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Abstract In this article, we propose a novel alternating minimization scheme for finding completely positive
factorizations. In each iteration, our method splits the original factorization problem into two optimization
subproblems, the first one being a orthogonal procrustes problem, which is taken over the orthogoal group,
and the second one over the set of entrywise positive matrices. We present both a convergence analysis of
the method and favorable numerical results.
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1 Introduction.

Our aim is finding a factorization of a given completely positive matrix. A matrix A ∈ Rn×n is called
completely positive if for some positive integer r, there exists an entrywise nonnegative matrix B ∈ Rn×r

such that A = BB>. Throughout the paper, CPn denotes the set of all completely positive matrices.
Obviously, if A ∈ CPn then must be symmetric and have nonnegative entries. For the factorization of a
matrix A ∈ CPn we face two tasks. First we have to find r such that the completely positive factorization is
possible, and then we look for the factor B. In this paper, let us consider a given A ∈ CPn and a fixed r for
which the following problem is feasible.

Find B ∈ Rn×r s.t A = BB> and B ≥ 0. (1)

It is well known that CPn is a proper convex cone, whose extreme rays are the rank-one matrices xx>

with x ∈ Rn
+, that is

CPn = conv{xx> : x ∈ Rn, x ≥ 0}.

Closely related to CPn is the class of copositive matrices

COPn := {A ∈ Sn×n : x>Ax ≥ 0, ∀x ∈ Rn
+},

where Sn×n denotes the set of n × n symmetric matrices. In fact, CPn is the dual cone of COPn (see for
instance [1]).
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One of the challenges when dealing with CPn matrices is solving the factorization problem (1) efficiently
([1],[22], [14]). In this regard, we shall propose a novel alternating minimization scheme. To introduce our
method, we are going to rewrite (1) as

min
B,Y

1

2
||B − Y ||2F , s.t A = BB>, Y ≥ 0. (2)

Since (1) has a solution, it must be equivalent to (2), which in turn, can be equivalently posed as

min
Y ∈Rn×r,X∈Rr×r

1

2
||LX − Y ||2F , s.t X>X = I, Y ≥ 0, (3)

where L ∈ Rn×r is any matrix such that A = LL>, for instance the one provided by Cholesky. If by chance
the chosen L has nonnegative entries, then the original problem (1) is already solved. Otherwise, we look
for a solution X,Y of (3), and the correspondent B in (2) is given by B = LX. We note that the equality
constraints in (3) are known as orthogonality constraints and define the so called Stiefel manifold [2].

The method we propose, referred to as Splitting Alternating Minimization (SAM), seeks a solution X,Y
of (3) by generating sequences Xk, Yk coming from the following alternating minimization scheme

Xk+1 = arg min
X∈Rr×r

1

2
||LX − Yk||2F s.t X>X = I, (4)

Yk+1 = arg min
Y ∈Rn×r

1

2
||Y − LXk+1||2F s.t Y ≥ 0. (5)

We are going to derive a convergence analysis of this method, present favorable numerical experiments, and
explain how it differs from other alternating minimization techniques. Moreover, we are going to consider a
version of SAM, called SPAM, which employs a proximal point regularization term in the first subproblem.
Despite of SAM being inspired by the recent progresses on completely positive factorization given in [14], its
numerical performance is notably better. We note that problem (4) is not convex, which brings theoretical
obstacles. Alternating minimization under convexity [3] or quasi–strong convexity [9] is well understood.

There is vast motivation for studying problem (1). For instance, copositive factorization appears in
applications in combinatorics (block design [15]), also Markovian models of DNA evolution [10], project
management [16], economic modeling [18], and more recently, relaxations of combinatorial optimization
problems, and nonconvex quadratic optimization problems can be formulated as linear problems over CPn or
COPn. In [12], it is shown that the tail dependence of a multivariate regularly-varying random vector can be
summarized in a so-called tail pairwise dependence matrix, which is a CPn matrix. Nonnegative factorizations
of this matrix can be used to estimate probabilities of extreme events, or to simulate realizations. Further
applications of nonnegative factorization of completely positive and copositive matrices can be found on data
mining and clustering [20] and in automatic control [4,6].

This paper is organized as follows. Section 2 contains theoretical preliminaries. In section 3, we introduce
our alternating minimization method based on suitable Karush–Kuhn–Tucker (KKT) conditions, and section
4 consists of its convergence analysis. Numerical experiments are carried out in section 5, and concluding
remarks are presented in the last section.

2 Remarks on the problem

It is worth noting that if we have a factorization A = BB>;B ∈ Rn×r, B ≥ 0, then for every r̂ ≥ r one can
select suitable columns and build a matriz B̂ ∈ Rn×r̂, such that B̂ ≥ 0 and A = B̂B̂>. So, a completely
positive factorization is not unique. An important related concept is the cp-rank of a matrix , which is defined
as

cp(A) := min
r
{r ∈ N : A = BB>;B ∈ Rn×r, B ≥ 0}.

If A 6∈ CPn, then cp(A) =∞. Analogously, the cp-plus-rank of A is

cp+(A) := min
r
{r ∈ N : A = BB>;B ∈ Rn×r, B > 0}.
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Therefore, for all A ∈ Sn×n,
rank(A) ≤ cp(A) ≤ cp+(A). (6)

Computing the cp-rank of any A ∈ CPn is still an open problem (see [5]), in [7] a tight upper bound was
established:

cp(A) ≤ cpn :=

{
n for n ∈ {2, 3, 4}

n
2 (n+ 1)− 4 for n ≥ 5

which provides an estimate for r such that A can be factorized by means of n× r matrix. This is discussed
in [14] (see also [17]).

A key ingredient of Groetzner-Dür’s approach [14] for solving problem (1) is the orthogonal group: A
matrix X ∈ Rr×r is called orthogonal if XX> = X>X = I. The set of all orthogonal r × r matrices, denoted
by O(r), is called orthogonal group, also known as Stiefel manifold. Let us denote O+(r) = {X ∈ O(r) :
det(X) = 1} and O−(r) = {X ∈ O(r) : det(X) = −1}. Since O(r) = O+(r) ∪ O−(r) we conclude that O(r)
is disconnected. It is compact, but not convex. Also,

conv(O(r)) = {X ∈ Rn×r : XX> � I} = {X ∈ Rn×r :

(
I X>

X I

)
� 0},

is a convex relaxation for O(r). The crucial result involving the orthogonal group in [14] establishes that
an arbitrary factorization of the target matrix A can be turned into a positive one, by means of orthogonal
matrices. This is formally stated below.

Lemma 1 Let A be a completely positive n× n matrix, r ≥ cp(A) and L ∈ Rn×r satisfying A = LL> (but
possibly not nonnegative), then there exists X ∈ O(r) such that LX ≥ 0 and A = (LX)(LX)>.

This lemma justifies the reformulation (3) of problem (1), and its proof is presented, for instance, in [14].
The reformulation (3) is still hard to solve, because the special orthogonal group O+(n) is not convex.

3 The method of alternating minimization applied to the completely positive factorization.

We recall that our alternating minimization method (4) – (5), aiming to solve (1) is formulated upon the
KKT conditions of (3). The Lagrangian function associated to (3), with multipliers Λ ∈ Rr×r so that Λ> = Λ
and Θ ∈ Rn×r, is defined as

L(X,Y,Λ,Θ) =
1

2
||LX − Y ||2F −

1

2
〈Λ,X>X − I〉 − 〈Θ, Y 〉, (7)

where the inner product between two matrices Z = [zij ] ∈ Rm×n and W = [wij ] ∈ Rm×n is defined as
〈Z,W 〉 = tr(Z>W ) =

∑
ij zijwij . Based on the Lagrangian function (7), we get the KKT conditions for (3):

L>(LX − Y )−XΛ = 0 (8a)

Y − LX −Θ = 0 (8b)

X>X − I = 0 (8c)

Y ≥ 0 (8d)

Θ ≥ 0 (8e)

ΘijYij = 0, ∀(i, j) ∈ I, (8f)

where I = {(i, j) ∈ N2 : 1 ≤ i ≤ n, 1 ≤ j ≤ r}.

The KKT system above is indeed a necessary optimality condition for (3). We observe that there are
redundancies within the orthogonality constraints, however, this does not prevent a solution of (3) to be
a KKT point of this problem. The redundancies occur because the strict upper triangular part of matrix
X>X−I coincides with its strict lower triangular part. If we rewrite (3) with only upper triangular constraints
for the orthogonality, then this optimization problem fulfills the linear independence constraint qualification,
guaranteeing the existence of Lagrange multipliers associated to an optimal solution (X∗, Y ∗) of the upper
triangular version of (3). If λ∗ij , for i < j is one of the Lagrange multipliers, then it is easy to check that
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1
2λ
∗
ij and 1

2λ
∗
ji are also Lagrange multipliers for the duplicated constraints x>i xj = 0 and x>j xi = 0. So, any

solution of (3) has to be a KKT point of this problem.
The following technical result provides a reduced version of the KKT conditions.

Lemma 2 Suppose that (X,Y ) ∈ Rr×r × Rn×r is a local solution of (3) then the following conditions are
satisfied at (X,Y )

L>Y −XY >LX = 0 (9a)

X>X − I = 0 (9b)

Y ≥ 0 (9c)

Y − LX ≥ 0 (9d)

(Y − LX)ijYij = 0, ∀(i, j) ∈ I. (9e)

Proof If (X,Y ) is a local solution of (3) then this point must verify the KKTs conditions (8) for some
Λ ∈ Rr×r and Θ ∈ Rn×r. Pre–multiplying both sided of (8a) by X> and considering the condition (8c), we
have the following expression for the Lagrangian multiplier Λ

Λ = X>L>(LX − Y ). (10)

Since Λ should be a symmetric matrix because the constraint X>X − I = 0 is also symmetric, from (10),
we obtain Λ = (LX − Y )>LX. Substituting this result in (8a), we arrive at

L>(LX − Y )−X(LX − Y )>LX = 0.

Using (8c) in the above equation, we get

L>Y −XY >LX = 0. (11)

And therefore the pair (X,Y ) satisfies the equation (9a). In addition, the conditions (9b) and (9c) directly
follows from the KKTs conditions (8c) and (8d).

On the other hand, merging the conditions (8b) and (8e) we obtain 0 ≤ Θ = Y − LX, which proves the
relation (9d). Finally, in view of (8b) we have Θ = Y − LX. Therefore, substituting this value in the last
KKT condition (8f) we prove (9e). This completes the proof. 2

The conditions presented in Lemma 2 are very important since they provide rules to identify possible
local minimizers of the optimization problem (3), and thus can be used as stopping criteria for iterative
algorithms. Furthermore, it is easy to note that if we have a pair (X,Y ) such that the conditions (9) are
satisfied then taking Λ = (LX − Y )>LX and Θ = Y − LX, we recover the KKT conditions (8). Therefore,
we conclude that the KKT conditions are equivalent to those presented in Lemma 2. However, the conditions
established in Lemma 2 do not depend on dual variables (Λ,Θ), and hence are easier to monitor for primal
algorithms (algorithms that only update primal variables).

3.1 The algorithmic framework.

In this subsection, we shall apply the alternating minimization strategy (4)–(5) with the aim of solving the
optimization problem (3). Recall that the scheme reads as:

Xk+1 = arg min
X∈Rr×r

1

2
||LX − Yk||2F s.t X>X = I,

Yk+1 = arg min
Y ∈Rn×r

1

2
||Y − LXk+1||2F s.t Y ≥ 0,

where X0 ∈ O(r) and Y0 = P≥0[LX0]. Here, P≥0[M ] = max{0,M} denotes the orthogonal projection of a
matrix M ∈ Rm×n onto the set Rm×n

+ , and the max function is understood element–wise.
In the following, we are going to discuss the characterization of the solutions of both subproblems above.

The global solution of the first subproblem (4) can be obtained from the SVD decomposition L>Yk =
UkΣkV

>
k , and is given by Xk+1 = UkV

>
k . This is proven in the lemma below. As for the second subproblem

(5), it is solved by Yk+1 = P≥0[LXk+1], which is straightforward to prove.
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Lemma 3 Consider the orthogonal constrained least–square problem

min
X∈Rr×r

1

2
||LX − Y ||2F s.t. X>X = I, (12)

where L ∈ Rn×r is a given matrix and Y ∈ Rn×r is fixed. Let X̄ = UV > be the matrix obtained from the
singular value decomposition of L>Y such that L>Y = UΣV >. Then, X̄ is a global solution of (12).

Proof Problem (12) is known as orthogonal procrustes problem and has an analytical solution, which was
proved in [23]. Here we give the proof in order to make this article self–contained. Firstly, observe that

1

2
||LX − Y ||2F =

1

2
||LX||2F − tr(X>L>Y ) +

1

2
||Y ||2F

=
1

2
||L||2F − tr(X>L>Y ) +

1

2
||Y ||2F .

The second equality is obtained because the Frobenius norm is invariant under orthogonal transfor-
mations. Thus, solving (12) is equivalent to maximizing J (X) = tr(X>L>Y ) over O(r). To do so, let
UΣV > = L>Y be a SVD decomposition, then using trace properties we have

tr(X>L>Y ) = tr(X>UΣV >) = tr(V >X>UΣ) = tr(ΣU>XV ) = tr(ΣΩ) =

n∑
i=1

σiiωii, (13)

where Ω = U>XV . This matrix Ω is an orthogonal matrix because it is a product of three orthogonal
matrices. Since Ω ∈ O(r) then any entry of Ω verifies that ωij ≤ 1. Hence, the function F : O(r)→ R given
by F (Ω) = tr(ΣΩ) is maximized at Ω̄ = I and therefore the solution X̄ of (12) is given by X̄ = UIV >,
which completes the proof. 2

Having stated closed formulas for subproblems (4) and (5), leads us to the algorithm next.

Algorithm 1 Splitting alternating minimization (SAM).

Require: A = LL> ∈ Rn×n, where L ∈ Rn×r. Initialize with X0 ∈ O(r) and Y0 = P≥0[LX0], k = 0.
1: while not convergence do
2: Compute a SVD factorization L>Yk = UkΣkV

>
k .

3: Xk+1 = UkV
>
k .

4: Yk+1 = P≥0[LXk+1].
5: k ← k + 1.
6: end while

Notice that if {(Xk, Yk)} is any infinite sequence generated by Algorithm 1 then the objective function
F : O(r)×Rn×r

+ → R given by F(X,Y ) = 0.5||LX−Y ||2F that appears in (3) satisfies the following inequality

F(Xk+1, Yk+1) < F(Xk+1, Yk) ≤ F(Xk, Yk), (14)

where the strict inequality above is a consequence of the strict convexity of the second optimization subprob-
lem (5). It follows from the fact that {F(Xk, Yk)} is bounded below and the relation (14) that the sequence
{F(Xk, Yk)} is convergent. Therefore, our proposed procedure constructs a sequence of feasible points and
promotes a monotone decrease in the residual ||LX − Y ||2F .

In order to design an alternating minimization method with improved convergence guarantees, we propose
a variant of Algorithm 1 inspired by the recently developed proximal point iteration on the Stiefel Manifold
[21]. Specifically, we update the iterates using the following iterative process

Xk+1 = arg min
X∈Rr×r

1

2
||LX − Yk||2F +

1

2α
||X −Xk||2F s.t X>X = I, (15)

Yk+1 = arg min
Y ∈Rn×r

1

2
||Y − LXk+1||2F s.t Y ≥ 0, (16)
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where α is a positive real number.

As we can see, the recursive scheme (15)–(16) is closely related to the SAM method. In fact, if α approaches
infinity, then the procedure (15)–(16) tends to the SAM method. However, as we will prove in the next
section, this proximal version enjoys a stronger global convergence result than the one established for the
SAM method, while preserving the numerical efficiency of Algorithm 1. It is straightforward to prove that
the optimization subproblem (15) is equivalent to

Xk+1 = arg min
X∈Rr×r

∥∥∥∥∥
[

L

(1/
√
α)I

]
X −

[
Yk

(1/
√
α)Xk

] ∥∥∥∥∥
2

F

s.t. X>X = I. (17)

Thus, (15) reduces to an orthogonal procrustes problem, and therefore according to Lemma 3, we have that
(15) has a closed–form solution given by Xk+1 = ŨkṼ

>
k , where

[L> (1/
√
α)I]

[
Yk

(1/
√
α)Xk

]
= ŨkΣ̃kṼ

>
k ,

is a singular value decomposition of the matrix L>Yk + α−1Xk.

Algorithm 2 Splitting proximal alternating minimization (SPAM).

Require: A = LL> ∈ Rn×n, where L ∈ Rn×r. Initialize with X0 ∈ O(r) and Y0 = P≥0[LX0], α > 0, k = 0.
1: while not convergence do
2: Compute a SVD factorization L>Yk + α−1Xk = UkΣkV

>
k .

3: Xk+1 = UkV
>
k .

4: Yk+1 = P≥0[LXk+1].
5: k ← k + 1.
6: end while

4 Convergence analysis.

In this section, we analyze the strong global convergence of SPAM (Algorithm 2). Furthermore, we provide
a convergence result for SAM (Algorithm 1) under an additional condition.

The next proposition establishes convergence to a stationary point of (3) when Algorithm 2 terminates
in a finite number of iterations.

Proposition 1 Let {(Xk, Yk)} be a sequence generated by the Algorithm 2. Suppose that at the k–th iteration
Xk+1 = Xk holds. Then (Xk, Yk) satisfies the KKT conditions presented in Lemma (2).

Proof Let {(Xk, Yk)} ∈ Rr×r × Rn×r a sequence generated by Algorithm 2. Since Algorithm 2 preserves
feasibility, we have that Xk ∈ O(r) and Yk ≥ 0, for all k ∈ N. Hence, the conditions (9b) and (9c) are verified
for any point (Xk, Yk).

From the iteration procedure, we have that Yk − LXk = P≥0[LXk] − LXk ≥ 0, which means that the
point (Xk, Yk) fulfills the condition (9d). Now, let (i, j) ∈ I an arbitrary pair of indices, so we have the
following cases.

i) Suppose (LXk)ij ≥ 0. It follows from the updating formula for Yk that (Yk)ij = (P≥0[LXk])ij =
(LXk)ij , which yields

(Yk − LXk)ij(Yk)ij = [(Yk)ij − (LXk)ij ](Yk)ij = [(LXk)ij − (LXk)ij ](Yk)ij = 0(Yk)ij = 0.

ii) Now, suppose (LXk)ij < 0. In this particular case we have (Yk)ij = (P≥0[LXk])ij = 0, which directly
implies that

(Yk − LXk)ij(Yk)ij = (Yk − LXk)ij0 = 0.

Thus, in both cases we obtain (Yk − LXk)ij(Yk)ij = 0, and this is valid for each (i, j) ∈ I. In view of
this expression, we arrive at (Yk − LXk)ij(Yk)ij = 0. Therefore, the complementarity condition (9e) holds
for the point {(Xk, Yk)}.
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Finally, it follows from (15) that

[L>Yk −Xk+1Y
T
k LXk+1]− α−1

(
(Xk+1 −Xk)−Xk+1(Xk+1 −Xk)>Xk+1

)
= 0. (18)

Substituting the hypothesis (Xk+1 = Xk) in the equation above, we get

L>Yk −XkY
>
k LXk = 0,

which means that the point (Xk, Yk) verifies the condition (9a). This completes the proof.

From now on, we study the asymptotic behavior of Algorithm 2 for infinite sequences {(Xk, Yk)} such
that Xk+1 6= Xk for all k ≥ 0. Otherwise, Proposition 1 states that Algorithm 2 returns a stationary point
of problem (3).

The following lemma shows that the sequences {Xk} and {Yk} generated by the proposed iterative process
are bounded.

Lemma 4 Let {(Xk, Yk)} be an infinite sequence generated by Algorithm 2. Then, the sequences {Xk} and
{Yk} are bounded.

Proof Since, for all k, Xk is an orthogonal matrix, we have ||Xk||F =
√
r, hence the sequence {Xk} is clearly

bounded. Now, by the construction of Algorithm 1, we obtain that Yk = P≥0[LXk], which leads to

||Yk||2F = ||P≥0[LXk]||2F =
∑
ij

max{(LXk)ij , 0}2 ≤
∑
ij

(LXk)2ij = ||LXk||2F .

Thus, ||Yk||2F ≤ ||LXk||2F = tr(X>k L
>LXk) = tr(LL>) = tr(A), this last relation implies that ||Yk||F ≤√

tr(A), for all k ∈ N. Therefore, we conclude that the sequence {Yk} is also bounded. 2

Next we present a convergence result for SPAM.

Theorem 1 Let {(Xk, Yk)} be an infinite sequence generated by Algorithm 2. Then, any accumulation point
of {(Xk, Yk)} satisfies the KKT conditions (9). In particular, whenever {(Xk, Yk)} converges, it converges
to a KKT point of (3).

Proof Let {(Xk, Yk)}k∈K be a subsequence of {(Xk, Yk)} converging to some (X∗, Y ∗). Repeating the steps
of the proof of Proposition 1, we have that (Xk, Yk) satisfies the optimality conditions (9b)–(9c)–(9d) and
(9e), for all k ≥ 0. Applying limits in all these conditions and considering the compactness of the orthogonal
group and the fact that the half–space Rn×r

+ is closed, we obtain that (X∗, Y ∗) satisfies all the conditions.
Hence, it only remains to show that (X∗, Y ∗) verifies condition (9a).

From the minimization properties (15) and (16), we get

F(Xk+1, Yk+1) ≤ F(Xk+1, Yk) ≤ F(Xk, Yk)− 1

2α
||Xk+1 −Xk||2F , (19)

Since we are assuming that Xk+1 6= Xk for all k ≥ 0, then relation (19) implies that the sequence {F(Xk, Yk)}
is monotonically decreasing, and therefore it is convergent because F(X,Y ) ≥ 0, for every (X,Y ) ∈ Rr×r ×
Rn×r . Moreover, by rearranging inequality (19) we obtain

||Xk+1 −Xk||2F ≤ 2α (F(Xk, Yk)−F(Xk+1, Yk+1)) ,

which leads to
lim
k→∞

||Xk+1 −Xk||2F = 0. (20)

On the other hand, form the optimality of Xk+1, we have

(L>Yk −Xk+1Y
T
k LXk+1)− α−1

(
(Xk+1 −Xk)−Xk+1(Xk+1 −Xk)>Xk+1

)
= 0. (21)

Observe that the equation (21) can be conveniently rewritten as

L>Yk−XkY
>
k LXk = Xk+1Y

>
k L(Xk+1−Xk)+(Xk+1−Xk)Y >k LXk+α−1

(
(Xk+1 −Xk)−Xk+1(Xk+1 −Xk)>Xk+1

)
,
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this equality yields

||L>Yk −XkY
>
k LXk||F = ||Xk+1Y

>
k L(Xk+1 −Xk) + (Xk+1 −Xk)Y >k LXk||F +

+α−1||(Xk+1 −Xk)−Xk+1(Xk+1 −Xk)>Xk+1||F
≤ ||Xk+1Y

>
k L(Xk+1 −Xk)||F + ||(Xk+1 −Xk)Y >k LXk||F + α−1(1 + r)||Xk+1 −Xk||2F

≤ ||Xk+1Y
>
k L||F ||Xk+1 −Xk||F + ||Xk+1 −Xk||F ||Y >k LXk||F + α−1(1 + r)||Xk+1 −Xk||2F

= 2||Y >k L||F ||Xk+1 −Xk||F + α−1(1 + r)||Xk+1 −Xk||2F ,
≤ (2 tr(A) + α−1(1 + r)) ||Xk+1 −Xk||F , (22)

The second equality above is obtained due to Xk+1 and Xk being orthogonal matrices, while the last
inequality follows from the boundedness of {Yk}. Taking limits in (22) and using (20), we arrive at

lim
k→∞

||L>Yk −XkY
>
k LXk||F = 0,

which implies that

0 = lim
k→K

||L>Yk −XkY
>
k LXk||F = ||L>Y ∗ −X∗(Y ∗)>LX∗||F ,

that is, L>Y ∗ −X∗(Y ∗)>LX∗ = 0. Therefore, the sequence {(Xk, Yk)} asymptotically satisfies the reduced
KKT conditions (9), from which the conclusions of the proposition follow readily. So the theorem is proved.
2

Now we are going to derive a convergence result for SAM.

Theorem 2 Let {(Xk, Yk)} be an infinite sequence generated by Algorithm 1. Assume that limk→∞Xk+1 −
Xk = 0. Then, any accumulation point of {(Xk, Yk)} satisfies the KKT conditions (9). In particular, when-
ever {(Xk, Yk)} converges, it converges to a KKT point of (3).

Proof Let (X∗, Y ∗) an arbitrary accumulation point of {(Xk, Yk)} , i.e., let us suppose that limk∈K(Xk, Yk) =
(X∗, Y ∗). Again, notice that the four KKTs conditions (9b), (9c), (9d) and (9e) are easy to derive by carrying
out the same steps used in the proof of of the previous theorem. Thus we will focus on proving that (X∗, Y ∗)
also fulfills the condition (9a). Since Xk+1 is the global solution of the orthogonal constrained least–square
problem (12), then Xk+1 must verify the following equality

L>(LXk+1 − Yk)−Xk+1(L>(LXk+1 − Yk))>Xk+1 = 0,

or equivalently
L>Yk −Xk+1Y

>
k LXk+1 = 0. (23)

This last equation can be reformulated as

L>Yk −XkY
>
k LXk = Xk+1Y

>
k L(Xk+1 −Xk) + (Xk+1 −Xk)Y >k LXk,

which implies that

||L>Yk −XkY
>
k LXk||F = ||Xk+1Y

>
k L(Xk+1 −Xk) + (Xk+1 −Xk)Y >k LXk||F

≤ ||Xk+1Y
>
k L(Xk+1 −Xk)||F + ||(Xk+1 −Xk)Y >k LXk||F

≤ ||Xk+1Y
>
k L||F ||Xk+1 −Xk||F + ||Xk+1 −Xk||F ||Y >k LXk||F

= 2||Y >k L||F ||Xk+1 −Xk||F ,
≤ 2 tr(A) ||Xk+1 −Xk||F . (24)

Applying limits in (24) and keeping in mind the assumption limk→∞Xk+1 −Xk = 0, we get

lim
k→∞

||L>Yk −XkY
>
k LXk||F = 0,

which leads to
0 = lim

k→K
||L>Yk −XkY

>
k LXk||F = ||L>Y ∗ −X∗(Y ∗)>LX∗||F ,

that is, L>Y ∗ −X∗(Y ∗)>LX∗ = 0. This completes the demonstration. 2
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5 Computational results.

In this section, we conduct three groups of experiments to demonstrate the numerical efficiency of our propos-
als. In particular, we present comparisons with the modified version of the method of alternating projections
(MoMAP) developed in [14], the difference-of-convex approach with variable step-size (SpFeas) introduced
in [11] (see Algorithm 1 in [11]) and with the FISTA-type method (IPG-FISTA) described in Example 7 of
[8]. Both our procedures and the methods of other authors were coded in Matlab. All the experiments were
performed on an intel(R) CORE(TM) i7-8750H, CPU 2.20 GHz with 16 GB RAM.

Since for each k-th iteration, the SpFeas algorithm performs a non-monotone line-search to compute a
step-size αk, in the implementation of this method, we use the well-known backtracking heuristic [19] to
obtain an appropriate step-size. In addition, for the backtracking scheme we use, as initial step-size, the
value αini

k = n/lt, where n corresponds to the number of rows of matrix A ∈ Rn×n that we want to fac-
torize, and lt = λmax(L>L) is the maximum eigenvalue of L>L, where L ∈ Rn×r satisfies that A = LL>.
Additionally, in our SPAM algorithm we vary the proximal parameter α ≡ αk at each iteration, using the
rule αk = max{( tolinq

k2 ), 10−20}, where tolinq denotes the tolerance associated with equality constraints (see
inequality (26)).

For the SpFeas, MoMAP, SAM and SPAM algorithms, we will use the following stopping criterium

min{(LXk)i,j} ≥ −tolinq, (25)

where Xk ∈ O(r) is the orthogonal matrix generated by each algorithm. On the other hand, the IPG-FISTA
algorithm is stopped when it finds a matrix Xk satisfying

||A−XkX
>
k ||2F ≤ toleq. (26)

The difference in the stopping criterium between the algorithms is due to the fact that the SpFeas, MoMAP,
SAM and SPAM methods preserve the equality constraint A = XX> at each iteration and seeks to satisfy
the inequality X ≥ 0 throughout the iterative process, while IPG-FISTA works in the opposite way. These
two tolerances are set to tolinq = toleq = 10−8, for all the experiments. Let X∗ be the estimated solution
obtained for an algorithm, then in all the tables reported in this section, Iter, Time, Res and Min-val will de-
notes the number of iterations, the total computational time (in seconds), the residual norm ||A−X∗X∗>||F
and the minimum value of X∗, i.e. min{(X∗)i,j}, respectively.

5.1 Experiment 1.

In the first experiment, as in [8], we examine the effectiveness and efficiency of the algorithms in factorizing
a 40 × 40 completely positive matrix when the parameter r varies. In particular, we consider the general
matrix presented below

An =

[
0 1>n−1

1n−1 In−1

]> [
0 1>n−1

1n−1 In−1

]
∈ Rn×n,

where 1n ∈ Rn denotes the all-ones-vector and In denotes the n-by-n identity matrix. It is well–known that
An ∈ int(CPn) for all n ≥ 2, see reference [24]. In this subsection, we analyze the performance of the five
methods on the factorization of An with n = 40 and r ∈ {40, 51, 61, 71, 81, 91, 101, 111, 121, 131}. In order to
make this experiment reproducible, the initial orthogonal matrix necessary for the SpFeas, MoMAP, SAM
and SPAM algorithms is generated as follows: X0 = Q1 ∈ Rr×r, where Q1 ∈ O(r) is Q-factor of the QR
factorization of the matrix 1r,r, satisfying 1r,r = Q1R1, where R1 is the corresponding upper triangular
matrix and 1r,r denotes the r-by-r all-ones-matrix. Unfortunately, this initial point cannot be used to start
iterating the IPG-FISTA method because this approach needs, as a starting point, a matrix belonging to the
set S = {X ∈ Rn×r : X ≥ 0, ||X||F ≤

√
tr(A)}. Thus, for this procedure, we select X0 = PS (Xini(1 : n, :)),

where Xini is the initial point used for the rest of methods, Xini(1 : n, :) is the truncated version of Xini

obtained after eliminating the rows n+ 1, n+ 2, . . . , r of Xini, and PS(·) is the projection operator onto S.



10 Roger Behling et al.

Notice that all the considered algorithms (except IPG-FISTA) need as input a matrix L ∈ Rn×r such
that A = LL> whose entries are not necessarily non-negative. To generate this matrix we use the following
approach: First, we compute the spectral decomposition of A such that A = V ΛV > for some orthogonal
matrix V ∈ O(n) and Λ ∈ Rn×n the diagonal matrix containing the eigenvalues of A, then notice that the
square root of A, i.e. L̄ = V Λ1/2V > verifies A = L̄L̄>. Nevertheless, L̄ is a n × n matrix, and we need a
matrix like L̄ but with size n× r. To overcome this issue, we use the column replication strategy. Precisely,
we build L by

L =
[
l̄1, l̄2, . . . , l̄n−1,

1√
m
l̄n,

1√
m
l̄n, . . . ,

1√
m
l̄n

]
,

where l̄i denotes the i-th column of L̄ and the vector 1√
m
l̄n is repeated m = r − n+ 1 times. This strategy

appears in [17], and it can be proved that A = LL> holds.

We want to emphasize that, to design the matrix L, a more advantageous computationally alternative
is to conduct the Cholesky decomposition (An is always positive definite) of An such that An = L̃L̃>, and
then form L using the column replication strategy over L̃. Nonetheless, it can be verified that the matrix L
obtained with this approach is directly a solution to problem (1). Therefore, with a purely academic pur-
pose, in this experiment, we use the matrix L obtained from the spectral decomposition of An. However, in
practical uses of our algorithms, it is always recomendable to first try to compute the matrix L using the
Cholesky-based strategy, since computing a Cholesky factorization has lower computational complexity than
computing a spectral decomposition.

For each value of r, we try to solve problem (1) for the matrix A40 with the five algorithms using the
stopping criteria explained at the beginning of this section and additionally, we impose a maximum number
of iterations of Itermax = 60000. The numerical results related to this experiment are summarized in Table
1. Form this table, we notice that the IPG-FISTA method executes the maximum number of iterations
for r = 40 without obtaining a small residual (Res). In addition, for the instances r = 61 and r = 121
IPG-FISTA reaches the desired precision after a huge number of iterations. For the rest of the problems,
it obtains a competitive performance compared to the rest of the methods. In general, we observe that the
method that shows a more robust performance in terms of iterations and computational time is the SpFeas
method, while our methods remain competitive with SpFeas. In fact, for the instances r = 61, r = 71, r = 81
and r = 91 the SAM method achieves an approximation of the solution in less computational time than
SpFeas. We also note that for almost all instances our methods converge faster than MoMAP.

In Figure 1, we plot the number of iterations and the computational time required by each method for
all the values of r. In the figure associated with the number of iterations, we omit the curve obtained by
the IPG-FISTA method since the number of iterations necessary for this method is on another scale and
therefore limits the visualization of the curves corresponding to the remaining four methods. As shown in
Figure 1, the fastest method in terms of iterations was the SpFeas closely followed by the SAM and SPAM
procedures. In particular, we note that for instances r = 51, the SAM method obtained an approximation of
the solution in 484 iterations, while its proximal version only needs 148 iterations. This example illustrates
that SPAM sometimes is more efficient than SAM, which is good news because SPAM has better theoretical
guarantees than SAM.

Regarding the computational time curves, we see that the curve related to IPG-FISTA shows an erratic
behavior, in some situations it takes a long time to achieve convergence, while for other instances it was the
more efficient method. For the rest of the algorithms, roughly speaking, we observe that the computational
time increases as fast as r grows, this pattern is expected since all of these approaches must compute a SVD
factorization on each iteration, and this decomposition takes longer time as the dimension of the matrix to
be factored grows. Finally, we notice that our methods solve the problems in a computational time very
close to that required by the SpFeas method. Especially, for the instance r = 131, our methods converged
faster than SpFeas. Among the four methods that must carry out the SVD factorization (all methods except
IPG-FISTA), the MoMAP method was the slowest in almost all instances.
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Table 1 Numerical results associated with the completely positive factorization of A40 and varying r.

Methods Iter Time Res Min-val Iter Time Res Min-val

r = 40 r = 51
MoMAP 565 0.21 1.14e-13 -9.74e-9 184 0.07 2.41e-13 -9.12e-9
SpFeas 117 0.05 1.75e-13 -8.75e-9 64 0.03 1.70e-13 -8.72e-9
SAM 173 0.06 1.45e-13 -9.46e-9 484 0.23 1.09e-13 -9.97e-9
SPAM 173 0.06 1.36e-13 -9.46e-9 148 0.07 1.09e-13 -9.62e-9
IPG-FISTA 60000 2.22 1.95e+00 0 1208 0.05 6.93e-09 0

r = 61 r = 71
MoMAP 510 0.26 1.73e-13 -9.74e-9 529 0.36 1.51e-13 -9.95e-9
SpFeas 284 0.31 1.13e-13 1.96e-4 284 0.34 1.34e-13 -6.93e-16
SAM 265 0.11 8.67e-14 -9.82e-9 445 0.23 1.67e-13 -9.71e-9
SPAM 265 0.13 1.53e-13 -9.82e-9 454 0.29 1.31e-13 -9.82e-9
IPG-FISTA 45040 2.06 9.50e-09 0 1207 0.06 9.28e-09 0

r = 81 r = 91
MoMAP 708 0.85 1.31e-13 -1.00e-8 682 0.91 2.03e-13 -9.91e-9
SpFeas 220 0.47 1.32e-13 -6.49e-16 234 0.53 2.41e-13 -4.24e-16
SAM 432 0.36 1.59e-13 -9.88e-9 429 0.42 9.61e-14 -9.97e-9
SPAM 446 0.48 1.06e-13 -9.74e-9 447 0.56 2.37e-13 -9.68e-9
IPG-FISTA 1207 0.10 9.16e-09 0 1207 0.11 9.07e-09 0

r = 101 r = 111
MoMAP 893 1.38 3.44e-13 -9.97e-9 436 0.84 2.79e-13 -9.79e-9
SpFeas 67 0.13 2.53e-13 -7.88e-9 68 0.13 1.63e-13 -8.85e-9
SAM 188 0.27 1.50e-13 -9.60e-9 410 0.59 1.56e-13 -9.80e-9
SPAM 188 0.28 3.47e-13 -9.60e-9 410 0.62 2.09e-13 -9.80e-9
IPG-FISTA 2674 0.23 9.90e-09 0 1715 0.17 9.21e-09 0

r = 121 r = 131
MoMAP 466 0.89 2.75e-13 -9.81e-9 1981 4.33 3.23e-13 -9.96e-9
SpFeas 74 0.15 3.47e-13 -8.33e-9 516 2.18 1.65e-13 2.36e-15
SAM 408 0.69 2.28e-13 -9.89e-9 436 0.83 2.04e-13 -9.73e-9
SPAM 408 0.71 1.19e-13 -9.89e-9 436 0.88 1.40e-13 -9.73e-9
IPG-FISTA 44467 4.05 9.03e-09 0 1696 0.16 5.67e-09 0

(a) r vs number of iterations. (b) r vs computational time.

Fig. 1 The number of iterations and total computational time required for factorizing A40, for several values of r.

5.2 Experiment 2.

Next, we perform a second experiment addressing the completely positive factorization of the following
matrix

A =


41 43 80 56 50
43 62 89 78 51
80 89 162 120 93
56 78 120 104 62
50 51 93 62 65

 . (27)
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Table 2 Numerical results corresponding to the completely positive factorization of the matrix A given by (27).

Methods Iter Time Res Min-val

r = 40
MoMAP 261 0.0045 2.56e-13 2.41e-04
SpFeas 68 0.0036 5.40e-13 -2.47e-17
SAM 221 0.0039 3.13e-13 6.80e-16
SPAM 221 0.0042 3.13e-13 6.80e-16

(a) Iterations vs ||LXk −X∗||F . (b) Iterations vs ||LXk − Yk||F .

Fig. 2 Behavior of the MoMAP, SpFeas, SAM and SPAM algorithms solving the Experiment 2.

This matrix is completely positive with cpr(A) = rank(A) = 3, see [8]. In this subsection, we analyse the
numerical performance af the SpFeas, MoMAP, SAM and SPAM algorithms, solving problem (1) for the
matrix present above with r = 3. To generate the matrix L ∈ Rn×r, we compute L̄ ∈ Rn×n via the spectral
decomposition of A, as we explained in the previous subsection. Afterwards, we choose L = L̄(:, 3 : 5), here
we are using Matlab notation, i.e. L is the matrix obtained from L̄ by removing its first two columns (these
two columns are all-zero-vectors). Additionally, we select the r-by-r identity matrix as a starting point for
all the iterative procedures. For this experiment, we use the tolerance tolinq = 1e-16.

In Figure 2, we illustrate the convergence history of each algorithm. Notice that all the MoMAP, SpFeas,
SAM and SPAM methods generate two sequences of matrices {Xk} and {Yk} such that Xk ∈ O(r) and
Yk ≥ 0, for all k ≥ 0. In fact, in all these methods the matrix Yk is given by Yk = PX≥0(LXk) = max(LXk, 0).
Therefore, in Figure 2 (a) we present the curves of iterations against the residual ||LXk − X∗||F where
X∗ ∈ Rn×r is the solution obtained by each method, that is X∗ = LXK where K is the last iteration of the
algorithm. In Figure 2 (b), we give the behavior of the residual norm ||LXk − Yk||F along the iterations.

In Figures 2 (a)-(b), we observe a non-monotone pattern in the curves associated with the MoMAP
method. However this method achieves convergence to a solution of (1) for the considered matrix. In contrast,
the curves associated with the rest of the methods show a monotone decrease for both residual norms.
Notice that this monotone descent behavior shown in Figure 2 (b) is expected for our proposed algorithms.
In fact this is an intrinsic property of our schemes, see the inequalities (14)-(19). In addition, we also see
that the SpFeas achieves convergence with the desired accuracy in less number of iterations than the rest
of the methods, while our two approaches converge in almost the same number of iterations as MoMAP.
Nonetheless, we have to emphasize that SpFeas is the unique method that does not obtain a matrix with all
entries being non-negative. These conclusions are also evidenced in the numerical results reported in Table
2.
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Table 3 Numerical results on factorizing random completely positive matrices.

Methods Iter Time Res Min-val Iter Time Res Min-val

n = 50, r = 2n n = 100, r = 2n
MoMAP 397.0 0.64 6.17e-19 -9.89e-9 295.4 1.99 1.89e-19 -9.85e-9
SpFeas 134.9 0.48 7.10e-19 -9.64e-9 114.2 1.51 2.31e-19 -9.75e-9
SAM 36.1 0.04 6.29e-19 -8.54e-9 29.9 0.14 2.00e-19 -8.92e-9
SPAM 35.8 0.05 6.10e-19 -8.95e-9 29.6 0.17 1.74e-19 -8.86e-9
IPG-FISTA 1235.5 0.11 9.98e-09 0 1558.2 0.47 9.99e-09 0

n = 200, r = 2n n = 300, r = 2n
MoMAP 241.8 6.99 5.19e-20 -9.91e-9 169.0 12.14 4.40e-20 -9.83e-9
SpFeas 52.2 2.86 6.79e-20 -6.55e-9 103.3 14.23 4.73e-20 7.90e-9
SAM 25.2 0.54 5.29e-20 -8.79e-9 22.2 1.18 4.56e-20 -8.58e-9
SPAM 24.0 0.63 5.28e-20 -8.49e-9 20.4 1.34 4.58e-20 -8.88e-9
IPG-FISTA 1328.7 1.64 9.99e-09 0 1077.7 5.01 9.99e-09 0

n = 50, r = 1.5n+ 1 n = 100, r = 1.5n+ 1
MoMAP 1563.8 1.54 4.34e-19 -2.36e-6 1494.2 5.33 2.33e-19 -9.91e-9
SpFeas 143.6 0.40 5.93e-19 -9.57e-9 120.3 0.89 2.42e-19 -9.56e-9
SAM 47.0 0.05 5.29e-19 -8.74e-9 37.5 0.11 2.25e-19 -8.93e-9
SPAM 46.8 0.06 4.45e-19 -8.89e-9 36.6 0.12 2.26e-19 -9.20e-9
IPG-FISTA 1459.5 0.14 9.98e-09 0 1594.3 0.38 9.99e-09 0

5.3 Experiment 3.

In the third experiment, we tested all the algorithms on 120 randomly generated problems. The ma-
trix A ∈ Rn×n is assembled as follows: in each test we randomly generate a matrix B̄ ∈ Rn×2n with
Ā = |B̄||B̄|>, where |M | denotes the matrix obtained from M after applying absolute value to all its entries.
Since computing a completely positive factorization of Ā is equivalent to solving problem (1) for Ā/||Ā||2F ,
then we set A = Ā/||Ā||2F . In our experiments, we consider the values n ∈ {50, 100, 200, 300} and choose
r ∈ {2n, 1.5n+ 1, 3n+ 1}. For each pair (n, r), we execute the algorithms on ten randomly generated prob-
lems. Observe that when r = 2n or r = 3n + 1, the existence of a positive factorization of A is always
guaranteed. In contrast, when r = 1.5n+ 1 may not be a solution to problem (1). However, we achieve good
results for all the considered values of r.

In addition, the initial point for the algorithms SpFeas, MoMAP, SAM and SPAM is randomly generated
using the Matlab’s commands:

X = randn(r); [X0,∼] = qr(X), (28)

while the initial point for the IPG-FISTA method is constructed by X0 = PS (Xini(1 : n, :)), where Xini is
the matrix presented in (28) and Xini(1 : n, :) denotes the truncated version of Xini obtained as explained
in the previous subsection. Again for the SpFeas, MoMAP, SAM and SPAM algorithms, we generate the
matrix L ∈ Rn×r using the spectral decomposition-based approach and the column replication strategy in
Subsection 5.1. In tables 3 and 4, we report the average of Iter, Time, Res and Min-val obtained by the five
algorithms. The information contained in these tables, clearly shows that the most efficient methods, both in
terms of iterations and in terms of computational time, were SAM and SPAM. Additionally, we observe that
the MoMAP and IPG-FISTA methods required a much higher number of iterations to achieve the desired
accuracy than the rest of procedures.

To compare the efficiency of the methods over the total of 120 problems (10 random problems multiplied
by the 12 possible combinations of (n, r)) generated, we adopt the performance profile [13] introduced by
Dolan and More to illustrate the whole performance of the five methods for the three sets of problems based
on Tables 3-4. As shown in Figure 3, the approach SAM has a great advantage over the IPG-FISTA, SpFeas
and MoMAP, since with the least number of iterations the SAM method successfully solves 78% of the
problems in less computational time than the rest of the methods, while the percentage obtained by our
proximal variant (SPAM) was 22%. This suggests that our two proposals were clearly superior to the other
procedures.
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Table 4 Numerical results on factorizing random completely positive matrices.

Methods Iter Time Res Min-val Iter Time Res Min-val

n = 200, r = 1.5n+ 1 n = 300, r = 1.5n+ 1
MoMAP 913.7 13.88 6.34e-20 -9.96e-09 668.2 25.59 3.99e-20 -9.93e-09
SpFeas 54.9 1.65 6.98e-20 -6.59e-09 113.4 8.56 4.03e-20 1.21e-07
SAM 31.1 0.38 6.35e-20 -9.05e-09 27.6 0.84 4.10e-20 -8.69e-09
SPAM 29.1 0.42 6.49e-20 -8.83e-09 24.9 0.89 4.05e-20 -8.33e-09
IPG-FISTA 1398.3 1.35 9.99e-09 0 1163.5 4.42 9.99e-09 0

n = 50, r = 3n+ 1 n = 100, r = 3n+ 1
MoMAP 286.0 1.00 5.72e-19 -9.73e-09 120.7 1.67 2.10e-19 -9.76e-09
SpFeas 125.9 0.83 8.51e-19 -9.59e-09 105.6 2.87 2.18e-19 -9.75e-09
SAM 27.9 0.08 6.40e-19 -8.74e-09 22.7 0.23 1.98e-19 -8.59e-09
SPAM 27.9 0.08 6.80e-19 -8.83e-09 22.6 0.27 2.08e-19 -8.57e-09
IPG-FISTA 1333.1 0.17 9.99e-09 0 1508.8 0.54 9.99e-09 0

n = 200, r = 3n+ 1 n = 300, r = 3n+ 1
MoMAP 96.3 6.93 7.55e-20 -9.74e-09 80.6 16.36 4.63e-20 -9.68e-09
SpFeas 49.9 6.52 7.72e-20 -7.50e-09 91.3 31.32 4.90e-20 9.68e-08
SAM 18.8 1.17 7.35e-20 -8.58e-09 16.1 3.24 4.53e-20 -8.79e-09
SPAM 18.7 1.31 7.28e-20 -7.91e-09 15.9 2.58 4.71e-20 -8.10e-09
IPG-FISTA 1294.5 2.21 1.00e-08 0 1059.0 7.14 9.99e-09 0

(a) Performance profile based on the total computational
time.

(b) Performance profile based on the number of iterations.

Fig. 3 Performance profile of all the methods for the experiments contained in Tables 3-4.

6 Concluding remarks

In the present paper, we study the completely positive matrix factorization problem where, given a symmetric
matrix, one tries to find a Cholesky-type factorization with an entrywise nonnegative factor.

We propose a novel formulation to address this type of problem, which is inspired from Lemma 1 in the
Groetzner-Dür’s paper [14]. The proposed formulation consists of the minimization of a convex quadratic
function that involves orthogonality and nonnegativity constraints. This model is challenging to solve directly
due to the fact that the orthogonality constraints break the convexity of the problem. To deal with this
model, we use the variable splitting technique to separate the constraints and then, we introduce and apply
an alternating minimization method.

The advantage of this proposal is that the optimization subproblem that arises in each iteration has an
analytical solution. We show that the alternating minimization algorithm enjoys strong global convergence
results to KKT points under an assumption related to the distance between consecutive iterates. Additionally,
we propose an alternating minimization algorithm equipped with a proximal term that has the same global
convergence guarantees but without any assumptions.
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Finally, we conducted several numerical experiments to compare our algorithms with other existing
methods. Our numerical results strongly validate the proposals and provide evidence of their efficiency and
faster performance with respect to the competitors.
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