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Abstract

Symmetry handling is a key technique for reducing the running time
of branch-and-bound methods for solving mixed-integer linear programs.
In this paper, we generalize the notion of (permutation) symmetries to
mixed-integer semidefinite programs (MISDPs). We first discuss how
symmetries of MISDPs can be automatically detected by finding auto-
morphisms of a suitably colored auxiliary graph. Then known symmetry
handling techniques can be applied. We demonstrate the effect of sym-
metry handling on different types of MISDPs. To this end, our symmetry
detection routine is implemented in the state-of-the-art MISDP solver
SCIP-SDP. We obtain speed-ups similar to the mixed-integer linear case.

1 Introduction

In this paper, we consider solving general Mixed-Integer Semidefinite Programs
(MISDP) of the following form:

inf by

s.t. ZAk Yk — A% = 0,
k=1 (1)
ézgyzguz Vie [m],
Y, € Z Viel,

with symmetric matrices A* € R"*" for k € [m]y = {0,...,m}, b € R™,
;e RU{—o0}, u; € RU{oo} for all i € [m] :== {1,...,m}. The set of indices



of integer variables is given by I C [m]. The notation M > 0 indicates that a
matrix M is positive semidefinite. Throughout this paper, we use the notation
A(y) =Y APy — A® for y € R™.

One way to solve (1) is by SDP-based branch-and-bound, a special case
of nonlinear branch-and-bound, see Dakin [5]. Here, branching on the integer
variables creates a search tree and in each node a semidefinite program (SDP) is
solved, which arises from the relaxation of the integrality requirements of that
node. For more details on this approach see, e.g., [9, 20].

Optimization problems (1) are quite general and, in particular, contain
mixed-integer linear programs (MIPs) as a special case, where one uses only
the diagonal entries of the matrices A*, k € [m]o. MISDPs also have numerous
applications, e.g., robust truss topology optimization with discrete bar diame-
ters [19] and cardinality least squares [24, 8].

The challenges for solving MIPs are inherited for the solution of MISDPs.
This includes the presence of symmetries, which are defined as follows. Let

X={yeR" : A(y) =0, {<y<u, y; €ZViel}

be the feasible region of (1). A symmetry of (1) is a bijection 7: R™ — R™ such
that X = 7(X) :== {m(z) : # € X} and b 7(x) = b"x for every z € X. Thus,
7 maps feasible solutions of (1) to feasible solutions with the same objective
value. The symmetries of (1) form the so-called symmetry group.

The presence of symmetries results in an unnecessarily large search tree, since
many symmetric solutions have to be treated although they do not contain new
information. This effect is well-known for MIPs, and many different techniques
for handling symmetries in MIPs have been developed, see, e.g., [18, 23, 12] for
an overview. Many of these methods are implemented in the solver SCIP [10, 2].

As far as we know, symmetry handling for mixed-integer semidefinite pro-
gramming has not been considered so far. For SDPs without integer variables,
however, model reformulating techniques can be used to handle symmetries. The
main idea is to aggregate a set of symmetric variables to a common variable that
represents the average value of all symmetric variables, see, e.g., [11, 13, 1, 6].
Moreover, symmetries in mixed-integer conic programming has been investi-
gated very recently in [26]; note that the SDP cone is not mentioned there.

The goal of this paper is to generalize the techniques for MIPs to MISDPs
and to investigate their computational impact. We first discuss how symmetries
can be computed. In Section 2 permutations of the variables and so-called for-
mulation symmetries of MISDPs are defined. In Section 3, we discuss how such
symmetries can be computed through graph automorphisms. We conclude the
paper in Section 4 with a numerical study of the impact of handling symmetries
in MISDPs.

2 Computing Symmetries

Note that the definition of a symmetry above is based on the feasible region X,
which is hard to handle in general (e.g., it is NP-hard to decide if X = @). In



practice, one therefore often only considers permutations of variables that leave
the description of X invariant. In the following, we generalize the corresponding
definition for MIPs, see, e.g., Margot [18], to MISDPs.

Denote the (full) symmetric group, i.e., the set of all permutations of [m],
by S;,. Then a permutation 7 € S,;, acts on x € R by permuting its compo-
nents, i.e., 7(2); = Tr-1(; for alli € [m]. Thus, 7(x) = (Tr-1(1)s-- s Tr—1(m)) -
Let 0 € S,, act on a matrix A € R™"*" as follows:

J(A)ij = Ao.—l(i)7o.—1(j) Vi, ] c [n]

Definition 1. A permutation ™ € S,, of variables is a formulation symmetry
of (1) if there exists a permutation o € S,, such that

(P1) w(I)=1,n(¢) =¢, 7(u) = u, and w(b) = b (i.e., w leaves integer variables,
variable bounds, and the objective coefficients invariant),

(P2) (A% = A° and, for alli € [m], o(A?) = A™ "),
Thus, the variables are permuted by m and the matrices by o.
Lemma 2. Every formulation symmetry of (1) is a symmetry.

Proof. Let y € R™ and let m € S, be a formulation symmetry with corre-
sponding matrix permutation ¢ € S,. Since m(b) = b and permutations are
orthogonal maps, we find b"7(y) = 771(b)Ty = b'y. Thus, 7 leaves the ob-
jective invariant. It remains to show that 7 also maps feasible solutions onto
feasible solutions.

Note that
o(A)(m(y) =Y o(A)m(y)r —o(A%) =D A" By gy — A°
k=1 k=1
O3 Ay - A0 = Afy),
k=1

where (%) follows from 7 being a permutation of [m]. Consequently, since for-
mulation symmetry 7= maps integer variables onto integer variables and respects
the bounds of variables, y is feasible for (1) if and only if m(y) is feasible. O

We note that we currently only treat symmetries in the above sense, but do
not reduce symmetries in the SDP-formulations as described in the introduction,
see, e.g., [13, 1, 6] for details; we leave this to future research.

3 Symmetry Detection

A common strategy for detecting formulation symmetries of MIPs is to construct
a suitably colored graph whose color-preserving automorphisms correspond to



formulation symmetries, see, e.g., [23, 25]. We follow this line of research and
present a colored graph to detect formulation symmetries of MISDPs.

Recall that each formulation symmetry m admits a permutation ¢ € S,
with o(A") = A™ ' for all i € [m] as well as o(A°) = A°. To model this matrix
invariant, we first introduce some notation. For each matrix A* k € [m]o,
let Ny, = {(i,5)* € [n] x [n] : Al; # 0} be the set of its non-zero entries,
where the superscript at (i, j)* is used to distinguish non-zero entries of different
matrices. For p = (i,5)* € N, let 7¥(p) = i be its row index and c*(p) = j
be its column index. We define the symmetry detection graph G = (V,€) as
described next.

The graph needs to capture both the permutation of variables © € S,;, and
the permutation of the matrix entries ¢ € S,,. For this reason, we consider the
node set V = VUDUJ], Ni, where V := {y1,...,yn} and D = [n] represent
the variables and the “dimensions” of the matrices of the MISDP, respectively.
Permutation 7 will then correspond to a permutation of the variable nodes V'
and o will correspond to a permutation of the dimension nodes in D. The nodes
in Ng,..., N; will make sure that both 7 and ¢ are correctly linked, which is
achieved by adding appropriate edges.

The edge set £ is partitioned into £y U Eg U Ec U Ep, where

Ev = {{yr,p} : p € Ny, k € [m]},
Er={{p,7"(p)} : p € Ny, k € [m]o},
Ec={{p.*(n)} : p € Ny, k € [m]o},

Ep ={{&7)" (G,0)*} : (i,4)" € Nk, k € [m]o} .

The edges in Ep are not necessary to encode formulation symmetries, however,
we think that graph automorphism codes benefit from them since they allow to
more easily recognize dependencies between different nodes. With this graph,
permuting dimension nodes requires to also permute nodes corresponding to
non-zero entries, which in turn might trigger a permutation of variable nodes
and vice versa. To make sure that only nodes corresponding to the same problem
information are mapped onto each other, we color the nodes and edges.

The variables are partitioned into groups, each with the same objective coef-
ficient, lower & upper bound, and variable type (continuous or integer). Each of
the groups is assigned a unique color and all variables within this group receive
this color. Similarly, we define a unique color for the sets D and [J;._, Ni, and
assign all nodes within such a set the corresponding color. That is, all nodes
modeling a dimension of a matrix receive the same color and all nodes corre-
sponding to matrix entries receive the same color. Finally, to also distinguish
the entries of the matrices A%, ..., A™, we color the edges in Er according to
their matrix coefficient, i.e., edge {p,*(p)} gets color A’;. Similarly, we color
the edges in E¢. To distinguish “row colors” from “column colors”, we refer to
the color of {p,c*(p)} as Ak. All other edges remain uncolored.

A bijective map @: V — V is an automorphism of G if it preserves adjacency,
ie., {u,v} € € if and only if {p(u), p(v)} € £. We say that ¢ is color-preserving
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Figure 1: Illustration of symmetry detection graph.

if, for every v € V, nodes ¢(v) and v have the same color and, for each {u,v} € &,
edges {u,v} and {¢(u), p(v)} have the same color.

Example 3. Consider the MISDP

. 010 000
inf {y1+yz : (5gg)y1+(g%)yzt0,Oéyl,yzSL yhyzeZ}.

The corresponding symmetry detection graph is given in Fig. 1, where uncol-
ored edges are drawn in black and (i,7)* denotes entry (i,7) of A¥. The only
non-trivial color-preserving automorphism of the graph exchanges y, < s,
(1,2)* <> (3,2)%, (2,1)! <> (2,3)%, 1 <> 3, and keeps node 2 fived. This leads to
the variable permutation 7, which exchanges y1 and ys, and the matrix permu-
tation o, which exchanges 1 and 3.

We show that G captures all information about formulation symmetries. The
restriction of ¢ to a set B C V is denoted ¢|p5.

Proposition 4. Let G = (V,E) be constructed as described above.

e For each color-preserving automorphism ¢ of G, |y is a formulation sym-
metry of (1).

e [or every formulation symmetry m of (1), there is a color-preserving au-
tomorphism ¢ such that |y = 7.

Proof. For the first part, let ¢ be a color-preserving automorphism of G. De-
fine m == ¢|y and o = ¢|p. We claim that 7 is a formulation symmetry with
corresponding matrix permutation o. Since ¢ is a color-preserving automor-
phism, the image of 7 is V' and the image of ¢ is D. Moreover, by the choice of
colors, 7 can only map variables of the same type (integer/continuous, objective
coefficient, upper and lower bounds) onto each other. Thus, = satisfies (P1).
Moreover, for all k € [m] and (4,5)* € Ny, we have ¢((i,5)*) = (o(i), o (j))"*)
because ¢ preserves adjacency:

e If one element of Nj is mapped to Ny, all elements from Nj need to be
mapped to Ny by the edges in Ey; in particular, ¥’ = 7 (k).



e If (i, §)* is mapped to (7, j')*", the edges in Eg (resp. E¢) ensure i’ = o (i)

(resp. 3 = 0(4)); in particular, Aﬁj = Af,’j, as ¢ preserves edge colors.

Since ¢((i,)*) = (0(i),0(§)™™®) describes the action of o on matrix A, the

second part of (P2) holds. The first part o(A%) = A° follows by the same

argument, because ¢ cannot map (7,5)° to a node (i, §/)* for k # 0 since the

nodes in Ny are the only matrix-entry nodes not connected to a variable node.
The second part follows from the above discussion by setting

m(v), ifveV,
(v) = a(v), itveD,
AT (0(0), 0 () ®), it = (4, §)F € Ny for some k € [m],
(o(i),0(5))°, if v = (4,7)° € Np for some k € [m],
for each v € V. O

Remark 5. Graph automorphism codes like bliss [15] or nauty [21] cannot
handle edge colors. Modifying G by replacing colored edges {u,v} by a node with
the same color that is connected to u and v allows to use these codes.

4 Computational Results

We implemented the symmetry detection method described in Section 3 in
SCIP-SDP 4.1.0. SCIP-SDP is a framework for solving MISDPs and is avail-
able at https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/. We compiled
SCIP-SDP with a developer version of SCIP 8.0.2 (githash 878b1c5) and used
Mosek 9.2.40 for solving SDP-relaxations. All tests were performed on a Linux
cluster with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main
memory and 10 MB cache. All computations were run single-threaded and with
a time limit of one hour.

To handle symmetries, we use the variant of the state-of-the-art method
orbital fixing [17, 22| as described in [23] and as implemented in SCIP. The idea
of orbital fixing is to derive symmetry-based fixings of binary variables that are
derived from the branching decisions and already fixed variables.

In the first experiment, we use the same 185 instances as in [20] from a vari-
ety of applications; the instances can be downloaded from the second author’s
web page. Table 1 shows the detected symmetries of all 21 instances that con-
tain symmetry. We can see that most instances admit symmetries of the full
symmetric group Sk, i.e., k variables can be permuted arbitrarily. As |S;| = k!,
the symmetry groups become rather large, which indicates that symmetry han-
dling might be beneficial for solving these instances. Note that the action of the
symmetries might be nontrivial, i.e., several variables might be moved simulta-
neously like permuting the rows or columns of a matrix.

Table 2 shows a comparison of the default without symmetry handling and
the new version with symmetry handling. Here, we excluded one numerically dif-
ficult instance for which both variants computed a wrong solution. The columns


https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/

Table 1: Symmetries in the 21 symmetric instances from [20], where Sy, refers
to the full symmetric group on k elements and Dy, is the dihedral group.

instance symmetry group

0+-115305C_ MISDP1d000010 So

0+-115305C_ MISDPrd000010 Sa

band60605D _MISDP1d000010 So X Sy X S X 83 X 83 X Sg X S19 X 83 X S4
bandGOGO5D7MISDPrdOOOOlO S X Sy X S X 83 X 83 X Sg X S19 X 83 X S4
band70704A  MISDPId000010 Sy X S2 X 83 X 83 X S3
band70704A_MISDPrdOOOOlO S2 X Sa X 83 X S3 X S3

clique_60_k10_6_6, clique_60_k15_4 4,
clique_60_k20_3_ 3, clique_60_k4 15 15,
clique 60 k5 12 12, clique 60 k6 10 10, Sa
clique 60 k7 8 9, clique 60 k8 7 8,
clique_60_k9 6_7, clique_70_k3_23_24

diW_34 So X S X 83 X 8o X Dy X S4 X Su
diw_ 37 Sa2 X S84 X 83 X 84

diW738 82 X 32 X Sz X 83

diw_ 43 S3

diw 44 Ss

Table 2: Results for MISDP instances from [20].

all (184) all optimal (168) only symmetric (21)
variant time (s) symtime (s) # gens time (s) #nodes time (s)
no symmetry 130.6 - - 95.0 778.3 45.07
orbital fixing 125.3 0.44 99 90.8 760.6 29.84

represent the shifted geometric mean of the CPU time in seconds (with a shift
of 1s), the average time for symmetry handling (including detection), and the
number of generators. The next two columns display the shifted geometric mean
of the CPU time and number of nodes (with a shift of 100) for the 168 instances
that could be solved by both variants. The last column shows the CPU time,
but only for those instances for which at least one generator has been found.

One can see a 4 % speed-up in CPU time for all instances and about 34 % for
the 21 instances that contain symmetry. Note that symmetry handling does not
help to solve more instances (168), but to speed up computation. The time for
handling and computing symmetry over all instances is quite small. Similarly,
the number 99 of found generators is quite small. This fits well with Table 1 in
which the symmetry groups admit a small set of generators.

In a second experiment, we consider the problem of finding a maximum
stable set in an unweighted undirected graph G = (V, E). Based on [16, 3], we



Table 3: Results for stable set MISDP instances on Color02 graphs.

all (54) all optimal (47) only symmetric (51)
variant time (s) symtime (s) # gens time (s) #nodes time (s)
no symmetry 89.2 51.1 11.0 85.35
orbital fixing 81.4 0.32 1028 46.4 7.2 77.54

Table 4: Results for the stable set MISDP instances on flower snark graphs.

all (20) all optimal (14)
variant time (s) symtime (s) # gens time (s) #nodes
no symmetry 310.8 - - 108.3 10.2
orbital fixing 211.7 0.23 80 67.3 7.2
derive the MISDP formulation

sup Z Ty
veV
1 z'
s.t. =0
y @)
Kuvw < Tuy, Xuw STy, Ty + 2y <1+ Xy V{u,v} € <2>7
Xy =0, V{u,v} € E,

xe{0,1}V, X € {0,1}"*V.

Model (2) can be easily transformed into a MISDP of type (1). It indeed models
the stable set problem, where z,, = 1 if and only if v is contained in a stable set.
The linear constraints model that X,,, = x,, - £, and that not both endpoints of
an edge can be contained in a stable set. The SDP constraint arises from the
observation that zx T = 0 for every incidence vector x of a stable set.

We conducted experiments for two sets of graph instances. The Color02
test sets consists of the 55 smallest graphs from the Color02 symposium [4]; the
Snark test sets consists of so-called flower snark graphs [14, 7| with 4n nodes,
where n € {11,...,49} N (1 4 2Z) nodes. The latter instances are of particular
interest, because they admit a large dihedral symmetry group.

Table 3 provides results for the Color02 graphs. Here we excluded one
instance for which the computations produced a wrong result. There is a speed-
up of about 9% each for all instances, the ones the have been solved by all
variants, and the ones in which a least one symmetry has been found. Note
that the symmetry of the formulation only arises from the symmetry of the
graph.

Table 4 shows the result for the flower snark graphs, which all contain sym-
metries. With symmetry handling one solves 17 instances, compared to 14 for
the default. Moreover, there is a speed-up of about 32% and 38 % on all in-
stances and the ones solved to optimality by both variants, respectively.



Conclusion Our numerical experiments indicate that symmetry handling is
an important tool for reducing the running time of solving MISDPs. Our graph
automorphism based approach allows to quickly compute symmetries such that
the additional time needed to detect symmetries is negligible. Then, using state-
of-the-art methods such as orbital fixing, already allows to substantially improve
the solution time on a variety of test sets. An interesting question is whether
new symmetry handling methods that are tailored for MISDPs allow to improve
the running time even further. For instance, one could try to combine handling
permutation symmetries and using model reformulations as mentioned in the
introduction. We leave this for future research.
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