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Abstract

The Fritz-John (FJ) and KKT conditions are fundamental tools for characterizing minimiz-
ers and form the basis of almost all methods for constrained optimization. Since the seminal
works of Fritz John, Karush, Kuhn and Tucker, FJ/KKT conditions have been enhanced by
adding extra necessary conditions. Such an extension was initially proposed by Hestenes in
the 1970s and later extensively studied by Bertsekas and collaborators. In this work, we re-
visit enhanced KKT stationarity for standard (smooth) nonlinear programming. We argue
that every KKT point satisfies the usual enhanced versions found in the literature. Therefore,
enhanced KKT stationarity only concerns the Lagrange multipliers. We then analyse some
properties of the corresponding multipliers under the quasi-normality constraint qualification
(QNCQ), showing in particular that the set of so-called quasinormal multipliers is compact un-
der QNCQ. Also, we report some consequences of introducing an extra abstract constraint to
the problem. Given that enhanced FJ/KKT concepts are obtained by aggregating sequential
conditions to FJ/KKT, we discuss the relevance of our findings with respect to the well-known
sequential optimality conditions, which have been crucial in generalizing the global conver-
gence of a well-established safeguarded augmented Lagrangian method. Finally, we apply
our theory to mathematical programs with complementarity constraints and multi-objective
problems, improving and elucidating previous results in the literature.

Key words Enhanced Fritz-John, enhanced KKT, quasinormal multipliers, quasi-normality,
augmented Lagrangian method.

1 Introduction

We consider the general constrained optimization problem

min
x

f(x) subject to h(x) = 0, g(x) ≤ 0, (P)

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are continuously differentiable functions.
It is well known that it is not possible to define a practical algorithm that always reaches global

minimizers of (P) for general nonlinear constraints. Even local minimizers are impracticable to
guarantee, at least when convexity is not assumed. Practical algorithms aim to find a reason-
able stationary point, that is, a computable point that exhibits key properties of minimizers. In
this sense, the most important tool to characterize minimizers of (P) is the Karush-Kuhn-Tucker
(KKT) conditions. They are used to assert theoretical convergence of practically every method in

*This work has been partially supported by CEPID-CeMEAI (FAPESP 2013/07375-0), FAPESP (grants
2018/24293-0 and 2017/18308-2), CNPq (grants 306988/2021-6 and 309136/2021-0), PRONEX - CNPq/FAPERJ
(grant E-26/010.001247/2016) and ANPCyT (grants PICT 2016-0921 and PICT 2019-02172, Argentina).

�Department of Applied Mathematics, UNICAMP (Universidade Estadual de Campinas), Campinas, SP, Brazil.
Email: andreani@ime.unicamp.br

�CONICET, Department of Mathematics, FCE, University of La Plata, CP 172, 1900 La Plata Bs. As.,
Argentina. Email: schuverd@mate.unlp.edu.ar

§Department of Applied Mathematics, Federal University of Esṕırito Santo, São Mateus, ES, Brazil. Email:
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constrained optimization and have been specialized/adapted to different specific contexts, such as
multi-objective optimization, nonsmooth optimization among others. Furthermore, KKT condi-
tions inspire practical stopping criteria for several algorithms [5, 7, 12, 19, 20, 23, 25, 40].

Contrary to the KKT conditions, the well-known Fritz-John (FJ) [30] conditions do not require
the fulfilment of any constraint qualification (CQ) to hold at minimizers in general. They gained
much attention with the works of Hestenes [28], Bertsekas, Ozdaglar and collaborators [13, 14,
15, 16], Ye [41, 42] and others, who dealt with extensions of the original FJ conditions, the so-
called enhanced FJ conditions. Hestenes [28] was the first to propose such an extension, showing the
existence of special (Lagrange) multipliers satisfying a property associated with infeasible sequences
(see Theorem 1, item 3(a)). This enhanced FJ version is intimately linked to the pure external
penalty method [13], and puts the quasi-normality CQ (QNCQ; see Definition 3) in evidence.
Later on, other properties were incorporated, resulting in different enhanced FJ conditions (see
Theorem 1, items 3(b,c)). In turn, enhanced KKT conditions were naturally derived from the
enhanced FJ stationarity by imposing a non-null multiplier associated with the objective function
gradient (compare items 1 of Theorem 1 and Definition 1).

All enhanced FJ/KKT conditions consist of the usual FJ/KKT ones together with extra con-
ditions. Thus, one might expect that enhanced stationarity characterizes minima better than the
usual FJ/KKT conditions, possibly, of course, under some CQ. Surprisingly, this is not true from
the primal point of view. Specifically, we argue that not only do local minimizers of (P) satisfy
enhanced KKT conditions (possibly under a CQ), as done in previous works, but also every KKT
point. That is, from the primal point of view, enhanced KKT and usual KKT are equivalent.
Thus, the difference only concerns the multipliers. We then investigate new properties of such
multipliers, in particular, those called quasinormal in the literature. In [41] it was proved that
the set of quasinormal multipliers MQ(x

∗) associated with a KKT point x∗ is bounded if QNCQ
holds at x∗. Here, we prove that MQ(x

∗) is always closed, thus compact under QNCQ. In this
sense, QNCQ has a similar status to the Mangasarian-Fromovitz CQ for the usual multipliers set
M(x∗) [24]. Contrary to M(x∗), we show that MQ(x

∗) is not convex in general. The relationship
between quasinormal and informative multipliers [14], which are associated with the most strin-
gent enhanced FJ version, is discussed. We introduce and investigate a novel intermediate concept
of multiplier that we call enhanced, which provides sensitivity information regarding constraints
in a similar way to informative multipliers. Furthermore, we apply our theory to mathemati-
cal programs with complementarity constraints and multi-objective optimization, improving and
elucidating previous results in the literature.

Another relevant issue is the impact of enhanced FJ/KKT conditions and QNCQ on con-
strained nonlinear optimization methods. For many years these concepts remained restricted to
the pure external method, so their applicability to practical algorithms was limited. Only re-
cently, we proved [4] that the safeguarded augmented Lagrangian method known as Algencan [3]
converges to KKT points under QNCQ. Algencan has an “official”, mature, general-purpose
implementation that has been successfully used in many applications [18]. The theory developed
in [4] is supported by the sequential optimality condition positive approximate KKT (PAKKT),
which captures the connection between the signs of the multipliers generated by the method and
the infeasibility of its primal sequence. PAKKT is based on Hestenes’ enhanced FJ conditions [28].
One interesting consequence of PAKKT is that the sequences of multipliers generated by Algen-
can are bounded if QNCQ holds at the limit point. This result is surprising, as QNCQ does not
imply the boundedness of the set of usual multipliers. The validity of enhanced stationarity at all
KKT points shown in this paper is an important step to properly study practical methods that
potentially generate quasinormal multipliers, at least under QNCQ. We provide some insights in
this direction concerning Algencan, paving the way to improve the previous results about the
boundedness of the penalty parameter [3, 17], which requires, for example, uniqueness of the usual
multiplier. This is an important issue regarding the stability of the method.

This paper is organized as follows. In section 2 we present the enhanced FJ/KKT stationarities.
In section 3 we show that enhanced and classical KKT conditions are equivalent. Section 4 is
devoted to discussing/proving properties of the set of quasinormal/enhanced multipliers, such as
compactness and convexity. We also consider the inclusion of abstract constraints. Section 5 is
dedicated to discussing the consequences of enhanced stationarity for Algencan. In section 6
we apply our theory to the widely studied classes of problems cited above, namely, mathematical
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programs with complementarity constraints and multi-objective optimization. Finally, section 7
brings our conclusions and future work.

Notation sgn a will denote the sign function, that is, sgn a = 1 if a > 0 and sgn a = −1 if a < 0.
We define Ig(z) = {j | gj(z) = 0}. ∥ · ∥, ∥ · ∥2 and ∥ · ∥∞ are an arbitrary norm, the Euclidean norm
and the sup-norm, respectively. Given z ∈ Rq, we define z+ = (max{0, z1}, . . . ,max{0, zq}) ∈ Rq

+.
We use the “o” and “O” notations: given two sequences of real numbers {ak} and {bk}, we write
bk = o(ak) (respectively bk = O(ak)) to indicate that there is a sequence {mk}, mk > 0, converging
to zero (respectively a constant M > 0) such that |bk| ≤ mk|ak| (respectively |bk| ≤M |ak|) for all
k, where | · | denotes the absolute value. Given a differentiable function c : Rn → Rq, we denote
by ∇c(x) the n× q matrix whose columns are the gradients ∇ci(x), i = 1, . . . , q, i.e., ∇c(x) is the
Jacobian transpose of c at x. For convenience, we can interpret a vector v ∈ Rq as a matrix q× 1;
in this case, vt denotes its transpose.

2 Enhanced stationarity for smooth problems

Enhanced FJ/KKT versions have been proposed in the literature since at least the 1970s [28], and
gained prominence with the work of Bertsekas and collaborators [13, 14, 15, 16]. The most general
enhanced FJ conditions for (P) is presented in the next theorem.

Theorem 1 ([15, Proposition 2.1]). Let x∗ be a local minimizer of the problem (P). Then there
are σ ∈ R+, λ ∈ Rm and µ ∈ Rp

+ such that

1. σ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0;

2. (σ, λ, µ) ̸= 0;

3. if I ̸= ∪ J+ ̸= ∅, where I̸= = {i | λi ̸= 0} and J+ = {j | µj > 0}, then there is a sequence
{xk} ⊂ Rn converging to x∗ such that, for all k, the following conditions are valid:

(a) λihi(x
k) > 0, ∀i ∈ I̸=, and µjgj(x

k) > 0, ∀j ∈ J+;

(b) f(xk) < f(x∗);

(c) |hi(x
k)| = o(w(xk)), ∀i ̸∈ I ̸= and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+, where w(x) =
min

{
mini∈I ̸= |hi(x)|, minj∈J+

gj(x)+
}
.

Item 3(a) implies the complementarity of the classical KKT conditions, that is, µj = 0 for all
j ̸∈ Ig(x

∗). Item 3(b) says that when we are at the boundary of the feasible set with non-null
multipliers (I̸= ∪J+ ̸= ∅), it is possible to reach x∗ “from outside” the feasible set, so that f(xk) is
smaller than the optimal value; this is a typical behaviour of external penalty approaches. Finally,
item 3(c) carries sensitivity properties of the constraints associated with null multipliers, which
include inactive inequality constraints.

Enhanced KKT conditions are obtained by setting σ = 1 in Theorem 1 and imposing one or
more conditions from item 3. Such conditions have been considered in the literature since the late
1990s. In [13, 41], only items 1 and 3(a) are considered; in [15, 14], items 3(b,c) are aggregated.
These works state such conditions only for local minimizers, like Theorem 1, and their proofs
were carried out using the pure external penalty method. Here, instead, we aim to establish the
link between enhanced KKT points not only with qualified local minima, but also with usual
KKT points. For this purpose, first we define an intermediate enhanced KKT stationary concept
by assuming items 1 and 3(a,b), and changing 3(c) putting “O(w(xk))” instead of “o(w(xk))”.
The “O” notation is weaker than “o”, so it results in a less stringent sensitivity measure of the
constraints associated with null multipliers.

Definition 1. We say that a feasible x∗ for (P) is an enhanced KKT (E-KKT) point if there are
λ ∈ Rm and µ ∈ Rp

+ such that

1. ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0;
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2. if I̸= ∪ J+ ̸= ∅, where

I̸= = {i | λi ̸= 0} and J+ = {j | µj > 0}, (1)

then there is a sequence {xk} ⊂ Rn converging to x∗ such that, for all k, the following
conditions are valid:

(a) λihi(x
k) > 0, ∀i ∈ I̸=, and µjgj(x

k) > 0, ∀j ∈ J+;

(b) f(xk) < f(x∗);

(c) |hi(x
k)| = O(w(xk)), ∀i ̸∈ I̸=, and gj(x

k)+ = O(w(xk)), ∀j ̸∈ J+, where

w(x) = min

{
min
i∈I ̸=
|hi(x)|, min

j∈J+

gj(x)+

}
.

Given a feasible point x∗ for (P), we define the set of usual associated Lagrange multipliers and
the set of quasinormal multipliers [41] by

M(x∗) =
{
(λ, µ) ∈ Rm × Rp

+

∣∣∣ ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0
µj = 0, ∀j ̸∈ Ig(x

∗)

}
and

MQ(x
∗) =

{
(λ, µ) ∈ Rm × Rp

+

∣∣∣ ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0, ∃{xk} → x∗

such that item 2(a) of Definition 1 holds

}
,

respectively. Of course, as with KKT, some additional hypothesis (constraint qualification) is
needed to ensure that a local minimizer satisfies enhanced KKT stationarity.

There are others sets of Lagrange multipliers in the literature. In [15], those satisfying items 1
and 2(a,b) of Definition 1 were called strong multipliers. Also in [15], the multipliers satisfying
items 1 with σ = 1 and 3(a–c) of Theorem 1 were called informative multipliers; they will be
considered in section 4.3. Here, we define an intermediate concept, that we will refer to as enhanced
multipliers:

ME(x
∗) =

{
(λ, µ) ∈ Rm × Rp

+

∣∣∣ ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0, ∃{xk} → x∗

such that items 2(a–c) of Definition 1 hold

}
.

Clearly, ME(x
∗) ⊂ MQ(x

∗) ⊂ M(x∗) and every informative multiplier is an enhanced multiplier,
which in turn is strong. Examples 2 and 5 below show that M(x∗) ̸⊂MQ(x

∗) in general. The next
example shows that MQ(x

∗) ̸⊂ME(x
∗) in general.

Example 1. Consider the bi-dimensional problem

min x1 subject to x1 = 0, x2 ≤ 0, x3
2 = 0

and the unique feasible point x∗ = (0, 0). Defining xk = (−1/k, 1/k), k ≥ 1, we conclude that
any ωa = (−1, 0, a), a ≥ 0, is in MQ(x

∗) (note that xk
1 < 0 for all k and thus ωa is also a

strong multiplier). On the other hand, for a > 0 we have w(x) = min{|x1|, |x3
2|} ≤ |x3

2|, thus
|x2| = O(w(x)) is impossible for any sequence {xk} converging to x∗ with xk

2 > 0, ∀k. Therefore,
ωa ̸∈ME(x

∗) for all a > 0. Actually, it is easy to see that ω0 is the unique element of ME(x
∗).

The elements of MQ(x
∗) are called quasinormal multipliers because of their close connection

with QNCQ (see Definition 3). Next, we establish new connections between E-KKT and KKT, as
well as between MQ(x

∗) and/or ME(x
∗) with QNCQ.

3 Equivalence between enhanced and classical KKT

The main purpose of this section is to highlight the equivalence between KKT and E-KKT, that
is, that every KKT point x∗ is E-KKT and vice-versa. We start by recalling the primal and dual
versions of MFCQ for (P).
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Definition 2. We say that a feasible x∗ for (P) satisfies the Mangasarian-Fromovitz CQ (MFCQ)
if ∇hi(x

∗), i = 1, . . . ,m, are linearly independent and there exists d ∈ Rn such that

∇hi(x
∗)td = 0, i = 1, . . . ,m, ∇gj(x∗)td < 0, ∀j ∈ Ig(x

∗).

Theorem 2 ([28]). A feasible x∗ for (P) satisfies MFCQ if, and only if, the system

m∑
i=1

λi∇hi(x
∗) +

∑
j∈Ig(x∗)

µj∇gj(x∗) = 0, µ ≥ 0

admits only the trivial solution (λ, µ) = 0.

The next lemma contains an interesting geometric property of smooth constraints. Roughly
speaking, it states that for active constraints with linearly independent gradients at x∗, it is possible
to approach x∗ from “either side of each of these constraints”. This result constitutes the core idea
behind the proof of [4, Lemma 2.6]. Although the arguments are similar, we provide a complete
proof for the sake of clarification.

Lemma 1. Let c : Rn → Rq be a differentiable function at x∗ such that c(x∗) = 0. Suppose that
∇ci(x∗), i = 1, . . . , q, are linearly independent. Then for any fixed s ∈ {−1,+1}q, there exist γ > 0
and a sequence {xk} ⊂ Rn\{x∗} converging to x∗ such that sici(x

k) ≥ γ∥xk − x∗∥2 for all k and
i = 1, . . . , q.

Proof. Let I+ = {i | si = 1}, I− = {i | si = −1} and

D = {x ∈ Rn | cj(x) ≥ 0, j ∈ I+, cl(x) ≤ 0, l ∈ I−}.

This set is nonempty since c(x∗) = 0. As ∇ci(x∗), i = 1, . . . , q, are linearly independent, the
gradients of all constraints in D evaluated at x∗ are also linearly independent. Thus, MFCQ holds
at x∗, and so there is an unitary d ∈ Rn such that

∇cj(x∗)td > 0, ∇cl(x∗)td < 0, j ∈ I+, l ∈ I−. (2)

Defining xk = x∗+ d/k for all k ≥ 1, we have ∥xk−x∗∥2 = 1/k → 0 and (xk−x∗)/∥xk−x∗∥2 = d
for all k. By the differentiability of ci at x

∗, i = 1, . . . , q, we have

ci(x
k) = ci(x

∗ + d/k) = ci(x
∗) + 1/k∇ci(x∗)td+ o(d/k). (3)

As c(x∗) = 0, dividing the above expression by ∥xk − x∗∥2 = 1/k and using (2), we obtain

cj(x
k) ≥ 1/2∇cj(x∗)td · ∥xk − x∗∥2, ∀j ∈ I+,

cl(x
k) ≤ 1/2∇cl(x∗)td · ∥xk − x∗∥2, ∀l ∈ I−

for all k large enough. Therefore, sici(x
k) ≥ γ∥xk − x∗∥2 for all i = 1, . . . , q and k large enough

by taking γ = 1/2 ·min {∇cj(x∗)td, −∇cl(x∗)td | j ∈ I+, l ∈ I−} > 0.

The next useful result is a consequence of the well-known Carathéodory lemma. It is a simplified
version of [8, Lemma 1].

Lemma 2. Let Z be a finite set of indices, and suppose that z =
∑

i∈Z αivi ̸= 0 is a linear

combination of vectors vi ∈ Rn. If αi ̸= 0 for all i ∈ Z, then there are Ẑ ⊂ Z and α̂i, i ∈ Ẑ, such
that z =

∑
i∈Ẑ α̂ivi, αi · α̂i > 0 for all i ∈ Ẑ and {vi}i∈Ẑ is linearly independent.

In the following, we present one of the main results of this paper. We show that the stationarity
concept of Definition 1 is equivalent to the classical KKT conditions. This is an interesting issue
since

� classical KKT conditions are at the root of nonlinear programming. They have been used for
decades, serving as the theoretical basis for practically all existing methods, and have been
adapted to non-standard contexts such as multi-objective and nonsmooth optimization;
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� enhanced FJ/KKT conditions have been extensively studied since at least the 1990s, see for
example [13];

� and finally, the result says that, from the primal point of view, the classical KKT conditions
characterizes minimizers of (P) as well as their enhanced versions. This becomes particularly
interesting when we confront item 2(a) of Definition 1 with interior point strategies.

Theorem 3. Every KKT point x∗ is E-KKT and vice-versa.

Proof. Trivially, every E-KKT point is KKT. Let us prove the converse. Let x∗ be a KKT point,
λ and µ be any associated multipliers and I ̸= and J+ be the induced sets as in (1). Clearly, it is
sufficient to consider only the nontrivial case ∇f(x∗) ̸= 0, which implies I ̸= ∪ J+ ̸= ∅. Lemma 2

asserts that there are sets I ⊂ I̸= and J ⊂ J+, not both empty, and vectors λ̂I , µ̂J such that

∇f(x∗) +
∑
i∈I

λ̂i∇hi(x
∗) +

∑
j∈J

µ̂j∇gj(x∗) = 0, (4)

λ̂i ̸= 0 for all i ∈ I, µ̂j > 0 for all j ∈ J , and the gradients of constraints in (4) are linearly
independent. Applying Lemma 1 on such gradients, we obtain a sequence {xk} converging to x∗

and γ > 0 satisfying

sgn (λ̂i) · hi(x
k) ≥ γ∥xk − x∗∥2, ∀i ∈ I, and gj(x

k) ≥ γ∥xk − x∗∥2, ∀j ∈ J , (5)

for all k. Defining λ̂i = 0, i /∈ I, and µ̂j = 0, j /∈ J , items 1 and 2(a) of Definition 1 are valid with

the sequence {xk} and multipliers λ̂, µ̂.
As in the proof of Lemma 1, we have xk = x∗ + d/k where d is unitary satisfying

sgn (λ̂i) · ∇hi(x
∗)td > 0, ∇gj(x∗)td > 0, i ∈ I, j ∈ J .

Multiplying (4) by d and using the inequalities above we conclude that ∇f(x∗)td < 0. Thus, by
the first order Taylor expansion of f around x∗ with increment d/k (see (3)), we obtain item 2(b)
of Definition 1 using xk for all k sufficiently large.

Finally, we claim that the same sequence {xk} satisfies item 2(c) of Definition 1 for all k large
enough. In fact, as g and h are differentiable at x∗, taking

L > max{|∇hi(x
∗)td|, |∇gj(x∗)td| | i ̸∈ I, j ̸∈ J }

we have

|hi(x
k)| = |hi(x

k)− hi(x
∗)| ≤ L∥xk − x∗∥2, (6)

gj(x
k)+ ≤

[
gj(x

k)− gj(x
∗)
]
+
≤ L∥xk − x∗∥2 (7)

for all k sufficiently large, i /∈ I and j /∈ J . Considering the multipliers λ̂ and µ̂ in (4), w(xk)
takes the form

w(xk) = min

{
min
i∈I
|hi(x

k)|, min
j∈J

gj(x
k)+

}
.

By (5), (6) and (7) we have, for all k large enough,

w(xk) ≥ γ∥xk − x∗∥2 =
( γ

L

)
L∥xk − x∗∥2 ≥

γ

L
max

{
max
i/∈I
|hi(x

k)|, max
j /∈J

gj(x
k)+

}
.

Thus {xk} fulfils item 2(c) of Definition 1 as we wanted, concluding the proof.

Remark 1. In [26], the equivalence between KKT points and those satisfying items 1 and 2(a)
of Definition 1 was proved in the context of multi-objective optimization, which clearly includes
the case of single objective function. On the other hand, Theorem 3 includes items 2(b,c) of
Definition 1, which, due to the strength of the enhanced multipliers over the quasinormal ones,
results in a stronger result.
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It is easy to exhibit examples where a multiplier vector serves to the classical KKT conditions,
but not to the enhanced version (see Example 2 below). From the proof of Theorem 3, given an

arbitrary multiplier vector (λ, µ), the vector (λ̂, µ̂) obtained by applying Lemma 2 on (λ, µ) is
suitable for both KKT and E-KKT stationarity. This lemma also ensures that these multipliers
preserve signs, that is, λiλ̂i ≥ 0, ∀i, and µj µ̂j ≥ 0, ∀j. To put such multipliers in perspective, we
say that a multiplier vector (λ, µ) has a linearly independent support if the gradients of equality
and inequality constraints associated with their non-null entries are linearly independent. Note
that a possible result of an application of Lemma 2 on (λ, µ) with linearly independent support is
(λ, µ) itself. Also, it is clear that every KKT point admits such multipliers.

Corollary 1. Let x∗ be a KKT point. Then any multiplier vector with linearly independent
support satisfies all the conditions of Definition 1. In other words, these multipliers are enhanced
(and therefore, quasinormal).

Remark 2. Bertsekas [14] proved Theorem 1 for the case where f , h and g are continuously
differentiable. Ye and Zhang [41] provided a nonsmooth version of this result, without items 2(b,c),
where all data functions are only Lipschitz continuous around x∗. It is straightforward to verify
that Theorem 3 remains valid if we suppose that f , h and g are differentiable, not necessarily with
continuous derivatives (Lemma 1 is valid with differentiability only). As a consequence, Corollary 1
is still valid in this case.

In a reasoning similar to Corollary 1, we may ask which known CQs ensure that any Lagrange
multiplier is enhanced/quasinormal. Certainly the linear independence of the gradients of the active
constraints (LICQ) is one of them, since in this case the unique multiplier is one of those from
Corollary 1. The same does not occur when constraints are linear and, consequently, with any
implied CQ.

Example 2. The point x∗ = 0 is KKT for the problem of minimizing x subject to g1(x) = x ≤ 0
and g2(x) = −x ≤ 0 with, for instance, multiplier vector µ = (1, 2). However, for any sequence
{xk} converging to x∗, we cannot have µ1g1(x

k) > 0 and µ2g2(x
k) > 0 simultaneously.

Next, we prove that MFCQ, like LICQ, ensures that any multiplier vector works for E-KKT.

Theorem 4. Let x∗ be a KKT point. If MFCQ holds at x∗ then M(x∗) = MQ(x
∗) = ME(x

∗).

Proof. The proof is an adaptation of that of Theorem 3. Let (λ, µ) ∈M(x∗) and I̸=, J+ as in (1).
We have

∇f(x∗) +
∑
i∈I ̸=

λi∇hi(x
∗) +

∑
j∈J+

µj∇gj(x∗) = 0.

If ∇f(x∗) = 0 then ME(x
∗) = MQ(x

∗) = M(x∗) = {0} by Theorem 2. Suppose that ∇f(x∗) ̸= 0.
Let us define

D′ = {x ∈ Rn | hi(x) ≥ 0, hl(x) ≤ 0, gj(x) ≥ 0, i ∈ I+, l ∈ I−, j ∈ J+},

where I+ = {i | λi > 0} and I− = {i | λi < 0}. Since x∗ conforms to MFCQ, we claim that MFCQ
holds at x∗ considering x ∈ D′. In fact, if there were 0 ≤ (λ̄+, λ̄−, µ̄) ̸= 0 such that

−
∑
i∈I+

λ̄+
i ∇hi(x

∗) +
∑
l∈I−

λ̄−
i ∇hl(x

∗)−
∑
j∈J+

µ̄j∇gj(x∗) = 0,

we could define λ̄ by setting λ̄i = λ̄+
i for all i ∈ I+, λ̄l = −λ̄−

l for all l ∈ I− and λ̄j = 0 otherwise,
which, together with µ̄, violate MFCQ at x∗ with respect to the original constraints by Theorem 2.
Thus, there is an unitary d ∈ Rn such that

∇hi(x
∗)td > 0, ∇hl(x

∗)td < 0, ∇gj(x∗)td > 0, i ∈ I+, l ∈ I−, j ∈ J+.

Analogously to the proof of Lemma 1, defining xk = x∗ + d/k for all k ≥ 1 we can conclude that

xk verifies (5) with λ̂i = λi, i ∈ I ̸=, and µ̂i = µi, j ∈ J+, if we take

γ = min
{
∇hi(x

∗)td, −∇hl(x
∗)td, ∇gj(x∗)td | i ∈ I+, l ∈ I−, j ∈ J+

}
> 0.
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Items 2(a,b) of Definition 1 hold using xk for all k sufficiently large. Taking L >
max{|∇hi(x

∗)td|, |∇gj(x∗)td| | i ̸∈ I ̸=, j ̸∈ J} we obtain (6) and (7) for all i ̸∈ I ̸= and j ̸∈ J+. The
last inequalities of the proof of Theorem 3 hold with I = I̸= and J = J+, and then item 2(c) of
Definition 1 is valid. This concludes the proof.

Recently [35], it was proved that some CQs like the (relaxed) constant positive linear depen-
dence ((R)CPLD) [8], the (relaxed) constant rank CQ ((R)CRCQ) [36] and the constant rank of
the subspace component condition (CRSC) [9], can be reduced in some sense to MFCQ by locally
rewriting the feasible set of the problem. This is the case in Example 2: we can rewrite the con-
straints simply as x = 0. However, we do not know a priori how such a reformulation can be
done. It is worth mentioning that Example 2 satisfies all the aforementioned CQs, QNCQ (see
Definition 3 below) and the pseudo-normality CQ defined in [15]. Thus, Theorem 4 cannot be
improved using any other known CQ from the literature (see [6, Figure 1]).

4 Properties of quasinormal and enhanced multipliers

4.1 Compactness of MQ(x
∗) under QNCQ

It is well known that MFCQ is necessary and sufficient for the compactness of M(x∗) [24]. Due
to the peculiar nature of quasinormal multipliers, a question arises: which condition on x∗ is
equivalent to the compactness of MQ(x

∗)? In this section, we give a partial answer to this issue.
The connection between enhanced stationarity and the quadratic penalty method brings QNCQ

to the discussion. In fact, QNCQ was designed to eliminate possible “wrong” multipliers generated
by this method. It was introduced by Hestenes in [28] and generalized in [15] to the case where
additional abstract constraints are present.

Definition 3. We say that a feasible x∗ for (P) satisfies the quasi-normality CQ (QNCQ) if there
are no λ ∈ Rm and µ ∈ R|Ig(x∗)|, µ ≥ 0, such that

1.
∑m

i=1 λi∇hi(x
∗) +

∑
j∈Ig(x∗) µj∇gj(x∗) = 0;

2. (λ, µ) ̸= 0;

3. there is a sequence {xk} ⊂ Rn converging to x∗ such that, for each k, λihi(x
k) > 0 for all

i ∈ I ̸= and µjgj(x
k) > 0 for all j ∈ J+, where I̸= and J+ are as in Definition 1.

In [41], it was proved that the set of quasinormal multipliers MQ(x
∗) is bounded when x∗

satisfies QNCQ. Next we prove that MQ(x
∗) is always closed, and thus compact under QNCQ.

Theorem 5. Let x∗ be a KKT point. Then MQ(x
∗) is non-empty and closed. Also, if QNCQ

holds at x∗ then MQ(x
∗) is compact.

Proof. By Theorem 3, MQ(x
∗) ̸= ∅. Let us show that MQ(x

∗) is closed. Take a convergent
sequence MQ(x

∗) ⊃ {(λk, µk)} → (λ, µ) and define Ik̸= = {i | λk
i ̸= 0}, Jk

+ = {j | µk
j > 0} for each

k. If (λ, µ) = 0 then it is in MQ(x
∗) trivially. Suppose that (λ, µ) ̸= 0, so the sets I̸= = {i | λi ̸= 0}

and J+ = {j | µj > 0} are not both empty. As there are only finitely many distinct Ik̸=, J
k
+, there

exist sets I∗̸=, J
∗
+ and a subsequence {(λk, µk)}k∈K such that Ik̸= = I∗̸= and Jk

+ = J∗
+ for all k ∈ K.

For each k ∈ K, as (λk, µk) ∈ MQ(x
∗) there is a sequence {xk,p}p∈N → x∗ satisfying item 2(a)

of Definition 1 with respect to I∗̸= and J∗
+. Note that I̸= ⊂ I∗̸= and J+ ⊂ J∗

+, and then we can

obtain a sequence {xk}k∈K converging to x∗ and satisfying item 2(a) in the following way: for the
first index ℓ1 ∈ K, take p1 ∈ N such that ∥xℓ1,p1 − x∗∥ ≤ 1; for the second index ℓ2 ∈ K, take
p2 ∈ N such that ∥xℓ2,p2 − x∗∥ ≤ 1/2; in general, for the k-th index ℓk ∈ K, take pk ∈ N such that
∥xℓk,pk − x∗∥ ≤ 1/k. So, just put xk = xℓk,pk for all k ∈ K so that item 2(a) holds with respect to
I̸= and J+. Thus (λ, µ) ∈MQ(x

∗), from which we conclude the closedness of MQ(x
∗).

The boundedness of MQ(x
∗) under QNCQ follows from [41, Theorem 3].

One might expect the converse of the last statement in the previous theorem to be valid.
However, this is not the case, as the next example shows.
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Example 3. Let us consider the problem

min x1 subject to x1 ≤ 0, −x1 ≤ 0, x3
1 + x2 ≤ 0, x3

1 − x2 ≤ 0

and the feasible point x∗ = (0, 0). At this point, item 1 of Definition 1 takes the form[
1
0

]
+ µ1

[
1
0

]
+ µ2

[
−1
0

]
+ µ3

[
0
1

]
+ µ4

[
0
−1

]
=

[
0
0

]
,

from which follows 1+ µ1− µ2 = 0 and µ3 = µ4. We affirm that MQ(x
∗) = {(0, 1, 0, 0)}, and thus

compact. In fact, we must have µ2 > 0, and µ1 cannot be positive, otherwise the sequence {xk} in
item 2(a) of Definition 1 should satisfy −xk

1 > 0 and xk
1 > 0 for all k. If µ3 = µ4 > 0, xk should

satisfy (xk
1)

3 + xk
2 > 0 and (xk

1)
3 − xk

2 > 0, which is impossible since µ1 > 0 implies xk
1 < 0 for all

k.
On the other side, note that QNCQ does not hold at x∗ since µ = (0, 0, 1, 1) and xk = (1/k, 0),

k ≥ 1, fulfill the conditions of Definition 3.

It is clear that QNCQ implies the boundedness of the enhanced multipliers set since ME(x
∗) ⊂

MQ(x
∗), but the converse is not true in general due to example 3. In general, ME(x

∗) is not even
closed, at least in highly degenerate problems, as the next example illustrates.

Example 4. For the problem of minimizing x2 subject to x4 = 0, x2 = 0, it is easy to see that
(1, δ) is an enhanced multiplier vector associated with x∗ = 0 for all δ > 0, but (1, 0) = limδ→0(1, δ)
is not.

The set M(x∗) may be unbounded even if MQ(x
∗) is singleton: in Example 3 we have M(x∗) =

{(s, 1 + s, t, t) | s, t ≥ 0} while MQ(x
∗) = {(0, 1, 0, 0)}. We can also have M(x∗) unbounded while

MQ(x
∗) is bounded (but not a singleton):

Example 5. For the problem of minimizing x subject to x = 0, x = 0, we have M(0) = {(t,−1−t) |
t ∈ R} and MQ(0) = {(t,−1− t) | t ∈ [−1, 0]}.

It is well known that M(x∗) = {(λ, µ)} is equivalent to the validity of the so-called strict MFCQ
at x∗ for µ [34]. In this sense, we can define the strict MFCQ condition exactly as “MFCQ and the
uniqueness of the Lagrange multiplier vector”. Actually, MFCQ is redundant in this statement,
since the uniqueness of the Lagrange multiplier implies MFCQ (see Theorem 8 below). Analogously,
we can define the strict QNCQ condition exactly as “the uniqueness of the quasinormal multiplier
vector”. Unlike MFCQ, the uniqueness of the quasinormal multiplier does not imply QNCQ as
illustrated by Example 3, which makes strict QNCQ and QNCQ independent of each other. It is
worth noting that strict QNCQ and strict MFCQ are not CQs in the usual sense, since they involve
the objective function. Finally, note that the uniqueness of the quasinormal multiplier occurs more
often than the uniqueness of the usual multiplier (see Example 5), and therefore strict QNCQ is
less stringent than strict MFCQ.

4.2 On the convexity of MQ(x
∗) and ME(x

∗)

It is easy to see that the set of usual multipliers M(x∗) is polyhedral, regardless of the validity of
any CQ. In turn, the convexity of MQ(x

∗) and ME(x
∗) is not a trivial matter since the non-null

multipliers may change along the segment between two elements (λ1, µ1), (λ2, µ2) ∈ MQ(x
∗), and

thus a sequence {xk} satisfying item 2(a) of Definition 1 for (λ1, µ1) may not work for (λ2, µ2).
Under MFCQ, MQ(x

∗) and ME(x
∗) are indeed polyhedral according to Theorem 4. The next

example shows that, unfortunately, these sets are not convex in general.

Example 6. Consider the bi-dimensional problem

min x2 subject to x2 + x3
1 ≤ 0, −x2 − x3

1 ≤ 0, −x2 ≤ 0

and the feasible point x∗ = (0, 0). It is easy to see that µ̂ = (0, 1, 0) and µ̄ = (1, 0, 2) are
enhanced (hence, quasinormal) multipliers associated with x∗ using the sequences x̂k = (0,−1/k)
and x̄k = (1/k,−1/k4), k ≥ 2, respectively. Now, consider the convex combination

µ =
1

2
µ̂+

1

2
µ̄ =

(1
2
,
1

2
, 1
)
.
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This µ is clearly a usual multiplier, but not quasinormal. In fact, if there were a sequence {xk}
satisfying item 2(a) of Definition 1 for µ, we should have xk

2 + (xk
1)

3 < 0 < xk
2 + (xk

1)
3 since

µ1 = µ2 > 0. Thus, µ ̸∈ MQ(x
∗) and consequently µ ̸∈ ME(x

∗). By similar reasoning, no convex
combination of µ̂ and µ̄ distinct of these vectors is in MQ(x

∗) or ME(x
∗).

Note that in the above example, x∗ does not satisfy any known CQ, including the Guignard
CQ. However, if we add the constraint x1 ≤ 0 with null multiplier, MQ(x

∗) remains non-convex
and the Abadie CQ [1] becomes valid. Nevertheless, we do not know if MQ(x

∗) is convex under
stronger CQs. Although we are not able to give a proof, we conjecture that MQ(x

∗) is polyhedral,
at least under QNCQ.

4.3 Informative multipliers

We back our attention to the condition 3(c) of Theorem 1. We can define an enhanced KKT
stationarity concept by changing item 2(c) of Definition 1 to that condition, that is, by using “o”
instead of “O”. Specifically, item 2(c) of Definition 1 is replaced by

|hi(x
k)| = o(w(xk)), ∀i ̸∈ I ̸=, and gj(x

k)+ = o(w(xk)), ∀j ̸∈ J+, (8)

where w(x) is the same. As we already mentioned, the corresponding multipliers are known as
informative [15]. Let us denote the set of them by MI(x

∗), that is,

MI(x
∗) =

{
(λ, µ) ∈ Rm × Rp

+

∣∣∣ ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0, ∃{xk} → x∗

s.t. items 2(a,b) of Definition 1 and (8) hold

}
.

MI(x
∗) can be a proper subset of ME(x

∗). In fact, we always have MI(x
∗) ⊂ ME(x

∗)
since ak = o(bk) implies ak = O(bk); and in the problem presented in Example 5 we have
(−1, 0) ∈ ME(0)\MI(0), otherwise (−1, 0) ∈ MI(0) would arrive at |xk| = o(|xk|), which is
impossible. Furthermore, it is easy to see that MI(0) = {(t,−1 − t) | t ∈ (−1, 0)}, which shows
that MI(x

∗) is not closed in general although it is obviously bounded under QNCQ just as MQ(x
∗).

An issue related to informative multipliers is whether Theorem 3 remains valid with (8), that
is, if for every KKT point x∗ we have MI(x

∗) ̸= ∅. The answer is yes. Although Proposition 2.2(a)
of [15] assumes that x∗ is a local minimizer, such statement does not depend on the minimality
of x∗. The core of its proof relies on [15, Lemma 2.1], which is presented below in a specialized
version for our purposes.

Lemma 3. Let c, a1, . . . , am, b1, . . . , br ∈ Rn. Suppose that

M =

(λ, µ) ∈ Rm × Rr
+

∣∣∣ c+ m∑
j=1

λiai +

r∑
j=1

µjbj = 0


is non-empty. Then there exists a sequence {dk} ⊂ Rn such that

1. ctdk → −∥(λ∗, µ∗)∥22;

2. atid
k → λ∗

i for all i = 1, . . . ,m;

3. (btjd
k)+ → µ∗

j for all j = 1, . . . , r,

where (λ∗, µ∗) is the element of M with minimum 2-norm.

Proof. The statement follows from applying [15, Lemma 2.1] with N = {0}, after rewriting each
λiai as (λ

+
i − λ−

i )ai, λ
+
i , λ

−
i ≥ 0, and noting that (λ+

i )
∗ = 0 or (λ−

i )
∗ = 0 in the minimum 2-norm

element.

Theorem 6. Let x∗ be a KKT point. Then the associated multiplier with minimum 2-norm is
informative. In particular, MI(x

∗) ̸= ∅ and Theorem 3 is valid if we define the E-KKT points
using (8) instead of item 2(c) of Definition 1.
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Proof. The proof is similar to that of [15, Proposition 2.2(a)]. We can suppose without loss of
generality that Ig(x

∗) = {1, . . . , r}. From now on, we set c = ∇f(x∗), ai = ∇hi(x
∗), i = 1, . . . ,m,

and bj = ∇gj(x∗), j = 1, . . . , r, in Lemma 3. If c = 0 then (λ∗, µ∗) = 0 is the multiplier vector
with minimum 2-norm and there is nothing to prove. Suppose that c ̸= 0. Thus (λ∗, µ∗) ̸= 0 and
dk ̸= 0 for all k taking a subsequence if necessary, let us say, with indices k ∈ K. From Lemma 3,
the limit d of the unitary convergent subsequence {dk/∥dk∥2}k∈K satisfies

∇f(x∗)td < 0, sgn (λ∗
i ) · ∇hi(x

∗)td > 0, ∀i ∈ I̸=, ∇gj(x∗)td > 0, ∀j ∈ J+, (9)

where I ̸= = {i | λ∗
i ̸= 0} and J+ = {j | µ∗

j > 0}. Also, there is a sequence {δk} converging to zero
such that

|∇hl(x
∗)tdk| ≤ δk ·m(dk), l /∈ I̸=, (∇gs(x∗)tdk)+ ≤ δk ·m(dk), s /∈ J+ (10)

for all k large enough, where

m(z) = min{|∇hi(x
∗)tz|, (∇gj(x∗)tz)+ | i ∈ I ̸=, j ∈ J+},

since the left sides of the inequalities in (10) go to zero and m(dk) remains bounded away from
zero.

Define xk = x∗ + d/k for all k. We have ∥xk − x∗∥2 = 1/k and, from the Taylor expansion of
f around x∗,

f(xk)− f(x∗) = ∥xk − x∗∥2
[
∇f(x∗)td+

o(∥xk − x∗∥2)
∥xk − x∗∥2

]
,

which, considering (9), gives f(xk) < f(x∗) for all k large enough. Therefore, item 2(b) of
Definition 1 holds. Analogously, for all i ∈ I̸= we have

hi(x
k) = hi(x

k)− hi(x
∗) = ∥xk − x∗∥2

[
∇hi(x

∗)td+
o(∥xk − x∗∥2)
∥xk − x∗∥2

]
, (11)

which, together (9), implies λ∗
i hi(x

k) > 0 for all k large enough. Similarly, we can conclude that
gj(x

k) > 0 for all j ∈ J+ and k sufficiently large. So item 2(a) of Definition 1 is also verified.
Now, let us prove that {xk} verifies (8). Dividing (10) by ∥dk∥2 and taking the limit over K

we arrive at ∇hl(x
∗)td = 0, which implies |hl(x

k)| = o(∥xk − x∗∥2) for all l /∈ I̸= in view of (11).
Thus, rlk = |hl(x

k)|/∥xk−x∗∥2 → 0. Notice that by (9) we have m(d) = limk∈K m(dk)/∥dk∥2 > 0,
so by (11),

w(xk)

∥xk − x∗∥2
=

1

∥xk − x∗∥2
min

{
min
i∈I̸=
|hi(x

k)|, min
j∈J+

gj(x
k)+

}
≥ m(d)/2 > 0

for all k large enough. Therefore,

|hl(x
k)|

∥xk − x∗∥2
= rlk =

2rlk
m(d)

m(d)

2
≤ 2rlk

m(d)

w(xk)

∥xk − x∗∥2
⇒ |hl(x

k)| ≤ 2rlk
m(d)

w(xk)

for all k large enough. As 2rlk/m(d)→ 0, we prove that (8) is valid for all hl, l /∈ I ̸=. Similarly we
can conclude that (8) is valid for all gs, s /∈ J+.

Finally, note that the indices i /∈ Ig(x
∗) do not interfere in the analysis since in this case µ∗

i = 0
and gi(x

k)+ = 0 for all k large enough. This concludes the proof.

4.4 Abstract constraints

In this section we deal with the problem (P) with additional abstract constraints

min
x

f(x) subject to h(x) = 0, g(x) ≤ 0, x ∈ X, (PX)

where X is a non-empty, closed subset of Rn. FJ/KKT enhanced stationarity concepts were
developed to the present case. In order to introduce them, we denote the normal cone of X at x
by

NX(x) = {z ∈ Rn | ∃{xk} → x, ∃{zk} → z such that xk ∈ X, zk ∈ TX(xk)◦, ∀k},
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where TX(x) is the tangent cone of X at x and C◦ denotes the polar set of C [14]. Specifically,
Bertsekas [14] provides a version of Theorem 1 for problem (PX), which consists of replacing item
1 with

−
[
σ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ

]
∈ NX(x∗)

and considering the sequence {xk} of item 3 in the set X. QNCQ is adapted accordingly (see [15]).
For the sake of clarification, we present next the adaptations of Definitions 1 and 3 to this case.

Definition 4. We say that a feasible x∗ for (PX) is an E-KKT point if there are λ ∈ Rm and
µ ∈ Rp

+ such that

1. −
[
∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ

]
∈ NX(x∗);

2. if I̸= ∪ J+ ̸= ∅ then there is a sequence {xk} ⊂ X converging to x∗ such that, for all k, the
following conditions are valid:

(a) λihi(x
k) > 0, ∀i ∈ I̸=, and µjgj(x

k) > 0, ∀j ∈ J+;

(b) f(xk) < f(x∗);

(c) |hi(x
k)| = O(w(xk)), ∀i ̸∈ I̸=, and gj(x

k)+ = O(w(xk)), ∀j ̸∈ J+,

where I̸=, J+ and w(x) are as in Definition 1.

Definition 5. We say that a feasible x∗ for (PX) satisfies QNCQ if there are no λ ∈ Rm and
µ ∈ R|Ig(x∗)|, µ ≥ 0, such that

1. −
[∑m

i=1 λi∇hi(x
∗) +

∑
j∈Ig(x∗) µj∇gj(x∗)

]
∈ NX(x∗);

2. (λ, µ) ̸= 0;

3. there is {xk} ⊂ X converging to x∗ such that, for each k, λihi(x
k) > 0 for all i ∈ I ̸= and

µjgj(x
k) > 0 for all j ∈ J+, where I̸= and J+ are as in Definition 1.

Similar to what is done in the literature, we say that x∗ is a KKT point when item 1 of
Definition 4 and the complementarity slackness µjgj(x

∗) = 0, ∀j ∈ Ig(x
∗), hold. The sets M(x∗),

MQ(x
∗) and ME(x

∗) of usual, quasinormal and enhanced multipliers are defined accordingly.
The approach by normal cones is common in nonlinear optimization, where a typical (perhaps

necessary) regularity assumption on X is imposed. We say that X is regular at x ∈ X if

NX(x) = TX(x)◦.

It is worth mentioning that if X is convex then it is regular at all x ∈ X [38]. In particular, X = Rn

and X = {x | ℓ ≤ x ≤ u} are regular at all their feasible points. The last constraints are commonly
used to ensure the well-definiteness of several algorithms and are present in popular computational
optimization packages like Algencan [3] (in section 5 we present this method without abstract
constraints).

Next, we analyse the validity of the main results in the presence of abstract constraints.

4.4.1 Non-emptiness and compactness of MQ(x
∗)

As mentioned in section 4.3, the same arguments for proving [15, Proposition 2.2] are still valid for
any KKT point x∗. So, in the case TX(x∗) is convex, Theorem 6 (and consequently Theorem 3)
is valid when dealing with the abstract constraints through its normal cone as in Definition 4.
Note that TX(x∗) is convex if X is regular at x∗, which in turn is true if X is convex [15, 38]. In
particular, the first statement of Theorem 5 (MQ(x

∗) ̸= ∅) is valid in this case. The closedness of
MQ(x

∗) can be proved analogously to that done in Theorem 5 because NX(x∗) is closed.
In the proof of Theorem 5, we claim that the boundedness of MQ(x

∗) under QNCQ follows
from [41, Theorem 3]. The cited theorem from [41] remains valid in the presence of x ∈ X even if
X is not regular at x∗. Thus, MQ(x

∗) (considering abstract constraints) is bounded under QNCQ
in the sense of Definition 5. So, by the closedness of NX(x∗), the proof of Theorem 5 remains
valid.

Theorem 7. Let x∗ be a KKT point for (PX). Then MQ(x
∗) is always non-empty and closed.

Also, if QNCQ (in the sense of Definition 5) holds at x∗ then MQ(x
∗) is compact.

12



4.4.2 Relationship between M(x∗), MQ(x
∗) and ME(x

∗) under MFCQ

In what follows, we show that Theorem 4 is no longer valid in the presence of abstract constraints
even if X is regular at x∗. In [15], a general extension of MFCQ (Definition 2) was defined, and
specialized cases are discussed. The most natural of them is the following:

Definition 6. We say that a feasible x∗ for (PX) satisfies MFCQ if there is no non-null λ ∈ Rm

such that

−
m∑
i=1

λi∇hi(x
∗) ∈ NX(x∗),

and there exists d ∈ NX(x∗)◦ satisfying

∇hi(x
∗)td = 0, i = 1, . . . ,m, ∇gj(x∗)td < 0, ∀j ∈ Ig(x

∗).

Note that the above definition reduces to Definition 2 if X = Rn. The next example shows
that the sets M(x∗) and MQ(x

∗) may be distinct in a very simple case where X is regular at x∗

satisfying MFCQ in the sense of Definition 6.

Example 7. Consider the problem

min f(x) = −x2 subject to h(x) = x1 − x2 = 0, g(x) = x1 ≤ 0, x ∈ X,

where X = {x ∈ R2 | x1 ≤ 0}, and the feasible point x∗ = (0, 0). It is easy to see that
NX(x∗) = R+ × {0} and NX(x∗)◦ = X. We have −∇h(x∗) = (−1, 1) ̸∈ NX(x∗), and taking
d = (−1,−1) ∈ NX(x∗)◦ we arrive at ∇h(x∗)td = 0 and ∇g(x∗)td = −1 < 0. Thus, MFCQ holds
at x∗. Note that

−
[
∇f(x∗)− 1 · ∇h(x∗) + µ · ∇g(x∗)

]
= (1− µ, 0) ∈ NX(x∗), ∀µ ∈ [0, 1],

therefore x∗ is a KKT point with multipliers λ = −1, µ ∈ [0, 1]. However, it is clear that there is
no {xk} ⊂ X such that g(xk) > 0, and therefore ME(x

∗) = MQ(x
∗) = {(−1, 0)} ≠ {−1} × [0, 1] =

M(x∗).

5 On augmented Lagrangian methods

In this section, we consider the safeguarded (Powell-Hestenes-Rockafellar – PHR) augmented
Lagrangian method defined in [3], namely Algencan, which we recall in Algorithm 1. This
method consists in successively minimizing the PHR augmented Lagrangian function associated
with (P),

Lρ(x, λ̄, µ̄) = f(x) +
ρ

2

[∥∥∥∥h(x) + λ̄

ρ

∥∥∥∥2
2

+

∥∥∥∥(g(x) + µ̄

ρ

)
+

∥∥∥∥2
2

]
, (12)

with respect to x for a fixed penalty parameter ρ > 0 and fixed projected multipliers estimates
λ̄ ∈ Rm, µ̄ ∈ Rp

+, which are computed within a predefined compact set (safeguards). Note that
Algorithm 1 generates the multipliers estimates

λk = λ̄k + ρkh(x
k), µk = (µ̄k + ρkg(x

k))+ (13)

at each iteration k when solving the subproblem of Step 1.
An important consequence of the enhanced FJ conditions is that they motivate the definition

of QNCQ, which was one of the first generalizations of MFCQ. Since then, several new CQs
have emerged, most of them linked to the global convergence of practical optimization methods,
especially Algencan. See [6, Figure 1] for a comprehensive overview of such CQs. Since their
introduction in the 1970s, enhanced FJ conditions and QNCQ have been adapted to different
problems [26, 27, 31, 33, 42] (we discuss some of them in section 6). However, a connection between
these concepts and the convergence of a practical method beyond pure external penalty, in this
case Algencan, was established only recently in our work [4], through the sequential optimality
condition positive approximate KKT (PAKKT). In addition to strengthening the theoretical global
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Algorithm 1 Algencan

Let µmax > 0, λmin < λmax, γ > 1, 0 < τ < 1 and {εk} → 0 such that εk > 0, ∀k. Let
λ̄1 ∈ [λmin, λmax]

m, µ̄1 ∈ [0, µmax]
p and ρ1 > 0. Initialize k ← 1.

Step 1. Find an approximate first-order stationary point xk of the unconstrained problem
minx Lρk

(x, λ̄k, µ̄k), that is,
∥∥∇xLρk

(xk, λ̄k, µ̄k)
∥∥ ≤ εk.

Step 2. Define V k = min{−g(xk), µ̄k/ρk}. If k > 1 and

max{∥h(xk)∥∞, ∥V k∥∞} ≤ τ max{∥h(xk−1)∥∞, ∥V k−1∥∞},

define ρk+1 = ρk. Otherwise, define ρk+1 = γρk.

Step 3. Compute µ̄k+1 ∈ [0, µmax]
p and λ̄k+1 ∈ [λmin, λmax]

m, take k ← k + 1 and go to Step 1.

convergence of Algencan, a surprisingly practical consequence of PAKKT is that the multiplier
sequences (13) are bounded if QNCQ holds at the feasible limit point [4, Corollary 4.8]. This fact
was crucial to attest convergence of Algencan using a scaled stopping criteria, which improves
the numerical performance of the method [7] in cases where the standard one fails. The purpose
of this section is to indicate possible contributions of the theory on enhanced stationarity and
quasinormal multipliers to improve the performance of Algencan in critical situations where it
suffers from numerical instabilities.

From our numerical experience while writing [7], Algencan generally fails when the penalty
parameter ρk explodes. This is consistent with the fact that in this case Algencan’s subproblems
become increasingly ill-conditioned. Thus, establishing sufficient conditions to bound {ρk} is of
interest. In [3], the boundedness of {ρk} was proved under strong hypotheses such as second-order
sufficiency and LICQ, which implies the uniqueness of the usual multiplier. Later on [17], LICQ
was slightly relaxed to the following assumption:

A0. MFCQ holds at x∗ and there is only one multiplier vector associated with x∗.

From [34, Proposition 1.1], we conclude that MFCQ is redundant in the above statement. For the
sake of completeness, we provide below a simple proof of this fact by means of the well-known
relation between the boundedness of M(x∗) and MFCQ [24].

Theorem 8. Let x∗ be a KKT point for (P) and suppose that M(x∗) is bounded. Then MFCQ
holds at x∗. In particular, if there is only one associated multiplier vector (λ∗, µ∗), then MFCQ
holds at x∗.

Proof. If MFCQ is not valid, there is (λ̄, µ̄) ̸= 0 such that ∇h(x∗)λ + ∇g(x∗)µ = 0, µ ≥ 0 by
Theorem 2. Then (tλ̄ + λ∗, tµ̄ + µ∗) ̸= (λ∗, µ∗) is a multiplier vector associated with x∗ for all
t > 0.

In view of the above theorem, the sufficient hypotheses in [17] for the boundedness of {ρk} in
Algorithm 1 can be stated as follows:

A1. {xk} converges to a feasible point x∗;

A2. there is only one (usual) multiplier vector (λ∗, µ∗) associated with x∗;

A3. f, g, h are twice continuously differentiable at x∗ and the second-order sufficient condition
(SOSC) holds at x∗;

A4. the tolerance εk is driven to zero fast enough in the sense of

εk = o
(
∥(∇xL(x

k−1, λk−1, µk−1), h(xk−1), min{−g(xk−1), µk−1} )∥
)
,

where L(x, λ, µ) is the Lagrangian function;

A5. there is k0 ∈ N such that λ̄k+1 = λk and µ̄k+1 = µk in Step 3 for all k ≥ k0.
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Assumption A4 can be fulfilled in practice since εk is computed after (xk−1, λk−1, µk−1). For
large safeguards µmax > 0, λmin < 0 and λmax > 0, we can expect the validity of A5 under QNCQ
and A1, as the entire sequence {(λk, µk)} is bounded in this case [4]. It is worth mentioning
that, in practice, the projected multipliers λ̄k+1

i and µ̄k+1
j are chosen as the projection of λk

i and

µk
j onto [λmin, λmax] and [0, µmax], respectively [7, 18]. So, we have λ̄k+1 = λk and µ̄k+1 = µk

whenever these estimates are within the safeguard intervals. This somehow recovers the classical
augmented Lagrangian method without safeguards, which exhibits favourable properties in convex
problems [37].

To the best of our knowledge, A1–A5 are the least stringent assumptions so far that guarantee
that {ρk} is bounded. However, extensive numerical experience [7] suggests that {ρk} remains
bounded in a wider range of situations. We believe that the specificity of enhanced/quasinormal
multipliers can help to elucidate this behaviour and, mainly, inspire modifications in the algorithm
that mitigate failures. The following facts support our belief:

F1 as we already mentioned, the multiplier sequences (13) generated by Algencan are bounded
if QNCQ holds at the feasible limit point [4]. Although this does not imply the boundedness
of the penalty parameter sequence {ρk}, it serves as an indication of the necessity of QNCQ
for this purpose;

F2 As discussed in section 4.1, the uniqueness of the quasinormal multiplier occurs more often
than the uniqueness of the usual multiplier;

F3 if Algencan generates a quasinormal multiplier vector, the boundedness of {ρk} could be
established by changing A2 to

A6. QNCQ holds at x∗ and there is only one quasinormal multiplier vector (λ∗, µ∗) associated
with x∗.

using the same arguments as in [17].

Remark 3. Theorem 8 says that if for some objective function f the set M(x∗) is bounded then
MFCQ holds at x∗. Thus, the condition “there is a function f for which M(x∗) is bounded” is a
CQ, which in fact does not depend on the objective function of the problem considered. In partic-
ular, hypothesis A2 is a CQ. On the other hand, the boundedness/uniqueness of the quasinormal,
enhanced or informative multiplier for some objective does not constitute a CQ, given that for the
constraints x1 ≤ 0 and −x1 ≤ 0, MQ(0, 0) = {(0, 1)} if f(x1, x2) = x1 but (0, 0) is not a KKT
point if f(x1, x2) = x2.

A question that immediately arises is whether the dual accumulation points generated by
Algorithm 1 are quasinormal when ρk → ∞ and QNCQ holds. The answer does not seem trivial
due to the projected multipliers. We ran theAlgencan’s implementation available by the TANGO
project (https://www.ime.usp.br/~egbirgin/tango/codes.php) on the problem

min x2
1 − 2x2 subject to x2e

x1 ≤ 0, −x2 ≤ 0. (14)

This problem has unique minimizer x∗ = (0, 0), which satisfies QNCQ but not MFCQ (see [11]). We
have M(x∗) = {(t, t− 2) | t ≥ 2} and MQ(x

∗) = {(2, 0)}. We start the algorithm with µ̄1 = (0, 0)
and ρ1 = 10. Condition “ρk → ∞” was forced by modifying the code properly to multiply ρk
by 10 every iteration (so the test in Step 2 is neglected) and by requiring a feasibility tolerance
equal to 10−40 (in our test, the last ρ was 1028). The problem was solved with final multiplier
µ∗ ≈ (2.02109, 0.02109). This suggests that the method may converges to a non-quasinormal
multiplier vector even when ρk →∞.

To characterize a multiplier vector as quasinormal, we should exhibit a sequence {xk} in the
spirit of item 2(a) of Definition 1. Such a sequence can be the one generated by Algorithm 1 itself,
although this is not mandatory. Items F1–F3 listed above motivate the study of modifications
in Algorithm 1 that try to adjust the projected multipliers in order to avoid an explosion of ρk
whenever it might seem to happen, that is, when the algorithm appears to be heading towards
failure. We enumerate some possibilities:

15



� since every multiplier vector with a minimum 2-norm is quasinormal (Theorem 6), compute
the project multipliers as those of minimum 2-norm whenever (i) the feasibility is almost
reached, (ii) ρ is large and (iii) the sequences {(λk, µk)}, {xk} do not satisfy item 2(a) of
Definition 1, with I̸= and J+ computed approximately. In this case, ρ is reset to a smaller
value;

� eventually nullify the projected multipliers associated with indices i, j such that λk
i hi(x

k) < 0
or µk

j gj(x
k) < 0. Using such a strategy on (14) with the same previous adaptations, the

algorithm reached µ∗ ≈ (2, 10−15), the unique quasinormal multiplier;

� use additional criteria to increase ρ beyond the feasibility/complementarity test of Step 2 of
Algorithm 1. For example, if item 2(a) of Definition 1 holds, ρk is left unchanged during a
few consecutive iterations (this may increase the number of outer iterations, but preliminary
tests suggest that the inner solver re-optimizes the subproblem faster when ρ is the same,
while the optimality and feasibility measures improve due to the update of the multipliers).
In this scenario, using a different ρi for each constraint can be helpful. Another criterion can
be based on heuristic checking of local convexity (for example, using second-order information
and directions defined by the last iterates); we know that a similar augmented Lagrangian
method converges using a constant ρ on convex problems [37];

� adjust the parameter τ of Step 2 dynamically so that the reduction in feasibility is alleviated
near the solution x∗ whenever the optimality measure improves. As noted in [20, Section
3.4.2], good multiplier estimates can prevent ρ from increasing when xk is close to a solution.

We stress that the above proposals should be seen as strategies to improve the performance of
Algencan on problems where it fails to converge, in the spirit of [7].

6 Enhanced KKT-type conditions for special optimization
problems

In this section, we recall enhanced stationarity from the literature for some special classes of
problems.

6.1 Mathematical programs with complementarity constraints and re-
lated problems

Mathematical programs with complementarity (or equilibrium) constraints (MPCCs) constitute a
class of problems that has been extensively studied in the literature. Due to their high level of
degeneracy compared to a standard NLP, they deserve special treatment (see [10] and references
therein). Its formulation is

min
x

f(x) subject to h(x) = 0, g(x) ≤ 0, G(x) ≥ 0, H(x) ≥ 0,

Gi(x)Hi(x) = 0, i = 1, . . . , q,
(MPCC)

where G,H : Rn → Rq are continuously differentiable functions. The last constraints Gi(x)Hi(x) =
0, i = 1, . . . , q, are called complementarity constraints.

It is well known that the KKT conditions cannot be expected to hold at local minimizers x∗

of (MPCC) if we do not have (lower level) strict complementarity [39], i.e., if Gi(x
∗) = Hi(x

∗) = 0
for some i. Thus, weaker stationarity concepts are defined in the literature. One of the most
stringent among them is the Mordukhovich-stationarity (M-stationarity). Given a feasible z, we
define Ig(z) as before and

I00(z) = {i | Gi(z) = 0, Hi(z) = 0},
I0+(z) = {i | Gi(z) = 0, Hi(z) > 0},
I+0(z) = {i | Gi(z) > 0, Hi(z) = 0}.
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Definition 7. We say that a feasible x∗ for (MPCC) is an M-stationary point if there are λ ∈ Rm,
µ ∈ Rp

+ and γG, γH ∈ Rq such that

1. ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ−∇G(x∗)γG −∇H(x∗)γH = 0;

2. µj = 0 ∀j ̸∈ Ig(x
∗), γG

i = 0 ∀i ∈ I+0(x
∗), γH

i = 0 ∀i ∈ I0+(x
∗) and

either γG
i γH

i = 0 or γG
i > 0, γH

i > 0 ∀i ∈ I00(x
∗). (15)

In [31], enhanced FJ-type conditions linked with M-stationarity were proposed in the spirit of
items 1, 2 and 3(a,b) of Theorem 1. As in standard NLP, enhanced KKT-type conditions can be
derived by taking the multiplier associated with the objective equal to one, as done from Theorem 1
to Definition 1. So, inspired in [31, Theorem 3.1], we define the counterpart of Definition 1 to the
MPCC context.

Definition 8. We say that a feasible x∗ for (MPCC) is an enhanced M-stationary (EM-stationary)
point if there are λ ∈ Rm, µ ∈ Rp

+ and γG, γH ∈ Rq such that

1. ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ−∇G(x∗)γG −∇H(x∗)γH = 0;

2. either γG
i γH

i = 0 or γG
i > 0, γH

i > 0 for all i ∈ I00(x
∗) (condition (15));

3. if I̸= ∪ J+ ∪ V G
̸= ∪ V H

̸= ̸= ∅, where I̸= = {i | λi ̸= 0}, J+ = {j | µj > 0}, V G
̸= = {i | γG

i ̸= 0}
and V H

̸= = {i | γH
i ̸= 0}, then there is a sequence {xk} ⊂ Rn converging to x∗ such that, for

all k, the following are valid:

(a) λihi(x
k) > 0, ∀i ∈ I ̸=, µjgj(x

k) > 0, ∀j ∈ J+, γG
i Gi(x

k) < 0, ∀i ∈ V G
̸= ,

γH
i Hi(x

k) < 0, ∀i ∈ V H
̸= ;

(b) f(xk) < f(x∗);

(c) |hi(x
k)| = O(w(xk)), ∀i ̸∈ I̸=, gj(x

k)+ = O(w(xk)), ∀j ̸∈ J+, (−Gi(x
k))+ =

O(w(xk)), ∀i ̸∈ V G
̸= and (−Hi(x

k))+ = O(w(xk)), ∀i ̸∈ V H
̸= , where

w(x) = min

{
min
i∈I ̸=
|hi(x)|, min

i∈J+

gj(x)+, min
i∈V G

̸=

|Gi(x)|, min
i∈V H

̸=

|Hi(x)|

}
.

Note that items 2 and 3(a) of the above definition implies item 2 of Definition 7. It is worth
mentioning that the enhanced stationarity established in [31] was extended to nonsmooth MPCCs
in [42], but we do not treat this case.

Given a feasible x∗ we denote the set of M-multipliers (λ, µ, γG, γH) satisfying Definition 7
by MM(x∗), those satisfying items 1, 2 and 3(a) of Definition 8 by MM

Q (x∗) (quasinormal M-

multipliers), and those satisfying also items 3(b,c) by MM
E (x∗) (enhanced M-multipliers). A

question that arises is whether a local minimizer of (MPCC) is EM-stationary. In [31], some
MPCC-tailored CQs are provided so that every local minimizer satisfies items 1, 2 and 3(a,b) of
Definition 8. The validity of item 3(c) follows from a reasoning similar to that of the final part of
the proof of Theorem 3.

In this section, we do not focus on MPCC-CQs, but on the equivalence between enhanced
stationarity from Definition 8 and the usual M-stationarity. Given a feasible point x∗ for (MPCC),
let us consider the tightened nonlinear problem

min
x

f(x) subject to h(x) = 0, g(x) ≤ 0,

Gi(x) = 0, i ∈ I0+(x
∗) ∪ I00(x

∗)

Gi(x) ≥ 0, i ∈ I+0(x
∗)

Hi(x) = 0, i ∈ I+0(x
∗) ∪ I00(x

∗)

Hi(x) ≥ 0, i ∈ I0+(x
∗),

(TNLP(x∗))

which consists of fixing the active complementary constraints at x∗ as equalities. It is easy to
verify that M-stationarity is exactly the KKT conditions for (TNLP(x∗)) (the so-called weakly
stationarity, or W-stationarity) together (15).
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Theorem 9. Every M-stationary point x∗ is EM-stationary and vice-versa.

Proof. Applying Theorem 3 to (TNLP(x∗)) we obtain the aforementioned equivalence, except
for (15), possibly with different M-multipliers. But in the proof of Theorem 3, the multipliers (in
this case, multipliers for (TNLP(x∗))) are adjusted using Lemma 2, which preserves the signs of
non-null ones. So (15) is still valid when we redefine the M-multipliers to satisfy Definition 8.

Most of the standard CQs are not valid for (MPCC), so this problem deserves MPCC-tailored
CQs. A common way to define such MPCC-CQs is to impose a standard CQ on (TNLP(x∗)),
possibly together (15). See [10] and references therein. In [39], a Mangasarian-Fromovitz-type CQ
was defined as MFCQ on (TNLP(x∗)). In [31], it was generalized by adding (15). We refer to
the last CQ as MMPCC-MFCQ. Still in [31], a generalized MPCC-QNCQ was defined in the same
way, which we will refer to as MMPCC-QNCQ. We enunciate them below.

Definition 9. Let x∗ be a feasible point for (MPCC). We say that

1. x∗ satisfies MMPCC-MFCQ if it conforms to MFCQ regarding (TNLP(x∗)) and (15) holds;

2. x∗ satisfies MMPCC-QNCQ if there is no non-null M-multiplier (λ, µ, γG, γH), µ ≥ 0, such
that

∇h(x∗)λ+∇g(x∗)µ−∇G(x∗)γG −∇H(x∗)γH = 0

and items 2, 3(a) of Definition 8 hold.

Theorem 10. Let x∗ be an M-stationary point.

1. If MMPCC-MFCQ holds at x∗ then MM(x∗) = MM
Q (x∗) = MM

E (x∗);

2. MM
E (x∗) ⊂MM

Q (x∗) are non-empty and MM
Q (x∗) is closed;

3. MM
Q (x∗) is compact if MMPCC-QNCQ holds at x∗.

Proof. Item 1 is a consequence of Theorem 4 applied on (TNLP(x∗)), since (15) does not interfere
in the analysis. Item 2 follows from Theorem 9 and the reasoning in the first part of the proof
of Theorem 5, noting that {(γG, γH) ∈ R2q | (15)} is closed. Let us prove the third item. By
Theorem 5, the set MQ(x

∗) of multipliers associated with (TNLP(x∗)) is bounded under MMPCC-
QNCQ, since this MPCC-CQ implies QNCQ for (TNLP(x∗)). As MM

Q (x∗) is contained in MQ(x
∗),

it is also bounded.

There are other stationarity concepts for (MPCC) besides M-stationarity in the literature. The
widely used ones are strong, weak and Clarke stationarity (S/W/C-stationarity, respectively). As
in Definition 8, we can define their enhanced versions by adding item 3, although to the best
of our knowledge they have not yet been defined. W-stationarity is just the KKT conditions for
(TNLP(x∗)). So all the results of sections 3 and 4 are valid, considering MPCC-MFCQ and MPCC-
QNCQ defined just imposing the standard CQs on (TNLP(x∗)). S-stationarity is equivalent to the
KKT conditions for (MPCC) viewed as an NLP, so Theorem 3 attest the equivalence between S-
stationarity and its enhanced version. However, no feasible point of (MPCC) satisfies MFCQ [22],
while QNCQ can only be expected at points where the strict complementarity holds [4, Lemma
4.4]. Therefore, Theorems 4 and 5 cannot hold in general for S-stationarity. C-stationarity is
defined as in Definition 7 but weakening (15) to

γG
i γH

i ≥ 0, ∀i ∈ I00(x
∗) (16)

[39]. This concept is widely used for the convergence of several methods, see e.g. [10, 29, 32]. Due
to its importance, we state the definitions and results related to C-stationarity.

Definition 10. We say that a feasible x∗ for (MPCC) is a C-stationary point if there are λ ∈ Rm,
µ ∈ Rp

+ and γG, γH ∈ Rq such that

1. ∇f(x∗) +∇h(x∗)λ+∇g(x∗)µ−∇G(x∗)γG −∇H(x∗)γH = 0;

2. µj = 0 ∀j ̸∈ Ig(x
∗), γG

i = 0 ∀i ∈ I+0(x
∗), γH

i = 0 ∀i ∈ I0+(x
∗) and (16) holds.
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Definition 11. We say that a feasible x∗ for (MPCC) is an enhanced C-stationary (EC-
stationary) point if there are λ ∈ Rm, µ ∈ Rp

+ and γG, γH ∈ Rq such that (16) and items 1,
3 of Definition 8 hold.

Analogously to M-stationarity, we define MC(x∗), MC
Q(x∗) and MC

E (x∗) the sets of C-
multipliers, quasinormal C-multipliers and enhanced C-multipliers, respectively. We can define
the associated CMPCC-MFCQ and CMPCC-QNCQ by imposing the corresponding CQs on
(TNLP(x∗)) together with (16):

Definition 12. Let x∗ be a feasible point for (MPCC). We say that

1. x∗ satisfies CMPCC-MFCQ if it conforms to MFCQ regarding (TNLP(x∗)) and (16) holds;

2. x∗ satisfies CMPCC-QNCQ if there is no non-null C-multiplier (λ, µ, γG, γH), µ ≥ 0, such
that

∇h(x∗)λ+∇g(x∗)µ−∇G(x∗)γG −∇H(x∗)γH = 0,

(16) and item 3(a) of Definition 8 hold.

Everything we did for M- remains valid for C-stationarity after straightforward adaptations.
We summarize this in the next result.

Theorem 11. Every C-stationary point is EC-stationary and vice-versa. Let x∗ be a C-stationary
point.

1. If CMPCC-MFCQ holds at x∗ then MC(x∗) = MC
Q(x∗) = MC

E (x∗);

2. MC
E (x∗) ⊂MC

Q(x∗) are non-empty and MC
Q(x∗) is closed;

3. MC
Q(x∗) is compact if CMPCC-QNCQ holds at x∗.

A well-known problem related to MPCC is the mathematical program with vanishing constraints
(MPVC). It was proposed in [2], and consists of (MPCC) changing the constraints involving G
and H by

H(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . , q.

Inspired by what was done for MPCCs, enhanced FJ-type conditions were defined for MPVCs
in [33]. By comparing the works [31] and [33], all the above discussion is applicable to MPVCs
making straightforward adaptations.

Enhanced stationarity was developed in [27] for another much more general related problem
that includes MPCC, MPVC, cone-constrained programming, semidefinite programming, mathe-
matical programs with semidefinite cone complementarity constraints, among others. The authors
considered the mathematical program with geometric constraints (MPGC) defined as

min
x

f(x) subject to x ∈ Ω, F (x) ∈ Λ, (MPGC)

where X is a Banach space, Y is a finite dimensional Hilbert space, f : X→ R and F : X→ Y are
Lipschitz functions near the point of interest, and Ω ⊂ X, Λ ⊂ Y are non-empty and closed sets.
An enhanced FJ optimality necessary condition associated with items 2(a,b) of Definition 1 was
proposed for (MPGC), from which an enhanced FJ optimality for nonsmooth standard nonlinear
optimization was derived. The application of our ideas to this general scenario is beyond the scope
of this work and should be considered in future research.

6.2 Multi-objective optimization

Multi-objective problems deal with the minimization of multiple objectives functions simultane-
ously. They are written as

min
x

(f1(x), . . . , fq(x)) subject to h(x) = 0, g(x) ≤ 0, (MOP)

where fi : Rn → R, i = 1, . . . , q, are continuously differentiable functions. Here “min” means that
we search for an efficient (or Pareto optimal) point x∗ in the sense that there is no feasible x̄ such
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that fi(x̄) ≤ fi(x
∗) for all i and fj(x̄) < fj(x

∗) for some j. A weaker concept, but suitable for
establishing convergence theory of algorithms, is the weak efficiency (or weak Pareto optimality).
A feasible point x∗ is said weakly Pareto if there is no feasible x̄ such that fi(x̄) < fi(x

∗) for all i.
It is worth noting that these concepts are standard in the literature [21].

It is well known that every optimal solution of the weighted-sum scalarization

min
x

q∑
i=1

σifi(x) subject to h(x) = 0, g(x) ≤ 0, (17)

is a weakly Pareto point for (MOP), for each fixed σ ∈ Rq such that
∑q

i=1 σi = 1 and σi ≥ 0 for all
i [21]. Therefore, (17) is commonly used to address (MOP), including for deriving FJ/KKT-type
stationarity. In [26], enhanced FJ conditions for (MOP) are established just changing item 1 of
Theorem 1 by

q∑
i=1

σi∇fi(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0,

where (σ1, . . . , σq, λ, µ) ̸= 0 and σ ≥ 0. The other conditions are exactly the same, and thus it
is straightforward to adapt our theory to (MOP) using the following enhanced stationarity (note
that CQs do not depend on the objectives, so they are the standard ones):

Definition 13. We say that a feasible x∗ for (MOP) is an E-KKT point if there are σ ∈ Rq,
λ ∈ Rm and µ ∈ Rp

+ such that

1.
∑q

i=1 σi∇fi(x∗) +∇h(x∗)λ+∇g(x∗)µ = 0;

2.
∑q

i=1 σi = 1 and σi ≥ 0 for all i;

3. item 2(a,c) of Definition 1 holds.

7 Conclusions

Since the seminal work of Fritz John [30], the related FJ optimality conditions were improved
by adding extra conditions verified by minimizers [13, 14, 15, 28, 41]. These enhanced concepts
carry an additional sequential condition that connects the signs of non-null multipliers with a
primal infeasible sequence, from which the notion of quasinormal multipliers (see item 2(a) of
Definition 1) derives. In this paper we deepen the study of enhanced FJ/KKT conditions for smooth
nonlinear optimization. A new type of multiplier is defined, that we call enhanced multipliers.
Similar to the informative multipliers defined in [15], it carries information about the sensitivity
of the constraints around the KKT point. We argue that such extra conditions do not strengthen
the set of KKT points. Our result differs from previous ones [13, 15] that only tackled this
equivalence for minimizers. We also analyse the properties of the enhanced/quasinormal multipliers
set such as compactness and convexity. We also apply our theory to mathematical programs with
complementarity constraints and multi-objective optimization, extending and clarifying previous
results from the literature.

Since several methods work with a primal-dual pair, the fact that KKT points satisfy an
enhanced stationarity draws attention to the study of algorithms that generate quasinormal mul-
tipliers. In this sense, we present some insights about the multipliers generated by the augmented
Lagrangian method Algencan defined in [3, 18]. We discuss the implications for the boundedness
of the penalty parameter sequence, which should be addressed in future works. Another interest-
ing topic to be investigate is the effect of enhanced/quasinormal multipliers on the second-order
stationarity; in fact, we can define it using only such multipliers. By narrowing the multipliers, we
can potentially obtain suitable second-order conditions for attesting the convergence of algorithms.
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[26] G. Giorgi, B. Jiménez, and V. Novo. Approximate Karush–Kuhn–Tucker condition in multi-
objective optimization. Journal of Optimization Theory and Applications, 171(1):70–89, 2016.

[27] L. Guo, J. J. Ye, and J. Zhang. Mathematical programs with geometric constraints in Banach
spaces: enhanced optimality, exact penalty, and sensitivity. SIAM Journal on Optimization,
23(4):2295–2319, 2013.

[28] M. R. Hestenes. Optimization Theory: The Finite Dimensional Case. John Wiley & Sons,
New York, 1975.

[29] A. F. Izmailov, M. V. Solodov, and E. I. Uskov. Global convergence of augmented Lagrangian
methods applied to optimization problems with degenerate constraints, including problems
with complementarity constraints. SIAM Journal on Optimization, 22(4):1579–1606, 2012.

[30] F. John. Extremum problems with inequalities as subsidiary conditions. In Traces and
Emergence of Nonlinear Programming, pages 197–215. Springer Basel, jul 2013.

[31] C. Kanzow and A. Schwartz. Mathematical programs with equilibrium constraints: enhanced
Fritz John-conditions, new constraint qualifications, and improved exact penalty results.
SIAM Journal on Optimization, 20(5):2730–2753, 2010.

[32] C. Kanzow and A. Schwartz. The price of inexactness: convergence properties of relaxation
methods for mathematical programs with complementarity constraints revisited. Mathematics
of Operations Research, 40(2):253–275, 2015.

[33] A. Khare and T. Nath. Enhanced Fritz John stationarity, new constraint qualifications
and local error bound for mathematical programs with vanishing constraints. Journal of
Mathematical Analysis and Applications, 472(1):1042–1077, 2019.

[34] J. Kyparisis. On uniqueness of Kuhn-Tucker multipliers in nonlinear programming. Mathe-
matical Programming, 32(2):242–246, 1985.

[35] L. Minchenko. Note on Mangasarian–Fromovitz-like constraint qualifications. Journal of
Optimization Theory and Applications, 182(1):1199–1204, 2019.

[36] L. Minchenko and S. Stakhovski. On relaxed constant rank regularity condition in mathemat-
ical programming. Optimization, 60(4):429–440, 2011.

[37] R. Rockafellar. The multiplier method of Hestenes and Powell applied to convex programming.
Journal of optimization Theory and Applications, 12(6):555–562, 1973.

[38] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren der
mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 1 edition, 1998.

22



[39] H. Scheel and S. Scholtes. Mathematical programs with complementarity constraints: sta-
tionarity, optimality, and sensitivity. Mathematics of Operations Research, 25(1):1–22, 2000.
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