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best nonlinear state-of-the-art CG methods proposed in the literature.
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1 Introduction

This paper discusses a new nonlinear conjugate gradient (CG) method for the un-
constrained optimization problem

min f(x)
s.t. x ∈ Rn,

(1)

where f : Rn → R is continuously differentiable with Lipschitz continuous gradient.

1.1 Related work

The unconstrained optimization problem has a very long history which we do not
trace here; see, instead, the books by Fletcher [13] or Nocedal & Wright [31].
Here we only discuss the state-of-the-art concerning nonlinear conjugate gradient
methods used in this context.

1.1.1 Standard convergence theory and complexity

To obtain complexity result or global convergence an optimization method, we make
the following two assumptions:
(A1) The function f is bounded below, i.e.,

f := inf
x∈Rn

f(x) > −∞. (2)

(A2) The function f is continuously differentiable on Rn, and its gradient g(x) =
f ′(x)T is Lipschitz continuous with Lipschitz constant γ, i.e.,

∥g(x) − g(x′)∥∗ ≤ γ∥x − x′∥ with γ > 0. (3)

Here ∥ · ∥ is an arbitrary norm and ∥ · ∥∗ is its dual norm, defined by

∥y∥∗ := sup{yT x | ∥x∥ ≤ 1}.

They satisfy the generalized Cauchy–Schwarz inequality

|yT s| ≤ ∥y∥∗∥s∥ for s, y ∈ Rn.

Warth & Werner [39] call a line search efficient if it always returns step sizes
satisfying

(f(x) − f(x + αp)) ∥p∥2

(g(x)T p)2 ≥ ζ, (4)
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where ζ is a fixed positive real number, and prove the following basic convergence
result (their Lemma 2.1 and Satz 2.2).

For any sequence x0, x1, x2, . . . of feasible points and ℓ = 0, 1, 2, . . ., we write

fℓ := f(xℓ), gℓ := g(xℓ),

sℓ := xℓ+1 − xℓ, yℓ := gℓ+1 − gℓ. (5)

Theorem 1 Suppose that (A1) and (A2) hold. Given an optimization method that
uses search directions satisfying the Zoutendijk condition

∑
ℓ

( −g(xℓ)T pℓ

∥g(xℓ)∥∗∥pℓ∥

)2
= ∞ (6)

and computes its points by

xℓ+1 = xℓ + αℓp
ℓ, αℓ > 0, (7)

where pℓ is a descent direction. If the line searches are efficient then

lim
ℓ→∞

f(xℓ) = f(x̂), inf
ℓ

∥gℓ∥∗ = 0. (8)

If the Zoutendijk condition does not hold, there is no global convergence for any
gradient-based descent method. ([39, Satz 2.2]).

We call a point x̂ ∈ Rn a strong local minimizer of f if f is twice continuously
differentiable in a neighborhood of x̂, the gradient g(x̂) of f at x̂ vanishes, and the
Hessian G(x̂) of f at x̂ is positive definite.

The following result is a consequence of Theorem 1.

Theorem 2 Under the same assumptions, if the xℓ converge to a strong local min-
imizer x̂ and the bounded angle condition

(gℓ)T pℓ

∥gℓ∥∗∥pℓ∥
≤ −δ < 0 for ℓ = 1, 2, . . . (9)

holds, there are constants q ∈ ]0, 1[ and c > 0 such that

∥xℓ − x̂∥ ≤ cqℓ, ∥gℓ∥∗ ≤ γcqℓ for all ℓ ≥ 0. (10)

Proof Clearly the bounded angle condition implies the Zoutendijk condition. The
remainder of the proof can be easily followed from [38, Theorem 2.2.8]. ⊓⊔
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Linear convergence by itself does not imply a complexity statement since it is unclear
how many function values are used in each line search. Bounding this number to get
a good complexity result (see Theorem 8) is an essential part of the analysis of our
new method.

Recently, Neumaier & Kimiaei [30] proposed a new line search method CLS, which
guarantees that the sufficient descent condition

µ(α)|µ(α) − 1| ≥ β, with fixed β > 0 (11)

holds for the Goldstein quotient (Goldstein [15])

µ(α) := f(x + αp) − f(x)
αg(x)T p

for α > 0. (12)

In the first iteration, if µ(α) < 1 holds, CLS computes the step size

α̂ = α

2(1 − µ(α)) (13)

to ensure termination with at most two function evaluations when f is almost
quadratic, i.e., a twice continuously differentiable function close to a minimizer. Until
(11) holds, CLS performs a simple bisection scheme since f is far from quadratic and
bounded. CLS performs either interpolation with (13), or extrapolation with a con-
stant factor q > 1, to obtain a bracket [α, α] with α > 0 and α < ∞. Once CLS finds
such a bracket, the geometric mean of α and α is chosen as a new step size in the
next iteration. After CLS terminates with α > 0 satisfying (11), then the condition
(4) is satisfied for any step size α′ with f(x + α′p) ≤ f(x + αp) ([30, Theorem 3.1]).

For any descent optimization algorithm using CLS, Neumaier & Kimiaei [30, The-
orem 4.2] proved a complexity of O(ε−2) for the general case and O(log ε−1) for the
strongly convex case for the number of iterations and function evaluations under the
condition that for fixed tuning parameters 0 < κ < λ < ∞ the initial step sizes αinit
and the maximum step size αmax satisfy the condition

κ|g(x)T p|
∥p∥2 ≤ αinit ≤ αmax ≤ λ|g(x)T p|

∥p∥2 . (14)

1.1.2 Nonlinear CG methods

In the literature, nonlinear CG methods (without preconditioner) are generally de-
scribed in terms of search directions of the form

dℓ = −gℓ + βℓ−1dℓ−1 (15)

and corresponding updates
xℓ+1 = xℓ + γℓd

ℓ, (16)
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where γℓ is a positive step size. The first nonlinear CG method, introduced by
Fletcher & Reeves [14], uses (15) with

βℓ−1 := (gℓ)T gℓ

(gℓ−1)T gℓ−1 . (17)

For a quadratic function f(x) = 1
2 xT Ax − bT x with symmetric positive definite Hes-

sian A, they showed the equivalence with the CG method of Hestenes & Stiefel
[22] for solving the linear system of equations Ax = b, and hence finitely terminates
with gℓ = 0 for ℓ ≤ n.

Many other formulas for the βs, sharing this property, are in use. The most prominent
examples are, with yℓ−1 := gℓ − gℓ−1,

βF R
ℓ = (gℓ)T gℓ

(gℓ−1)T gℓ−1 (Fletcher & Reeves [14]),

βP R
ℓ = (yℓ−1)T gℓ

(gℓ−1)T gℓ−1 (Polak & Ribiere [35]),

βP
ℓ = max(0, βP R

ℓ ) (Powell [36]),

βCD
ℓ = (gℓ)T gℓ

(yℓ−1)T dℓ−1 (Fletcher [13]),

βHS
ℓ = (yℓ−1)T gℓ

(yℓ−1)T dℓ−1 (Hestenes & Stiefel [22]).

Further variants can be found in the thorough survey of nonlinear CG methods by
Hager & Zhang [21]. In Section 4, we compare two versions of our CG method
with 21 CG methods from the literature [1,2,4,8,9,10,12,14,18,22,23,26,27,28,32,
35,41], listed in Table 1 in Section 4.2.

For the optimization of quadratic functions, all these formulas are equivalent in exact
arithmetic. But they have different properties in finite precision arithmetic and in
generalizations to the optimization of nonquadratic functions. In particular, on non-
quadratic problems, some of these formulas may exhibit convergence difficulties such
as jamming, where many consecutive excessively small steps are taken. In addition,
in order that the search directions generated are descent directions, restrictions on
the previous step sizes are needed. The survey by Hager & Zhang [21] discusses
these problems in more detail.

The survey [21] also gives derivations of the global convergence results known at the
time. Almost all (cf. Section 1.1.5) previously known globally convergent nonlinear
CG methods determine their step sizes γℓ by enforcing some version of the Wolfe
conditions [40], thus involving gradients at each trial point.

1.1.3 Restart techniques

Practical CG methods use a restart strategy in which the CG direction is replaced by
the steepest descent direction, to achieve a minimizer of a quadratic function after
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at most n iterations. Powell [37] gave three reasons why the traditional restart
procedure is not good, and used a two-terms CG direction instead of the steepest
descent direction for restart iterations. Then, Beale [5] retained the restart proce-
dure of Powell for restart iterations and used the three-terms CG directions for
non-restart iterations. Dai & Yuan [10] used these two restart procedures as an
algorithm called the Beale & Powell restart algorithm, and showed by example
that this algorithm may not converge. To obtain convergence results for the Beale
& Powell restart algorithm, they restricted the CG parameters (generate only pos-
itive values) and constructed a modified Beale & Powell restarted algorithm. The
improved Beale & Powell restart algorithm initializes the restart counter t = 1
and then updates this counter by t = ℓ − 1 if ℓ − t ≥ n or the condition

∣∣∣(gℓ−1)T gℓ
∣∣∣ > c1∥gℓ∥2

∗ for ℓ ≥ 2,

holds, where 0 < c1 < 1. Then the CG direction dℓ and the corresponding update
xℓ+1 is computed according to whether or not restart is required:
• If ℓ > t + 1, the three-terms CG direction for restart iterations

dℓ = −gℓ + βHS
ℓ dℓ−1 + βℓd

t (18)

is computed, where βℓ is βHS
ℓ with the difference that yℓ = gℓ+1 − gℓ is replaced by

yt = gt+1 − gt. As long as the condition

−c3∥gℓ∥2
∗ ≤ (gℓ)T dℓ ≤ −c2∥gℓ∥2

∗ with 0 < c2 < 1 < c3 < ∞ (19)

does not hold, t = ℓ − 1 is chosen and dℓ is recomputed by (18). Once the condition
(19) holds, dℓ computed by (18) is sufficiently downhill; hence the new point

xℓ+1 = xℓ + αℓd
ℓ (20)

is computed, where αℓ satisfies Wolfe conditions.
• If ℓ = t+1, βℓ = 0 is chosen in (18) and the two-terms CG direction dℓ is computed
by (18), regardless of whether or not the condition (19) holds, and the new point is
computed by (20).

Very recently, Chan-Renous-Legoubin & Royer [7] employed a backtracking
line search along several known CG directions with a nonstandard restart condition.
They restarted their algorithm if at least one of the two conditions

(gℓ)T dℓ < −c1∥gℓ∥1+p
∗ , 0 < c1 ≤ 1, p ≥ 0 (21)

∥dℓ∥ < c2∥gℓ∥q
∗, c2 ≥ 1, q ≥ 0 (22)

is violated.
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1.1.4 Hybrid conjugate gradient methods

Section 4 compares only algorithms that use exclusively CG directions. There are,
however, some software packages that use CG as a basic technique, but have been
enhanced with a considerable number of modifications to improve practical perfor-
mance, see e.g., CG DESCENT of Hager & Zhang [17,18,19], LMBOPT [24] of Kimiaei
et al. [24], ASACG of Hager & Zhang [17,18,19,20], and CGOPT of Liu et al. [25].
Most of these solvers were comprehensively compared in [24] on the unconstrained
and bound-constrained CUTEst test problems of Gould et al. [16].

1.1.5 Complexity for conjugate gradient methods

Cartis et al. [6] proved a complexity of O(ε−2) for a general class of gradient-
free line search algorithms along gradient-related search directions, defined as those
satisfying the conditions

(gℓ)T dℓ ≤ −κ1∥gℓ∥2
∗, ∥dℓ∥ ≤ κ2∥gℓ∥∗ for κ1, κ2 > 0. (23)

In fact, concerning the search directions, the conditions (23) imply the bounded angle
condition (9) with δ = κ1/κ2, and thus, the same complexity result as their follows
analogously by our Theorem 8(i) below. But, to the best of our knowledge, there is
no result in the literature that any of the previously known CG formulas leads to
search directions satisfying (23). Hence their complexity analysis does not apply to
CG methods.

Very recently, a complexity result for a nonlinear CG method was given by Chan-
Renous-Legoubin & Royer [7]. They proved that

N := O(ε−2) + O
(

ε− max{1+p,2(1+p−q)}
)

function evaluations are sufficient for reaching a point xℓ with ∥gℓ∥∗ ≤ ε. The
best complexity N = O(ε−2) is obtained in this formula when p ≤ max(q, 1). For
p = q = 1, their restart rule guarantees that the search directions satisfy (23), and
as a consequence, the analysis of Cartis et al. [6] also applies. Their family of meth-
ods also does not use the Wolfe conditions. However, compared to our method, no
requirement is imposed on the factors βℓ−1 in (15), and convergence and complexity
results are completely unaffected by their choice. Moreover, the restart conditions
(21) and (22) may trigger a restart even when the objective function is quadratic, and
the factors βℓ−1 are chosen by one of the standard formulas, thus possibly impairing
the finite termination property for quadratic functions.

1.2 An overview of our method

The present paper analyzes a new nonlinear CG method called NCG, formally specified
in Algorithm 2. Compared to the traditional approaches, we can summarize here the
following new features:
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• Most of the known nonlinear CG methods need for their global convergence that
the (strong) Wolfe conditions at each step hold. This involves the gradient evaluation
at each trial point which might be expensive from the computational point of view.
Our global convergence analysis of NCG does not rely on the Wolfe conditions and
uses the so-called efficient line search methods which generate step sizes satisfying
(4).

• A restart condition is built into the algorithm. This guarantees global linear con-
vergence when it converges to a strong local minimizer without impairing the finite
termination property of CG iterations for strictly convex quadratic functions.

• It is known that CG methods reduce the zigzagging effect observed in the steepest
descent method. We quantify this effect by defining a measure of zigzagging strength
(Section 2.1.1). Unless a restart is made, our CG direction is the search direction
minimizing the zigzagging strength. This ensures that in our CG method, zigzagging
is maximally reduced.

• NCG terminates after at most n iterations for strictly convex quadratic functions.

• NCG has the optimal complexity O(ε−2) for continuously differentiable objective
function with Lipschitz continuous gradients. Moreover, it preserves the standard
optimal complexity O(log ε−1) for strongly convex functions.

1.2.1 Search directions with minimal zigzagging

In each iteration, NCG uses a new nonlinear CG direction along which CLS is tried.
Unlike other CG directions (cf. Hager & Zhang [21]), our CG direction minimizes
a measure of zigzagging strength, the squared preconditioned distance from the pre-
vious search direction. As a consequence, the amount of zigzagging in consecutive
search directions is minimized.

1.2.2 A restart condition guaranteeing global linear convergence

To enforce linear convergence when NCG converges to a strong local minimizer we
guarantee in Theorem 5 below the angle condition (9) using a restart procedure that
decides when to replace a poor search direction by a simplified Newton direction,
using a symmetric and positive definite preconditioner B.

Unlike the restart procedure of Chan-Renous-Legoubin & Royer [7], which rest-
arts the CG algorithm when the conditions (21) and (22) are violated, our restart
is performed when at least one of the two conjugacy relations (35) and (36) is sig-
nificantly violated or the number m of non-restart iterations reaches n. Like Dai &
Yuan [10], this ensures that no restart is performed for quadratic functions.
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1.2.3 A new convergence analysis

The global convergence of a new nonlinear CG method is proved in Theorem 5 that,
unlike traditional nonlinear CG methods that require line search methods satisfying
the Wolfe condition, uses the new gradient-free line search method. The new CG
method is motivated by the desire to reduce the inefficiency of line search methods
due to zigzagging of search directions discussed in Section 1.1.2. Our search direction
is therefore chosen by minimizing (Theorem 3) a preconditioned distance from the
previous search direction.

1.2.4 A complexity bound

We prove in Theorem 8 complexity bounds on the number of iterations of NCG. We
find that NCG has the same order O(ε−2) of complexity as the CG method by Chan-
Renous-Legoubin & Royer [7], and the complexity improves to O(log ε−1) if the
objective function has only a strong minimizer and no other stationary points.

2 A basic nonlinear conjugate gradient algorithm

This section discusses NCG-basic, a basic nonlinear conjugate gradient algorithm,
and its complexity and global convergence.

2.1 Minimal zigzagging directions

Conjugate gradient methods are well-known methods to reduce zigzagging, but with-
out theory. Here we define a zigzagging measure and find search directions minimizing
this measure. Our new CG algorithm is based on this construction, hence will have
minimal zigzagging among all CG methods.

To measure the size of vectors we use from now on the pair of ellipsoidal norms

∥p∥ :=
√

pT Bp, ∥g∥∗ :=
√

gT B−1g = ∥B−1g∥ (24)

defined in terms of a fixed symmetric positive definite matrix B ∈ Rn×n. Using a
Cholesky factorization B = RT R and a linear transformation p′ = Rp, g′ = R−T g,
where R−T denotes the transposed inverse of R, it is easy to check that these form
a pair of dual norms, so that

|gT p| ≤ ∥g∥∗∥p∥.

If a symmetric and positive definite preconditioner B approximating the Hessian near
the starting point is available, it is sensible to measure closeness in terms of distance
in the ellipsoidal norms (24) associated with B. The case without preconditioning is
obtained for the identity matrix B = I, where both norms (24) become the Euclidean
norm ∥s∥2 :=

√
sT s, which is its own dual.
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2.1.1 Zigzagging

Starting with x0 =
(

ξ
ξ

)
, the steepest descent method (pℓ = −gℓ) with exact line

searches applied to the optimization problem

min f(x) = (x1 − x2)2 + εx2
2

s.t. x ∈ R2

yields the sequence

x2ℓ = ξ(1 + ε)−ℓ

(
1
1

)
, x2ℓ+1 = ξ(1 + ε)−ℓ−1

(
1 + ε

1

)
,

with arbitrarily slow linear convergence as ε ↓ 0. The reason is inefficient zigzagging
of the search directions. Thus linear convergence by itself is no quality criterion, and
the angle condition only serves as a guard against even slower sublinear convergence
behavior (see Theorem 4).

To avoid zigzagging we propose to choose the search direction p as a vector satisfying
gT p < 0 that is closest to the previous search direction pold. The preconditioned
distance (p − pold)T B(p − pold) is called zigzagging strength measure. If this
measure is small, almost no zigzagging occurs; otherwise, a large zigzagging occurs,
as in the steepest descent direction.

To compare two different search directions in a meaningful way, for a sufficiently
small step size α, we obtain a gain in the function value of

f(x) − f(x + αp) = −αgT p + o(α).

Hence the infinitesimal quality of a direction is fully characterized by

ν := −gT p > 0. (25)

We therefore compare only directions with the same value of ν; this is no restriction
of generality since we may rescale an arbitrary direction to match any given value of
ν. (In the algorithm, ν will be kept fixed, except at restarts.)

Theorem 3 Among all p ∈ Rn with gT p = −ν < 0, the squared preconditioned
distance (p − pold)T B(p − pold) becomes minimal for

p = pold − λB−1g, (26)

where

λ = ν + gT pold
gT B−1g

. (27)

Proof This optimization problem can be solved using Lagrange multipliers. We have
to find a stationary point of the Lagrange function

L(p, λ) := 1
2(p − pold)T B(p − pold) + λ(gT p + ν),

giving the condition B(p−pold)+λg = 0, hence (26) holds. The Lagrange multiplier
λ is determined from the constraint gT p = −ν, and yields (27). ⊓⊔
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2.1.2 The NCG-basic algorithm

For a search direction of the form

pℓ = ρℓp
ℓ−1 − λℓB

−1gℓ, (28)

we need
0 < ν := −(gℓ)T pℓ = −ρℓ(gℓ)T pℓ−1 + λℓ(gℓ)T B−1gℓ,

hence

λℓ = ν + ρℓ(gℓ)T pℓ−1

(gℓ)T B−1gℓ
. (29)

For ρℓ = 1, this agrees with the direction derived from the zigzagging avoiding
argument in Theorem 3; for ρℓ = 0, we get the simplified Newton direction −B−1gℓ,
up to a constant factor. Thus search directions of the form (28) look like a flexible
choice.

Algorithm 1 is a basic version of NCG, called NCG-basic. As long as xℓ is not a sta-
tionary point, NCG-basic computes the gradient at xℓ and the ℓth search directions
by (28) using the ℓth step size (29), finds the ℓth step size αℓ by any efficient line
search method so that αℓ satisfies the efficiency condition (4), and computes the
(ℓ + 1) point xℓ+1 and its function value fℓ+1 = f(xℓ+1).

Algorithm 1 NCG-basic, basic nonlinear CG method
1: Purpose: NCG-basic finds local minimizer of a nonlinear function f(x) (or at least a

stationary point)
2: Input: x0 (starting point), B (preconditioner), ε (minimum threshold for the gradient

norm).
3: Requirements: B symmetric and positive definite
4: for ℓ = 0, 1, . . ., do
5: compute gℓ = g(xℓ), hℓ = B−1gℓ, and ωℓ = (gℓ)T hℓ;
6: if ωℓ ≤ ε2, break; end; ▷ xℓ stationary
7: compute λℓ by (29) and pℓ by (28);
8: determine αℓ such that (4) holds;
9: compute xℓ+1 = xℓ + αℓpℓ and fℓ+1 = f(xℓ+1);

10: end for
11: return xℓ+1 and fℓ+1;

In finite precision arithmetic, ωℓ = 0 cannot be guaranteed; instead, in line 6 of Algo-
rithm 1 the condition ωℓ = ∥gℓ∥2

∗ ≤ ε2 is used for a finite termination of NCG-basic.

2.1.3 The basic complexity and global convergence for NCG-basic

In this section, under very weak conditions, complexity for NCG-basic is proved,
which implies global convergence for NCG-basic.
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Theorem 4 Let ν > 0 and suppose that (28) and (29) hold for all ℓ with |ρℓ| ≤ 1.
Then, for these ℓ,

(pℓ)T Bpℓ − (pℓ−1)T Bpℓ−1 ≤ ν2

(gℓ)T B−1gℓ
. (30)

Moreover, if NCG-basic uses an efficient line search, the number L of iterations to
reach

∥gL∥∗ < ε (31)

is bounded by
L ≤ 1 + ξε2(eC/ε2

− 1), (32)

where ξ := ∥s0∥/|(g0)T s0| and C := γ

2β
(f1 − f). Here s0 = x1 − x0 is from (5).

Proof By σℓ := |(gℓ)T sℓ| > 0, we have

(pℓ)T Bpℓ = ρ2
ℓ(pℓ−1)T Bpℓ−1 − 2ρℓλℓ(gℓ)T pℓ−1 + λ2

ℓ(gℓ)T B−1gℓ

= ρ2
ℓ(pℓ−1)T Bpℓ−1 +

ν2 −
(

ρℓ(gℓ)T pℓ−1
)2

(gℓ)T B−1gℓ
.

By (29), (30) follows since ρ2
ℓ ≤ 1. In terms of the ellipsoidal norms (24), (30) reads

1
ν2

(
∥pℓ∥2 − ∥pℓ−1∥2

)
≤ 1

∥gℓ∥2
∗

.

Since sℓ = αℓp
ℓ and σℓ = αℓν, we find

∥sℓ∥2

σ2
ℓ

− ∥sℓ−1∥2

σ2
ℓ−1

≤ ∥gℓ∥2
∗.

If L is the first index with (31), we conclude that

∥sℓ∥2

σ2
ℓ

− ∥sℓ−1∥2

σ2
ℓ−1

≤ 1
∥gℓ∥2

∗
≤ 1

ε2 for ℓ < L. (33)

Summation of both sides of (33) over all steps gives

∥sℓ∥2

σ2
ℓ

≤ ξ + ℓ − 1
ε2 for ℓ < L.

Since the line search is efficient, by (4), we have

γ

2β
(fℓ − fℓ+1) = ν2

∥pℓ∥2 ≥
σ2

ℓ

∥sℓ∥2 ≥
(

ξ + ℓ − 1
ε2

)−1

= ε2

ℓ − 1 + ξε2 for ℓ < L. (34)
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For any z > 0, we have

1
ℓ − 1 + z

≥ log
(

1 + 1
ℓ − 1 + z

)
= log(ℓ + z) − log(ℓ − 1 + z),

L−1∑
ℓ=1

1
ℓ − 1 + z

≥ log(L − 1 + z) − log z = log
(

1 + L − 1
z

)
.

Summation of both sides of (34) over all steps gives

ε2 log
(

1 + L − 1
ξε2

)
≤

L−1∑
ℓ=1

ε2

ℓ − 1 + ξε2 ≤ γ

2β

L−1∑
ℓ=1

(fℓ − fℓ+1)

= γ

2β
(f1 − fL) ≤ γ

2β
(f1 − f) := C,

resulting in

L ≤ 1 + ξε2(eC/ε2
− 1).

⊓⊔

The bound (32) is extremely weak, and will be improved under additional conditions.

Theorem 4 implies convergence.

Corollary 1 If NCG-basic uses an efficient line search, lim inf
ℓ→∞

∥g(xℓ)∥∗ = 0.

3 NCG, an improved version of NCG-basic

Section 3 contains the following important features:
• In Subsection 3.1, Theorem 5 shows under the restart conditions (defined by (35)
and (36), below) the bounded angle condition (9) can be satisfied and, as a conse-
quence, an improved complexity for NCG can be found compared to the complexity
of NCG-basic.
• In Subsection 3.2, the NCG algorithm is introduced and its steps is described.
• In Subsection 3.3, Theorem 6 shows globally linear convergence for NCG.
• In Subsection 3.4, a modification of CLS is introduced to find line search step sizes.
• In Subsection 3.5, Theorem 7 shows that the CG restart guarantees a finite termi-
nation on quadratic functions.
• In Subsection 3.6, Theorem 8 finds a bound on the number of iterations and func-
tion evaluations of NCG.
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3.1 A sufficient condition for the angle condition

Theorem 5 Under the conditions of Theorem 4, suppose that an efficient line search
is used and there are positive constants κ1 and κ2 such that, for all sufficiently large
ℓ, either pℓ is parallel to the simplified Newton direction −B−1gℓ or the conditions

(gℓ)T B−1gℓ ≤ κ1(yℓ−1)T B−1yℓ−1, (35)

(yℓ−1)T pℓ−1 ≤ κ2ν (36)

hold (where yℓ−1 := gℓ − gℓ−1).

(i) If x̂ is a strong local minimizer then the angle condition (9) holds for some δ > 0.

(ii) If f has a strong local minimizer x̂ and no other stationary point then convergence
is globally linear and the number of iterations to reach a point x with

∥g(x)∥∗ ≤ ε (37)

is O(log ε−1). In particular, this is the case when f is strongly convex.

(iii) If the initial step sizes are chosen such that (14) holds and the line search CLS
is used, then the number of function evaluations needed to reach (37) is O(log ε−1).

Proof (i) Since the eigenvalues of a positive definite matrix are positive, the require-
ments on x̂ imply that there are positive constants γ, γ and a ball C around x̂ such
that for all x ∈ C, the eigenvalues of the Hessian G(x) are in [γ, γ]. The remainder
form of Taylor’s theorem now implies that for x, x′ ∈ C, the condition (3) and

1
2γ∥x′ − x∥2 ≤ f(x′) − f(x) − g(x)T (x′ − x) ≤ 1

2γ∥x′ − x∥2. (38)

Interchanging x and x′ in the first inequality of (38), adding the two formulas, and
applying the generalized Cauchy–Schwarz inequality gives

γ∥x′ − x∥2 ≤ (g(x′) − g(x))T (x′ − x) ≤ ∥g(x′) − g(x)∥∗∥x′ − x∥. (39)

Since x̂ is assumed to be a strong local minimizer, relations (3) and (39) apply for
x, x′ sufficiently close to x̂, and give

γ∥g(x′) − g(x)∥∗ ∥x′ − x∥ ≤ γ(g(x′) − g(x))T (x′ − x).

Substituting x′ = xℓ and x = xℓ−1 and using (36), we find after division by αℓ−1
that

γ∥yℓ−1∥∗ ∥pℓ−1∥ ≤ γ(yℓ−1)T pℓ−1 ≤ γκ2ν

for all sufficiently large ℓ for which (35) and (36) hold. For these ℓ,

(gℓ)T B−1gℓ · (pℓ−1)T Bpℓ−1 ≤ κ1(yℓ−1)T B−1yℓ−1 · (pℓ−1)T Bpℓ−1

≤ κ1∥yℓ−1∥2
∗∥pℓ−1∥2

≤ κ1

(
γκ2ν/γ

)2
= cν2
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for some constant c > 0. Now (30) implies

(pℓ)T Bpℓ

ν2 ≤ (pℓ−1)T Bpℓ−1

ν2 + 1
(gℓ)T B−1gℓ

≤ c + 1
(gℓ)T B−1gℓ

.

Thus
ν2

(pℓ)T Bpℓ · (gℓ)T B−1gℓ
≥ 1

c + 1 (40)

for sufficiently large ℓ satisfying (35) and (36). But if (35) or (36) are violated, pℓ is
the simplified Newton direction, for which (40) holds trivially by applying (28) and
(29). Since 0 < ν = −(gℓ)T pℓ, this shows that the left hand side of (9) is bounded
away from zero. Hence the angle condition (9) holds.

(ii) By (i) and Theorem 2(ii), (10) is satisfied with 0 < q < 1. Thus, convergence is
globally linear and at most

ℓ =
⌈

log γcε−1

log(1/q)

⌉
= O(log ε−1)

iterations are required to satisfy (37).

(iii) The number O(log ε−1) of function evaluations is the product of the number
O(log ε−1) of iterations and the number O(1) of function evaluations of CLS (see [30,
Theorem 4.1]). ⊓⊔

3.2 The NCG algorithm

Algorithm 2 describes an improved version of NCG-basic, called NCG. As long as the
conditions (35) and (36) hold, Theorem 5 implies the bounded angle condition (9)
holds and therefore NCG computes the search directions by the new CG direction (28).
Whenever one of these two conditions does not hold, a restart process is performed
to guarantee complexity for NCG.
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Algorithm 2 NCG, nonlinear CG method
1: Purpose: NCG finds local minimizer of a nonlinear function f(x) (or at least a stationary

point)
2: Input: x0 (starting point), B (preconditioner), ε (minimum threshold for the gradient

norm)
3: Tuning parameters: κ1, κ2 > 0 and m ≥ n (parameters for CG restart), 0 < αmax < ∞

(maximum step size), and 0 < κ < λ < ∞ (parameters for the initial step size).
4: Requirements: B symmetric and positive definite
5: for ℓ = 0, 1, . . ., do
6: compute gℓ = g(xℓ), hℓ = B−1gℓ, and ωℓ = (gℓ)T hℓ;
7: if ωℓ ≤ ε2, break; end; ▷ xℓ stationary
8: if ℓ = 0, restart = 1;
9: else ▷ check whether restart is required

10: ω′ = (hℓ)T gℓ−1;
11: restart1 = (ωℓ > κ1(ωℓ − 2ω′ + ωℓ−1));
12: restart2 = (|(gℓ)T pℓ−1 + ν| > κ2ν);
13: restart = (restart1 or restart2 or nng ≥ m);
14: end;
15: if restart, ▷ restart was done
16: compute ν = ωℓ and pℓ = −hℓ; initialize ncg = 0;
17: else ▷ no zigzagging CG direction

18: compute λℓ =
ν + (gℓ)T pℓ−1

ωℓ
and pℓ = pℓ−1 − λℓhℓ; update ncg = ncg + 1;

19: end;
20: choose the initial step size αinit of CLS2 such that

κ|g(xℓ)T pℓ|
∥pℓ∥2 ≤ αinit ≤ αmax ≤

λ|g(xℓ)T pℓ|
∥pℓ∥2 ; (41)

21: determine αℓ by CLS2 with xℓ+1 = x(αℓ) = xℓ + αℓpℓ and fℓ+1 = f(xℓ+1);
22: end for
23: return xℓ+1 and fℓ+1;
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By Theorem 3, our new search direction is not too different from the old one. Thus,
f is expected to behave along the new search path like along the old one. The initial
step size αinit should satisfy the condition (14).

To start the iteration we take pold = 0. To guarantee linear convergence, we may need
to reset pold to zero also at suitable later stages. We call this a restart; the precise
restart conditions used come from Theorem 5. For B ̸= I, i.e., if preconditioning is
used, one should store hℓ := B−1gℓ in the computation of ωℓ := (gℓ)T hℓ, for later
use in the computation of pℓ. Finally, by Theorem 3, ν = −(gℓ)T pℓ remains constant
as long as no restart is made. The result is Algorithm 2. It is a nonlinear CG
method since by Theorem 7 below, it is for a quadratic function f with positive
definite Hessian equivalent to the preconditioned CG method for solving positive
definite linear systems of equations.

NCG uses a CG restart process (lines 11-13) that guarantees good complexity bounds,
without impairing finite termination in the special case of quadratic functions. NCG
uses the line search CLS2, a modification of CLS from [30]. CLS2 is discussed in
Subsection 3.5. The complexity of NCG is obtained in Subsection 3.6.

Since in exact precision arithmetic ωℓ = 0 is guaranteed, line 7 of Algorithm 2 uses
instead the condition ωℓ = ∥gℓ∥2

∗ ≤ ε2 for a finite termination of NCG.

NCG uses (28)–(29) with ρk = 0 or ρk = 1, hence our convergence results apply.

3.3 Globally linear convergence of NCG

Theorem 5 imply the following global convergence result.

Theorem 6 The points xℓ produced by the nonlinear CG method of Algorithm 2
satisfy (8) and in case of convergence to a strong local minimizer, the convergence is
globally linear.

Like all nonlinear CG algorithms, NCG can be implemented using very little storage
only: Apart from what is needed for a Cholesky factor of the preconditioner, we need
4 vectors of storage (for x, g, p, and h = B−1g). Without preconditioning (B = I),
even 3 vectors suffice.

If all λℓ are positive and no preconditioning is used (B = I), our formulas can be
cast into the traditional CG form (15)–(16) if we use the scaled vectors

dℓ := λ−1
ℓ pℓ = λ−1

ℓ pℓ−1 − gℓ = −gℓ + λℓ−1

λℓ
dℓ−1 (42)

and the correspondence

βℓ−1 := λℓ−1

λℓ
, γℓ := αℓ

λℓ
.

Thus the two choices of search directions appear to be equivalent. However, directions
of the form (28) are more flexible than directions with the traditional formula (15)
since no sign restriction applies to the λℓ.
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3.4 A modification of CLS

To ensure that the line search is exact and takes two function evaluations only when
applied to strictly convex quadratic functions we slightly modify the line search CLS
from [30]. We call the modified version CLS2.

Algorithm 3 CLS2, curved line search
1: Purpose: CLS2 finds a step size α with µ(α)|µ(α)−1| ≥ β, and guarantees that for strictly

convex quadratic functions, an exact line search is done.
2: Input: x(α) (search path), f0 = f(x(0)) (initial function value), ν = −g(x(0))T x′(0)

(directional derivative)
3: Tuning parameters: αinit (initial step size), αmax (maximal step size), β ∈ ]0, 1

4 [
(parameter for efficiency), Q > 1 (factor for extrapolation and interpolation)

4: Requirements: ν > 0, 0 < αinit ≤ αmax ≤ ∞
5: Initialization: first=1; firstok = 0; α = 0; α = ∞; α = αinit;
6: while 1 do
7: compute fa = f(x(α)) and the Goldstein quotient µ(α) = (f0 − fa)/(αν);
8: if µ(α)|µ(α) − 1| ≥ β, ▷ sufficient descent condition was satisfied
9: if first, α1 = α; f1 = fa; else, break; end

10: firstok = first;
11: end
12: if firstok and not first, α = α1; fa = f1; break; end
13: if µ(α) > 1

2 , α = α;
14: elseif α = αmax, break;
15: else, set α = α; ▷ linear decrease or more
16: end
17: if first, ▷ initially check whether function is almost quadratic or not
18: first = 0;
19: if µ(α) < 1, α = 1

2 α/(1 − µ(α)); else α = αQ; end
20: else
21: if α = ∞, expand to α = αQ; ▷ extrapolation was done
22: elseif α = 0, compute α = 1

2 α/(1 − µ(α)); ▷ interpolation was done
23: else, calculate α =

√
α α; ▷ geometric mean was computed

24: end
25: end
26: restrict α = min(α, αmax);
27: end
28: end while
29: return α and fa;

The only change compared to CLS is that CLS2 does not stop before the second step.
Instead, it stores the function value at the first trial point and the corresponding step
size. Therefore, CLS2 agrees with CLS, except that it may accept the second step size
rather than the first one since it performs at least two function evaluations. Thus,
all properties proved in [30] remain valid. In particular, the complexity analysis of
[30, Theorem 3] still holds for CLS2.

If f(x + αp) is a strictly convex quadratic, then µ(α) < 1 for all α ∈ R, and the
second iteration performs a quadratic interpolation step. Thus the line search is exact
and the second iteration is efficient. Therefore CLS2 stops with exactly two function
evaluations.
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If f(x+αp) is linear or a strictly concave quadratic, the descent direction is a direction
of infinite descent, and the line search ends after extrapolations reaching α = αmax.
Thus by general properties of CG methods, quadratic functions are minimized after
at most n iterations using at most n gradient evaluations and 2n function evaluations.

In detail, the difference between CLS and CLS2 consists of the following three changes:
• The initialization firstOk = 0 is added to line 5 of CLS in line 5 of CLS2.
• Lines 7–8 of CLS are replaced by lines 7–12 of CLS2.
• Line 25 of CLS is replaced by line 29 of CLS2.

The Boolean variables first and firstOk serve to ensure that behavior described.
CLS2 initializes first = 1 and firstOk = 0. If the first iteration is efficient, firstok
is changed to true. On the next iterations, first is then changed to false. The
Boolean variable first ensures that the quadratic case is handled optimally, and
the Boolean variable firstOk ensures that the line search is terminated in the second
iteration if the the first iteration is efficient, but the second iteration is inefficient.
In this case, the values of the first iteration are restored.

3.5 Finite termination on quadratics

Our motivation for the CG restart is to guarantee a finite termination on quadratic
functions. Theorem 7 below shows that in exact precision arithmetic, Algorithm 2 for
quadratic functions terminates after at most n gradient evaluations with a minimizer
or with a direction of infinite descent, though in finite precision arithmetic it may
take more than n gradients evaluations and 2n function evaluations to find such a
minimizer.

Theorem 7 Applied to quadratic functions

f(x) = γ + cT x + 1
2xT Gx, (43)

Algorithm 2 for m ≥ n performs no restarts and produces the same sequence of xℓ as
the nonlinear CG method by Fletcher and Reeves. In particular, Algorithm 2 stops
for quadratic functions after at most n iterations with a minimizer or with a direction
of infinite descent.

Proof We have
pℓ = pℓ−1 − λℓB

−1gℓ, xℓ+1 = xℓ + αℓp
ℓ.

For a quadratic function (43) we have gℓ = c + Gxℓ, hence

gℓ − gℓ−1 = G(xℓ − xℓ−1) = αℓ−1Gpℓ−1.

For quadratic functions, CLS2 becomes exact, hence

αℓ = −(gℓ)T pℓ

(pℓ)T Gpℓ
= ν

(pℓ)T Gpℓ
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as long as no restarts are made. Now ν = −(gℓ−1)T pℓ−1, hence

λℓ = (gℓ − gℓ−1)T pℓ−1

ωℓ
= ν

ωℓ
> 0, βℓ−1 = λℓ−1

λℓ
= ωℓ

ωℓ−1
.

Since an exact line search is used, the result of the algorithm is the same for an
arbitrary rescaling of the search direction. Thus we may rewrite the iteration in
terms of the dℓ computed by (42) and get for B = I equivalence with the Fletcher-
Reeves CG method. Fletcher & Reeves [14] showed the equivalence with the
CG method of Hestenes & Stiefel [22] for solving the linear system of equations
g(x) = c + Gx = 0. They proved the well-known conjugacy properties

(gℓ)T pk = (gℓ)T B−1gk = 0 for k ≤ ℓ − 1,

which imply that given the restrictions κ1, κ2 > 0, no restarts will be made for ℓ ≤ m.

Hestenes & Stiefel showed that for positive definite G, their algorithm stops after
at most n iterations with a solution of the linear system, hence with the minimizer
of f(x). If G is not positive definite, the algebra remains the same, except that it
is now possible that a line search ends with a direction of infinite descent. Thus, if
m ≥ n, our CG method for quadratic functions after at most n iterations with a
minimizer or with a direction of infinite descent.

The case with a preconditioner is easily reduced to the case B = I by means of a
linear transformation of the vector x of variables; hence the same properties hold for
any symmetric and positive definite B. ⊓⊔

Since locally all twice continuously differentiable functions are well approximated by
a quadratic, the final remark in the proof also holds locally for general C2-functions
with CLS. Thus, close to a strong local minimizer, Algorithm 2 shares the excellent
local convergence behavior of the quadratic case. The latter is surveyed in Axelsson
& Lindskog [3] of the preconditioned linear CG method.

In particular, when a good starting point is available, no restarts are made. Far away
from a minimizer, however, a strong deviation from quadratic behavior may cause a
restart. In particular, whenever very little progress is made while the gradient is still
large, gℓ ≈ gℓ−1, hence yℓ−1 ≈ 0, and a restart is made. Thus jamming, a problem for
the standard implementation of the nonlinear CG method by Fletcher & Reeves
[14] is not possible.

3.6 Complexity of NCG

The following complexity result for NCG yields a bound on the number of iterations
(= number of gradient evaluations) and function evaluations of NCG. Our result also
holds for m = ∞, where no restart is imposed after a fixed number of iterations. But
the numerical results in Section 4 show that setting m = ∞ reduces the efficiency
and robustness of NCG.
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Theorem 8 Given constants 0 < κ < λ < ∞ and 0 < m ≤ ∞, suppose that the
initial step sizes are chosen such that (14) holds. Then:

(i) The number of function values needed by NCG to reach a point x with (37) is
O(ε−2).

(ii) If the sublevel set {x ∈ Rn | f(x) ≤ f(x0)} is bounded then, starting with x0, at
least one subsequence of the points generated by NCG converges to a stationary point.

(iii) If f has a strong local minimizer x̂ and no other stationary point then conver-
gence is globally linear and the number of function values needed by NCG with m ≥ n

to reach a point x with (37) is O(log ε−1). In particular, this is the case when f is
strongly convex.

Proof (i) Denote by R the index set of restart iterations and by Rc the index set
of non-restart iterations. For ℓ ∈ R, the search direction pℓ = −B−1gℓ satisfies the
bounded angle condition (9) since

(gℓ)T pℓ = −(gℓ)T B−1gℓ = −∥gℓ∥2
∗, ∥pℓ∥ =

√
(pℓ)T Bpℓ =

√
(gℓ)T B−1gℓ = ∥gℓ∥∗;

hence
((gℓ)T pℓ)2

∥pℓ∥2 ≥ δ2∥gℓ∥2
∗ for ℓ ∈ R. (44)

Denote fℓ := f(xℓ) and fℓ+1 := f(xℓ + αℓp
ℓ), and suppose that the algorithm ends

at xL with
∥g(xL)∥∗ < ε ≤ ∥g(xℓ)∥∗ for ℓ < L. (45)

We now find an upper bound on the number L of iterations of NCG. Substituting (44)
into (4), we obtain

fℓ − fℓ+1 ≥ 2β

γ
δ2∥g(xℓ)∥2

∗ ≥ 2β

γ
δ2ε2 for L > ℓ ∈ R. (46)

For ℓ ∈ Rc, we have fℓ − fℓ+1 > 0 and so
∑
ℓ∈Rc

(fℓ − fℓ+1) > 0. Hence (2) and (46)

imply

f0 − f ≥ f0 − fL =
L−1∑
ℓ=0

(fℓ − fℓ+1) =
∑
ℓ∈R

(fℓ − fℓ+1) +
∑
ℓ∈Rc

(fℓ − fℓ+1) ≥ 2β

γ
δ2ε2|R|,

leading to

|R| ≤ Cε−2 with C :=
γ(f0 − f)

2βδ2 .

Since |Rc| ≤ m|R|, this proves

L = |R| + |Rc| ≤ (m + 1)|R| ≤ (m + 1)Cε−2.
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By [30, Theorem 4.1], the number of function evaluations of CLS2 in each iteration
is bounded by a constant. Therefore, this also holds for CLS2. Hence the number of
function evaluations of NCG is O(L) = O(ε−2).

(ii) By (i), inf
ℓ≥0

∥g(xℓ)∥∗ = 0, which together with a standard compactness argument

gives the result.

(iii) follows directly from Theorem 5(iii). ⊓⊔

4 Numerical results

In this section, we compare our algorithm NCG with the CG methods listed in Table
1 on all 507 unconstrained test problems with dimensions 2 to 9000 from the CUTEst
collection by Gould et al. [16].

NCG is Algorithm 2 with the new CG direction and the tuning parameters

κ1 = 1, κ2 = 10, κ = 10−10, λ = 10−2, m = 2n + 10, lmax = 20, β = 0.02.

To have a fair comparison, the preconditioner B was chosen an identity matrix in the
NCG algorithm. The initial step size for CLS in the ℓth iteration of NCG was computed
by

αinit = max(καℓ
0, min(αℓ

h, λαℓ
0)) with αℓ

0 = |(g(xℓ))T pℓ|/∥pℓ∥2,

satisfying the condition (41). Here the ℓth heuristic step size αℓ
h was computed heuris-

tically as in goodStep of the LMBOPT solver by Kimiaei et al. [24]. We also compare
this default NCG with NCG–, which stands for NCG with m = ∞.

To compute the CG parameter βk, most CG methods need the curvature condition
to guarantee that the condition dT

k yk > 0 holds for the nonconvex functions since this
condition appears in βk. Here dk is computed by (15) and yk = gk+1 −gk. Except for
NCG and NCG–, all CG methods tested use along the CG directions the strong Wolfe
line search cvsrch by Moré & Thuente [33], with the default values for its tuning
parameters.

Since the global convergence of CG methods is only guaranteed using line searches,
the efficiency and robustness of CG methods depend on the line search strategy em-
ployed. Therefore, to avoid biased comparisons, one must incorporate CG directions
with line search strategies that are competitive in terms of efficiency and robust-
ness. While most of the known CG methods require the Wolfe conditions to ensure
convergence, our CG method achieves global convergence for any line search satisfy-
ing condition (4). Neumaier & Kimiaei [30] conducted a comprehensive numerical
comparison between CLS and three different line search methods: Wolfe, Armijo, and
Goldstein. According to their numerical experiments, CLS2 emerged as competitive
with the Wolfe line search and showed superiority over the other two line search
strategies. Specifically, CLS is notably more efficient in terms of gradient evaluations
compared to the Wolfe line search, while the Wolfe line search is more efficient than
CLS in terms of the number of function evaluations. Since known CG methods rely
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on the Wolfe conditions, and NCG requires CLS to ensure convergence, we incorpo-
rate CLS2 for our CG method and use the Wolfe line search for the remaining CG
directions in our comparison.

For numerical comparison, we restrict ourselves here only to pure CG algorithms
listed in Table 1 below. Ignoring practical improvements in these pure algorithms,
the two most robust algorithms NCG and DL+ solve 77% of the CUTEst test problems
(see Table 1 below). The CG solvers using several practical improvements can solve
most of test problems. For example, as can be seen from [20,24], LMBOPT [24, Table
1] using our CG formula solved 88% of the CUTEst test problems and ASACG [20]
using a traditional CG formula solved 86% of those problems.

4.1 Efficiency and robustness

We denote by S the list of compared solvers, by P the list of problems, and by cp,s

the cost measure of the solver s ∈ S to solve the problem p ∈ P. Our cost measures
are the number nf of function evaluations, the number ng of gradient evaluations,
nf2g = nf + 2ng, and times sec in second.

To find approximate local minimum of the unconstrained problems, we say that a
CG method is most efficient if it has a lowest cost measure and is most robust if
it has a highest number of solved problems compared to the other compared CG
methods on unconstrained test problem from the CUTEst collection.

Using these cost measures, the efficiency and robustness of CG methods can be
identified by performance profile of Dolan and Moré [11]. The performance profile of
the solver s

ρs(τ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ prp,s := cp,s

min(cp,s | s ∈ S) ≤ τ
}∣∣∣. (47)

is the fraction of problems that the performance ratio prp,s is at most τ . In particular,
the fraction of problems that the solver s wins compared to the other solvers is ρs(1)
and for sufficiently large τ the fraction of problems that the solver s can solve is
ρs(τ).

A problem is considered solved if ∥g∥∞ ≤ 10−6, while it is considered unsolved if
either the number of function values plus twice the number of gradient evaluations
reaches 20n + 104 or time in seconds reaches 300 seconds. These termination criteria
are given in the first row of Table 1 below. Hence, each algorithm was terminated
once one of the three proposed termination criteria was satisfied. These impose upper
bounds on ∥g∥∞, sec, and nf2g. For a given list S of solvers and each given cost
measure cs, the partial efficiency

es,p :=
{

1/prp,s if the solver s solves the problem p,
0 otherwise

of the solver s measures the strength of the solver s relative to an ideal solver
corresponding to the best solver for the problem p in percent, rounded to integers.
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The efficiency es of the solver s to solve all p ∈ P is the sum of es,p over p ∈ P .
The efficiency with respect to the cost measures nf, ng, nf2g, and sec are called
nf efficiency, ng efficiency, nf2g efficiency, and sec efficiency, respectively. The
other columns of the table contain the number of solved problems by the solvers,
the nf2g efficiency, the ng efficiency, the nf efficiency, and the sec efficiency. When
using reverse automatic differentiation, the cost of a gradient evaluation is a small
multiple of the cost of a function evaluation. For the CUTEst collection, this factor
is on the average approximately 2; see Section 3 of the supplemental material of the
LMBOPT [24], available at

https://doi.org/10.5281/zenodo.5607521.

4.2 A comparison of CG methods

Table 1 and the performance profiles of Figure 1 suummarize the results of our nu-
merical experiments. We see that due to restarts after a suitably fixed finite number
of iterations, NCG is slightly more robust and efficient than NCG–. In the following
analysis, we therefore ignore NCG–, and compare NCG with the other 21 CG methods
from Table 1.

By inspecting the results we may conclude that:
• NCG, DL+, FA, NYF, and MBA are most robust among all compared CG methods.
Hence in terms of robustness NCG is competitive with the best state-of-the-art CG
methods.
• In terms of the ng efficiency, NCG is most efficient since it is 23% more efficient than
the second best method DL+.
• In terms of the nf efficiency, DL+ is most efficient since it is 5% more efficient than
the second best method NCG.
• In terms of the nf2g efficiency, NCG is 11% more efficient than the second best
method DL+.
• In terms of the sec efficiency, DL+ and DK+ are 12% more efficient than NCG.
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Table 1: The summary results for all problems

stopping test: ∥g∥∞ ≤ 10−6, sec ≤ 300, nf2g ≤ 20n + 104

425 of 507 problems solved mean efficiency es in %
dim∈[2,9000] for cost measure
solver reference solved nf2g ng nf sec
NCG Algorithm 2 with default m 393 59 64 51 39
DL+ Dai & Liao [9, with CG parameter (2.26)] 392 48 41 56 51
FA Faramarzi & Amini [12] 388 44 37 51 47
NYF Narushima et al. [28] 384 33 28 41 40
MBA Mirhoseini et al. [32] 383 37 31 45 41
NCG– Algorithm 2 with m = ∞ 381 55 59 48 35
LH Lotfi & Hosseini [27] 381 34 29 42 41
HS Hestenes & Stiefel [22] 379 34 29 41 38
DK+ Dai & Kou [8, with CG parameter (2.32)] 377 46 39 53 51
HZ Hager & Zhang [18, with CG parameter (1.3)] 375 37 31 44 41
HZ+ Hager & Zhang [18, with CG parameter (1.6)] 374 37 31 44 40
DL Dai & Liao [9, with CG parameter (2.6)] 372 38 33 45 42
DK Dai & Kou [8, with CG parameter (2.31)] 371 44 38 51 48
PR Polak & Ribière [35] 367 31 26 38 36
BG Babaie-Kafaki & Ghanbari [4, the ZZ method] 362 30 25 37 35
BG+ Babaie-Kafaki & Ghanbari [4, the MZZ method] 361 29 24 35 34
BA Aminifard & Babaie-Kafaki [2] 357 20 16 24 25
LS Liu & Storey [26] 349 29 24 36 33
AFP Amini et al. [1] 343 33 27 41 37
DY Dai & Yuan [10] 299 31 27 36 32
FR Fletcher & Reeves [14] 267 23 19 28 24
YYZ Yuan et al. [41] 250 15 12 17 16
IKKA Ibrahim et al. [23] 197 7 6 9 10
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Fig. 1: The performance profiles in terms of nf, ng, nf2g, and sec for 6 more robust
CG methods. Problems solved by no solver are ignored. All compared solvers used
the budgets secmax = 300 and nfmax = 20n + 10000.
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5 Conclusion

This paper proposes a new nonlinear CG algorithm (NCG) for unconstrained optimiza-
tion problems. The global convergence of NCG has been obtained without enforcing
the strong Wolfe conditions but rather using an arbitrary efficient line search method
that does not use any gradient evaluations. A restart condition ensures global linear
convergence if it converges to a strong local minimizer without affecting the finite
termination for strictly convex quadratic functions. Unless a restart is made within
NCG, zigzagging is maximally reduced based on an introduced zigzagging strength.

It has been shown that NCG needs at most O(ε−2) function evaluations to find a
ε-stationary point. This complexity result reduces to O(log ε−1) provided that f(x)
has a strong local minimizer and no other stationary point.

Our numerical results on the 507 unconstrained CUTEst test problems illustrate that
NCG is competitive with the best state-of-the-art CG methods in terms of the robust-
ness and efficiency.
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