
Tightening Quadratic Convex Relaxations for the
AC Optimal Transmission Switching Problem

Cheng Guo
School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634 USA, cguo2@clemson.edu

Harsha Nagarajan
Applied Mathematics and Plasma Physics (T-5), Los Alamos National Laboratory, Los Alamos, NM 87545 USA,

harsha@lanl.gov

Merve Bodur
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada,

bodur@mie.utoronto.ca

The Alternating Current Optimal Transmission Switching (ACOTS) problem incorporates line switching

decisions into the fundamental AC optimal power flow (ACOPF) problem. The advantages of the ACOTS

problem are well-known in terms of reducing the operational cost and improving system reliability. ACOTS

optimization models contain discrete variables and nonlinear, non-convex constraints, which make it difficult

to solve. In this work, we develop strengthened quadratic convex (QC) relaxations for ACOTS, where

we tighten the relaxation with several new valid inequalities, including a novel kind of on/off cycle-based

polynomial constraints by taking advantage of the network structure. We linearize the sum of on/off trilinear

terms that appears in the relaxation with extreme-point representation and theoretically show its tightness.

Also, we efficiently incorporate on/off cycle-based polynomial constraints using disjunctive programming

based cutting planes. Combined with the optimization-based bound tightening algorithm, we obtain the

tightest QC-based ACOTS relaxation to the best of our knowledge. Our extensive numerical experiments

on medium-scale PGLib instances show significant improvement on relaxation bounds for many instances.

Key words : Optimal transmission line switching, On/off quadratic convex relaxation, Convex hull, Bound

tightening.

1. Introduction

Transmission switching, with its inception in the 1980s (Glavitsch 1985), has gained con-

siderable attention in both industry and academia in recent years (Hedman et al. 2008,

Kocuk et al. 2017). The optimal transmission switching (OTS) problem studies how to

switch on or off certain transmission lines to modify the network topology in the real-time

operation of transmission power grids. Solving the OTS problem brings several benefits

that the traditional optimal power flow (OPF) problem solution cannot offer, such as reduc-

ing the total operational cost, mitigating transmission congestion, clearing contingencies,

and improving engineering limits (Hedman et al. 2011). Thus, as the modern transmission

1

2

control and relay technologies evolve, transmission line switching has become an important

option in power system operators’ toolkits.

Previous literature on OTS has mainly relied on the DC approximation of the power flow

model to avoid the mathematical complexity of the non-convex AC power flow equations.

The first formal mathematical model for the OTS problem, proposed by Fisher et al.

(2008), is based on the DC approximation of the power flow equations. Kocuk et al. (2016b)

derive a cycle-induced relaxation for a DCOTS model, and characterize the convex hull of

this relaxation.

The downside of DCOTS approximation is that the optimal decisions may not neces-

sarily represent accurate power flows or even be infeasible in the AC setting (Coffrin et al.

2014). Those drawbacks motivate the adoption of ACOTS. The ACOTS problem can be

formulated as a non-convex mixed-integer nonlinear program (MINLP), which is challeng-

ing to solve. Moreover, even in the DC setting, the OTS problem is known to be NP-hard

(Lehmann et al. 2014). Several heuristics are proposed for solving the ACOTS problem,

e.g., by Barrows et al. (2014) and Goldis et al. (2013). Separately, convex relaxations for

ACOTS have gained significant attention in recent years.

The convex relaxations of the ACOTS problem, of which the literature is quite scarce,

are built upon the rich literature on ACOPF convex relaxations, such as the second-order

cone (SOC) relaxation (Jabr 2006), the quadratic convex (QC) relaxation (Coffrin et al.

2016), and the semi-definite programming (SDP) relaxation (Bai et al. 2008). For the

ACOPF problem, the standard SDP and QC relaxations are at least as strong as the

SOC relaxation, while the strength of the SDP and QC relaxations are not comparable.

Computationally, the SOC and QC relaxations are faster and more reliable than the SDP

relaxation (Coffrin et al. 2016). In the ACOTS setting, Hijazi et al. (2017) and Bestuzheva

et al. (2020) propose a QC relaxation that incorporates on/off decision variables, which

provides a tight lower bound to the generation-cost minimization objective. We further

tighten this on/off version of the QC relaxation with a much stronger linearization and

valid inequalities, with some of the latter being novel.

In particular, one type of valid inequalities we incorporate is cycle-based polynomial

constraints (“lifted cycle constraints” for short). The lifted cycle constraints were first

proposed by Kocuk et al. (2016a) as a relaxation to the arc-tangent constraints in ACOPF.

Their work provides a reformulated SOC relaxation for ACOPF, strengthened by the

3

McCormick relaxation of the lifted cycle constraints, which is shown to be incomparable

to the SDP relaxation. Further, these cycle-based valid inequalities were generalized for

the ACOTS problem by Kocuk et al. (2017), which was derived in the rectangular co-

ordinates. However, in our work, we develop a new type of lifted cycle constraints based

on the QC relaxation of the ACOPF problem, written in polar co-ordinates. Our method

takes advantage of the direct access to auxiliary variables representing the trigonometric

functions in the QC relaxation. Then we reformulate the on/off version of those lifted cycle

constraints for the ACOTS problem, which is new in the literature. In our strengthened

formulation, we combine those new constraints and the lifted cycle constraints from (Kocuk

et al. 2017). Further, we linearize these on/off polynomial constraints with the tightest

extreme-point representation, which captures the convex hull of the on/off lifted cycle

constraints for a given cycle. Since adding all constraints at the same time can make the

problem challenging to solve, we derive novel cutting planes and incorporate lifted cycle

constraints via a branch-and-cut scheme.

We further improve the bounds using an optimization-based bound tightening (OBBT)

technique. OBBT is often used in MINLPs to tighten relaxation bounds (Nagarajan et al.

2019a). It has been shown to be an effective bound-tightening method in nonlinear AC

power flow models. Sundar et al. (2018) use OBBT to tighten an ACOPF-QC relaxation,

whereas Bestuzheva et al. (2020) use OBBT for an ACOTS-QC relaxation with nonlinear

terms linearized using weaker recursive-McCormick relaxations. In our work, we incorpo-

rate all the proposed tightening valid inequalities and the ones from the literature within

OBBT, to achieve a very tight lower bound for the ACOTS problem.

Our main contributions can be summarized as follows:

(1) We strengthen the ACOTS-QC relaxation with several techniques. First, we linearize

the summation of two on/off trilinear terms with the tight extreme-point representation

and prove such a linearization captures its convex hull. To the best of our knowledge,

we are the first to develop this linearization method for ACOTS. We also reformulate

several ACOPF-QC strengthening constraints for the OTS setting, some of which are novel.

Compared with the state-of-the-art on/off QC relaxation formulation (Coffrin et al. 2018),

our strengthened relaxation is shown to provide better lower bounds for many test cases,

and some of those improvements are substantial.

4

(2) We derive a new lifted cycle constraint that strengthens the QC relaxations of both

ACOPF and ACOTS. We linearize those constraints with the extreme-point representation,

which is always tighter than the recursive-McCormick relaxation in the literature. Also,

to separate lifted cycle constraints with discrete decisions, we develop novel cutting planes

by reformulating Benders cuts via disjunctive programming. We incorporate those cutting

planes in a branch-and-cut framework, which leads to significant solution time reductions.

(3) We combine strengthening methods listed in (1) and (2) with OBBT and obtain the

tightest QC-based ACOTS relaxation in the literature, to the best of our knowledge.

2. The ACOTS Problem

Before describing the model for the ACOTS problem, we first introduce some notation.

Throughout, constants are typeset in boldface to make it easier to distinguish between

decision variables and parameters. In the AC power flow equations, upper case letters

represent complex quantities. R(·) and T(·) respectively denote the real and imaginary

parts of a complex number. Given any two complex numbers (variables/constants) z1 and

z2, z1 > z2 implies R(z1)>R(z2) and T(z1)> T(z2). | · | and (·)∗ represent the magnitude

and Hermitian conjugate of a complex number, respectively. When applied on a real-valued

number, | · | represents its absolute value. 〈·〉R represents the convex envelope of a function.

The notation for sets, parameter and variables is summarized in Table 1.

Table 1: Notation

Sets and parameters:

N Set of buses (nodes).
NL Set of leaf buses with no loads.
N ref Set of reference buses.
G Set of generators.
Gi Set of generators at bus i.
A Set of lines (arcs).
AR Set of arcs in reversed direction.
c0,c1,c2 Generation cost coefficients.
j Unit imaginary number.
Y ij = gij + jbij Admittance on line (i, j).
Y c
ij = gcij + jbcij Charging admittance on line (i, j).

Y s
ij = gsij + jbsij Shunt admittance on line (i, j).

T ij = tRij + jtIij Branch complex transformation ratio (tap ratio) on line (i, j).
Sd
i = pd

i + jqd
i AC power demand at bus i.

sij Apparent power bound on line (i, j).
θij ,θij Phase angle difference bounds on line (i, j).
vi,vi Voltage magnitude bounds at bus i.

Sg
i , S

g

i Power generation bounds at bus i.

5

lij Current magnitude squared upper limit on line (i, j).

Variables:
vi Voltage magnitude at bus i.
θi Voltage angle at bus i.
Vi = vie

jθi AC complex voltage at bus i.
θij Phase angle difference on line (i, j).
wi Squared voltage magnitude at bus i.
Wij =wRij + jwIij AC voltage product on line (i, j).
Sij = pij + jqij AC power flow on line (i, j).
Sgk = pgk + jqgk AC power generation of generator k.
lij Current magnitude squared on line (i, j).
zij 1 if line (i, j) is switched on, 0 otherwise.

The power network can be represented with the graph G= (N ,A), where N corresponds

to the set of buses, while the set of arcs A corresponds to the set of lines. Note that we

assume lines in the network are directed with designated from/to buses, as indicated by

the data. This assumption is conventional, and it is necessary because the data contains

asymmetric shunt conductance and transformers.

The ACOTS problem minimizes the total production cost of generators such that all

the demands at the buses, the physical constraints (e.g., Ohm’s and Kirchoff’s law), and

engineering limit constraints (e.g., transmission line flow limits) are satisfied. In this work,

for the purpose of the QC relaxation (see Section 3), we model the AC power flow equations

in polar co-ordinates (Taylor 2015), thus the following ACOTS formulation:

min
∑
k∈G

(
c2k(p

g
k)

2 + c1kp
g
k

)
+

∑
i∈N\NL

∑
k∈Gi

c0k +
∑
i∈NL

∑
k∈Gi

c0kz{ft|(f,t)∈A,f=i or t=i} (1a)

s.t.
∑
k∈Gi

Sgk −S
d
i −Y s∗

ijwi =
∑

(i,j)∈A∪AR
Sij ∀i∈N (1b)

Sij = (Y ij +Y c
ij)
∗ wi
|T ij|2

zij −Y ∗ij
Wij

T ij

∀(i, j)∈A (1c)

Sji = (Y ij +Y c
ji)
∗wjzij −Y ∗ij

W ∗
ij

T ∗ij
∀(i, j)∈A (1d)

wi = v2i ∀i∈N (1e)

Wij = ViV
∗
j zij ∀(i, j)∈A (1f)

θij = θi− θj ∀(i, j)∈A (1g)

θijzij −θM(1− zij)6 θij 6 θijzij +θM(1− zij) ∀(i, j)∈A (1h)

θi = 0 ∀i∈N ref (1i)

6

Sgi 6 S
g
k 6S

g

k ∀k ∈ G (1j)

|Sij|26 s2ijz2ij, |Sji|26 s2ijz2ij ∀(i, j)∈A (1k)

vi 6 vi 6 vi ∀i∈N (1l)

zij ∈ {0,1} ∀(i, j)∈A, (1m)

where z{ft|(f,t)∈A,f=i or t=i} is the switch on/off variable for a line having either end connected

to a leaf node with 0 load. When such a line is switched off, the generators on the leaf node

are disconnected from the network, and thus we do not need to pay the fixed cost c0k.

The convex quadratic objective (1a) minimizes total generator dispatch cost. Constraints

(1b) correspond to the power balance at each bus, i.e., Kirchoff’s current law. Constraints

(1c) to (1f) model the power flow on each line. Note that constraints (1c) and (1d) ensure

that the power flow over line (i, j) is zero if the line is switched off; constraints (1f) ensure

that Wij = 0 when line (i, j) is switched off. Constraints (1g) connect voltage angle and

voltage difference variables.

Constraints (1h) limit the phase angle difference on each line. We define θuij =

max(|θij|, |θij|). Let θu,max
ij,k be the kth largest value in {θuij | (i, j) ∈ A}, and θM =∑|N |−1

k=1 θu,max
ij,k be a big-M constant for phase angle difference. This big-M constant enables

us to provide proper bounds for θij in constraints (1h).

Constraints (1i) set the voltage angles of reference buses to 0. Constraints (1j) restrict

the apparent power output of each generator. Constraints (1k) are thermal limit constraints

that restrict the total electric power transmitted on each line. Note that in these constraints

a squared form of zij is used instead of the linear form, as it produces a tighter formulation

(Hijazi et al. 2017). Constraints (1l) limit the voltage magnitude at each bus.

This ACOTS model is a non-convex MINLP, which contains nonlinear constraints (1c)

through (1f). An easy method to linearize constraints (1c) and (1d) is to introduce a lifted

variable wz
ij per line, which equals wi when zij = 1 and 0 otherwise, then constraints (1c)

and (1d) can be replaced with the following linear constraints for every line (i, j)∈A:

Sij = (Y ij +Y c
ij)
∗ wz

ij

|T ij|2
−Y ∗ij

Wij

T ij

(2a)

Sji = (Y ij +Y c
ji)
∗wz

ji−Y ∗ij
W ∗

ij

T ∗ij
(2b)

wi− (1− zij)v2i 6wz
ij 6wi− (1− zij)v2i (2c)

7

wj − (1− zij)v2j 6wz
ji 6wj − (1− zij)v2j (2d)

v2i zij 6w
z
ij 6 v

2
i zij (2e)

v2jzij 6w
z
ji 6 v

2
jzij. (2f)

Constraints (2a) - (2d) are from (Hijazi et al. 2017), while constraints (2e) and (2f) are new

and provide tighter bounds for wz
ij and wz

ji. Tractable convex relaxations for constraints

(1e) and (1f) are described in the next section.

3. On/Off Quadratic Convex Relaxation

The on/off version of the QC relaxation for the ACOTS model relaxes nonlinear constraints

(1e) and (1f). Let wR
ij := R(Wij) and wI

ij := T(Wij), then (1f) can be equivalently written

as follows (∀(i, j)∈A):

wR
ij = zij (vivj cos(θij)) (3a)

wI
ij = zij (vivj sin(θij)) . (3b)

A key feature of the QC relaxation is the use of polar co-ordinates, which has direct

access to voltage magnitude vi and voltage angle θi variables. This enables stronger links

between voltage variables. In what follows, we list the QC relaxation constraints, some of

which are based on previous works (Coffrin et al. 2016, Hijazi et al. 2017), while others are

newly derived, which we will specify.

(1) Quadratic function relaxation (∀i∈N): We can formulate the convex-hull envelope

for constraints (1e) by relaxing every equality in to a quadratic inequality constraint (4a),

and providing upper bounds via linear McCormick relaxation constraints in (4b):

wi > v
2
i (4a)

wi 6 (vi +vi)vi−vivi (4b)

(2) Cosine and sine function relaxations (∀(i, j)∈A): The trigonometric term cos(θij)

in (3a) is non-convex. We define a lifted variable cij that is in the convex envelope of

cos(θij), i.e., cij ∈ 〈cos(θij)〉R. We assume θuij 6 π/2, which is reasonable as the absolute

value of the phase angle differences across the lines is usually under 15 degrees in practice

8

(Purchala et al. 2005). We define the following constants for every line (i, j)∈A which are

necessary for the relaxation constraints:

θcij =
cos(θij)− cos(θij)

θij −θij
, θsij =

sin(θij)− sin(θij)

θij −θij
Following the disjunctive programming method in (Hijazi et al. 2017), an on/off version of

the convex relaxation of the cosine function is as follows:

− cij +θcijθij 6
(
θcijθij − cos(θij)

)
zij +

∣∣θcij∣∣θM(1− zij) (5a)

cij 6 zij −
1− cos(θuij)

(θuij)
2

θ2ij +
1− cos(θuij)

(θuij)
2

(θM)2(1− zij) (5b)

cijzij 6 cij 6 cijzij. (5c)

Constraints (5a) and (5b) are big-M constraints. When zij = 1, they represent quadratic

convex relaxations of cos(θij) derived from trigonometric identities and properties of

quadratic functions, and those convex relaxations are not valid when the line (i, j) is

switched off, as we have cij = 0. Therefore, big-M parameter θM is used to ensure that

when zij = 0, those constraints are valid for cij = 0 and θij ∈ [θij,θij]. Constraint (5c) pro-

vides bounds for cij, and ensure that cij = 0 when the line (i, j) is switched off. Note that

constraint (5a) is a new constraint that is not in (Hijazi et al. 2017) or (Bestuzheva et al.

2020).

Similarly, we define sij ∈ 〈sin(θij)〉R. When θuij 6 π/2, a disjunctive relaxation of the sine

function is as follows:

sij − cos

(
θuij
2

)
θij 6

(
sin

(
θuij
2

)
− cos

(
θuij
2

)
θuij
2

)
zij + cos

(
θuij
2

)
θM(1− zij), if θij > 0

(6a)

−sij + cos

(
θuij
2

)
θij 6

(
sin

(
θuij
2

)
− cos

(
θuij
2

)
θuij
2

)
zij + cos

(
θuij
2

)
θM(1− zij), if θij 6 0

(6b)

sij −θsijθij 6
(
−θsijθij + sin(θij)

)
zij +θsijθ

M(1− zij), if θij 6 0 (6c)

−sij +θsijθij 6
(
θsijθij − sin(θij)

)
zij +θsijθ

M(1− zij), if θij > 0 (6d)

sijzij 6 sij 6 sijzij, (6e)

where constraints (6a) - (6d) are derived from linear outer approximation of the sin(θij)

function (Hijazi et al. 2017).

9

(3) Extreme-point representation for summation of on/off trilinear terms (∀(i, j) ∈A):

Next, we develop a novel extreme-point representation to linearize the sum of two on/off

trilinear terms and theoretically prove its tightness. We first substitute the non-convex

functions cos(θij) and sin(θij) in constraints (3) with lifted variables cij and sij and their

convex envelopes, respectively. The remaining non-linearities reduce to trilinear terms

vivjcij and vivjsij, which are further controlled by the status of the on/off variable zij. To

linearize these terms, we generalize the convex hull representation of the extreme-point for-

mulation (Lu et al. 2018, Sundar et al. 2018) to incorporate on/off variables, as discussed

below.

Let the extreme points of the domain [vi,vi]× [vj,vj]× [cij,cij] be denoted by ξk with

k = 1, . . . ,8, and the extreme points of the domain [vi,vi]× [vj,vj]× [sij,sij] be denoted

by γk, k= 1, . . . ,8. We relax constraints (3) as follows:

wR
ij =

8∑
k=1

λcij,k (ξk1ξ
k
2ξ

k
3), wI

ij =
8∑

k=1

λsij,k (γk1γ
k
2γ

k
3) (7a)

8∑
k=1

λcij,kξ
k
1 + (1− zij)vi 6 vi 6

8∑
k=1

λcij,kξ
k
1 + (1− zij)vi (7b)

8∑
k=1

λsij,kγ
k
1 + (1− zij)vi 6 vi 6

8∑
k=1

λsij,kγ
k
1 + (1− zij)vi (7c)

8∑
k=1

λcij,kξ
k
2 + (1− zij)vj 6 vj 6

8∑
k=1

λcij,kξ
k
2 + (1− zij)vj (7d)

8∑
k=1

λsij,kγ
k
2 + (1− zij)vj 6 vj 6

8∑
k=1

λsij,kγ
k
2 + (1− zij)vj (7e)

cij =

8∑
k=1

λcij,k ξ
k
3, sij =

8∑
k=1

λsij,k γ
k
3 (7f)

8∑
k=1

λcij,k = zij,
8∑

k=1

λsij,k = zij, λ
c
ij,k > 0, λsij,k > 0, ∀k= 1, . . . ,8 (7g)


λcij,1 +λcij,2−λsij,1−λsij,2
λcij,3 +λcij,4−λsij,3−λsij,4
λcij,5 +λcij,6−λsij,5−λsij,6
λcij,7 +λcij,8−λsij,7−λsij,8



>
vi ·vj
vi ·vj
vi ·vj
vi ·vj

= 0, (7h)

where ξk1 is the value of vi in the extreme point ξk. The constants ξk2, ξ
k
3, γ

k
1, γ

k
2, and γk3 are

similarly defined. λcij,k and λsij,k are auxiliary multiplier variables for representing a linear

10

combination of the extreme points. When zij = 1, constraints (7a) connect values of wR
ij and

wI
ij with convex combinations of extreme points for trilinear terms; constraints (7b) - (7f)

equate the values of vi, vj, cij, and sij to convex combinations of their respective extreme

points in [vi,vi] × [vj,vj] × [cij,cij]. When zij = 0, constraints (7a) - (7f) enforce wR
ij =

wI
ij = cij = sij = 0, and impose no constraints on vi and vj. Constraints (7g) ensure that

the summations of convex combination coefficients equal to 1 when line (i, j) is switched

on, and all the coefficients become 0 when the line is switched off. Linking constraints (7h)

connect the shared bilinear term vivj that appears in both trilinear terms vivj cos(θij) and

vivj sin(θij).

Note that when zij = 1, constraints (7b) - (7e) and (7g) reduce to the following con-

straints, akin to the ones derived by Lu et al. (2018) and Sundar et al. (2018):

vi =
8∑

k=1

λcij,kξ
k
1 =

8∑
k=1

λsij,kγ
k
1, (8a)

vj =
8∑

k=1

λcij,kξ
k
2 =

8∑
k=1

λsij,kγ
k
2, (8b)

8∑
k=1

λcij,k = 1,
8∑

k=1

λsij,k = 1. (8c)

We next formally show that the constraints in (7) form the tightest, or the convex hull,

relaxation for the summation of nonlinear terms of the form

zij (a1vivjcij +a2vivjsij) ∀(i, j)∈A∪AR. (9)

Note that this form appears in constraints (1c) and (1d), where a1 and a2 represent

coefficients that are functions of gij, bij, t
R
ij, and tIij. For this purpose, we define the fol-

lowing: Let η = (wR
ij, w

I
ij, cij, sij, λ

c
ij,1, . . . , λ

c
ij,8, λ

s
ij,1, . . . , λ

s
ij,8, zij, vi, vj) and define the

set H = {η|η satisfies (7), zij ∈ [0,1]}. When zij = 0 and zij = 1, H becomes H0 and H1,

respectively:

H0 =

 η

∣∣∣∣∣∣∣∣
wR
ij =wI

ij = cij = sij = zij = 0

λcij,k = λsij,k = 0,∀k= 1, · · · ,8

vi ∈ [vi,vi], vj ∈ [vj,vj]


H1 = {η |η satisfies (7a), (7f), (7h) and (8)}

11

Sundar et al. (2018) show, for a simpler case when zij = 1, that the linearization defined

by H1 is the convex hull of the summation terms in (9) due to the addition of equality

constraints (7h). However, to understand the tightness (convex hull property) of the lin-

earization (7) for the generalized ACOTS model, we present the following theorem, based

on the literature of perspective formulations for disjunctive programming (Ceria and Soares

1999, Nagarajan et al. 2019b):

Theorem 1. H = conv(H0 ∪H1).

Proof. First, we prove that conv(H0∪H1)⊆H. For any η0 ∈H0, η0 satisfies constraints

in (7) when zij = 0. Similarly, for any η1 ∈H1, η1 satisfies constraints in (7) when zij = 1.

Thus, H0 ∪H1 ⊆H. Since H contains only linear constraints and is thus convex, we have

conv(H0 ∪H1)⊆H.

Next, we prove that H ⊆ conv(H0 ∪H1). Let η∗ ∈ H. If z∗ij = 0, then η∗ ∈ H0, and if

z∗ij = 1, then η∗ ∈H1. When z∗ij ∈ (0,1), we define the following variables:

η∗0 =

(
0,0, · · · ,0,

v∗i −
∑8

k=1 λ
c∗
ij,kξ

k
1

1− z∗ij
,
v∗j −

∑8
k=1 λ

c∗
ij,kξ

k
2

1− z∗ij

)

η∗1 =

(
wR∗
ij

z∗ij
,
wI∗
ij

z∗ij
,
c∗ij
z∗ij
,
s∗ij
z∗ij
,
λc∗ij,1
z∗ij

, · · · ,
λc∗ij,8
z∗ij

,
λs∗ij,1
z∗ij

, · · · ,
λs∗ij,8
z∗ij

,1,
8∑

k=1

λc∗ij,k
z∗ij
ξk1,

8∑
k=1

λc∗ij,k
z∗ij
ξk2

)

Next, we prove that η∗0 ∈ H0 and η∗1 ∈ H1. Because of (7b), we have (1 − z∗ij)vi 6 v∗j −∑8
k=1 λ

c∗
ij,kξ

k
2 6 (1− z∗ij)vi. Thus,

v∗i−
∑8
k=1 λ

c∗
ij,kξ

k

1

1−z∗ij
∈ [vi,vi]. Similarly,

v∗j−
∑8
k=1 λ

c∗
ij,kξ

k

2

1−z∗ij
∈ [vj,vj].

Therefore, η∗0 ∈H0.

For η∗1,
wR∗
ij

z∗ij
=
∑8

k=1

λc∗ij,1
z∗ij

(ξk1,ξ
k
2,ξ

k
3) because wR∗

ij =
∑8

k=1 λ
c∗
ij,1(ξ

k
1,ξ

k
2,ξ

k
3) and z∗ij ∈ (0,1).

Similarly, it can be proved that η∗1 satisfies constraints (7a), (7f), (7h), and (8c). For con-

straint (8a), the first equation follows directly from the definition of η∗1, and the second

equality is correct because the validity of (7b) and (7c) for η∗ indicates that
∑8

k=1 λ
s∗
ij,kγ

k
1 +

(1− z∗ij)vi 6
∑8

k=1 λ
c∗
ij,kξ

k
1 + (1− z∗ij)vi and

∑8
k=1 λ

s∗
ij,kγ

k
1 + (1− z∗ij)vi ≥

∑8
k=1 λ

c∗
ij,kξ

k
1 + (1−

z∗ij)vi, thus
∑8

k=1 λ
c∗
ij,kξ

k
1 =

∑8
k=1 λ

s∗
ij,kγ

k
1⇒

∑8
k=1

λc∗ij,k
z∗ij
ξk1 =

∑8
k=1

λs∗ij,k
z∗ij
γk1, which means η∗1 sat-

isfies the second equality in (8a). With similar arguments, η∗1 is also feasible for (8b).

Therefore, η∗1 ∈H1.

Now note that η∗ = (1− z∗ij)η∗0 + z∗ijη
∗
1, which means H ⊆ conv(H0 ∪H1). �

To the best of our knowledge, this is the first attempt at applying the convex hull-based

extreme-point formulation for the ACOTS QC relaxation. Previous works (Hijazi et al.

12

2017, Lu et al. 2017, Bestuzheva et al. 2020) have utilized recursive McCormick-based

relaxations which are not as tight as the above formulation, as the former relaxation when

applied to (9) is not as tight as H1.

(4) Other valid constraints for strengthening the on/off QC relaxation (∀(i, j)∈A): We

also add the following constraints to strengthen the on/off QC relaxation:

tan(θij)w
R
ij 6w

I
ij 6 tan(θij)w

R
ij (10a)

vσi v
σ
j (cos(φij)w

R
ij + sin(φij)w

I
ij)−vj cos(δij)v

σ
i w

z
ij

−vi cos(δij)v
σ
i w

z
ji ≥ vivj cos(δij)(vivj −vivj)zij (10b)

vσi v
σ
j (cos(φij)w

R
ij + sin(φij)w

I
ij)−vj cos(δij)v

σ
i w

z
ij

−vi cos(δij)v
σ
i w

z
ji ≥ vivj cos(δij)(vivj −vivj)zij (10c)

|Sij|26
wi
|T ij|2

lij (10d)

lij = |Y ij|2
(

wz
ij

|T ij|2
+wz

ji− 2(tRijw
R
ij + tIijw

I
ij)/|T ij|2

)
−
|Y c

ij|2

|T ij|2
wz
ij + 2(gcijpij − bcijqij) (10e)

06 lij 6 lij, (10f)

where vσi = vi+vi, φij = (θij +θij)/2, and δij = (θij−θij)/2. Constraint (10a) is the phase

angle difference constraint, which is a relaxation of the equality tan(θij) =
wRij
wIij

. Constraints

(10b) and (10c) are the “lifted nonlinear cuts” from (Bestuzheva et al. 2020), derived using

trigonometric identities. Constraints (10d) and (10e) use the relationship between current

magnitude and power flow to tighten the QC relaxation. (10f) bounds the squared current

magnitude. Note that while (10a), (10d), and (10f) are the same as their counterparts in

the ACOPF model, they are still valid for the ACOTS setting. On the other hand, (10b),

(10c), and (10e) are modified under the ACOTS case, so that when line (i, j) is switched

off, constraints (10b) and (10c) become redundant, while constraint (10e) ensures lij = 0.

The use of (10e) is new for the ACOTS QC relaxation.

Putting all the constraints together, we obtain the following QC relaxation for the

ACOTS problem:

(ACOTS-QC) : min (1a) (11a)

s.t. (1b), (1g)− (1m), (2), (11b)

13

(4), (5)− (7), (10). (11c)

The relationship between the solution sets of different formulations is simplified and

shown in Figure 1. Here, ACOPF is the non-convex polar formulation, which is equivalent

to the ACOTS model with all the lines switched on; ACOPF-QC is the QC relaxation for

ACOPF from (Coffrin et al. 2016).

Figure 1 Venn diagram for solution sets of different formulations.

Tight convex relaxations for ACOTS such as (ACOTS-QC) can serve several purposes.

The solution to a tight relaxation problem is a good approximation for optimal ACOTS

decisions. Also, they provide tight lower bounds for evaluating the quality of a feasible

ACOTS solution, and can be used to prove global optimality of a feasible solution when

the optimality gap is 0. In addition, the convex relaxation can be used in a two-stage

process for minimizing the cost of ACOPF, where we first change the network topology

using line switching solutions from the relaxation, and then solve the ACOPF problem on

the updated network. In what follows, we show how to further tighten (ACOTS-QC) with

lifted cycle constraints and OBBT.

4. Cycle-Based On/Off Polynomial Constraints

In this section, we present a novel type of lifted cycle constraints based on lifted trigono-

metric auxiliary variables cij and sij. We use both these new lifted cycle constraints and

lifted cycle constraints with voltage product variables wR
ij, w

I
ij, and wi from (Kocuk et al.

2016a) to strengthen the on/off QC relaxation for ACOTS. Since those constraints are

polynomial functions in multilinear terms, we linearize them with the extreme-point rep-

resentation. We also develp novel cutting planes to incorporate those constraints more

efficiently via branch-and-cut framework.

14

4.1. Formulating Lifted Cycle Constraints

The lifted cycle constraints are formulated based on the fact that for any given cycle C

in the transmission network, the voltage angle differences of all lines in C sum up to 0.

More formally, let (v̂1, v̂2, . . . , v̂n, v̂1) be a vertex sequence for the cycle C of length n, and

let the cycle be represented by its lines: C = {(v̂1, v̂2), (v̂2, v̂3), . . . , (v̂n, v̂1)}, then we have∑
(i,j)∈C θij = 0.

The method we use to derive lifted cycle constraints for the QC relaxation is similar

to that of (Kocuk et al. 2016a) where lifted cycle constraints for the SOC relaxation are

derived. However, unlike in the SOC relaxation, the main advantage of the QC relaxation is

that we have direct access to both (cij, sij) and (wR
ij,w

I
ij) variables, enabling us to formulate

additional lifted cycle constraints that could further enhance the relaxation quality.

In what follows, we derive lifted cycle constraints for cycles with 3 and 4 nodes. We

call the resulting constraints as 3-cycle constraints and 4-cycle constraints, respectively.

We first develop those constraints without considering switching (on/off) decisions, and

then demonstrate how to reformulate them to include those decisions using a tight big-M

formulation.

4.1.1. 3-Cycle Constraints For a cycle of three nodes i, j and k, we have θij + θjk +

θki = 0 or equivalently θik = θij + θjk, which indicates that cos(θik) = cos(θij + θjk) and

sin(θik) = sin(θij + θjk). Expanding the right-hand sides and replacing the trigonometric

functions with their corresponding lifted variables, we get the following nonlinear 3-cycle

constraints:

cik = cijcjk− sijsjk (12a)

sik = cijsjk + sijcjk, (12b)

Though simple, these are novel and are applicable to both ACOPF and ACOTS problems.

We can then obtain the lifted cycle constraints in (Kocuk et al. 2016a) by multiplying both

sides of (12a) and (12b) with viv
2
jvk, and using the relationships in (1e) and (3) (ignoring

switching decisions in (3) for now):

wjw
R
ik =wR

ijw
R
jk−wI

ijw
I
jk, (13a)

wjw
I
ik =wR

ijw
I
jk +wI

ijw
R
jk. (13b)

15

Alternatively, constraints (13) can also be derived from minor-based reformulation as in

(Kocuk et al. 2018).

For brevity, in the following, we call lifted cycle constraints with cij and sij variables as

lifted cycle constraints in the c-s space, and lifted cycle constraints with wR
ij, w

I
ij, and wi

variables as lifted cycle constraints in the w space.

We also derive two more sets of lifted cycle constraints by considering other permutations

of the equality θij + θjk + θki = 0, including θjk + θki = θji and θki + θij = θkj. Though they

look equivalent in the nonlinear forms, the linearized versions (see Section 4.2) of these

permutated constraints do not necessarily dominate one another, and we add all of them

to tighten the relaxation.

Another type of lifted cycle constraints can be derived from the equality θij+θjk−θik = 0,

which leads to the following constraints in the c-s space:

cijcjkcik + cijsjksik− sijsjkcik + sijcjksik = 1 (14a)

sijcjkcik + sijsjksik + cijsjkcik− cijcjksik = 0. (14b)

The following proposition shows the equivalence between constraints (12) and (14). This

proposition is similar to the Proposition 4.1 in (Kocuk et al. 2016a), but our result is in

the c-s space rather than the w space, and we simplify the presentation of the result. Also,

we provide a new way to prove this result.

Proposition 1. For all (i, j) ∈ A, if cij and sij satisfy c2ij + s2ij = 1, then {(c, s) :

(12) holds}= {(c, s) : (14) holds}.

Proof. We first prove that {(c, s) : (12) holds} ⊆ {(c, s) : (14) holds}. If the variables c

and s satisfy (12a)-(12b), we multiply both sides of (12a) with cik and both sides of (12b)

with sik, then sum up those two equations:

c2ik + s2ik = cikcijcjk− ciksijsjk + sikcijsjk + siksijcjk.

Since the left-hand side is equal to 1, this equation is equivalent to constraint (14a).

Similarly, we obtain constraint (14b) by multiplying both sides of (12a) with sik and both

sides of (12b) with cik, and deduct the second equation from the first.

For the reverse direction, if c and s satisfy (14), let a= cijcjk−sijsjk and b= cijsjk+sijcjk,

we can rewrite (14a) and (14b) as cika+ sikb= 1 and cikb− sika= 0, respectively. Solving

for a and b, we get a= cik and b= sik, which are equivalent to constraints (12a)-(12b). �

16

4.1.2. 4-Cycle Constraints For a 4-cycle with nodes {i, j, k, l}, we similarly derive lifted

cycle constraints based on the equality θij + θjk + θkl + θli = 0. More specifically, for the

permutation θij + θkl = θil− θjk, we derive the following lifted cycle constraints

cijckl− sijskl = cilcjk + silsjk (15a)

cijskl + sijckl =−cilsjk + silcjk (15b)

wR
ijw

R
kl−wI

ijw
I
kl =wR

ilw
R
jk +wI

ilw
I
jk (15c)

wR
ijw

I
kl +wI

ijw
R
kl =−wR

ilw
I
jk +wI

ilw
R
jk. (15d)

For the other two permutations, i.e., θij + θjk = θil− θkl and θjk + θkl = θil− θij, we can

derive similar lifted cycle constraints. Note that for those permutations, the lifted cycle

constraints in the w space contain trilinear terms, thus we do not include those constraints

in our implementation for efficiency purposes.

4.1.3. On/off cycle constraints for ACOTS To reformulate lifted cycle constraints for

ACOTS and include switching decisions, we use the big-M formulation. As an example,

we demonstrate the formulation on constraints (12), i.e., the 3-cycle constraints in the c-s

space. Constraints (12) are only valid when all lines in the 3-cycle C are switched on, which

is ensured by the following big-M constraints:

− 3ẑ 6 cik− cijcjk + sijsjk 6 3ẑ (16a)

− 3ẑ 6 sik− cijsjk− sijcjk 6 3ẑ. (16b)

Here, ẑ =
∑

(l,m)∈C(1 − zlm) and we use “3” as the big-M constant. It is valid because

cij ∈ [0,1] and sij ∈ [−1,1] for the worst-case bounds of θij ∈ [−π
2
, π
2
]. Although, this could

be further improved if the angle-difference bounds are tighter. We also include similar

on/off constraints for all 4-cycles with appropriate big-M constants.

4.2. Extreme-Point Representation

The lifted cycle constraints contain bilinear terms, which are usually linearized with

McCormick relaxation in the literature (Kocuk et al. 2016b, 2018). We instead use the

extreme-point representation to linearize those constraints, which is guaranteed to capture

the convex hull of the lifted cycle constraints for a given cycle (including all permutations

in the c-s or w space).

17

For example, let xci ∀i = 1, . . . ,6 represent variables cij, cjk, cik, sij, sjk, sik, respectively.

We first rewrite 3-cycle constraints (12) and its counterparts by permutation as follows:

xc3 = xc1x
c
2−xc4xc5, xc6 = xc1x

c
5 +xc2x

c
4 (17a)

xc1 = xc2x
c
3 +xc5x

c
6, xc4 = xc2x

c
6−xc3xc5 (17b)

xc2 = xc1x
c
3 +xc4x

c
6, xc5 = xc1x

c
6−xc3xc4. (17c)

Let binary variable yC equal 1 if and only if all lines in the cycle C = {(i, j), (j, k), (k, i)}

are switched on. xcj1j2 is a lifted variable for xcj1x
c
j2

. We can linearize the constraint xc3 =

xc1x
c
2−xc4xc5 and connect the constraint with line switching decisions as follows:

min(0,xc
3)(1− yC)6 xc3−xc12 +xc45 6max(0,xc

3)(1− yC). (18)

We will explain this constraint in more detail at the end of this section after introducing

constraints (19). Other constraints in (17) can be linearized in a similar way.

In addition to the linearization above, we have the following constraints in the extreme-

point representation for constraints (17) (with switching decisions added):

64∑
i=1

λcsi = yC (19a)

λcsi > 0 ∀i= 1, . . . ,64 (19b)

xcj ≥xc
j

 ∑
i:(X ij=xc

j)

λcsi

+xc
j

 ∑
i:(X ij=x

c
j)

λcsi

+ min(0,xc
j)(1− yC) ∀j = 1, . . . ,6 (19c)

xcj 6x
c
j

 ∑
i:(X ij=xc

j)

λcsi

+xc
j

 ∑
i:(X ij=x

c
j)

λcsi

+ max(0,xc
j)(1− yC) ∀j = 1, . . . ,6 (19d)

xcj1j2 =

64∑
i=1

λcsi
(
X i
j1
X i
j2

)
∀(j1, j2)∈P (19e)

1−
∑

(i,j)∈C

(1− zij)6 yC 6
1

|C|
∑

(i,j)∈C

zij (19f)

yC ∈ {0,1} (19g)

where λcsi is an auxiliary variable. P = {(1,2), (1,3), (1,5), (1,6), (2,3), (2,4), (2,6), (3,4),

(3,5), (4,5), (4,6), (5,6)}. X can be viewed as a matrix of size 26 × 6, such that every

row represents all possible combinations of the lower and upper bounds of variables xcj ∈

18

[xc
j ,x

c
j] ∀j = 1, . . . ,6. Constraints (19a) and (19b) set bounds for auxiliary multiplier vari-

ables. When yC = 1, constraints (19c), (19d), and (19e) represent the convex hull consisting

of variables xcj (∀j) and xcj1j2 (∀(j1, j2)); when yC = 0 constraints (19c) and (19d) become

redundant. Constraint (19f) connects yC and zij: when all lines are switched on, (19f) fixes

yC to 1. If any line is switched off, 1−
∑

(i,j)∈C(1− zij)6 0 and 1
|C|
∑

(i,j)∈C zij ∈ [0,1), which

enforce yC = 0. Also note that when yC = 0, (19a), (19b) and (19e) ensure xc12 = xc45 = 0, and

constraint (18) becomes redundant. We can similarly derive the convex hull formulation

for 3-cycle constraints in the w space and for 4-cycle constraints.

To show the tightness of extreme-point formulation compared with McCormick relax-

ation, we use the scatter plot method, similar to that of Luedtke et al. (2012). We apply

the two different relaxation methods for the summation of bilinear terms
∑

(j1,j2)∈P x
c
j1
xcj2.

Without loss of generality, we set the domain of xci , i = 1, ...,6 as [−1,1], which include

both positive and negative numbers. We randomly generate 5,000 samples of those points,

following a uniform distribution in their domain. For each sample, we then obtain the

difference between upper and lower bounds of the summation with the two relaxation

methods, and obtain the scatter plot in Figure 2. In the scatter plot, each point (i.e., blue

spot) corresponds to the result of one sample. All the points are above the (grey) diagonal

line, which implies that the extreme-point representation is either tighter or as tight as the

McCormick relaxation.

Figure 2 Scatter plot comparing extreme-point formulation with McCormick relaxation for summation

of bilinear terms.

4.3. Branch-and-Cut Algorithm for Lifted Cycle Constraints

The size of extreme-point formulation for lifted cycle constraints grows quickly with the

number of cycles in the network. Therefore, instead of adding all of those constraints at

19

once, we use a separation scheme which generates cutting planes only when the linearized

lifted cycle constraints are violated.

Due to binary line switching decisions in the linearized lifted cycle constraints, the

separation problem is not a linear program (LP). To generate cutting planes that separates

infeasible solutions, we first ignore the line switching decisions in the linearized lifted cycle

constraints and generate Benders feasibility cuts if those constraints are violated. We then

incorporate binary variables into the Benders cuts via disjunctive programming.

First, we describe how to generate Benders cuts without considering line switching deci-

sions. At the start of the cutting-plane algorithm we solve the ACOTS-QC model without

any lifted cycle constraints, and obtain optimal solutions for c-s and w variables. Then

for each cycle we solve a feasibility problem consisting of all the lifted cycle constraints

(within the c-s or w space) in the extreme-point formulation without line switching deci-

sions, while fixing c-s or w variables to their optimal values. If this feasibility problem is

feasible, then none of the linearized lifted cycle constraints is violated, so we do not need

to add any cut; otherwise, we generate a Benders feasibility cut, and add this cut back to

the ACOTS-QC model and solve it again. The algorithm terminates if at one iteration the

ACOTS-QC model solution is feasible to the lifted cycle constraints for all cycles.

For example, for a 3-cycle with nodes i, j, and k, let xc = (cij, cjk, cik, sij, sjk, sik) and let

xc∗ be an optimal solution of the ACOTS-QC model. We solve the following separation

problem:

min 0 (20a)

s.t. extreme-point representation of (17) (20b)

xc =xc∗. (20c)

If this problem is infeasible, we can generate a Benders feasibility cut in the following form:

β>xc ≤ b (21)

where β and b are the coefficient vector and the constant in the Benders cut, respectively.

Now we consider the impact of line switching decisions. The Benders cut should be redun-

dant when any line in a cycle is turned off. To ensure this, we reformulate Benders cuts

via disjunctive programming. Again, we use the 3-cycle constraints in the c-s space to

20

demonstrate how this works. Remember the binary variable yC that equals 1 if and only

if all lines in the cycle C are turned on. The Benders cut (21) should only be active when

yC = 1. In other words, the feasible region defined by the reformulated Benders cut is a

union of the following two sets:

Γ0 = {(xc, yC) : yC = 0, min(0,xc)≤ xc ≤max(0,xc)}

Γ1 = {(xc, yC) : yC = 1, β>xc ≤ b}

where xc and xc are lower and upper bounds of xc. Using disjunctive programming, the

following constraint is valid for the convex hull of Γ0 ∪Γ1:

β>xc ≤ yCb+ (1− yC)

(∑
i∈N :βi<0

βimin(0,xc
i) +

∑
i∈N :βi>0

βimax(0,xc
i)

)
(22)

where N is the set of indices for β and xc. Intuitively, when yC = 1, (22) is exactly the

Benders cut (21); when yC = 0, (22) is always satisfied and thus becomes redundant.

The separation scheme needs to solve the mixed-integer quadratic ACOTS-QC model

at each iteration, which is very inefficient. This is why we use a branch-and-cut method,

where the mixed-integer quadratic ACOTS-QC model is only solved once with the branch-

and-bound algorithm, and the Benders cuts are added at integral nodes of the branch-

and-bound tree. More specifically, at each integral node, we obtain the optimal values of

trigonometric terms xc and switching decisions zij, and denote them respectively by xc∗

and z∗ij. For any cycle C with all lines turned on (i.e., when
∑

(i,j)∈C z∗ij = |C|), we solve the

separation problem (20). If the problem is infeasible, we add constraints (19f), (19g), and

(22).

5. Optimization-Based Bound Tightening

The OBBT method is a technique in non-convex optimization, which aims to improve the

convex relaxation bound by tightening the bounds of certain variables. OBBT is often used

to improve bounds in AC power flow problems (Chen et al. 2015), and it has the benefit of

being massively parallelizable (Gopinath et al. 2020). In our work, we implement OBBT to

tighten the bounds of vi, θij, zij, and yC variables before solving the relaxations of ACOTS.

To formulate bound tightening optimization models for any variable x, we replace the

objective of an ACOTS relaxation (e.g., ACOTS-QC) with maxx or minx. To avoid solving

time-consuming MINLPs in OBBT, we linearly relax all integer variables. We denote the

21

optimal objectives of the bound tightening maximization and minimization problems x̄

and x. If x is a binary variable (such as zij and yC), we can further tighten their bounds by

fixing x to 1 if x> 0, and to 0 if x̄ < 1 within the OBBT iteration. The OBBT algorithm

terminates when the bounds of all variables stop improving, or when the algorithm reaches

its time/iteration limit.

We summarize the implementation of the algorithm in Figure 3.

START
Tighten

variable bounds
via OBBT

Solve node linear
relaxation in

branch-and-bound

Stopping
criterion?

STOP
Check

integrality

Apply lazy
callback

Generate
cycle-based

cuts

Yes

zij ,∀(i, j)∈A are
not all integral

zij ,∀(i, j) ∈ A
are integral

No

Figure 3 Flow chart of the proposed algorithm. After OBBT which preprocesses variable bounds, the algorithm

enters a branch-and-bound tree where cuts are generated (as described in Section 4.3) and added at

integral nodes via lazy callback. The algorithm terminates when the gap between the upper and lower

bounds of branch-and-bound search is below a small tolerance.

6. Numerical Experiments

This section presents the numerical efficacy of the proposed ACOTS-QC and ACOPF-

QC relaxations with lifted cycle constraints, and an analysis for ACOTS with different

load profiles. Our experiments are conducted on PGLib-OPF v20.07 benchmark library

(Babaeinejadsarookolaee et al. 2019). We use a Linux workstation with 3.6GHz Intel Core

i9-9900K CPUs and 128GB memory. The programming language is Julia v1.6. We locally

solve all non-convex MINLP (ACOTS) and NLP (ACOPF) formulations using Juniper.jl

(v0.7.0) (Kroger et al. 2018) and Ipopt (v3.13.4) (Wachter and Biegler 2006), respectively.

All relaxation formulations (ACOTS-QC, ACOPF-QC and OBBT iterations) are solved

using the Gurobi (v9.0.0) solver. The branch-and-cut framework for cycle constraints is

implemented using Gurobi’s lazy-constraint callback.

22

6.1. Relaxations for ACOTS

We compare five different types of relaxations for ACOTS:

(1) “PM”: The on/off QC relaxation implemented in PowerModels.jl (Coffrin et al.

2018), which is used as state-of-the-art to benchmark ACOTS relaxations. Formulation

within “PM” is based on (Hijazi et al. 2017) which uses on/off trigonometric function

relaxations and recursive McCormick linearization of trilinear terms, without additional

cycle constraints or the OBBT algorithm.

(2) “E”: Proposed ACOTS-QC relaxation with extreme-point representation for lineariz-

ing zijvivjcij and zijvivjsij in (3).

(3) “EC”: Tightened “E” with lifted cycle constraints.

(4) “ECB”: Includes all proposed improvements (extreme-point representation, lifted

cycle constraints, and OBBT).

(5) “ECB*”: The same as “ECB”, except the lifted cycle constraints are added via

branch-and-cut framework as in Section 4.3.

We also provide initial feasible solutions as warm-start solutions, which are helpful to

speedup the convergence for many of the large instances. Those initial feasible solutions

are obtained by solving ACOPF-QC relaxation with recursive McCormick linearization

for trilinear terms (for PM), ACOPF-QC (with extreme-point linearization, for “E”) or

ACOPF-QC with lifted cycle constraints (for “EC”), and those solutions are valid when

all lines in the network are switched on.

We run PGLib instances with up to 300 buses under typical operating conditions (TYP),

as well as cases with small angle-difference conditions (SAD) and congested operating

conditions (API). In Table 2 we present results for cases that are solved in the 2-hour time

limit (within 0.1% optimality tolerance) for “E”. The performance measures we use for

comparison include optimality gap and runtime. We put “ns.” for the optimality gaps of

cases that are not solved to 0.1% optimality tolerance within the time limit, and “tl.” for

the runtime of test cases that hit the time limit.

The optimality gap is calculated by (UB - LB)/LB*100 where LB is the optimal value

from relaxations of ACOTS, and UB is an upper bound for ACOTS. For UB, we take the

minimum of local optimal values of the following three types of upper bounding models:

• Non-convex ACOTS model (1). Here, note that within the time limit (2 hours), Juniper

fails to find feasible solutions for many instances.

23

• Non-convex ACOPF model with all lines switched on.

• Non-convex ACOPF model with the set of lines switched off, as indicated by the

ACOTS-QC solutions.

We highlight with boldface the optimality gaps improved after the relaxations are tight-

ened. All comparisons are between two adjacent columns in the table. We also highlight

the reduced runtimes of our branch-and-cut algorithm (in ECB*).

The runtimes of “ECB”, and “ECB*” are the runtimes of the ACOTS-QC relaxation

problems and do not include the runtimes of OBBT. This is because OBBT time is a

constant factor inclusion irrespective of whether the cycle constraints are added to LP-

relaxed models (zij, yC ∈ [0,1]), directly or in a branch-and-cut fashion within the OBBT

algorithm. Moreover, these times are not as significant when compared with the ACOTS-

QC relaxation problems, as the OBBT’s LP-relaxed models, at every iteration, can be

solved in parallel. We also exclude the model building time of sub-problems in ECB*

within the branch-and-cut algorithm, as any overhead in such time is an artifact of the

mathematical modeling package within Julia. In addition, we set the upper bound on the

number of added cuts at 200, as adding too many cuts could slow down the performance.

We observe that those added cuts are able to significantly improve the bounds as shown

in Table 2.

In Table 2, compared with “PM”, our tightened “E” reduces the optimality gap for

many benchmark instances, especially for the SAD and API ones. For example, it yields

3.4% gap improvement for case3 lmbd api and 2.9% improvement for case24 ieee rts sad.

It also solves several instances to optimality that “PM” is not able to solve within the time

limit. The benefit of the lifted cycle constraints (“EC”) is most apparent for “SAD” , with

case14 ieee sad closing 6.2% and case89 pegase sad finding the global optimal solution.

Combining the extreme point formulation, OBBT algorithm, and the lifted cycle con-

straints, we obtain the tightest QC-based ACOTS relaxation in the literature, as highlighted

in the optimality gap columns of “ECB” and “ECB*” (see Table 2). Note that “ECB*”

is as tight as “ECB” in almost all cases, and reduces the solution time significantly in

many instances due to the efficient implementation of the branch-and-cut framework. It

is clear from the table that the OBBT algorithm in conjunction with all the proposed

enhancements in this paper can provide significant improvements in closing the gap for

several benchmark cases. For example, in case14 ieee sad, “ECB” closes as much as 17.6%

24

Table 2 Optimality Gap and Runtime of ACOTS Relaxations (bold numbers: improved gaps and run times after

tightening the relaxation; ‘ns.”: not solved to optimality tolerance within time limit; “tl.”: hits the time limit)

Optimality Gap (%) Runtime (seconds)

Test Case UB PM E EC ECB ECB* PM E EC ECB ECB*

Typical Operaing Conditions (TYP)

case3 lmbd 5812.6 1.3 1.0 1.0 0.0 0.1 0.02 0.04 0.19 0.15 0.39

case5 pjm 15174.0 1.1 1.1 1.1 1.1 1.1 0.12 0.04 0.23 0.31 0.43

case14 ieee 2178.1 0.1 0.1 0.1 0.1 0.1 0.44 0.28 1.49 2.50 1.32

case24 ieee rts 63352.2 0.0 0.0 0.0 0.0 0.0 4.28 1.11 310.56 349.21 3.37

case30 as 803.1 0.1 0.1 0.1 0.1 0.1 6.21 21.97 446.96 630.60 9.97

case30 ieee 7579.0 12.1 11.9 11.9 11.0 11.0 1.21 1.01 3.30 6.56 4.79

case39 epri 137728.7 0.0 0.0 0.0 0.0 0.0 0.65 0.52 0.93 1.17 2.32

case57 ieee 37559.3 0.1 0.1 0.1 0.1 0.1 34.34 17.51 40.27 77.43 27.96

case73 ieee rts 189764.1 0.0 0.0 0.0 0.0 0.0 39.58 33.14 4876.16 5136.27 34.48

case89 pegase 106622.2 0.1 0.1 0.0 ns. ns. tl. tl. tl. tl. tl.

case118 ieee 96645.9 0.3 0.3 0.3 0.3 0.3 497.58 415.09 1622.20 1778.12 1389.84

case179 goc 754266.4 0.2 0.2 0.2 0.2 0.2 1095.93 307.07 175.25 334.33 340.78

case200 activ 27557.6 0.0 0.0 0.0 0.0 ns. 1636.15 2837.87 4398.64 3014.30 tl.

Small Angle Difference Conditions (SAD)

case3 lmbd sad 5959.3 3.0 1.4 1.3 0.1 0.1 0.02 0.02 0.07 0.15 0.38

case5 pjm sad 26108.8 1.4 0.6 0.6 0.2 0.2 0.04 0.05 0.15 0.20 0.41

case14 ieee sad 2727.5 20.1 18.3 12.1 0.7 0.8 0.41 0.57 2.55 3.23 1.15

case24 ieee rts sad 75794.0 5.3 2.4 2.1 0.7 0.8 32.92 14.37 84.41 104.09 16.97

case30 as sad 893.9 4.5 1.9 1.9 1.1 1.2 18.56 11.68 45.37 65.27 14.28

case30 ieee sad 8188.6 8.8 8.7 8.7 0.1 0.2 1.50 2.82 5.62 5.89 2.77

case39 epri sad 147472.8 0.1 0.1 0.1 0.1 0.1 11.84 15.59 14.39 16.40 9.68

case57 ieee sad 38597.8 0.2 0.2 0.1 0.1 0.1 24.21 44.55 148.33 189.35 82.79

case89 pegase sad 107285.7 ns. 0.7 0.0 ns. ns. tl. tl. tl. tl. tl.

case118 ieee sad 97572.5 0.9 0.9 0.9 0.9 0.9 4581.28 3453.41 6818.73 tl. 4520.33

case179 goc sad 755293.1 ns. 0.1 0.1 0.1 0.1 tl. tl. tl. tl. tl.

case200 activ sad 27557.6 0.0 0.0 0.0 0.0 ns. 3564.09 tl. 1671.87 tl. tl.

Congested Operating Conditions (API)

case3 lmbd api 10636.0 3.8 0.4 0.4 0.0 0.0 0.02 0.03 0.13 0.09 0.33

case5 pjm api 75190.3 2.6 2.6 2.6 0.3 0.3 0.11 0.07 0.19 0.30 0.55

case14 ieee api 5999.4 5.1 5.1 5.1 0.8 0.9 0.34 0.27 1.24 0.82 0.84

case24 ieee rts api 119743.1 5.2 3.4 3.4 1.2 1.2 7.30 4.16 82.80 31.66 6.50

case30 as api 3065.8 9.7 9.7 9.7 9.4 9.5 3.65 3.44 37.99 20.32 6.00

case30 ieee api 17936.5 4.9 4.9 4.9 0.3 0.4 1.25 0.86 2.22 4.57 2.22

case39 epri api 246723.0 0.5 0.5 0.5 0.4 0.4 1.42 0.75 1.86 4.84 3.77

case57 ieee api 49271.9 0.0 0.1 0.1 0.0 0.0 36.50 12.63 44.12 51.50 27.34

case73 ieee rts api 385277.3 4.3 2.4 1.7 1.2 1.2 128.08 3869.93 tl. 3307.26 328.03

case89 pegase api 100325.3 ns. 0.2 0.0 ns. ns. tl. tl. tl. tl. tl.

case118 ieee api 181535.8 6.5 6.2 6.2 6.1 6.1 tl. tl. tl. tl. tl.

case162 ieee dtc api 116923.8 1.0 1.0 1.0 0.3 ns. tl. tl. tl. tl. tl.

case179 goc api 1932043.6 6.3 5.9 5.8 0.6 0.6 tl. 881.61 tl. 343.73 1000.46

case200 activ api 35701.3 0.0 0.0 0.0 0.0 0.0 1993.90 2764.12 tl. 3029.17 855.60

case240 pserc api 4639006.1 ns. 0.6 0.6 0.6 0.6 tl. tl. tl. tl. tl.

case300 ieee api 684985.5 0.8 0.8 0.8 0.7 0.8 tl. tl. tl. tl. tl.

25

of the gap when compared with “E”, and proves global optimality for case3 lmbd api.

With “ECB” and the faster “ECB*”, we close the optimality gaps to lesser than 1.0%

for ≈75% of all instances; these improvements are also significant when compared with

state-of-the-art implementation in “PM” and the results in (Bestuzheva et al. 2020). Note

that if the optimality gap equals zero, then the corresponding ACOTS relaxation provides

a globally optimal solution to the non-convex ACOTS problem.

Although not shown in the result table, it is worthy to mention that tightening the

ACOTS relaxations does lead to different line switching decisions. Therefore, by tightening

the relaxation, we make better decisions and obtain better approximations of the true cost

after line switching.

6.2. Analysis for varying load profiles

We uniformly increase the loading condition, starting from the nominal value, of case30 ieee

instance, and observe the number of lines that are switched off. As shown in Figure 4, the

number of off lines first decreases, and then increases. This is because when the load is

at the lower levels, some lines are redundant and are switched off to save costs. However,

when the load is very high and the network is congested, lines are switched off to avoid

congestion. As suggested by Fisher et al. (2008), it would be beneficial to solve the ACOTS

problem frequently to obtain optimal line switching decisions for different load profiles.

0

1

2

0 2 4 6 8 10 12 14 16

of

f l
in

es

Load Change (%)

Figure 4 Number of lines switched off with different load levels.

6.3. Lifted cycle constraints for ACOPF-QC

We also add the linearized lifted cycle constraints (including the novel ones we derived) to

the ACOPF-QC relaxation, This happens to be the special case of the ACOTS-QC with all

the lines of the network swithced on. These cycle constraints are linearized using the strong

extreme-point representation, which is also new. We experiment with “TYP”, “SAD” and

26

Table 3 Comparing optimality Gaps (%) for “E” and “EC” relaxations for ACOPF-QC.

Test Case E EC

case3 lmbd sad 1.38 1.31

case14 ieee sad 19.16 13.10

case24 ieee rts sad 2.74 2.20

case57 ieee sad 0.32 0.25

case73 ieee rts sad 2.37 1.80

case240 pserc sad 4.34 4.24

case2383wp k sad 1.91 1.88

case3 lmbd api 4.53 3.85

case24 ieee rts api 11.02 10.88

case73 ieee rts api 9.52 9.31

case179 goc api 5.86 5.75

“API” cases with up to 2869 buses (102 cases in total), and observe improvements of

optimality gaps in several instances. We report cases with greater than 0.03% improvement

in objectives in Table 3. The results show that, for ACOPF-QC the lifted cycle constraints

are more useful in tightening “SAD” and “API” instances, and for smaller-size test cases.

7. Conclusion

In this paper, we strengthen the on/off QC relaxation of the ACOTS model by the extreme-

point representation technique, several valid inequalities added via branch-and-cut, and the

OBBT algorithm. Experiments on PGLib instances show that the strengthened ACOTS-

QC formulation significantly improves lower bounds in several instances, especially for

small angle-difference instances and congested instances. Our proposed lifted cycle con-

straints improve bounds of ACOTS-QC as well as ACOPF-QC relaxations.

Considering large-scale grids, operated in a close-to-real-time fashion, ACOTS is still a

very hard problem to solve with optimality guarantees. As the line switching decisions are

sensitive to load changes, it would be helpful to develop stochastic programming models

that provide more robust solutions. To address scaling issues, it would be useful to (i)

balance the trade-off between run time and tighter formulations and (ii) develop faster

decomposition-based distributed algorithms.

References

Babaeinejadsarookolaee S, Birchfield A, Christie RD, Coffrin C, DeMarco C, Diao R, Ferris M, Fliscounakis

S, Greene S, Huang R, et al. (2019) The power grid library for benchmarking AC optimal power flow

algorithms. arXiv preprint arXiv:1908.02788 .

27

Bai X, Wei H, Fujisawa K, Wang Y (2008) Semidefinite programming for optimal power flow problems. Int.

J. Electr. Power Energy Syst. 30(6-7):383–392.

Barrows C, Blumsack S, Hines P (2014) Correcting optimal transmission switching for AC power flows. 2014

47th Hawaii Int. Conf. on Syst. Sci., 2374–2379 (IEEE).

Bestuzheva K, Hijazi H, Coffrin C (2020) Convex relaxations for quadratic on/off constraints and applications

to optimal transmission switching. INFORMS J. Comput. 32(3):682–696.

Ceria S, Soares J (1999) Convex programming for disjunctive convex optimization. Math. Prog. 86(3):595–

614.

Chen C, Atamtürk A, Oren SS (2015) Bound tightening for the alternating current optimal power flow

problem. IEEE Trans. on Power Systems 31(5):3729–3736.

Coffrin C, Bent R, Sundar K, Ng Y, Lubin M (2018) PowerModels.jl: An open-source framework for exploring

power flow formulations. 2018 Power Syst. Comput. Conf. (PSCC), 1–8.

Coffrin C, Hijazi HL, Lehmann K, Van Hentenryck P (2014) Primal and dual bounds for optimal transmission

switching. 2014 Power Syst. Comput. Conf., 1–8 (IEEE).

Coffrin C, Hijazi HL, Van Hentenryck P (2016) The QC relaxation: A theoretical and computational study

on optimal power flow. IEEE Trans. Power Syst. 31(4):3008–3018.

Fisher EB, O’Neill RP, Ferris MC (2008) Optimal transmission switching. IEEE Trans. Power Syst.

23(3):1346–1355.

Glavitsch H (1985) State of the art review: Switching as means of control in the power system. Int. J. Electr.

Power & Energy Syst. 7(2):92–100.

Goldis EA, Li X, Caramanis MC, Keshavamurthy B, Patel M, Rudkevich AM, Ruiz PA (2013) Applicability

of topology control algorithms (TCA) to a real-size power system. 2013 51st Annu. Allerton Conf. on

Commun., Control, and Comput. (Allerton), 1349–1352 (IEEE).

Gopinath S, Hijazi H, Weisser T, Nagarajan H, Yetkin M, Sundar K, Bent R (2020) Proving global optimality

of ACOPF solutions. Electr. Power Syst. Res. 189:106688.

Hedman KW, O’Neill RP, Fisher EB, Oren SS (2008) Optimal transmission switching-sensitivity analysis

and extensions. IEEE Trans. on Power Systems 23(3):1469–1479.

Hedman KW, Oren SS, O’Neill RP (2011) A review of transmission switching and network topology opti-

mization. 2011 IEEE Power and Energy Soc. Gen. Meet., 1–7 (IEEE).

Hijazi H, Coffrin C, Van Hentenryck P (2017) Convex quadratic relaxations for mixed-integer nonlinear

programs in power systems. Math. Prog. Comput. 9(3):321–367.

Jabr RA (2006) Radial distribution load flow using conic programming. IEEE Trans. Power Syst. 21(3):1458–

1459.

28

Kocuk B, Dey SS, Sun XA (2016a) Strong SOCP relaxations for the optimal power flow problem. Oper. Res.

64(6):1177–1196.

Kocuk B, Dey SS, Sun XA (2017) New formulation and strong MISOCP relaxations for AC optimal trans-

mission switching problem. IEEE Trans. Power Syst. 32(6):4161–4170.

Kocuk B, Dey SS, Sun XA (2018) Matrix minor reformulation and SOCP-based spatial branch-and-cut

method for the AC optimal power flow problem. Math. Prog. Comput. 10(4):557–596.

Kocuk B, Jeon H, Dey SS, Linderoth J, Luedtke J, Sun XA (2016b) A cycle-based formulation and valid

inequalities for DC power transmission problems with switching. Oper. Res. 64(4):922–938.

Kroger O, Coffrin C, Hijazi H, Nagarajan H (2018) Juniper: an open-source nonlinear branch-and-bound

solver in julia. Internation. Conf. Integr. Constraint Program., Artif. Intell., Oper. Res., 377–386

(Springer).

Lehmann K, Grastien A, Van Hentenryck P (2014) The complexity of DC-switching problems. arXiv preprint

arXiv:1411.4369 .

Lu M, Nagarajan H, Bent R, Eksioglu SD, Mason SJ (2018) Tight piecewise convex relaxations for global

optimization of optimal power flow. Power Syst. Comput. Conf., 1–7 (IEEE).

Lu M, Nagarajan H, Yamangil E, Bent R, Backhaus S, Barnes A (2017) Optimal transmission line switching

under geomagnetic disturbances. IEEE Trans. Power Syst. 33(3):2539–2550.

Luedtke J, Namazifar M, Linderoth J (2012) Some results on the strength of relaxations of multilinear

functions. Math. Prog. 136(2):325–351.

Nagarajan H, Lu M, Wang S, Bent R, Sundar K (2019a) An adaptive, multivariate partitioning algorithm

for global optimization of nonconvex programs. J. Global. Opt. 74(4):639–675.

Nagarajan H, Sundar K, Hijazi H, Bent R (2019b) Convex hull formulations for mixed-integer multilinear

functions. AIP Conf. Proc., volume 2070, 020037 (AIP Publishing LLC).

Purchala K, Meeus L, Van Dommelen D, Belmans R (2005) Usefulness of DC power flow for active power

flow analysis. IEEE Power Eng. Soc. General Meeting, 2005, 454–459 (IEEE).

Sundar K, Nagarajan H, Misra S, Lu M, Coffrin C, Bent R (2018) Optimization-based bound tightening

using a strengthened QC-relaxation of the optimal power flow problem. arXiv preprint: 1809.04565 .

Taylor JA (2015) Convex optimization of power systems (Cambridge University Press).

Wachter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Math. Prog. 106(1):25–57.

	Introduction
	The ACOTS Problem
	On/Off Quadratic Convex Relaxation
	Cycle-Based On/Off Polynomial Constraints
	Formulating Lifted Cycle Constraints
	3-Cycle Constraints
	4-Cycle Constraints
	On/off cycle constraints for ACOTS

	Extreme-Point Representation
	Branch-and-Cut Algorithm for Lifted Cycle Constraints

	Optimization-Based Bound Tightening
	Numerical Experiments
	Relaxations for ACOTS
	Analysis for varying load profiles
	Lifted cycle constraints for ACOPF-QC

	Conclusion

