(TT—3,.€1_5

’QT72(33T737 Er_o) — QT72(mT73a£T—2)‘

or—1

log (O(l)N(DT,l/m”’;“T—l (Dr_2/n)"T—> )

log (O(l)(DH/de—Q)
+ |07

L O (1 + o(1))g(€—s)

IN

+2Lrn+2Lr_1n

T O(N7)(1 4 o(1))gr_,

with probability at least 1—d7—d7_;. Applying union bound over the N sample points £%_, € Ep_o, i € [N],
for any fixed &p_3, we have

‘QT—2(QUT—3, & o) — QT—Z("ET—37€§’72)‘

T T—1

log <O<1>N2<DT,1/77>;T—1(DH/n>dT—2 ) log (O(I)N(@H/W‘z )
2

< +2Lrn+2L1_1n

o or

L O(NF) (14 o(1))gr_s

Ve 5 € Er_y, i € [N]

O(N#)(1+o(1)gr_,
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with probability at least 1 — 7 — dp_1 and gp_, = mine|y g(&s ).
For stage t = 2, by backward induction, we obtain

log (0<1>Nt—2 [1:21 (Do /m)? )

2 t

0t

T
E [Qa(x1,€ —E [Qa(z1, & < 5 2 2.14
B lslon &) [ €] ~E[@a(en ) [e][ <3 o e e | e

= 6((527537...,57“)
YV, € X1 (xo,&1)

with probability at least 1 — Zthz dt. To ease the notation, let the error term in (2.14) be a function of

82,03 ...,07, namely €(d2,d3,...,0r). Then, for &1 = &1, we have
ol &1+ E[Qu(@r, &) | €] < (] @1+ 8 [Qa(81,&) | &]) + (62,55, ..., o1) (2.150)
< (el @i +E[Qa(@i.&) | &]) + (02,85, .., 57), (2.15b)

where the second inequality (2.15b) holds since 7 is suboptimal to the discretized problem. Similarly, for
x1 = x7, we have

~ (el +E[Qa(el.&) | &1]) + (el 2l + £ [Qa(el. &) | &1]) < (02,0,....0r)  (216)
Applying union bound to (2.15b) and (2.16), we establish the desired result:

(el @1 +E[Q(@1,8) | €1]) — (el @i + E [Qa(21,&) | &]) < 2¢(52,5,....67)

with probability at least 1 — E;‘FZQ 6¢. Thus, the claim follows. [
To gain insight from Theorem 3, we derive the following simple upper bound.
Corollary 1 D L = max ILty1, D = max (D d"“, Omin = min § =
r ry eﬁne max te[To) t+1 max tE[Tfl]( t+1/77) min telT o1 t+1, Omax
2 .
terﬁ?i(l] Oi41, and gin = ter[%“lill] g:. Then, we have

(ClTﬂAH +E [Q2(§31»22) ‘ 51]) - (CleT +E [Qz(mi&) | 51])

or 02iax (0(1)NT—2DE£;X1 )
< lo + 4L maxT 2.17
O(NPLM A+ oDgmm S\ m maTy (217)

with probability at least 1 — ZZ;Q Ot

Proof Since Lmax = maxye(r—1] Lt+1, Dmax = maxer)(De/n)™, Smin = Milyepr_1) 0t41, Omax = MaXse (7 07,
and gp,;, = mingeir_1] g, Theorem 3 implies

(el @1 +E[Qa(81,8) | &1]) - (el of + E[Qu(el, &) | &])

OM)N* 2121 (Ds/m)%s OMNT—2DiZ!
T , log ( (€] 1'([5.;,1( /) ) o7 . log (2 o )
< 2 Z o i + 2Lt7] < —— 3 _\| 9max (1 T (1)) + 4LmaxT77
& O(N#%)(1+ (1), o(N) o(1)8in
with probability at least 1 — 23;2 &¢. n

Corollary 1 asserts that the generalization bound in Theorem 3 is at most 5p(T%/N ﬁ) The result is
meaningful from both theoretical and practical perspectives since i) it provides the first statistical analysis
of the Markov discretization method and ii) the polynomial dependence on T suggests that our scheme is
applicable to problems that require a large number of time stages. However, the bound also depends on the
dimension p of the random parameter vector ét, implying large out-of-sample errors when p is large. The
estimation errors from the high dimensional regression are a relatively common problem. To mitigate the
issue, one can utilize a dimensionality reduction algorithm. Using the procedure, one can improve the decay
rate of the errors to 5p(T% /N P’%) when the effective dimensionality p’ of the random parameters is much
smaller than the dimensionality p of the ambient space.
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Remark 1 Shapiro [54] investigates MSLP problems with stagewise independence and known uncertainty
distribution. He shows that using the popular sample average approximation (SAA) method, the errors
diminish slowly at the rate of 6p (T% /N %) Thus, the sample complexity of solving the true problem grows
exponentially in the number of stages, which makes SAA practically inapplicable for MSLP problems with
a large T. n

3 Data-Driven SDDP

Our solution method to solve the discretized problem in Section 2.2 is based on stochastic dual dynamic
programming (SDDP) algorithm introduced by Pereira and Pinto [416], which is a sampling-based variant of
the nested Benders decomposition method by Birge [9]. SDDP is an iterative cutting plane approximation
algorithm [33] where each iteration consists of two steps called the forward and backward steps. In the forward
step, M scenarios—sample paths in the scenario tree in Figure 1 from the first stage to the terminal stage—
are sampled, and a sequence of candidate solutions corresponding to each scenario is obtained under the
current approximation of the expected cost-to-go function Qt_,_l (z¢,&;) in (2.4). In the subsequent backward
step, the lower and upper bounds of the expected cost-to-go functions are updated starting from the terminal
stage to the first stage along the candidate solutions obtained in the forward step. As the lower and upper
approximations are evaluated only at the candidate solutions, SDDP can alleviate the intractability arising
from discretizing state variables.

3.1 Lower Bound on Oy 1 (¢, £&;)

At the beginning of the k-th iteration of the SDDP algorithm, we consider the following lower bound problem
for every t € [T] and &, € =

_ . T k—
Qf Y@i-1,€;) = min ¢; @ +Qt+11 (xt, &)
s.t. @y € Rdt, zZt € Rdt '
Azt + Bizi = by,

Zt = Ti—1,

(3.1)

Here, Qt+1 (x, &) = > ie[N] wi(E,) ~Qf_;11 (z¢, &} ,). Here, the expected cost-to-go function Opr1(ze, &) in
(2.4) is replaced by the lower bound approximation Qf_:ll (z¢, &), which is the maximum of a collection
of linear functions, known as cuts, derived at each iteration. Note that we add the equality constraints
zt = x¢—1 where the auxiliary variables z; acting as a copy of the previous state variables x;_;. This
has the drawback of adding one extra variable and constraint for each state variable but simplifies the
implementation of the algorithm by avoiding the matrix multiplication for cut gradients [21,25].

In the forward step, a scenario? is sampled using the approximate conditional distributions frorn the NW
regression. More precisely, conditional on § 1, we sample {2 from the empmcal uncertainty set =y accord-
ing to the probabilities {w (51)}1 1- Given 52, we then sample £3 from =3 according to the probabilities
{1} (€,)}Y . This process is repeated until the terminal stage to generate a scenario. For t = 1,...,7 — 1,
the current lower bound problem (3.1) is solved at the previous stage solution Z5_; and the scenario &,. The
main output in the forward step is a sequence of optimal solutions :?:kT_l , known as candidate solutions. In
the following backward step, for t = T,..., 2, the lower bound problem (3.1) is solved at candidate solution
:Ef_l and every sample &, € Z¢. Then, the objective values Ké and dual solutions wi, i € [N], corresponding
to z¢ = @¢—1 are used to generate a new cut for updating the k-th approximation gf(a;t,l,gt_l) for every
£, € :At,h as follows:

T

QF (we—1,€,_1) + max{ OF M(we—1,€,_1), Z Wiy (&) - | (1 — ZE_1) Z Wi_1(& ) Vi

i€[N]

Due to the convexity of Qr11(x¢,£,) in ¢, which we will discuss in detail in Section 4.3, Qf() is a valid lower
approximation for Q;41(-) for every t € [T'— 1]\ {1} in any iteration k. With these updated approximations,
we solve ming, e x, (x.¢,) cl x1 + Q’f (zo,€&;) to obtain a deterministic lower bound on the value of optimal
policies of the discretized problem.

2More than one scenario can be sampled in each iteration. In this case, multiple sequences of candidate solutions can
be used to generate cuts in the backward step.
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3.2 Upper Bound on Qt+1(wt, &)

In the standard SDDP, the algorithm terminates if a gap between the deterministic lower bound and the
stochastic upper bound becomes within a predetermined tolerance level; see [55] for more detail. Although
a small gap may indicate that the current lower bound problem provides a good approximation of the true
problem, it may not be the case if the randomness in the upper bound construction causes an early termi-
nation of the algorithm. Moreover, it fails to provide a deterministic quality of the current approximation,
which would be of interest to the decision maker. We avoid such a stochastic upper bound scheme; instead,
we utilize the deterministic upper bound proposed in [24,47,61].
At the k-th iteration, we consider the following upper bound problem for every ¢ € [T] and &, € Zp

—k—1 . T —k—1
Qi (wt—1,&) =min ¢; @ + Qrp (@4, &) + M|yl
stz eRY, @eRET gy, eR™,

Ay + Bt?ct—l = by, (3.2)
Z 0]'5:% Ty =,

JE[k—1]

e 0=1.

Here, @f_:ll(mt, &) = Yiev wi(E,) ~§f_:11 (z¢,&,1). Similar to the lower bound, the upper bound problem

is obtained by replacing Qi1 (x,&,) in (2.4) with the upper bound approximation @f_:ll (x¢, &;). Here,
@f_:ll (z+,&,) is a lower convex envelope defined on a convex combination of the previously obtained k — 1
candidate solutions, namely, Zje[k—l] 03-:?:{ for every 0 € le__l such that e"@ = 1. Note that the auxiliary
variables y, are introduced in (3.2) to ensure the feasibility of the upper bound problem because the relatively
complete recourse in the assumption (A3) alone does not guarantee a feasible solution x: € Xi(wi—1,&;)
that also belongs to the convex combination [(1]. That is, y, becomes nonzero if there does not exists 0
that satisfies the constraints Zje[k—l] 0j5ci = x; and Asxt + Bixi—1 = bi. Hence, a penalty proportional
to a sufficiently large scalar M; is imposed whenever y, is nonzero. This, in turn, expands the state space
of @?_:11(, ¢,) by adding a new candidate solution Z§ to the current convex combination. R
In the backward step, for t = T),...,2, the current upper bound problem (3.2) is solved at every &, € Z¢
and candidate solution Zf_,, and then the objective values Vi for every i € [N] and Z}_, are used to update

the k-th approximation @f(wt—l,ﬁt_l) for every &,_, € Z;_1, as follows:

—k ) =k i —i
Qt (®t—1,€4_1) < env | min { Qy 1(=’Bt—1:§t—1): E Wi 1(&4-1) - Vi + 1{@;@;1} (@1—1)
i€[N]

Here, ‘env’ represents the lower convex envelope where 1z, (-) is an indicator function for the singleton
set {&¢—1} defined as

1z (xi—1) = 0 if @1 =2
{11} +00  otherwise.

The convexity of Q¢y1(x¢,&;) in x4 guarantees that this convex envelope is a valid upper bound in any
iteration k as discussed in Section 4.3. As the approximations @f () for every t € [T]\ {1} are refined

along the new candidate solutions in the backward step, the objective value of @lf(mo, &) provides a tighter
deterministic upper bound on the value of optimal policies of the discretized problem. Algorithm 1 shows
our data-driven SDDP (DD-SDDP) scheme where we adopt the deterministic upper bound in lieu of the
standard stochastic one.

3.3 Convergence

We defer the convergence proof to Section 4.3 since the data-driven distributionally robust SDDP (DDR-
SDDP) scheme introduced in the next section generalizes DD-SDDP. We emphasize that the convergence
indicates the lower and upper bound problems converge to the discretized problem (2.4), not to the true
problem (2.2). This implies that our DD-SDDP scheme may suffer from poor out-of-sample performance
discussed in Section 2.3 if the discretized problem does not provide a good approximation of the true
problem.
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Algorithm 1: Data-Driven SDDP (DD-SDDP)
Input: Given observation histories =y = {€i}N.| V¢ € [T] where & = (ci, A%, B, b}), tolerance level ¢
Initialization: Q?H(.,gi) = +o0, QY (-, &) = —coVt € [T — 1] Vi € [N]
UB = +oc0, LB = —o0, Iteration k =1
Output: Optimization problems with added cuts
1 while |[UB— LB| >¢-min{ [UB|, |[LB| } do
(forward step)
fort=1,..., 7T —1do
if t =1 then
‘ Solve Q’l"_l(wo,ﬁl) in (3.1) and obtain &%
else
Generate a sample £, from =} with probability {wi_ (&)Y,
Solve Qf_l(:if_l,ét) in (3.1) and obtain Z¥.

P

o o

(backward step)
8 fort=1T,...,2do
fori=1,...,N do

10 (LB) Solve Qf(iffl,gi) in (3.1). Then obtain the optimal value Vi and the dual solution 7}
corresponding to z; = ‘i’f—l
11 (UB) Solve @f (&F_,,€}) in (3.2) and obtain the optimal value V
12 if t > 2 then
13 for j=1,...,N do
(Update Lower Bound)
14 Compute ij =2ielN Wy (§_1)V; and {gzl;' =2 ielN Wiy (&_1)m]
j _ j T _
15 Qf(wt—lvgg—l) A max{gf NCTEy 1) gtl; (Te—1 — 931’59—1) +Z§j}
(Update Upper Bound)
7]6 n : —.
16 Compute ¥; = 37, cn Wi (&_1)Vy
—k i . =k—1 i —k
i Ol (@eo1,€] ) « env(min{Q (@180 ). Thy + 1igp (@)
18 else
(Update Lower Bound)
19 Compute ¥5 = > ielN] Vi/N and 95 = DN i /N
_ T _
20 Qf(@1,&;) « max{Q5 ™ (@1,&y), 4F (w1 —2f) + 5}
(Update Upper Bound)
21 Compute 7’5 =2 icN] Vs /N
—k . ~k—-1 —k
22 Qs (x1,8&1) + env(min{Qy (x1,&;), ﬂ{ilf}(wl) +75})

23 Solve Qlf (x0,&;) in (3.1) and obtain the optimal value LB

24 Solve @If (x0, &) in (3.2) and obtain the optimal value UB
25 | k=k+1

4 Regularization Schemes

Based on Theorem 2, the out-of-sample performance may be poor if the constant upper bound atQ_H on the
conditional variance in (2.7) is large. In principle, o} 1 can be replaced with the true conditional variance
V[Qir1 (e, &, +1) | &] to obtain a tighter generalization bound. We make use of a regularization scheme
involving the conditional variance term that provides a better out-of-sample performance guarantee. The
regularization scheme, however, is intractable due to nonconvexity. In this section, we propose the data-
driven distributionally robust SDDP (DDR-SDDP) scheme as a tractable approximation.

4.1 Variance Regularization Scheme

In Theorem 2, the constant upper bound o7, on the true conditional variance V[Qt+1(mt,ét+1) | &] is
used as a proxy. Since o7, > V[Qt+1($t,ét+1) | €] for every feasible z; and &, € =, replacing o7, with
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V[Qt+1(wt,§t+1) | & gives rise to a tighter generalization bound

‘E [Quyr(ze,&i1) | &) —E [Qura(me Epy) | £t]‘

log (M)

5t+1
9(€) (1 +o(1)) N7+

V [Quy1 (e, €41) | €] o (0(1)(Dt/?7)dt (4.1)

1 + Liyq 14+
9(E) (1 + o)) N7 ) o

Ot41

with probability at least 1 —d¢41. Note that the true variance term provides a more faithful characterization
of the generalization errors compared to the bound in Theorem 2. Thus, it implies that a regularization
scheme involving the true conditional variance yields good out-of-sample performance, in view of the bound.
Nevertheless, the true conditional variance is unknown under the assumption (A2), so we utilize the empirical
conditional variance given by

\ [Qt+1(mt:ét+l) ‘ 515} =K (Qt+1(mtvét+1) -E [Qt+1($t,ét+1) ‘ £tD2 ' £t:|
=B [Qt+1(wt7ét+l)2 ‘ Et] -k [Qt+l(wt7ét+1) ‘ 542'

(4.2)

Using this approximation, we obtain the variance regularized formulation of the data-driven dynamic pro-
gram (2.4), as follows:

QYR (wi-1,&) = min o] w; + OV (w1, &) + A\/V [QVE (21,&111) | &)
s.t. x € Rdt,
Atz + Byxy—1 = by,

(4.3)

where OV (x4, &,) = E[Qfﬁ(wt,éHl) | &) = ZiE[N] Wi (&;) QYN (x4, €1, 1) and A > 0 is a tuning parameter
that controls the degree of regularization.

4.2 Data-Driven Distributionally Robust SDDP

Unfortunately, solving the regularization problem (4.3) is intractable since the empirical conditional variance
term V[Ql}_ﬁ (¢, ét-{-l) | €] in the objective function is nonconvex in x;. Instead, we apply the distributionally
robust optimization (DRO) methodology to the discretized problem (2.2) as a tractable alternative to
the variance regularization scheme. Specifically, we propose the following distributionally robust dynamic
program for ¢ € [T] and &, € =,

ADRO T ADRO z
£ (xe-1,€) = min ¢; & + max  Ep, [Qt+1 (xt,€411) ‘ &t}
P eP) (Py)
s.t. x € Riﬂ
Aixt + Bixi—1 = by,

where Q?flo (-) = 0. Here, the ambiguity set P} (I@)t) with radius parameter A > 0 is defined as

wti - @i(ﬁt)

W (&)

<A eT’thI, ’thRﬁ ,

PP = Py = Z wide: - Z . max
i1€[N] i€[N]

(4.5)
where each candidate distribution P; € ’P{\ (]fbt) is supported on the N observed data points with probabilities
close to the nominal weights {uw}(£,)}~_; up to a certain distance A with respect to the measure described
in the ambiguity set (4.5). The distance measure of our choice is a polyhedral outer approximation to
the modified x* ambiguity set; see [5,7]. More precisely, we construct the ambiguity set using 1-norm and
oo-norm to conservatively approximate the 2-norm in the description of the modified x? distance. While
utilizing the polyhedral approximation is mainly motivated by the computational benefits, it also provides a
connection between the variance regularization formulation (4.3) and the DRO formulation (4.4) as stated
in the following proposition.

Proposition 1 For any x; and §;, we have

E {Qy—ﬁ(whéwﬂ ‘ ﬁt] + )\\/V [Qfﬁ(wtvéwﬂ ‘ Et] < Pter%??@t)EPt [Qtp—ﬁo(wtaéwl) ‘ ft] + O()\2)~
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The proof of Proposition 1 can be found in Appendix B.1. Proposition 1 implies that the DRO model
provides a more accurate approximation of the variance regularization scheme as we observe more sample
trajectories and decrease A accordingly. Specifically, the suboptimality bound for the variance regularization

scheme in [63] suggests to scale the regularization parameter according to A =

O(1/N i ), which converges

to 0 as N — co. In the following proposition, we present a tractable single-level reformulation for (4.4).

Proposition 2 (A Tractable Reformulation) At stage t € [T], the DRO problem (4.4) can be reformulated

as the linear program

QPO (@i-1,&) =min ¢/ @i +v+A | B+ Doowi |+ D i€ (i -

1€[N] 1€[N]

st. zeRY, yeR, BeRy, pcpeRY,

Aixy + Braxi—1 = by,
i =G
V wt(gt)

QPRe (t,€141) S v+ ==t

e B
Mg+ G ¢z+\/ﬁ

The proof of Proposition 2 is deferred to Appendix B.2.

Vi € [N],

Vi € [N].

(4.6)

As a solution scheme for the DRO problem (4.6), we propose our data-driven distributionally robust
SDDP (DDR-SDDP) scheme in Algorithm 2. Similiar to DD-SDDP in Section 3, we construct the lower

and upper bound problems, as follows:

Q E  (@e1,6) =min el@e+y+A ([ B+ Y wi |+ D (i€
i€[N] 1€[N]
st. zeRY, z eRI, yeR, BeRy, u(ycRY
Aixt + Bzt = by,
2t = Tt—1,
Qth_:—\;C])C 1(mt7£t+1) <'Y+ _C,L
’ (£t)
M+ G = + b
VN
—DRO .
Qt p—1(xt—1,&) =min ¢4 $t+’Y+)\ B8+ Z v | + Z w3 (&) (i —
1€[N] i€[N]

st xLyi €RY, yeR, BeRy, ulypeRY,
Az + Byxy—1 = by,

—DRO : = Gi
Qi1 (m,€441) S’Y‘FM

Wi (&)

DRO ;
Z Hth_H J mta£t+1) +Mt+1||yt||1 = Qt+1 (mt,&le-s-l)
JE[K]
> o5 +yp =
Jelk]
i+ G =Y + \/‘%
e 0 =1

In DDR-SDDP, we use a multicut version of SDDP, i.e., for each &, € =y, the cost-to-go function QPRO

Vi € [N],

Vi € [N].

Vi € [N],

Vi € [N],

Vi € [N],

Vi € [N],

Vi € [N],

Vi € [N].

(4.8)

('7£t)

is approximated by QDRO( -, &) and @f,?o(-, &,). Each iteration of DDR-SDDP is tractable since the upper
and lower bound problems are linear programs, which are efficiently solvable using off-the-shelf solvers.
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Algorithm 2: Data-Driven Distributionally Robust SDDP (DDR-SDDP)
Input: Given observation histories =y = {€i}N.| V¢ € [T] where & = (ci, A%, B, b}), tolerance level ¢

Initialization: Qy;; o (@¢,£i,1) = +o0, QPRO(@1,€l,1) = —o0 vt € [T — 1] Vi € [N]
UB = +00, LB = —o0, Iteration k =1
Output: Optimization problems with added cuts
1 while |UB — LB| > ¢-min{|UB|, |LB|} do
(forward step)
2 fort=1,...,7T—1do

if t =1 then
4 ‘ Solve Q;D?_Ol (x0,&,) in (4.7) and obtain &¥
5 else
6 Generate a sample &, from = with probability {@!_, (& _1)}Y,
7 B Solve Qf]iol (®F_,,&,) in (4.7) and obtain &F.
(backward step)
8 fort=1T,...,2do
fori=1,...,N do _ _
10 (LB) Solve Qtpl?o(izf_l,ﬂ) in (4.7). Then obtain the optimal value V¢ and the dual solution !
corresponding to z¢ = &¥_,
11 (UB) Solve @f,zzo (®F_,,&})in (4.8) and obtain the optimal value V
12 fori=1,...,N do
(Update Lower Bound)
. T ~ )
i QPO (@1, €))  ma{QPRS (w1, £0), i @iy — 25 ,) + Vi)
(Update Upper Bound)
—DRO ; . =DRO i T
14 Qi (xi-1,€)) « env(min{Q; ;. (®1-1,&}), Vi + Ligh y(®e-1)})

15 Solve Q??O(mo,ﬁl) in (4.7) and obtain the optimal value LB

16 Solve @fso(mo,ﬁl) in (4.8) and obtain the optimal value UB
17 k=k+1

4.3 Convergence

To establish the convergence of the DDR-SDDP scheme presented in Algorithm 2, we make the following
assumption.

(B1) Basic Feasible Solution. Candidate solution Z} obtained during the forward step and dual solutions
7y i, for every i € [N] obtained during the backward step are basic feasible solutions for any iteration k.

(B1) is a mild assumption since it can be easily satisfied by using the simplex method to solve the linear
programs during the forward and backward steps.

As stated earlier, the DRO problem (4.4) reduces to the discretized problem (2.4) if A is set to 0. That
is, the expected cost-to-go function Zie[N] WHE,) - Qrpn (e, E%_H) in (2.4) replaces the inner maximization

problem in (4.4) if the ambiguity set P (P;) contains only the nominal distribution P;. Thus, the convergence
proof presented in this section holds for DD-SDDP in Algorithm 1 as well. Before we present the convergence
proof, we show that the cost-to-go function Qgﬁo(mt, €;,1) is piecewise linear convex in the state variables
Tt.

Lemma 4 At each stage t € [T — 1], for any &, € = &1 € ét+1, and feasible x+_1, the cost-to-go function
Qtp_ﬁo (x¢,&44 1) is piecewise linear convex in &y € Xy(ax¢—1,8&,;) with a finite number of pieces.

The proof of Lemma 4 can be found in Appendix B.3. Lemma 4 implies that the cost-to-go function
AtDRO(mt,h ¢,) for every &, € Z; can be restored by a finite number of supporting hyperplanes, although
the number of such hyperplanes can be prohibitively large. Furthermore, in the following lemma, we establish
that the lower and upper bound problems provide valid lower and upper bounds for the discretized problem,
respectively.

Lemma 5 For the upper bound problem in (4.8), suppose My+1 > Lgﬁo Vt € [T—1], where LBZ%O is a Lipschitz
constant for Q?J%O (mt,£t+1) under the 1-norm. Then, for any iteration k, the upper and lower bound problems
provide valid bounds on the optimal value of the discretized problem, i.e.,

DRO ADRO —DRO 2
Qt_‘_l’k(',gt—i-l) < Qt+1 (',§t+1) < Qt+1,k('7£t+1) vt € [T - 1] v"5t-~-1 € =t+1-
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The proof of Lemma 5 is deferred to Appendix B.4.

An almost sure finite convergence of the standard SDDP algorithm under stagewise independence has
been established in the existing works [50,55]. These papers, however, only consider the lower bound con-
vergence. It is also worth mentioning that they have different settings on uncertain parameters. Philpott
and Guan [50] consider randomness only on the right-hand side of the constraints of the linear program,
whereas Shapiro [55] considers a more general MSLP problem where uncertainty can enter any parameters,
e.g., objective function coefficients, a recourse matrices, etc. The following theorem presents the convergence
of the data-driven distributionally robust SDDP algorithm.

Theorem 4 Consider the DDR-SDDP scheme described in Algorithm 2 without the termination condition in
line 1. Then, the algorithm converges to an optimal solution of the following DRO problem,

. T ADRO P
min ey x1+ max Ep Q3 (x1,&5) ‘ 51]
x €X' (x0,€;) PIG’P?(Pl)

in a finite number of iterations with probability one.

We defer convergence analysis to Appendix B.5, where we propose our upper bound convergence proof while
the lower bound convergence relies on [55].

5 Numerical Experiments

In this section, we conduct numerical experiments to assess the performance of our proposed schemes. All
optimization problems are solved using Python 3.7 with GUROBIPY 9.5.2 on on a 6-core, 2.3GHz Intel
Core i7 CPU laptop with 16GB RAM.

5.1 Portfolio Optimization

We consider the classical multistage portfolio optimization problem where an investor aims to maximize
his/her utility at the terminal stage by re-balancing the portfolio at each time stage. The portfolio can be
selected from K risky assets and one risk-free asset with a fixed return rate ry. Initially, the investor has
$1 available in the risk-free asset. At each stage ¢ € [T — 1], the investor can either hold his/her position,
buy more, or sell off part (or all) of asset i € [K] before observing the returns &;,, € R¥ of risky assets
at stage t + 1. We denote by uzr € Rf the amount of risky assets bought and by u, € Rf the amount of
risky assets sold at stage t. At the end of stage ¢, the value of asset 4, s; ;, equals the previous value s;_1 4,
plus the realized return & ;s¢—1,; during the period, plus the newly bought amount uz:i, minus the newly

sold amount u, ;. We use f;, and fs to denote per-unit transaction costs for buying and selling a unit asset,
respectively.
The problem can be solved via the (true) dynamic program for ¢t € [T — 1]:

Qi(si-1,&) = max E [Qiy1(s1,&11) | &)

s.t. stERIf+l, ul uy ER§7

_ . (5.1)
st = &ist—1,i T u:i — Uy Vi € [K],
st =1rse—1, k41 — (L fr)e uf + (1= fo)e uy .
Here, sg,; = 0 for every ¢ € [K], so,x+1 = 1, and the cost-to-go function at the terminal stage T is
Qr(sr—1,&r) = max U(é7@7)
K+1
s.t. sy € R+ R (52)

ST = ET,i5T—1,i Vi € [K],
ST,K+1 = TfST—1,K+1-

Here, the function U : Ry4 — Ry is a linear approximation to the log utility function. Note that no
immediate cost is imposed at stage ¢ € [T — 1] since our goal is to maximize the utility of cumulative wealth
at the terminal stage T.

We derive a single-level DRO reformulation for the true problem based on (4.6) and compare our data-
driven SDDP scheme (DD-SDDP) in Algorithm 1 and the distributionally robust version (DDR-SDDP)
in Algorithm 2 against the stagewise independent scheme (Independent), the equally weighted portfolio
(Equal), and the hidden Markov model based SDDP scheme (HMM-SDDP) proposed by Silva et al. [61].
The stagewise independent scheme is an SDDP scheme that ignores correlation over time in the random
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return process. Thus, we replace the NW estimates for the conditional distribution with discrete uniform
distribution. The equally weighted portfolio is to allocate an equal amount of the current wealth in all assets
at each stage, hence known as the 1/n portfolio strategy. DeMiguel et al. [19] show that this seemingly naive
strategy is optimal under certain conditions. The hidden Markov model based SDDP scheme assumes three
unobservable states governing random returns &,, namely bull, regular, and bear states and apply DRO to
account for estimation errors of the transition probabilities among those states. Similar to our schemes, the
resulting MSLP problem is then solved by SDDP.

We test the schemes with the historical weekly returns of the following data sets from December 2003
to January 2023: the 10 Industry Portfolios and 12 Industry Portfolios from the Fama-French online data
library®, which include US stock portfolios categorized by industries; and the iShares Exchange-Trades Funds
(iShares) data set downloaded from yfinance®, which includes the following nine funds: EWG (Germany),
EWH (Hong Kong), EWI (Italy), EWK (Belgium), EWL (Switzerland), EWN (Netherlands), EWP (Spain),
EWQ (France), and EWU (United Kingdom).

We obtain 120 historical trajectories of the weekly closing prices from each data set by setting the time
horizon to T' = 8 weeks. The first 50 trajectories are used as training data for our models, while the remaining
70 trajectories are used for the out-of-sample tests. In our experiment, we utilize a five-fold cross-validation
procedure to determine the radius of the ambiguity set A for DDR-SDDP and HMM-SDDP. In each trial,
we split the training data into five equal-sized subsets where four of the five subsets are put together to
train the model. The resulting policy is then tested on the remaining set for A in [1073, 101]/N2/(p+4) on a
logarithm search grid with 10 equidistant points. This process is repeated five times for different partitions
of the data to choose A that performs best overall.

First, we show the convergence of our data-driven schemes. Figure 2 depicts the evolution of the upper
and lower bounds using the 10 Industry Portfolios training data set. We observe that both DD-SDDP and
DDR-SDDP are able to close the optimality gap to less than 3% after 800 iterations, and the gap for
DDR-SDDP is about three times smaller than one for DD-SDDP.

Table 2 reports the out-of-sample performance for five different schemes. We fixed the number of itera-
tions k& = 200 for every SDDP scheme. It took about 30 minutes to solve an MSLP problem instance in this
setup. Along with other statistics, we include the Sharpe ratio to measure the performance of a portfolio
relative to a risk-free asset, after adjusting for its risk. Here, the Sharpe ratio is defined as

mean{Rq;}Zgl - Ry

Sharpe ratio = ,
Std{Ri }272 1

where R; is the return of the portfolio along test trajectory i over 8 weeks and Ry is the return of the
risk-free asset over 8 weeks. The results indicate that the DDR-SDDP scheme performs favorably relative to
its competitors: it achieves the largest utility, the largest mean return, and the largest Sharpe ratio over all
data sets. In addition, compared to DD-SDDP, DDR-SDDP provides a less risky policy in terms of standard
deviation for every data set, illustrating the connection with the variance regularization scheme discussed
in Section 4. Meanwhile, we observe that DD-SDDP also performs significantly better than the stagewise
independent scheme, showing the benefit of incorporating stagewise dependence into the model.

Table 2 Out-of-sample statistics of different schemes

Data set Model Utility Mean return Std. dev. Sharpe ratio
DDR-SDDP 0.03190 0.03411 0.06348 0.47656
DD-SDDP 0.02654 0.02904 0.06957 0.36176
10 Industry
Independent 0.01582 0.01762 0.06228 0.22088
Fama-French \
HMM-SDDP 0.02428 0.02540 0.04697 0.45878
Equal -0.00215 -0.00197 0.02743 -0.03518
DDR-SDDP 0.02486 0.02669 0.05974 0.38238
DD-SDDP 0.02348 0.02591 0.06899 0.31962
12 Industry .
F F h Independent 0.02014 0.02203 0.06316 0.28780
ama-Frenc
HMM-SDDP 0.01968 0.02086 0.04970 0.34211
Equal -0.00152 -0.00136 0.02715 -0.03166
DDR-SDDP 0.01380 0.01425 0.03605 0.28860
DD-SDDP 0.00734 0.00945 0.06855 0.08160
iShares Independent 0.00343 0.00534 0.06511 0.02283
HMM-SDDP 0.00568 0.00609 0.03433 0.06526
Equal -0.05000 -0.04865 0.02729 -0.31754

Shttps://mba.tuck.dartmouth.edu/pages/faculty/ken.
9https://pypi.org/project/yfinance/

french/data_library.html
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Fig. 2 Evolution of both upper and lower bounds for DDR-SDDP and DD-SDDP over 800 iterations using the 10 Industry
Portfolios data set.

5.2 Day-Ahead Wind Energy Commitment

In this experiment, we explore the wind energy commitment problem on the day-ahead market considered
in [30] and [31]. At the beginning of day ¢, the day-ahead electricity prices p, € R3* for the next 24 hours
are known to a wind energy producer. The producer determines how much wind energy to commit for each
of the next 24 hours without knowing the actual hourly amounts of wind energy w41 € R3*. That is, the
energy commitment levels u; € R?ﬁ are determined after the observation of the day-ahead prices p, but
before the actual amounts of wind energy w1 are realized. On day t+ 1, the actual production can be used
to satisfy the scheduled commitment u; or charge three storage devices indexed by I € {1, 2, 3}. It can also be
dumped if all three storage devices are fully charged. The hourly commitment u; j; can be satisfied directly
from the newly generated wind energy w;, j or by discharging the storage devices. Otherwise, there is a
penalty of twice the respective day-ahead price p; ;, for the unsatisfied commitment. Each of the devices has
a different capacity 5, hourly leakage A, charging efficiency A. and discharging efficiency )\ﬁl. We denote by
she R%f the hourly levels of storage | over the next 24 hours. The state variables s; = (5%34, 55’24, 3?34) € Ri
represent the storage levels at the end of day ¢ while the random parameters include the day-ahead prices p,
and the wind energy production levels w; during the day, i.e., & = (p;, w:). The wind producer’s objective
is to maximize the expected profit over the time horizon of T = 7 days. The optimal bidding and storage
strategy for the wind energy producer is obtained by solving the (true) dynamic program for ¢ € [T

Qt(st,&;) = max P:ut - QP;FE [ey+1 | Et} +E[Qt+1(st+1aét+1) | &)
s.t. ut,eg_’f’d} e R%, e;{_tf}’l,shl € ]R?f vl € [3],

_ S +,1 +,2 +,3 d
Wip1,h = €1, + €1 + € 1n + € i1n +ep1,n VhE 24

]

(24],
Upp = €fp1p T+ e;’th + 6;’217,1 + e;’ih +eiy1n  Vhe[24], (5.3)
! 1 I+ y
St41n =N Stp1p—1 T Acej_‘_l’h ~ LGt Vh € [24] VI € [3],
d
St1n <5 Vh e [24] Vi € [3),

where Qr41(-) = 0. Here, ef,; and e}, represent the amounts of satisfied and unsatisfied energy commit-
ments, respectively, while ef! "1 represents the amounts of dumped wind energy. In addition, e:' _;ll represents
the amounts of wind energy used to charge storage ! and e,_ +11 the amounts of energy discharged from storage
[ to meet the commitments.

We obtain the hourly day-ahead prices in the PJM market and the hourly wind energy from 2002 to
2011 at the following locations: Ohio (41.8125N, 81.5625W) and North Carolina (33.9375N, 77.9375W).
By setting T = 7 days, we obtain 520 historical trajectories for each location. As the wind energy and
the day-ahead prices show clear seasonality patterns, we divide the trajectories into four parts according
to different seasons and evaluate the out-of-sample performance for each of them separately. We perform
principal component analysis on the high dimensional data &, = (p;, wt) € ]Rfl,_s to obtain a 6-dimensional
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subspace that explains more than 90% of the variability of the historical observations, which mitigates large
out-of-sample errors as discussed in Section 2.3.

Table 3 presents the out-of-sample performance for DDR-SDDP, DD-SDDP, and the stagewise inde-
pendent scheme (Independent). Similar to the previous example, our data-driven schemes outperform the
stagewise independent scheme in all criteria. We observe that DDR-SDDP wins in all the categories. Par-
ticularly, it is more robust in terms of the 10th percentile compared to other schemes while the stagewise
independent scheme has a significant risk of incurring a loss (negative profits).

Table 3 Out-of-sample statistics of profit (in $100,000)

Data Set Model Mean Variance 10th pct.
DDR-SDDP 7.12 18.61 2.72

Ohio DD-SDDP 6.71 22.57 2.07
Independent 5.61 21.58 0.78

DDR-SDDP 8.62 42.82 1.47

North Carolina DD-SDDP 8.27 53.47 1.07
Independent 7.55 57.12 -0.30

6 Conclusion

In this paper, we introduced a data-driven SDDP (DD-SDDP) scheme for solving a risk-neutral multistage
stochastic linear programming (MSLP) problem under an unknown underlying Markov process for random
parameters. We utilized the NW kernel regression to estimate the true conditional distribution and estab-
lished for the first time the theoretical out-of-sample guarantee for the data-driven MSLP problem. This
theoretical result inspired us to develop a data-driven distributionally robust SDDP (DDR-SDDP) scheme
as a tractable regularization scheme. The numerical experiments demonstrated that our robust scheme out-
performed all other benchmarks in real-world applications. In the future, it would be interesting to extend
our scheme to solve general convex and nonconvex problems as well as problems with discrete decisions.
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A Proofs in Section 2

A.1 Proof of Lemma 1

The proof of Lemma 1 relies on the Hoffman’s Lemma shown below.

Lemma 6 (Hoffman Lemma (Theorem 9.14 in [58])) Let M(u) = {x € R} | Az = u} be a nonempty polyhedron
parameterized by the right-hand side vector u € R™. Consider u’ € R™ such that M(u’) # 0. Then, there exists a positive
constant r = maxx, es, [|A1ll1, such that for any x € M(u),

dist (z, M(u')) < 7|lu —u/|.

Here, So is a bounded polyhedral set satisfying S = So + C, where S = {(A1,A2) : ||ATA1 + X2|l1 < 1} 4s a polyhedron
set that depends only on A, and C is a polyhedral cone.

Proof (Proof of Lemma 1) We proceed by backward induction from the terminal stage. At stage T, we have Qr(z1—_1,&p) =
QT(mT,l,gT) = min {c;ch : Arxr + Broxr_1 =bp, @ € RiT } Hence, it is sufficient to show the result for
Qr(xr_1,€7). For any £ € S, let @71 and @/,_; be two points in the domain of Qr(xr_1,&7). Fix any feasible point
xp € Xp(xr_1,€7). Applying Lemma 6 with right-hand side vectors up = by — Bprap_; and u’T =br — BTm’T_l, we
have that there exists a feasible point @/, € Xr(2/._,,€&r) such that

ler — 27|l < rrllur —upll < rell(br — Brar—1) — (br — Brap_,)|| < rr||Br|l - [ler—1 — z7_4]|,
where rp > 0 is a constant that depends only on Ap. Therefore, the Lipschitz continuity of c;wT implies
Qr(alp_y,&r) < epalp < cpmr +rrler| - |Brl - |er—1 — @ ||
T—-18T) = Cr¥p = CpLT TicTr T T-1 T—11"
Taking minimization over & € Xr(xr_1,&1), we have
Qr(xr_1,&r) < Qr(er—1,&7) +r7ller|| - |Br| - [ler—1 — 24|l
By symmetry, we have
|Qr(2r—1,€7) = Qr(27_1,&7)| < rrller|l - |Brll - ler—1 — 27|

By the compactness of the uncertainty set in the assumption (A4), we know there exists 77, e, and B such that the
right-hand side is upper bounded by 7r||ér| - [|Br|| - [l€r—1 — 2/._, ||. Setting L1 = 7r||ér|| - [[Br||, we conclude that

|Qr(zr—1,&r) — Qr(xp_1,&r)| < Lrller—1 —®p 4|, Ver_1, @ ) € Xr_1 (®r—2,€7 1), V€r € Er.

Hence the desired result holds for stage 7'. By induction, suppose the statement in the lemma holds for stage t + 1 < T
That is, there exists a constant L;41 > 0 such that

!Qt+1(wt7€t+1) - Qt+1($;75t+1)| < Ligallee — =4, Vet, ®f € X (2i—1,&;) V€441 € Sy, and

‘QtJrl(mivgtJrl) - Qt+1($§7€t+1)’ < Leyallee —agll,  Vae, @ € & (20-1,&;) V€41 € Srt1.

We show the Lipschitz continuity of Q¢(x:_1,£&,;), the Lipschitz continuity of Q¢(:_1,€&,) can be proved in a similar way.
For any feasible points x¢, @} € X;(@¢—1,&,) and any &, € =y, the following chain of inequalities holds for the true expected
cost-to-go function.

|Qtt1 (e, &) — Qutr ()}, €)| =

/ _ Qun(me &) f (€11 | &) A&
§i11€511

*/ _ Qt+1(w;7£t+l)f (5t+1 | §t) €,
£i11€541

</ |Quit (@, €01) — Quin (@ &) £ (Erer | €0) d€ri
§i41€5 41

< Litalles — ai).

Therefore, c:wt + Qty1(m¢,&;) is a Lipschitz function with constant Ly + ||e¢||. For any &; € Z¢, let @;—1 and «}_; be
two points in the domain of Q¢(x+—1, &,). Fix any feasible point @; € Xy (¢—1,&,;). Applying Lemma 6 with right-hand side
vectors ut = by — Bywy—1 and uj = by — Byx),_ |, we have that there exists a feasible point @; € X;(x}_,,&;) such that

lee — 2ill < rellue — wgll < rell(be — Beaws—1) — (b — Byawy_y)|| < re| Bell - lee—1 — ;||
where 7y > 0 is a constant that depends only on A;. Therefore, the Lipschitz continuity of ctT:):t + Qiyi1(xe, {t) implies

Qi 1,&) < ¢/ @} + Qi1 (m), &)
<el @i+ Qe &) +ri(Legr + lledll) - | Bell - llwe—1 — ;4.

Taking minimization over ¢ € Xi(x¢—1,&;), we have

Que(wt_1,&,) < Qu(@e—1,&;) +7e(Legr + llec])) - [|Bell - ey — 4 .
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By symmetry, we have
|Qe(@i—1,&) — Qe(@i_1,&0)] < re(Lega + lleell) - 1Bl - llwe—1 — @4 .
By the compactness of the uncertainty set in the assumption (A4), we know there exists 7, ¢, and By such that the

right-hand side is upper bounded by 7¢(Lit1 + ||€t]]) - | Bt - l@e—1 — =, _,|| . Setting Lt = 7¢(Let1 + ||€]]) - || Bell, we
conclude that

|Qt(xe—1,€&;) — Qe(xh_1,&,)| < Lellwe—1 —a;_yll, Var 1, @y € X1 (ze2,&_1), V& € Ep.

Therefore, the result holds for Q¢(x¢—1,&;). We omit the proof for Q¢ (¢—1, &) since it is similar to Q¢(x¢—1,&,). Hence,
the desired result holds for stage ¢t and this completes the induction. [ ]

A .2 Proof of Theorem 2

Proof Based on the assumptions (A3) and (A4), there exists a positive constant Dy satisfying

sup Hmt - 934” S Dt7 th717 V&tv
@, €EXe (y— 1,84

ie., Xt (x¢—1,&) C R% has a finite diameter less than or equal to D; for any x;_1 and g,

Next, we define a finite set of points X,(x;—1,€&,) C Xi(w¢—1,€,). For any @y € Xi(wi—1,€,), there exists ) €
X (xi—1,&,) such that ||@: — x}|] < n, ie., for a fixed tolerance level n, we have the cardinality |X} (@i—1,&;)| =
O(1)(D¢/n)?. Since the cost-to-go function Q¢41(x¢,&; 1) is Les1-Lipschitz continuous in @;, Lemma 2 implies that
for any @y € Xp(xt—1,&,), there exists x} € X (xt—1,&,), ||zt — =}|| < 7, such that:

[E[Qi(@ &) | &] ~E[Qu(@h &) | &]] < Lipn (A1)

Furthermore, from Theorem 1, we have that for a fixed x} € X:(wt_l,ﬁt),

\% [Qt+1(€c27ét+1) ) Et] 1
(e

’E I:Qt+1(w;’ét+1) ’ St] -k [Qi+1(m{f:ét+1) ‘ §t” < 1 s (A.2)
O(N?F1)(1 +0(1))g(&, i+
with probability at least 1 — §;41. Applying union bound, we get
_ . _ Qit1(z), € & X7 (x4
B [Quii (@t &) | €] - E[Quia(ah &) | &]] < i b | log (I } (s;t 1,st>|)
O(NT+7)(1+0(1))g(€,) i+
1 O()(Dy/m)%t
< .|t Oi e ) vay € X (wi-1,€,)  (A.3)
O(NP+1)(1+0(1))g(&,)

with probability at least 1 — d¢+1. Using the Lipschitz continuity of Q¢41 (¢, £t+1), from Lemma 2, we get

(O(l)fsfjl/")dt>

}E [Qt+1(mt7£t+1) } €t] ~E [QtJrl(wt:étJrl) ’ Et” < o o +2Lt1m

1) (1+0(1))g(€,)
Ve € Xy (:l‘:tfl,gt)

with probability at least 1 — §¢41. This completes the proof. [ ]

B Proofs in Section 3

B.1 Proof of Proposition 1

Proof The proof of this proposition follows from the approach discussed in [44]. To simplify the notation, we define a
random variable Z = Q¢ 1 (e, €,41) and a vector z € RN where z; = Qt+1(mt,£i+1). We denote

z=RE [Qt+1(wtvét+1) ) §t] = D i€, Quyr(@e,€l4q)
ie[N]

=7 [Qui(ené) | &) = X 0i€) [Quien &) — 7]

ie[N]
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The DRO problem  max  Ep, [Q¢+1(x¢, ét+1) | €] can be equivalently written as
PreP) (Py)

max w:z : 17'5(&) < VN, max tit(gt) <, eT'wtzl, wi GRI s
wit

e\ wi€y) N S (€,)

which is lowered bounded by

i i 2
max 'w;rz : Z MSA% e—rwtzl7 thRf
we ie[N] wt(gt)

By change of variable u; = w¢ — ﬁjt(ﬁt), the above problem is equivalent to

max {E+u:(z —z-e) ¢ Jlugllw <A eTug =0, ug + we(€;) > 0} ,
ut

where ||u¢||lw = \/Zie[N] #&)(ui)Q is defined to be a weighted norm. We further define its dual norm ||u¢llyy -1 =
+(&¢

\/Zie[N] wE(E,) - (u)?, and the upper bound of the above optimization problem is

Zhu(z-2-e) <7+ furllw 2 -2 el STF Az —Z-elly-1 =2+ AV5,

where the last equality holds because

lz—Z-elw-1= [ > @i(&) (z—2?2= \/“7 [Qtﬂ(wuéwl) ’ Et]'

ne[N]
The above upper bound can be achieved by selecting

o i) (5= 2)
t Vs

The above choice of u; satisfies the constraints ||ut||‘2,v < X and utTe = 0. Therefore, such u; is feasible as long as

uj = 2O 2D > i)

By Lipschitz continuity of the cost-to-go function and compactness of the feasible region according to the assumption (A3),
Qt+1(wt,§§_‘_1) is bounded. Denote U41 to be the upper bound, that is, Qt+1(wt,§§_‘_1) < Ut.,_l,V&%_H € Z¢y1. Hence,

)\(Z\i/; E) >

lzi —Z| = |Qt+1(mt,€i+1) - ZnE[N] we - Qt+1(mt,§i+1)| < Ut41, then a sufficient condition of the above is

2T,

<1 «— 52/\2Uf+1 = A5 > AU
S

if s — )\2U?+1 > 0, ut is a feasible solution. On the other hand, u: = 0 is another feasible solution for this problem. Thus

i i 2
zZ+ )\\/\7 [Qt+1(wt,ét+l) ‘ {t] —AWip1 | <max{w/ z - Z w <X eTwy=1, wy € Rf
we €[N (&)

< max_Ep, [Qt+1(wt7ét+1) ) ﬁt] :
PP (Py)

Rearranging the terms, we complete the proof. ]

B.2 Proof of Proposition 2

Proof We consider the inner maximization problem, which given a feasible solution ¢ € X;(x+—1, &,), yields the distribution
with the worst-case expected loss as given below

AD
max Qt-ﬁo (21, &)
Py €P (By)

To simplify the notation, we define the vector z € R? whose n-th component z; = ng}o(wt, 5,‘; +1) denotes the loss function
evaluated for the n-th data point. We then have the following linear programming formulation for the worst-case expected
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loss:

max Z 20l (€,)

n€[N]
st wq ERf, fGRN,
eth =1 : (7)7
1
— i <A : s
Y ons ®

' _ (B.1)
wi — W (&)
Vi (&)
—wy + Wi (&)

Wi (&)
fi <A Vi€ [N] :(4).

Strong linear programming duality holds because the ambiguity set (4.5) is always nonempty with the nominal distribution
as the trivial solution. Therefore, the dual problem can be written as:

<fi  Vie[N] (),

min Y+ A B+ D v |+ D i) (i — )

ne[N] n€[N]
s.t. ’YER, B€R+7 H:C,¢€RN7
-G . (B'Q)
2 <y 4+ =2 Vi € [N],
\ Wy (gt)
gy B A
MH-waH—\/N Vi € [N].
Combining with the outer minimization problem, we have the following desired result:
min el +y+A B+ D v |+ D
n€[N]
st. x €RY, yER, BERy, ulpeRY,
Az + Bizy—1 = by, (B.3)
A -G .
QPR (e €1 11) < v+ ——== Vi € [N],
(Et)
#i+€i:wi+7ﬁ Vi € [N].
VN
u

B.3 Proof of Lemma 4

Proof We proceed by backward induction in the stages.
Stage t = T: For any & € =7, using the assumption (A3) and strong duality, we have

. ) 4
QRO (xr_1,&7) = min {C}—wT : Arzr + Brar-_1 =br, 7 € Rf}
_ T AT dp
=max 7wy (by — Brxr_1) : Apnp <ep, 7y €R
T

= max {‘rr;’j(bT —Brxr_1) : jE€ [ST]}

where 77 ;, j € [St] are the extreme points of the dual problem. Note that the number of dual extreme points in St is
finite. Therefore the claim holds for the stage T'.
Suppose Qﬂ}o(mt,gtﬂ) is piecewise linear convex with finite pieces in x; for any &;,; € ét+1, For a specific §§+1 €

ét+1, i € [N], let PEiJrl denote the set of all finite pieces of QEEO (x4, 5%_‘_1), ie

i i T i . 1
PLL :max{gt,j e+ J€ [SH-I]}
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where St+1 < oo is the total number of piecewise linear functions that describe Qt_‘_1 (x4, §i+1). Now for any &, € Z¢, we
can rewrite (4.6) as

QPRO(@y_1,&,) =min ¢/ xe +v+ A | B+ Z bi | + Z \/Tt

ne[N] ne[N
st. @ €RY, YER, BERy, u,c,w e RY,
Az + By = bt, . 2 (), (B.4)
gi,j T + 7/;] <y == Vi € [N], Vj € [Sf+1} : (yé,j)»
(Et)
B ) i
i +C = + —— Vi € [N] 2 (r}).

v N
Under assumption (A3), problem (B.4) has a finite optimal solution. The corresponding dual problem is
IPRO(xy1,&,) = max w/ (b — Buwe—1) + > > i ;%
i€[Nljelsi ]
st. me € RM, rp € RN, gy € Ry Vi€ [N], V) € [S4],

Almi<er+ Z Z yz,jgi,j,

16[1\]]]6[ f+1]

> uis=1

i€[N]je(s} il
Siemi (B.5)
TN

Z i
’\E/[Z’%M” < \Jui(g,) +ri,
i <

ge[stﬂ] yt,g

wi(&;)
rz <A

Note that here {Zje[.si B Yl 1€ [N]} is actually the worst-case distribution. Using a finite number, S¢, of extreme points
t+ ’

of the feasible region in (B.5), we can write the above problem, as follows:
QPO (@i-1,&,) =max o mw[ (b — Biwe1)+ > (vij), % ¢ Le[SH (B.6)
i€[N] jelsi, )

which implies QtDRO (t—1,&,) is piecewise linear convex with finite pieces in @;—1 for any &, € Z;. This completes the
proof. ]

B.4 Proof of Lemma 5

Proof We proceed by backward induction in the stages. Before we start, we present the lower bound problem at the k-th
iteration:

QDRO(a’t 1,§t)7m1n Cy wi+'7+)‘ B+ Z Vi | + Z wt gt)(/% Cl)

n€[N] n€[N]
s.t. :Z:tERit, ’YER7 ﬂeR+7 N7C7¢GR$
Azt + Bixy—1 = by, ¢ 2 (), (B.7)
i, Tt v st S e vesit i),

\V wt(Et)

wi +Ci =i + Vi € [N] s (rd).

B
VN
Here, we use 8t7+1 to denote the total number of cuts generated in the first k iterations for QtJrl (¢, §§+1). Note in (B.4),
we use St+1 to the total number of piecewise linear functions that describe Qt+1 (x4, £t+1)' Now we proceed to the main

proof. ~ N
Stage t = T': Since the cost-to-go function Q?flo ) = 0, there are no cuts. For any feasible xr_1 and € € =p, let # be

a dual feasible extreme point (here 77 is the only dual variable) to problem (B.7), we have
Gr 2 "er_1 + Vr_1 = #g(by — Brap_1)
< max {ﬂ;(bT — BTmTfl) : A;Eﬂ'T <er, wr € RdT}

. d
= mln{c;ra:T . Arxpr + Brxp_1 =bp, ®p € RJrT

=QFRO(xr_1,&r1)
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where ¥ 1_1 is the slope and #7_1 is the intercept. The second equality holds by strong duality. This proves the validity of
the cut in stage T' — 1. Hence,

Q?Rlok(wT—Qng—l) < Q?ﬁlo (®T-2,€7_1) " (B.8)

For the upper bound problem, first we have @?RO( &r) = Q?RO (- &7) for &r € Z7 due to the fact that there are no

cost-to-go functions at stage 7'. By the convexity of QDRO (-,&7), we have

Q?RO(wT—lvng) yT yT 1 < QDRO Z 93@%_175% Z 91 DRO wT 17§T) (B.9)
JElk] JEk]

where Z7 is any subgradient of Q?RO(wT,l, §1T) at ®7_1. Therefore,

—DRO 5 ; ;
S 00rsC @y ) + Mrllyh_y | = 3 01QRRO @), €h) + Mrllyh_y

jelk] jE[k]
> > 0QRRO @, €h) + 174 11 - w1l
j€lk]
> > 0IQRRO (@ &) + 1.7 N2 il
JE[k]
> QFRO(Y” i@ . &) + FL oy

JE[K]
> QPR (@r—1,€%).
The first inequality holds because M1 > L?Ro and thus any subgradient of Q?RO(mT,l,.ﬁi[) under 1-norm is bounded
by M. The second inequality comes from the fact that ||y|j2 < |ly||1 for any y. The convexity and the Cauchy-Schwarz

inequality imply the third inequality, whereas the last inequality comes from (B.9). Hence,

—DRO
IPRO (xp—2,€7 1) < Qr g x(@r—2,€7 1)

Combining this with (B.8), we have
—DRO
Q?Rlok(wT 2.€p_1) < QPR (®r—2,€7_1) < Qrlig(®r—2,€7_1).

Therefore the claim holds for stage 7' — 1.
Suppose the result holds for t +1 < T — 1,

—DRO =
Qt+1 k(wt7€t+1) <QERC (@i, €i41) < Quyrn(me,€411), Véiy1 € Seya.

This implies the cuts generated for the lower bound problem are valid for ¢ + 1, i.e.,
T ) )
max {gé,j Tt + '7/751,]' tJ€E] t+1]} < Qt+1 (mt7£t+1) V§t+1 € ~t+1

Hence the cuts in the feasible region of (B.7) are valid. Let D; denote the feasible region of QPRO (x;_1,£,) in (B.4), and
DF denote the feasible region of (B.7). Note the only difference between (B.4) and (B.7) is the set of cuts: in (B.4) SZ+1
represent the total number of cuts for QE&O (mt,éi_,_l), while in (B.7) SZfl represent the total number of cuts generated
in the first k iterations for QAtD_Z%O (@t,€1,1). Let (#+,9) be a dual feasible extreme point to problem (B.7). Using similar
result as (B.6), we have

G w1+ V1 =7, (b — Beme1)+ Y Y U

1€[N] J€[$t+1]

<maxq (b — Buwe—1)+ > > yi %, ¢ (wi,y) € DF

ZG[N]JE[5f+1]

< max { T, (bt Bixi_1) + Z Z yé,j’thj ¢ (me,y) € Dy

i€[N] je[S? 111l

=QPRO(x,_1,¢,).

The first inequality holds because (7¢,9) € Df whereas the second inequality holds because D; includes all the cuts that

define Q?Ro (t—1,&,) while the cuts indexed by Stifl in Df by assumption only includes parts of these valid cuts. The
last equality comes from strong duality. This proves the validity of the cut in stage ¢t. Hence,

QDRO(wt—lyﬁt) < Q?Ro(mt—lyﬁt) (B.lO)
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For the upper bound problem, by hypothesis we have Qt+1 (wt,§§+1) < @f_gi (wt,§§+1), Vﬁi_‘_l < §t+1. Now replace
QPRo xt, with QPRO xt, in the constraints of (4.8) and call the new problem QPROL xi—1,&,;), we have
t+1,k t4+1 t4+1 t+1 t,k t

—DROL,

—DRO
te (®-1,&) < Qpp (Te—1,&4)

Therefore, it is sufficient to show @E;ZOL (x1—1, &) is an upper bound for QDRO (t—1,&;). Denote .#; to be any subgradient
of Qt+1 (wt,§§+1) at x+. We have

ADRO i | e g 1,0

Qi1 (21, €441) < Z 6’ZQH_1 (®],&11) + T yi

[k]
DRO T
< Z 9th+1 mt7£t+1) + 1% 2 - ||yt||2

\ A

DRO( 77 ;
Z 0:QPRC @], €1 41) + 1.7 1 - llwilh

I/\

Z 6’th+1 mt7£§+l) + M|yl

—<DRO
Qt+1 kL (wh £t+1)'

The first inequality comes from the convexity of Qt oy (wt, &;11), whereas the second inequality comes from the Cauchy-

Schwarz inequality. The third inequality holds due to the fact that ||y||2 < ||y||1 for any y. The last inequality holds because
My > L?RO and thus any subgradient of Q?Ro(mt,l,gi) under 1-norm is bounded by M;. Hence,

A —=DRO —=DRO
E}?O (r-1,€:) < Qt,k L(;pt,h{t) < Qi (2t—1,&;)-
Combining this with (B.10), we have

DRO(CCt 1,€) < QPR (me_1,€,) < @f/?o(wtﬂ:ﬁt),

which completes the proof. [ ]

B.5 Proof of Theorem 4

Proof We first discuss the lower bound convergence, using the proof of the standard SDDP algorithm presented by [55].

As discussed in Lemma 4, Q?RO(~, £!) Vi € [N] are piecewise linear convex with a finite number of pieces under the
assumption (B1) since there exist only a finite number of basic feasible solutions of the dual problem of QPRO (., £1) Vi € [N].
In addition, the total number of possible scenarios is finite (i.e., HZ:Q |Z¢| = NT=1) due to the discretization, and there is
a nonzero probability for any possible scenario to occur in the forward step since scenarios are generated by Monte Carlo
sampling. Hence, any possible scenario occurs infinitely many times in the forward step unless the algorithm terminates.

As shown in [55], the lower bound convergence holds if policy Z¢(&€ [t]) for the current lower bound problem satisfies the
following Bellman’s optimality condition,

Z1(€py) € argmin el wi+  max By, [QPRO(we, 1) | & (B.11)
T €X'y (Be—1 (&4 —1)):61) PrePL (Pr)

for every stage and possible scenario. Note that the DRO formulation (B.11) is equivalent to the single-level DRO re-
formulation (4.6) (here, we use (B.11) to save space). Let & (€[4) be a policy obtained by lower bound approximation

QDRO (xt—1,€) V¢t = 2,...,T and Vi € [N] at iteration k. Suppose that (B.11) does not hold for some (or all) stage

t G {2,...,T} and some (or all) possible scenario, i.e., a policy for the current lower bound approximation is not optimal
for the DRO problem. Let stage ¢’ be the largest stage t such that the function Ef, (ﬁ[t/]) does not satisfy (B.11), i.e., a

candidate solution i:f, = a‘:k (E[t/]) is suboptimal for the current scenario. Then, at some iteration k' > k, we add a new

W updatlng the current approximation Q?,E,O(, -). Similarly, a new cut is added until (B.11) holds
for stage t’. Such cut generations continue for some stage ¢t < t’ until (B.11) holds. After a sufficiently large number of
iterations, (B.11) holds for every stage and possible scenario. This completes the proof for the lower bound convergence.

Now we discuss the upper bound convergence. Let k* be the iteration after which the lower bound convergence holds.
The lower bound convergence under the assumption (B1) implies that there only exist a finite number of optimal policies
after the convergence, i.e., iteration k > k*. In other words, for each scenario, we have only a finite number of sequences of
candidate solutions &7 at which the upper bound approximation is evaluated (recall that candidate solutions are obtained
by solving the lower bound problem in Algorithm 2). Hence, we will show that the gap between the lower and upper
approximation is closed at those finite number of candidate solutions.

Without loss of generality, let us assume that there is only one optimal policy for each scenario. Let S be a set of all
possible scenarios and m[ 7] be the optimal sequence of solutions for scenario s € S after the lower bound convergence. Here,

cut corresponding to z"

we show RO ]
Qur  (®i_1, i = QDRO(szl,ﬁé) Vi € [N], s € S for some iteration k > k* (B.12)
for every stage.
Let k: be the iteration for which (B.12) holds at stage t. At the terminal stage T, (B.12) holds after the upper bound

. . . . . . _ . —D
approximation at stage T' is evaluated at all possible candidate solutions &7, Vs € S since QTffk(~, ) = Q?fl(?k(, ) =0.

Proceeding by induction, for ¢t = 7' — 1,...,2, there exists iteration k > Ez+1 such that (B.12) holds at stage t because

—D ; . .
Qﬂﬁ k(mt,gm) = Q?_ﬁi(mf,gﬁl) Vi € [N], s € S. This completes the upper bound convergence proof.
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