
SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS 1

Second-order Partial Outer Convexification for
Switched Dynamical Systems
Christoph Plate, Sebastian Sager, Martin Stoll, Manuel Tetschke

Abstract— Mixed-integer optimal control problems arise
in many practical applications combining nonlinear, dy-
namic, and combinatorial features. To cope with the result-
ing complexity, several approaches have been suggested
in the past. Some of them rely on solving a reformu-
lated and relaxed control problem, referred to as partial
outer convexification. Inspired by an efficient algorithm
for switching time optimization by Stellato and coworkers,
SwitchTimeOpt.jl, we developed an algorithmic approach
for partial outer convexification implemented in a Julia
package. Both approaches are based on linearization and
exponential integration to obtain second derivatives. We
show the efficiency and applicability of the novel approach
by comparing it to SwitchTimeOpt.jl, by extending the con-
cept and calculations to the treatment of constraints, and
by investigating warm-starting of switching time optimiza-
tion. The new solver facilitates the reliable and fast solution
of mixed-integer optimal control problems.

Index Terms— Hybrid systems, Optimal control, Opti-
mization algorithms, Switched systems.

I. INTRODUCTION

We are interested in optimal control of switched dynami-
cal systems, i.e., systems consisting of multiple subsystems
typically described by ordinary differential equations (ODEs)
or differential-algebraic equations (DAEs). The degree of
freedom to minimize a given cost function is the choice of the
active subsystem at each point in time. Switched dynamical
systems are prevalent in control applications. Typical examples
are the choice of gear in vehicles in automotive control,
traffic networks, operating strategies of hybrid vehicles, on/off
positions of valves, performing measurements yes or no, or the
activation of whole units in process engineering applications.
See [14] for an online benchmark library of such applications
with further references.

Control problems involving switched dynamical systems
belong to the problem class of mixed-integer optimal control
problems (MIOCPs). Several algorithmic approaches have
been developed to tackle this class of problems. A survey is
beyond the scope of this paper and we refer to [6], [8], [19] for
further references. For direct methods that discretize control
functions with finitely many degrees of freedom, different

Submitted December 2022. “This work was supported in part by the
Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion, 314838170) under Grants GRK 2297 MathCoRe and SPP 2331.”

C. Plate, S. Sager, and M. Tetschke are with the Otto von Guericke
University Magdeburg, Germany (e-mails: christoph.plate@ovgu.de,
sager@ovgu.de, manuel.tetschke@ovgu.de).

M. Stoll is with the Technical University Chemnitz (e-mail:
martin.stoll@math.tu-chemnitz.de).

approaches to address the integrality of control functions
have been proposed. Two of these are in the focus of this
paper: switching time optimization (STO) and partial outer
convexification (POC). In STO [2], [6] a predefined switching
sequence of the modes is assumed. Using a time transforma-
tion argument, the problem of determining the right mode for
each point in time can be translated into finding the optimal
switching times. Recently, an efficient structure-exploiting
algorithm for solving STO problems was proposed in [17],
based on a linearization of the dynamics and integration via
matrix exponentials.
In POC [7], [15] a binary control function is introduced for
each mode of the switched system. The integrality constraint
is then relaxed by allowing the control functions to take values
from the interval [0, 1], resulting in a standard optimal control
problem (OCP). Solving this relaxed OCP is often the first step
in a decomposition approach for solving MIOCPs, called Com-
binatorial Integral Approximation (CIA) [16]. CIA consists
of three steps: 1) solving the relaxed OCP, 2) approximating
the relaxed controls with binary controls, 3) re-evaluating
the MIOCP with fixed binary controls. Several methods for
formulating and solving the approximation problem in the
second step have been proposed and implemented in the
software package pycombina [3].
Here, we focus on the first step, i.e., a new method to
solve the relaxed OCP efficiently. We use ideas from [17]
as a starting point, adopting the approach of linearizing the
dynamics and using matrix exponentials as an integration
scheme. We transfer the ideas for evaluating the objective and
its derivatives to systems of ODEs of the particular form

ẋ(t) = f0 (x(t)) +

nω∑
k=1

wk(t)fk(x(t)) (1)

that arises from applying the POC reformulation, with nω
being the number of modes of the switched system and
wk(t) ∈ [0, 1] being the relaxed binary control functions.
The drift term f0 represents the dynamics independent of the
choice of the active mode.

In [17], the specific structure of the system dynamics for
STO is exploited. There, after linearization one has structurally
ẋ(t) = wAx(t) on small intervals for a scalar decision
variable w ∈ R+ indicating the duration of a mode. There-
fore the solution is given involving a matrix exponential as
ewAt. Derivatives with respect to w can be calculated in a
straightforward way, using dewA

dw = AewA. As (1) features the
sum of controls and a drift term, the calculation of analytical

2 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

expressions for derivatives of e(A0+
∑nω

i=1 wiAi)t becomes more
involved for non-commutative matrices Aj . We derive how
this can be done efficiently with matrix calculus. As a result,
with some numerical overhead compared to STO, second order
optimization becomes also possible for POC control problems.

A. Contributions

In this paper, we present a novel algorithm for solving
(relaxed) MIOCPs using a direct, first-discretize-than-optimize
approach. We use existing ideas from an STO algorithm
[17] and transfer and extend them to the POC setting.
We also generalize the setting to constrained MIOCPs. Our
work is implemented in the open source software package
SecondOrderPOC.jl, which is available on GitHub.1 Using the
new software, we investigate the performance of the new algo-
rithm by numerical studies of benchmark problems, focusing
on a comparison between POC and STO and the possibility
to warmstart the STO algorithm with POC solutions.

B. Organization of the Paper

The paper is organized as follows. In Section II we state the
problem formulation and explain and derive basic algorithmic
ingredients, in particular closed formula for function and
derivative evaluation. In Section III we formulate the main
algorithm and explain its implementation in Julia. Numerical
results for three benchmark problems and different algorithmic
settings are shown in Section IV. We conclude with a discus-
sion in Section V. Proofs can be found in the Appendix.

II. PRELIMINARIES

A. Problem definition

We are interested in optimal control problems of the form

min
x,w

∫ tf

t0

x(t)>Q̄x(t) dt+ x(tf)
>Ēx(tf)

s.t. ẋ(t) = f0(x(t)) +
∑nω

k=1 wk(t)fk(x(t)))
x(t0) = x0,
0 ≥ c(x(t))
1 =

∑nω

k=1 wk(t),
wk(t) ∈ [0, 1], k ∈ [nω],

(POC)

on a fixed time horizon T = [t0, tf] with differential states
x ∈ Rn̄x , initial values x0 ∈ Rn̄x , state constraints c : R ×
Rn̄x 7→ Rn̄x and a quadratic objective of Bolza type given by
symmetric matrices Q̄, Ē ∈ Rn̄x×n̄x . We assume all functions
to be sufficiently smooth and Lipschitz continuous. The setting
is identical to [17] with two differences: a POC instead of
STO reformulation of the dynamical system and the additional
possibility to consider state constraints. Here and throughout
the paper we use the standard notation [N] := {1, 2, . . . , N}
and [N]0 := {0, 1, 2, . . . , N}.

1https://github.com/chplate/SecondOrderPOC.jl.git

B. Linearization
We follow a direct approach including a discretization of

the control functions on N control intervals as well as a
linearization of the dynamics using Taylor expansion. The
approach is very closely related to the ideas presented in [17].
In a first step we introduce the necessary time grids.

Definition 1 (Equidistant time grids): Let N ∈ N be the
number of control intervals and nlin be the number of lin-
earization points on each control interval. We define

GN := [t0, t1, t2, . . . , tN = tf] (2)

with equidistant outer grid size ∆t := ti − ti−1 and intervals

Ti := [ti−1, ti] , i ∈ [N] (3)

for a coarse grid partition T = ∪i∈[N]Ti. For the inner grid
we introduce the fine grid size ξ := ∆t

nlin
and write

Tij := [ti,j , ti,j+1] , i ∈ [N] , j ∈ [nlin] (4)

for a fine grid partition Ti = ∪j∈[nlin]Tij with equidistant
inner grid points ti,j := ti−1 + (j − 1) · ξ.

Using Taylor expansion we linearize the dynamics

ẋ(t) = f0(x(t)) +

nω∑
k=1

wk(t)fk(x(t)) (5)

around the state xi,j = x(ti,j). Also, we discretize the controls
w as piecewise constant functions

wk(t) = wik, t ∈ Ti, i ∈ [N] (6)

with wik ∈ [0, 1], i ∈ [N], k ∈ [nω]. This yields

ẋ(t) ≈ f0(xi,j) +

nω∑
k=1

wikfk(xi,j) +
[
Jf0(xi,j)

+

nω∑
k=1

wikJfk(xi,j)
]
(x(t)− xi,j), t ∈ Tij .

(7)

Here, Jfk represents the Jacobian of the mode fk, i.e.

Jfk(x) =
∂fk(x)

∂x
, k ∈ [nω]0. (8)

If we augment the state variables by a constant state

x(t)←
[
x(t)>, 1

]>
(9)

and from now on x(t) ∈ Rnx with nx = n̄x+1, we can write
the approximation (7) of the (nonlinear) differential equation
as a linear ODE on each interval Tij , i.e.,

ẋ(t) = Ai,jx(t), t ∈ Tij , (10)

where the system matrix Ai,j ∈ Rnx×nx follows from reorder-
ing the terms in (7):

Ai,j :=

(
Jf0(xi,j) f0(xi,j)− Jf0(xi,j)xi,j

0 0

)
+

nω∑
k=1

wik

(
Jfk(xi,j) fk(xi,j)− Jfk(xi,j)xi,j

0 0

)

=: A0
i,j +

nω∑
k=1

wikA
k
i,j .

(11)

PLATE, SAGER, STOLL, TETSCHKE: SECOND-ORDER PARTIAL OUTER CONVEXIFICATION FOR SWITCHED DYNAMICAL SYSTEMS 3

Here, Aki,j represents the unweighted contribution of the k-th
mode to the overall linearized dynamic. Considering the in-
crease in dimension due to the linearization, we also augment
the matrices Q̄, Ē ∈ Rn̄x×n̄x and use

Q =

(
Q̄

0

)
∈ Rnx×nx ,

E =

(
Ē

0

)
∈ Rnx×nx .

(12)

This leads to a slight modification of problem (POC) with a
linear ODE, which we will from now on consider,

min
x,w

∫ tf

t0

x(t)>Qx(t) dt+ x(tf)
>Ex(tf)

s.t. ẋ(t) = Ai,jx(t),
x(t0) = x0,
wk(t) ∈ [0, 1], k ∈ [nω],
1 =

∑nω

k=1 wk(t),
0 ≥ c(ti, x(ti)), i ∈ [N].

(POC-lin)

The ODE holds piecewise for i ∈ [N], j ∈ [nlin], t ∈ Tij .

C. Exponential integrator
For the linearized ODE (10) we can directly state the

solution using the matrix exponential of the system matrix
(11), i.e.,

x(ti,j+1) = eAi,jξx(ti,j), (13)

noting that the integration step length ξ is constant by virtue
of Definition 1. To simplify notation we define as follows.

Definition 2 (Auxiliary matrices): The matrix exponential
Ei,j ∈ Rnx×nx of the matrix Ai,j , i ∈ [N], j ∈ [nlin] is

Ei,j := eAi,jξ. (14)

Moreover, we define the matrix Mi,j ∈ Rnx×nx

Mi,j :=

∫ ξ

0

eA
>
i,jηQeAi,jηdη (15)

as the Lagrange term of the objective on the interval Tij .
Both quantities can be computed through a single matrix

exponential due to [11, Theorem 1]. For this, a temporary
matrix is created and its matrix exponential is computed:

Zi,j := exp
(
ξ ·
[
−A>i,j Q

0 Ai,j

])
=:

[
Z1
i,j Z2

i,j

0 Z3
i,j

]
(16)

Having computed (16), the expressions (14) and (15) can be
obtained via:

Ei,j = Z3
i,j

Mi,j = Z3>
i,j Z

2
i,j .

(17)

The procedure of linearization and computation of the next
state can be applied iteratively and be generalized by the
following definition.

Definition 3 (State transition matrices Φ): The state transi-
tion matrix Φ(tj , ti) for the transition of the state x(ti) to the
state x(tj) with t0 ≤ ti < tj ≤ tN is defined as

Φ(tj , ti) :=

j∏
m=i+1

nlin∏
n=1

Em,n (18)

Note that the multiplications in Definition 3 need to be
multiplications from the left, such that the matrix exponential
belonging to the first considered time step stays rightmost.
Using these transition matrices Φ one can now propagate the
state over multiple timesteps at once, i.e.,

x(tj) = Φ(tj , ti)x(ti) (19)

Definition 4 (Cost-to-go matrices): For a given grid point
ta ∈ GN with ta ≤ tN , the cost-to-go-matrices Pa, Fa, Sa are
defined as

Fa := Φ(tN , ta)>EΦ(tN , ta),

Pa :=

∫ tN

ta

Φ(t, ta)>QΦ(t, ta) dt,

Sa := Fa + Pa.

(20)

For the computation of Sa ∈ Rnx×nx we make use of the
following recursion, which was also used in [17]. The main
difference is our choice of equidistant grids.

Lemma 5 (Recursive evaluation of cost-to-go-matrices):
Given matrices Mi,j and Ei,j with i ∈ [N], j ∈ [nlin] (and
for notational convenience using Si+1 := Si,nlin+1), the
following recursion holds

SN+1 = E

Si,j = Mi,j + E>i,jSi,j+1Ei,j
(21)

Proof: Follows the proof in [17].

D. Derivatives
The key to solving the problem (POC-lin) via an iterative

optimization algorithm is computing the derivatives of the
objective function and constraints with respect to the controls
w. In this section the necessary quantities are derived.

1) Derivatives of matrix exponentials: To compute deriva-
tives of our integration method we are combining two meth-
ods: the block-triangular method [12] and the complex step
method [1]. In a first step, we state [12, Theorem 2.1], which
is used to compute the derivative of a single matrix exponential
with respect to a control wik.

Theorem 6: Let D denote an open subset of R or C, Mn be
the set of n× n complex matrices, and let Mn(D,m) denote
the set of n× n matrices with spectrum contained in D and
largest Jordan block of size at most m. Let f be m− 1 times
differentiable on D. Let A(t) be differentiable at t = t0 and
assume that A(t) ∈Mn(D,m) for all t in some neighborhood
of t0. Then

d

dt
f(A(t))|t=t0 =

[
f

(
A(t0) A′(t0)

0 A(t0)

)]
1,2

(22)

where the subscript 1, 2 indicates the (1, 2)-block of the result
of applying the matrix function.

Proof: See [12, Theorem 2.1].
This theorem can be transferred to our setting by identifying

f as the exponential function for matrices and A(t) as (11)
with the controls wik taking the place of the variable t, thus

Eki,j : =
∂Ei,j
∂wik

=

[
exp

(
ξ ·
[
Ai,j Aki,j

0 Ai,j

])]
1,2

(23)

4 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

The same quantity can be computed via the complex step
method [1] with some small h > 0, avoiding the doubling in
size of the matrix exponential as in (23), as

Eki,j = Im
exp

(
ξ · (Ai,j + ihAki,j)

)
h

(24)

For computing second derivatives of a matrix exponential
Ei,j with respect to two controls on Ti different approaches
are possible. One could apply Theorem 6 to (23). This does
however result in a further doubling of the dimensions of the
matrix exponential to be calculated.

Ek,li,j :=
∂Eki,j
∂wil

=
∂2eAi,jξ

∂wik∂wil

=

exp

ξ ·

Ai,j Aki,j Ali,j

∂Ak
i,j

∂wil

0 Ai,j 0 Ali,j
0 0 Ai,j Aki,j
0 0 0 Ai,j

1,4

=

exp

ξ ·

Ai,j Aki,j Ali,j 0

0 Ai,j 0 Ali,j
0 0 Ai,j Aki,j
0 0 0 Ai,j

1,4

(25)

By combining the two approaches, the renewed doubling in
size of the matrix exponential can be avoided. We thus use

Ek,li,j = Im

exp
(
ξ ·
[
Ai,j + ihAki,j Ali,j

0 Ai,j + ihAki,j

])
h

1,2

(26)

2) Derivatives of transition matrices: With the previous re-
sults one can easily calculate the derivative for the transition
matrices Φ by applying the product rule,

Cki :=
∂Φ(ti, ti−1)

∂wik
=

∂

∂wik

(
nlin∏
l=1

Ei,l

)

=

nlin∑
l=1

[(
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏
n=l+1

Ei,n

)]
.

(27)

Again, note that the matrix belonging to the first time step
needs to stay rightmost. For the second derivative Dk,p

i of a
given transition matrix Φ(ti, ti−1) with respect to two controls
wik and wip on the same interval Ti, one needs to determine
the derivative of (27). With (24), (26) and the product rule, this
quantity can be computed as in (28) (see top of page 5). Due to
the application of the product rule and the resulting structure
of the expression, this quantity is expensive to calculate.
However, as discussed later in section III, using Horner’s
scheme to compute (27) and (28) can help reducing the number
of necessary operations.

Using the cost-to-go-matrices introduced in Definition 4
will later allow us to evaluate the objective function and
its derivatives. Therefore these quantities are investigated in
the following. First, we make use of an approximation for
computing the derivative of the cost-to-go-matrix Pa. Recall
that for any continuous function f : [a, b] 7→ R and n ∈ N

evalutation points on [a, b] it is possible to approximate the
integral of f on [a, b] as a Riemann sum, i.e.,∫ b

a

f(x) dx ≈
n∑
i=1

(
b− a
n

)
· f
(
a+

i · (b− a)

n

)
. (29)

Using the nlin equidistant linearization points, we can approx-
imate the Lagrange term on a given interval Ti as∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt

≈
nlin∑
j=1

ξ · Φ(ti,j , ti−1)>QΦ(ti,j , ti−1)

=ξ ·
nlin∑
j=1

(
j∏

k=1

Ei,k

)>
Q

(
j∏

k=1

Ei,k

)
,

(30)

noting that the fine grid size ξ is constant. Now, each summand
can be differentiated independently using the product rule.

Lki :=
∂

∂wik

∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt

≈ ξ · ∂

∂wik

nlin∑
j=1

(
j∏

k=1

Ei,k

)>
Q

(
j∏

k=1

Ei,k

)

= ξ ·
nlin∑
j=1

[(
∂

∂wik

j∏
k=1

Ei,k

)>
Q

(
j∏

k=1

Ei,k

)

+

(
j∏

k=1

Ei,k

)>
Q

(
∂

∂wik

j∏
k=1

Ei,k

)]
(31)

As we will need second derivatives for our optimization we
differentiate (31) again to get

Gk,li :=
∂

∂wil
Lki

=
∂2

∂wik∂wil

∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt

≈ ξ · ∂2

∂wik∂wip

nlin∑
j=1

(
j∏

k=1

Ei,k

)>
Q

(
j∏

k=1

Ei,k

)

= ξ ·
nlin∑
j=1

(∂2

∂wik∂wil

j∏
k=1

Ei,k

)>
Q

j∏
k=1

Ei,k

+

(
j∏

k=1

Ei,k

)>
Q

(
∂2

∂wik∂wil

j∏
k=1

Ei,k

) .

(32)

Note that the derivatives of products of matrix exponentials
appearing in (31) and (32) can be computed via the same rou-
tines as for (27) and (28), respectively. With these introductory
results the first derivatives of the cost-to-go-matrices can be
stated, summarized in the following lemma.

Lemma 7: Let Fa and Pa be given as in Definition 4. Then
it holds that

∂Fa
∂wik

= Φ(ti−1, ta)>
[
Ck>i FiΦ(ti, ti−1)

+Φ(ti, ti−1)>FiC
k
i

]
Φ(ti−1, ta)

(33)

PLATE, SAGER, STOLL, TETSCHKE: SECOND-ORDER PARTIAL OUTER CONVEXIFICATION FOR SWITCHED DYNAMICAL SYSTEMS 5

Dk,p
i :=

∂Cki
∂wip

=
∂

∂wip

nlin∑
l=1

[(
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏

m=l+1

Ei,m

)]
=

nlin∑
l=1

∂

∂wip

((
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏

m=l+1

Ei,m

))

=

nlin∑
l=1

[
l−1∑
m=1

[(
m−1∏
n=1

Ei,n

)
Epi,m

(
l−1∏

n=m+1

Ei,n

)]
Eki,l

(
nlin∏

m=l+1

Ei,m

)
+

(
l−1∏
m=1

Ei,m

)
Ek,pi,l

(
nlin∏

m=l+1

Ei,m

)

+

(
l−1∏
m=1

Ei,m

)
Eki,l

nlin∑
m=l+1

[(
m−1∏
n=l+1

Ei,n

)
Epi,m

(
nlin∏

n=m+1

Ei,n

)]] (28)

and

∂Pa
∂wik

= Φ(ti−1, ta)>
(
Lki + Ck>i PiΦ(ti, ti−1)

+ Φ(ti, ti−1)>PiC
k
i

)
Φ(ti−1, ta)

(34)

Combining the two results, one obtains

∂Sa
∂wik

=
∂Fa
∂wik

+
∂Pa
∂wik

= Φ(ti−1, ta)>
(
Lki + Φ(ti, ti−1)>SiC

k
i

+ Ck>i SiΦ(ti, ti−1)
)

Φ(ti−1, ta).

(35)

The proof can be found in Appendix I. For second derivatives
of Sa we consider the derivative of (35) with respect to a
second control either on the same control interval Ti or on an
interval Tj with ti < tj as follows.

Lemma 8: The second derivatives of Sa as defined in
Definition 4 for two grid points ti, tj ∈ GN with ti < tj
are

∂2Sa
∂wik∂wil

= Φ(ti−1, ta)>
[
Gk,li + Cl>i SiC

k
i

+ Φ(ti, ti−1)>SiD
k,l
i

+Dkl>
i SiΦ(ti, ti−1)

+ Ck>i SiC
l
i

]
Φ(ti−1, ta)

(36)

and

∂2Sa
∂wik∂wjl

= 2Φ(tj−1, ta)>
[
Llj + Φ(tj , tj−1)>SjC

l
j

+ Cl>j SjΦ(tj , tj−1)
]
Φ(tj−1, ti)C

k
i ·

Φ(ti−1, ta).

(37)

The proof is given in Appendix II.
3) Derivatives of constraints: The one-hot-constraints are

linear in the controls, with constant first derivatives,

∂

∂wjl

nω∑
k=1

wik =

{
1, j = i
0, j 6= i

, i, j ∈ [N], l ∈ [nω]. (38)

The path constraints c(x(t)) ≤ 0 are only evaluated at the
grid points ti ∈ GN . By using (27) and the chain rule, it
follows for some ti, tj ∈ GN with t0 < tj ≤ ti

∂c(x(ti))

∂wjk
= Jc(x(ti))Φ(ti, tj)C

k
j x(tj−1), k ∈ [nω] (39)

where Jc denotes the Jacobian, i.e., Jc(x(t)) = ∂c(x(t))
∂x .

E. Evaluation of objective function and derivatives
Summarizing the previous results, the following theorem

states the expressions for evaluating the objective function of
(POC-lin) and its derivatives for a given control w.

Theorem 9: With the definitions above, given a control w ∈
[0, 1]N×nω and two grid points ti, tj ∈ GN with t0 < ti <
tj ≤ tN , it holds that:

1) The objective function of (POC-lin) can be evaluated as

J(w) = x>0 S0x0 (40)

2) The gradient can be computed as

∂J(w)

∂wik
= x>i−1

(
Lki + 2Φ(ti, ti−1)>SiC

k
i

)
xi−1 (41)

3) The elements of the Hessian HJ(w) involving two
controls on Ti can be computed as

∂2J(w)

∂wik∂wil
= x>i−1

(
Gk,li + 2Cl>i SiC

k
i

+2Φ(ti, ti−1)>SiD
k,l
i

)
xi−1

(42)

4) The elements of the Hessian HJ(w) involving one
control on Ti and one on Tj can be computed as

∂2J(w)

∂wik∂wjl
= 2x>j−1

(
Llj + Φ(tj , tj−1)>SjC

l
j

+Cl>j SjΦ(tj , t
>
j−1)

)
·

Φ(tj−1, ti)C
k
i xi−1

(43)

Proof: Summary of the previous results, especially
Lemma 7 and Lemma 8.

III. IMPLEMENTATION

Our implementation is based on SwitchTimeOpt.jl [17], a
software package implemented in the programming language
Julia. It consists mainly of the necessary computations to
evaluate the objective function and its derivatives. These
evaluations must then be passed to a suitable NLP solver,
which is made possible in a simple way via the Julia package
MathOptInterface.jl [10]. With this approach we can interface
our code to a variety of NLP solvers, for example IPOPT [18]
or KNITRO [4]. The procedure of linearizing and integrating
the dynamics is shown in Alg. 1. For a given iterate, the
differential states as well as auxiliary matrices like the system
matrices Ai,j and their matrix exponentials are calculated and
temporarily saved as they are necessary for the subsequent
computation of derivatives.

6 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

Algorithm 1 Linearize and propagate states

1: Initialize x1,1 = x0, . Fixed initial state
2: function LINMATEXPROP
3: for i ∈ [N] do
4: for j ∈ [nlin] do
5: Ai,j ← Eq. (11) . Linearize dynamic
6: Zi,j ← Eq. (16) . Matrix exponential
7: Ei,j ,Mi,j ← Eq. (17)
8: xi,j+1 ← Ei,jxi,j . Compute next state
9: end for

10: end for
11: return xi,j , Ai,j , Ei,j ,Mi,j , i ∈ [N], j ∈ [nlin]
12: end function

Algorithm 2 shows the necessary computations to perform
one iteration of an NLP solver. The main steps consist of
linearizing and integrating the dynamics, computing the cost-
to-go-matrices using Lemma 5 and the derivatives of the indi-
vidual matrix exponentials using Theorem 6. Having computed
these, the composite expressions (e.g., the transition matrices
Φ) can be differentiated using the product rule. Finally, the
objective and its derivatives can be evaluated via Theorem
9. These evaluated quantities are passed to the solver which
performs an update on the current iterate. This process is
iterated until a convergence criterion is fulfilled.

Algorithm 2 Compute J(w),∇J(w), HJ(w)

1: Input w . Current iterate
2: function COMPUTECOSTFUNCTIONANDDERIVATIVES

Precomputations:
3: x,A, E ,M ← LINMATEXPPROP . Algorithm 1
4: S ← COMPUTES . Lemma 5
5: ∇E ,∇2E ← Eq. (26)
6: Φ← Eq. (18) . Transition matrices
7: C,D ← Eq. (27), Eq. (28)
8: L,G← Eq. (31), Eq. (32)

Evaluation: . Theorem 9
9: J(w)← Eq. (40)

10: ∇J(w)← Eq. (41)
11: HJ(w)← Eq. (42), (43)
12: end function

We further improved the efficiency of derivative calculation
as follows.

1) Horner’s scheme for evaluating derivatives: The deriva-
tives of products of matrix exponentials appear in several
places throughout Section II, e.g., in (27), (28), (31), and (32).
They can be calculated in multiple ways. We use Horner’s
scheme [9], reducing the number of necessary matrix mul-
tiplications. We illustrate this procedure in Alg. 3 with the
example of (27).

2) Joint evaluation of first and second derivatives: The first
and second derivatives of our matrix exponentials (14) can be
computed jointly, reducing the number of operations. This is
due to the structure of the appearing matrices in (26) and the
power series definition of the matrix exponential. In addition to

Algorithm 3 Horner’s scheme for computing (27)

1: function COMPUTECHORNER
2: for i ∈ [N] do
3: for j ∈ [nω] do
4: P ← Ei,1
5: S ← Eji,1
6: for k = 2 . . . nlin do
7: S ← Ei,kS + Eji,kP
8: P ← Ei,kP
9: end for

10: Cji ← S
11: end for
12: end for
13: end function

extracting the (1, 2)-block in (26) and thereby obtaining the
second derivative Ek,li,j , extracting the (1, 1)-block obviously
gives the first derivative Eki,j .

IV. NUMERICAL RESULTS

In this section we present some numerical results. First
we compare the efficacy of the package SwitchTimeOpt.jl
[17] with our approach for three test problems and show
empirically that our method is more likely to converge with
optimality and needs fewer iterations on average. Concluding
this section, we study the effect of using the rounded solution
of (POC-lin) as an initial guess for the problem in STO
formulation in order to mitigate the convergence problems.
The SwitchTimeOpt.jl code used for the numerical experi-
ments is basically identical with the publication [17], but was
adapted to the Julia version 1.7. It can be found on GitHub.2

A. Test Problems

Our three test problems were also used in [17] and are
contained in the MIOCP benchmark library [14].

1) Egerstedt: This problem has switched linear dynamics.
It was first proposed in [5] with two modes and extended in
[15] with a third mode. It reads

min
x,w

∫ 1

0

‖x(t)‖22 dt

s.t. ẋ(t) =
∑3
i=1 wi(t)Ai

x(0) = [0.5, 0.5],
wi(t) ∈ [0, 1], i ∈ [3]∑3
i=1 wi(t) = 1,

(Egerstedt)

where the right-hand side of the differential equation is de-
scribed by the three system matrices

A1 =

[
−1 0
1 2

]
, A2 =

[
1 1
1 −2

]
and A3 =

[
1 −1
1 1

]
.

2https://github.com/chplate/SwitchTimeOpt.jl.git.

PLATE, SAGER, STOLL, TETSCHKE: SECOND-ORDER PARTIAL OUTER CONVEXIFICATION FOR SWITCHED DYNAMICAL SYSTEMS 7

2) Lotka: This problem is given by

min
x,w

∫ 12

0

(x1(t)− 1)2 + (x2(t)− 1)2 dt

s.t. ẋ1(t) = x1(t)− x1(t)x2(t)− w(t)c1x1(t)
ẋ2(t) = −x2(t) + x1(t)x2(t)− w(t)c2x2(t)
x(0) = [0.5, 0.7],
w1(t) ∈ [0, 1],

(Lotka)

with parameters c1 = 0.4, c2 = 0.2 which describe the rates
with which the populations x1 and x2 are reduced when the
control w is active. The control goal for the Lotka-Volterra
system is to reach the steady state x1 = x2 = 1.

3) Tank: The double-tank control problem

min
x,w

∫ 10

0

(x2(t)− x3(t))2 dt

s.t. ẋ1(t) = −
√
x1(t) + w1(t)c1 + w2(t)c2

ẋ2(t) =
√
x1(t)−

√
x2(t)

ẋ3(t) = −0.05
x(0) = [2, 2, 3],
wi(t) ∈ [0, 1], i ∈ [2]
1 = w1(t) + w2(t)

(Tank)

has parameters c1 = 1, c2 = 2 representing two possible
flowrates into the upper tank x1. The deviation of the level
of the lower tank x2 from the reference level x3 shall be
minimized. The problem was investigated in [2], however for
a constant reference level x3. The specific choice of right-hand
side for x3 goes back to SwitchTimeOpt.jl [17].

B. Discretization and Settings
We solved each problem for different discretizations. Five

different numbers of linearization points on T

ngrid ∈ {100, 200, 300, 400, 500}

were investigated. For SwitchTimeOpt.jl we also varied the
number of switches, ranging from N = 1 up to N = 50, i.e.,

NSTO ∈ {1, 2, . . . , 50}.

In this scenario, allowing for n ∈ N switches, gives n+ 1
intervals of variable length each with a specific right-hand side.
The choice of the right-hand side for each interval is given by
the switching sequence σ : [N + 1] 7→ [nω]. It is chosen such
that it repeats a predefined order, i.e.,

σ(i) = 1 + (i− 1) mod nω for i ∈ [N + 1].

If nω = 1, we alternate between w = 1 and w = 0, beginning
with w = 1. This setup gives a total of 250 instances for each
problem in the STO formulation.

For POC we varied N in the range between N = 5 and
N = 250 with steps of five, more specifically

NPOC ∈ {5, 10, 15, . . . , 250}.

Note that we use N in two different contexts. In the context of
problems in the STO formulation, N describes the number of
allowed switches between the modes. In the context of POC,

N represents the number of control intervals as introduced in
Definition 1.

The parameter nlin was chosen such that the discretization
is comparable to the five stages given by ngrid. Therefore,
each nlin was calculated via

nlin(N) = {max(1, bnt
N
e), nt ∈ ngrid}.

Here, we used

bxe =

{
dxe, x− bxc ≥ 0.5
bxc, x− bxc < 0.5

as a notation for rounding to the nearest integer. In total,
this approach yields 189 distinct instances for each problem
in POC formulation with a comparable effort for numerical
integration as in the STO formulation. All instances were
solved with IPOPT [18] version 3.14.4 with tolerance 10−6

and limits of at most 500 iterations and at most 1000 seconds
computation time.

C. Comparison POC vs STO

In Table I we compare results obtained using
SwitchTimeOpt.jl and SecondOrderPOC.jl, focusing on
• rate of success, i.e., percentage of optimally solved in-

stances,
• number of iterations for optimally solved instances and
• time per iteration for optimally solved instances.
First, it shows the distribution of termination status of all

problem instances for POC and STO. Evidently, the rate of
success for STO strongly depends on the chosen problem.
While (Egerstedt) could be solved in nearly all cases, roughly
every other instance of (Tank) could not be solved. For (Lotka),
only one in five instances terminated successfully. In contrast,
all three problems have success rates greater than 90% in
POC formulation. Second, it lists the best objectives among
the optimally solved instances as well as the maximum and
median deviation from it. The best objectives among the
optimally solved instances of (Tank) and (Egerstedt) are the
same for POC and STO up to three digits. For (Lotka), the
best objective is slightly lower for POC. More interestingly,
the maximal deviation from the best objective among the
optimally solved instances for POC is at most 0.29%. In
contrast, for STO this value is 599.21%. This suggests that
if one does not know the approximate structure of the optimal
solution (e.g., number of switches) and does not provide
this prior knowledge when initializing the problem in STO
formulation, the found solution can be arbitrarily far from the
optimum. Third, the computation times among the optimally
solved instances of the three problems are roughly one order
of magnitude larger for POC compared to STO, whereas the
numbers of necessary iterations is consistently lower.

In Fig. 1 the distribution of computation times per iteration
for all successfully solved instances of the three test problems
are shown. Confirming the impression from Table I, the
POC approach is taking roughly one order of magnitude
more time per iteration for the test problems. This behavior
can be expected as it requires the computation of many

8 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

TABLE I: Comparison of performance indicators for POC and STO and all three test instances. Success rates are favorable for
POC. The other indicators were evaluated only among the successfully solved instances. While POC needs fewer iterations,
the STO approach is considerably faster. However, the quality of solutions may be worse than for POC.

Problem Formulation Termination status Success
rate

Best
objective

Deviation from best objective (in %) Median
time

Median number
of iterationsSolved Error Limit Maximum Median

Egerstedt POC 179 9 1 94.7% 0.9891 0.17 0.005 6.05 17
STO 249 1 - 99.6% 0.9891 32.8 0.003 0.49 36

Lotka POC 183 - 6 96.8% 1.3442 0.29 0.039 2.22 22
STO 50 6 194 20% 1.3449 599.21 0.361 0.36 26.5

Tank POC 186 2 1 98.4% 1.858 0.05 0.0065 2.65 11
STO 140 9 101 56% 1.858 111.82 0.0035 0.22 13

additional matrix exponentials in order to calculate deriva-
tives. In SwitchTimeOpt.jl, the evaluation of objective and its
derivatives is less expensive. There, the main computational
burden lies in integrating the dynamical system, after which
first derivatives can be computed cheaply by evaluating only a
few matrix products and additions. Also, due to shared terms
in the expressions, computing second derivatives comes at no
significant additional cost.

Fig. 1: Comparison of time per iteration of solved instances
of the three test problems for POC and STO. Iterations are
cheaper by roughly one order of magnitude for the STO
approach, mainly due to simpler formulas to calculate the
derivatives.

In Fig. 2, the number of iterations for all three test problems
are shown. Two observations can be made. First, the vast
majority of instances are successfully solved in POC, whereas
several instances are terminating due to resource limits in STO
formulation. This is especially apparent when the number of
allowed switches is large. Moreover, the number of allowed
switches clearly influences whether SwitchTimeOpt.jl is able
to converge at all. Second, the POC approach needs less itera-
tions on average for converging successfully, again confirming
the data in Table I.

D. Warmstart
As a second numerical study, we investigate the benefits of

using the rounded solution of (POC-lin) to warmstart the prob-
lem in STO formulation and solve it with SwitchTimeOpt.jl.
For this, we used the same problem instances for POC as
described in Section IV-C and proceeded as follows:

0 10 20 30 40 50

101

102

N

N
um

be
r

of
ST

O
ite

ra
tio

ns

0 50 100 150 200 250

101

102

N

N
um

be
r

of
PO

C
ite

ra
tio

ns

Locally solved Numerical error Time or iteration limit

Fig. 2: Iterations and termination status over number of control
intervals N for all instances of the three test problems in STO
(top) and POC (bottom) formulation. The POC formulation
results in a larger number of locally solved instances.

1) solve problem in POC formulation; proceed if and only
if the problem terminates with optimality

2) use Sum-Up-Rounding to get switching times τ∗ and
integer controls wSUR

3) solve problem in STO formulation; initialize the problem
with integer controls wSUR and switching times τ∗

We will call this approach STOWS in the following. The
instances of STOWS are not directly corresponding to the
instances of STO from Section IV-C in the sense that they do

PLATE, SAGER, STOLL, TETSCHKE: SECOND-ORDER PARTIAL OUTER CONVEXIFICATION FOR SWITCHED DYNAMICAL SYSTEMS 9

not have the same number of switches or the same predefined
switching sequence σ. This is due to the fact that for STOWS
these parameters are determined by the solution obtained
from applying Sum-Up-Rounding to the solution of (POC-lin).
Nevertheless, it makes sense comparing the two approaches
STO and STOWS in terms of success rates and the quality of
the found solutions.

Figure 3 gives an overview over computation times and
termination status for all three problems and all presented
approaches.

In the case of (Egerstedt), all instances solved in the
initialization step with POC could also be solved with the
STOWS approach. The best found objective was 0.9891, the
same as with STO. However, the maximal deviation from that
value could be reduced to only 0.52%, with a median devi-
ation of 0.002%. Also, the computation time and number of
iterations could be reduced to 0.16 seconds and 18 iterations,
respectively.

Concerning (Lotka), we found a success rate of 41.5%
among the instances of STOWS, which is a doubling compared
to STO. The best found objective was the same as with STO
and again, the maximal and median deviation from the best
objective could be drastically reduced to 2.92% and 0.16%,
respectively. It is also interesting to see that the structure of
the relaxed solution (starting and ending with control w = 0)
leads to only even numbers of switches.

For (Tank) we measured a success rate of 79.6% with
STOWS, again a significant increase in comparison to the 56%
with the standard initialization of STO. With our initialization,
now instances with up to approximately 50 switches could be
solved consistently, as Figure 3 illustrates. The best objective
is again the same as with STO, with the worst objective only
0.38% higher, in contrast to a maximal deviation of more than
100% with STO. The median computation time and median
number of iterations among the solved instances are slightly
larger with 0.27 s and 15 iterations, respectively.

E. Constrained POC

As a novel feature compared to SwitchTimeOpt.jl, in
SecondOrderPOC.jl also state constraints

c(t, x(t)) ≤ 0

for differentiable c : T × Rnx 7→ Rnc can be considered. As
a proof of concept, we solved (Egerstedt) with the constraint

x1(t) ≥ 0.4 t ∈ T ,

as proposed in [15]. Figure 4 depicts a solution including this
constraint in comparison to the unconstrained optimum.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Time

x1 x2 constraint w1 w2 w3

Fig. 4: Optimal controls and corresponding differential states
with (top) and without (bottom) path constraint x1(t) ≥ 0.4
for (Egerstedt) with discretization N = 200, nlin = 3.

V. CONCLUSION

We presented an algorithm for solving the partial outer
convexification reformulation of mixed-integer optimal con-
trol problems. The algorithm uses a first-discretize-then-
optimize approach employing exponential integrators which
was adapted from an algorithm for solving switching time opti-
mization problems. In particular, we derived closed formula for
the objective and derivative evaluation and implemented them
in an open-source Julia package. The efficient calculation of
second derivatives motivates the usage of Newton’s method to
solve STO and POC problems. Newton’s method was superior
to a BFGS approach (results not included in this paper).
A second order method is particularly promising when the
objective functions are quadratic and convex, as in our setting.
It should also be transferable to other outer convex structures
as surveyed in [13].

In our numerical study, we showed the effectiveness of
our method and compared convergence behavior and qual-
ity of solutions to the original switching time optimization
implementation. The results of our study indicate that the
two methods work well together when combined, i.e., using
POC solutions as initializations for SwitchTimeOpt.jl helped
improve the quality of found solutions.

There are several directions for future work. Regarding
the implementation, using an integration scheme of higher
order would certainly help to be able to tackle more difficult
problems with highly nonlinear dynamics. Also, the imple-
mentation could be parallelized efficiently. In view of the
higher per-iteration costs of our method, it would also make
sense to investigate whether initializing SwitchTimeOpt.jl with
not fully converged solutions of our method can also improve
its convergence properties.

10 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

0 100 200
10−2

10−1

100

101

102

103

N

C
PU

tim
e

PO
C

Egerstedt

0 100 200
10−2

10−1

100

101

102

103

N

Lotka

0 100 200
10−2

10−1

100

101

102

103

N

Tank

0 20 40
10−2

10−1

100

101

102

103

N

C
PU

tim
e

ST
O

0 20 40
10−2

10−1

100

101

102

103

N
0 20 40

10−2

10−1

100

101

102

103

N

0 20 40
10−2

10−1

100

101

102

103

N

C
PU

tim
e

ST
O

W
S

0 10 20 30
10−2

10−1

100

101

102

103

N
0 50 100

10−2

10−1

100

101

102

103

N

Locally solved Numerical error Time or iteration limit

Fig. 3: Solution times and status for all problems and approaches. The columns correspond to the three test problems, the rows
to the approaches POC, STO and STOWS. Times for STOWS do not take into account the initialization step. In addition to the
advantages of the warm started STOWS approach with respect to the quality of local solutions as discussed in Section IV-D,
an improvement with respect to solution time and status is visible for the Tank instances.

PLATE, SAGER, STOLL, TETSCHKE: SECOND-ORDER PARTIAL OUTER CONVEXIFICATION FOR SWITCHED DYNAMICAL SYSTEMS 11

APPENDIX I
PROOF OF LEMMA 7

Proof: We begin by analyzing the component Pa.

∂Pa
∂wik

=
∂

∂wik

(∫ tN

ta

Φ(t, ta)>QΦ(t, ta) dt

)
=

∂

∂wik

(∫ ti−1

ta

Φ(t, ta)>QΦ(t, ta) dt

+

∫ ti

ti−1

Φ(t, ta)>QΦ(t, ta) dt

+

∫ tN

ti

Φ(t, ta)>QΦ(t, ta) dt

)
=

∂

∂wik

(
Φ(ti−1, ta)>·∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt · Φ(ti−1, ta)

+ Φ(ti, ta)>·∫ tN

ti

Φ(t, ti)
>QΦ(t, ti) dtΦ(ti, ta)

)
= Φ(ti−1, ta)>·

∂

∂wik

(∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt

)
·

Φ(ti−1, ta)

+ Φ(ti−1, ta)>Ck>i ·∫ tN

ti

Φ(t, ti)
>QΦ(t, ti) dt · Φ(ti, ta)

+ Φ(ti, ta)>·∫ tN

ti

Φ(t, ti)
>QΦ(t, ti) dt · Cki Φ(ti−1, ta)

= Φ(ti−1, ta)>·

∂

∂wik

(∫ ti

ti−1

Φ(t, ti−1)>QΦ(t, ti−1) dt

)
·

Φ(ti−1, ta)

+ Φ(ti−1, ta)>Ck>i PiΦ(ti, ta)

+ Φ(ti, ta)>PiC
k
i Φ(ti−1, ta)

≈ Φ(ti−1, ta)>
(
Lki + Ck>i PiΦ(ti, ti−1)

+Φ(ti, ti−1)>PiC
k
i

)
Φ(ti−1, ta)

(44)

In the first equality we use Definition 4. In the second
equality we split up the integral into three parts. Then we
bring Φ(ti, ta) and Φ(ti−1, ta) outside of the integrals since
they do not depend on t. Also, we conclude that the last term
is zero as wik only has an impact on the interval [ti−1, ti].
After that we bring the constant Φ(ti−1, ta) outside of the
derivative operator and apply the product rule, (27) and (31),
which concludes the proof.

∂Fa
∂wik

=
∂

∂wik

(
Φ(tN , ta)>EΦ(tN , ta)

)
=

∂

∂wik

(
Φ(ti, ta)>(Φ(tN , ti)

>EΦ(tN , ti))·

Φ(ti, ta))

=
∂

∂wik

(
Φ(ti, ta)>FiΦ(ti, ta)

)
=

∂

∂wik

(
Φ(ti−1, ta)>Φ(ti, ti−1)>Fi·

Φ(ti, ti−1))Φ(ti−1, ta))

= Φ(ti−1, ta)>
∂Φ(ti, ti−1)>

∂wik
FiΦ(ti, ta)

+ Φ(ti, ta)>Fi
∂Φ(ti, ti−1)

∂wik
Φ(ti−1, ta)

= Φ(ti−1, ta)>Ck
>

i FiΦ(ti, ta)

+ Φ(ti, ta)>FiC
k
i Φ(ti−1, ta)

= Φ(ti−1, ta)>
(
Ck>i FiΦ(ti, ti−1)

+Φ(ti, ti−1)>FiC
k
i

)
Φ(ti−1, ta)

(45)

We start again with the Definition 4. In the second equation
we split up the transition matrices Φ and identify the inner
expression as Fi. Then we note that Fi does not depend on
wik, and apply the product rule together with (27). By adding
(45) and (44) we conclude the overall proof.

APPENDIX II
PROOF OF LEMMA 8

Proof: We introduce Φtita = Φ(ti, ta) as a short notation
for the transition matrix from ta to ti.

∂2Sa
∂wik∂wil

=
∂

∂wil

[
Φ
ti−1>
ta

(
Lki + Φti>ti−1

SiC
k
i

+Ck>i SiΦ
ti
ti−1

)
Φ
ti−1

ta

]
= Φ

ti−1>
ta

[
∂Lki
∂wil

+ Cl>i SiC
k
i

+ Φti>ti−1
SiD

k,l
i +Dkl>

i SiΦ
ti
ti−1

+Ck>i SiC
l
i

]
Φ
ti−1

ta

= Φ
ti−1>
ta

[
Gk,li + Cl>i SiC

k
i + Φti>ti−1

SiD
k,l
i

+Dkl>
i SiΦ

ti
ti−1

+ Ck>i SiC
l
i

]
Φ
ti−1

ta

(46)

Here, we started with the result from Lemma 7 and applied
the product rule as well as (27), (28), and (32). In the case
when we take the derivative with respect to a control wjl from
a control interval Tj with tj > ti we can write

12 SUBMISSION FOR IEEE TRANSACTIONS AND JOURNALS

∂2Sa
∂wik∂wjl

=
∂

∂wjl

[
Φ
ti−1>
ta

(
Lki + Φti>ti−1

SiC
k
i

+Ck>i SiΦ
ti
ti−1

)
Φ
ti−1

ta

]
= Φti>ta

∂Si
∂wjl

Cki Φ
ti−1

ta

+ Φ
ti−1>
ta Ck>i

∂Si
∂wjl

Φtita

= Φti>ta

[
Φ
tj−1>
ti

(
Llj + Φ

tj>
tj−1

SjC
l
j

+Cl>j SjΦ
tj
tj−1

)
Φ
tj−1>
ti

]
Cki Φ

ti−1

ta

+ Φ
ti−1>
ta Ck>i

[
Φ
tj−1>
ti

(
Llj

+ Φ
tj>
tj−1

SjC
l
j

+Cl>j SjΦ
tj
tj−1

)
Φ
tj−1

ti

]
Φtita

= 2Φ
tj−1>
ta

(
Llj + Φ

tj>
tj−1

SjC
l
j

+Cl>j SjΦ
tj
tj−1

)
Φ
tj−1

ti Cki Φ
ti−1

ta .

(47)

Again, we applied product rule, (27), (28), and Lemma 7.

REFERENCES

[1] Awad Al-Mohy and Nicholas Higham. The complex step approximation
to the fréchet derivative of a matrix function. Numerical Algorithms, 53,
01 2010.

[2] H. Axelsson, M. Egerstedt, Y. Wardi, and G. Vachtsevanos. Algorithm
for switching-time optimization in hybrid dynamical systems. In
Proceedings of the 2005 IEEE International Symposium on, Mediterrean
Conference on Control and Automation Intelligent Control, 2005., pages
256–261, Limassol, Cyprus, 2005. IEEE.

[3] A. Bürger, C. Zeile, M. Hahn, A. Altmann-Dieses, S. Sager, and
M. Diehl. pycombina: An open-source tool for solving combinatorial
approximation problems arising in mixed-integer optimal control. vol-
ume 53, pages 6502–6508, 2020.

[4] R.H. Byrd, J. Nocedal, and R.A. Waltz. Knitro: An Integrated Package
for Nonlinear Optimization. In G. Pillo and M. Roma, editors, Large-
Scale Nonlinear Optimization, volume 83 of Nonconvex Optimization
and Its Applications, pages 35–59. Springer US, 2006.

[5] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimization
for switched-mode dynamical systems. IEEE Transactions on Automatic
Control, 51:110–115, 2006.

[6] M. Gerdts. A variable time transformation method for mixed-integer
optimal control problems. Optimal Control Applications and Methods,
27(3):169–182, 2006.

[7] Simone Göttlich, Andreas Potschka, and Claus Teuber. A partial outer
convexification approach to control transmission lines. Computational
Optimization and Applications, 72(2):431–456, 2019.

[8] E. Hellström, M. Ivarsson, J. Aslund, and L. Nielsen. Look-ahead control
for heavy trucks to minimize trip time and fuel consumption. Control
Engineering Practice, 17:245–254, 2009.

[9] William George Horner. Xxi. a new method of solving numerical
equations of all orders, by continuous approximation. Philosophical
Transactions of the Royal Society of London, (109):308–335, 1819.

[10] Benoit Legat, Oscar Dowson, Joaquim Garcia, and Miles Lubin. Math-
OptInterface: a data structure for mathematical optimization problems.
INFORMS Journal on Computing, 34(2):672–689, 2021.

[11] C. Van Loan. Computing integrals involving the matrix exponential.
IEEE Transactions on Automatic Control, 23:395–404, 1978.

[12] Roy Mathias. A chain rule for matrix functions and applications. SIAM
Journal on Matrix Analysis and Applications, 17(3):610–620, 1996.

[13] Florian Messerer, Katrin Baumgärtner, and Moritz Diehl. Survey of
sequential convex programming and generalized gauss-newton methods.
ESAIM. Proceedings and Surveys, 71:64, 2021.

[14] S. Sager. A benchmark library of mixed-integer optimal control
problems. In J. Lee and S. Leyffer, editors, Mixed Integer Nonlinear
Programming, pages 631–670. Springer, 2012.

[15] S. Sager, H.G. Bock, and M. Diehl. The Integer Approximation Error in
Mixed-Integer Optimal Control. Mathematical Programming A, 133(1–
2):1–23, 2012.

[16] S. Sager, M. Jung, and C. Kirches. Combinatorial Integral Approxima-
tion. Mathematical Methods of Operations Research, 73(3):363–380,
2011.

[17] B. Stellato, S. Ober-Blöbaum, and P. J. Goulart. Second-order switching
time optimization for switched dynamical systems. IEEE Transaction
on Automatic Control, 62(10):5407–5414, 2017.

[18] A. Wächter and L.T. Biegler. On the Implementation of an Interior-Point
Filter Line-Search Algorithm for Large-Scale Nonlinear Programming.
Mathematical Programming, 106(1):25–57, 2006.

[19] C. Zeile, N. Robuschi, and S. Sager. Mixed-integer optimal control
under minimum dwell time constraints. Mathematical Programming,
188(2):653–694, 2021.

