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1 Introduction.
This work is in the stream of methods for structured nonsmooth and nonconvex optimization problems, one
of the optimization fields to which Professor Maso Fukushima significantly contributed. In particular, his
seminal paper [23] with H. Mine proposes an algorithm for minimizing the sum of a convex function and a
continuously differentiable function. Such an algorithm is nowadays known as the generalized conditional
gradient method and was instrumental to several algorithmic developments in the field, particularly in DC
programming. By considering a significantly broader setting, this work deals with nonsmooth and nonconvex
optimization problems of the form

min
x∈X

f(x) s.t. c(x) ≤ 0, (1.1a)

where X is a nonempty bounded polyhedron contained in an open convex set O ⊂ Rn, and functions
f : O → R and c : O → R are decomposable as the difference of convex and (locally) weakly convex
functions. More specifically, we assume that the following convex-weakly convex (CwC) decompositions are
available:

f(x) = f1(x)− f2(x) and c(x) = c1(x)− c2(x), (1.1b)

with f1, c1 : O → R convex and f2, c2 : O → R weakly convex functions on some neighbourhood of each
x ∈ O. We adopt the more general definition of weakly convex functions (see Definition 2.2 below) given
in [51, Def. 4.2] so that we can exploit the equivalence between the families of locally weakly convex and
Lower-C2 functions [33, Thm. 1.3, Cor. 1.3] to highlight the breadth of our approach. In particular, we
have in mind the following settings for f2 (as well as for c2):

i) f2(x) = ϕ(x) is a (possibly nonsmooth) convex function;

ii) f2(x) = −h(x) with h having Lipschitz continuous gradient;

iii) f2(x) = ϕ(x)− h(x), with ϕ and h as given above;
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iv) f2(x) is the optimal value of maxt∈T F (t, x), with T a (possibly nonconvex) compact set and F of
class C2;

v) f2(x) = ϕ(G(x)), with ϕ : Rm → R convex and Lipschitz and G : Rn → Rm a smooth mapping with
Lipschitz Jacobian.

Analogous settings for c2, and their combinations with the ones for f2, are covered by our analysis (see
Section 2 below for details).

Weakly convex functions enjoy favorable properties in so much as that they can be recast as Difference-
of-Convex (DC) functions [10]. Hence, problem (1.1) can, in theory, be recast as a DC-constrained DC
program, a setting that proves practical if explicit DC decompositions are available; see for instance [17, 16,
34, 24, 8, 50, 42, 35] and references therein. However, if no DC decomposition is known for f or c, the DC
machinery is unsuitable, and the methods proposed in these references are not applicable. This is already
the case for the more straightforward items ii) and iii) above if the underlying Lipschitz constant is unknown
and no upper bound is readily available1. The situation becomes even more complicated for items iv) and
v): in general, there are no formulae, rules, or practical insights to obtain a DC decomposition for f2 in
these cases (see Example 1.1 below for a particular case of iv). A strategy to handle problem (1.1) via DC
programming algorithms is to replace functions fi and ci (i = 1, 2) with fi(x)+

µ
2
∥x∥2 and ci(x)+

µ
2
∥x∥2 for

a large parameter µ > 0 estimating upper bounds on the unknown weakly-convex moduli µf and µc of f2
and c2 (see Proposition 2.4), hoping that f2(x)+

µ
2
∥x∥2 and c2(x)+

µ
2
∥x∥2 are convex on X. As, in general,

there is no reliable way to assert the convexity of these latter functions, DC programming algorithms applied
in this context must be understood as heuristics. Remarkably, the work [40] exploits such a strategy by
combining a dynamic rule to update µ with a nonconvexity test so that convergence is achieved, but only
in a probability sense. Differently, for a class of nonconvex two-stage stochastic problems, the authors of
[20] exploit an implicitly convex-concave structure of the objective function and propose an algorithm based
on the so-called partial Moreau envelope that disregards DC decompositions at the price of nonnegligible
computational costs.

In contrast to the above references, this work investigates a bundle method approach for tackling (1.1),
which neither requires explicit DC decompositions of the involved functions (in particular, bounds on the
weakly-convex moduli µf and µc need not be known), nor relies on (often costly) Moreau envelopes. For
the method to work, it suffices to dispose of a difference of convex and weakly convex (CwC) decomposition
of the involved functions, as in (1.1b). Compared to DC, the latter structure appears more naturally in
applications (see [15, § 7.5]) and has yet to be exploited to design optimality conditions and numerical
algorithms. This work aims to fill this gap.

Our approach broadens and enhances the method proposed in [50] for dealing with DC-constrained
DC-problems in two ways. First, the availability of DC decompositions is no longer needed, which makes
our approach applicable to a larger scope of problems. Second, it is ensured to compute critical points for
the original problem without any additional assumption on the second components: f2 and c2 need not be
continuously differentiable as assumed in [50, Thm. 2]. In addition, it has a lower cost per iteration (the
master subproblem has fewer constraints than the one of [50]). Similarly to [50], our approach builds upon
a problem reformulation via improvement function, a well-known and successful strategy in the nonsmooth
optimization literature [31, 1, 24]. However, due to the above modifications, the convergence analysis of our
extension of the method proposed in [50] must be done anew. Furthermore, a new criticality definition for the
reformulated problem links directly with (necessary) optimality conditions for the original problem (1.1),
which makes it a major ingredient for these enhancements. Such a criticality concept is introduced and
analyzed in Section 3 below, where we also extend the alternative characterization of Bouligand stationarity
given in [27] to our CwC setting. Before that, we motivate this work with the following example that
presents a class of problems (of great practical appeal) where the CwC decomposition arises upon applying
a well-known interior-penalty strategy. An example of a real-life (chance-constrained optimal power flow)
problem fitting our CwC structure without any approximation can be found in the Ph.D. thesis [15, § 7.5].

Example 1.1 (Nonconvex two-stage programming). Let Ξ := {ξ1, . . . ξS} be a set of scenarios and πs > 0
the probability of occurrence of event ξs, s = 1, . . . , S. Consider the following nonconvex two-stage program min

x∈X
f1(x) +

S∑
s=1

πsQ(x; ξs)

s.t. c1(x)− c2(x) ≤ 0

with Q(x; ξ) :=

{
min
y∈Y

q(x, y; ξ)

s.t. ψi(x, y; ξ) ≤ 0, i = 1, . . . ,m.
(1.2)

Assume that:

- f1, c1, c2 : Rn → R are convex (possibly nonsmooth) functions;

1It is worth noting that in many practical problems, mainly those from data science, an upper bound on
such a constant can be computed.

2



- X ⊂ Rn, Y ⊂ Rn2 are two (non-empty) convex and bounded polytopes;

- q, ψi : Rn × Rn2 × Ξ → R, i = 1, . . . ,m, possess the following characteristics: q(·, ·, ξ) and ψi(·, ·, ξ)
are twice-continuously differentiable for every ξ ∈ Ξ fixed and, moreover, q(x, ·, ξ) and ψi(x, ·, ξ) are
convex for every x and ξ fixed;

- the constraints in the subproblem Q(x; ξ) satisfy the Slater condition: for every x ∈ X and ξ ∈ Ξ,
there exists y◦(x; ξ) ∈ Y such ψi(x, y

◦(x; ξ), ξ) < 0, i = 1, . . . ,m.

As presented in [50], the DC constraint c1(x) − c2(x) ≤ 0 above is particularly useful in this stochastic
programming setting to model chance constraints.

Under the above assumptions, evaluating the recourse function Q(x; ξ) amounts to solving a well-defined
convex optimization problem on variable y. Although this essential property is present, the recourse function
itself fails to be convex on variable x (but Q(·; ξ) is continuous as a result of [2, Prop. 4.4]). Furthermore,
without further assumptions, computing a (generalized) subgradient of Q(·; ξ) at x as well as asserting
additional properties about this function are challenging tasks. This could for instance be done if the
constraints satisfy a further Aubin or Lipschitz like property upon exploiting [25, Chapter 4]. Still though,
most likely, at best we would be dealing with subdifferentials inclusions - and concrete algorithms to handle
such general “marginal functions” would be unavailable.

A possible manner to curtail these difficulties is to approximate the recourse function with a more
tractable one. As explained in [3], with the help of the log-barrier penalty function and a penalization
parameter ε > 0, we may approximate Q(x; ξ) with

Qε(x; ξ) := min
y∈Y

q(x, y; ξ)−
1

ε

m∑
i=1

log(−ψi(x, y; ξ)). (1.3)

Given the above assumptions, it is well known that Qε(x; ξ) ↓ Q(x; ξ) as ε ↓ 0 (e.g., [3, § 2.2] and [2, p.
266]), and thus the model{

min
x∈X

f1(x)− f2(x)
s.t. c1(x)− c2(x) ≤ 0

with f2(x) :=

S∑
s=1

πs[−Qε(x; ξs)]

is an accurate approximation of (1.2) when ε > 0 is small enough. Furthermore, as
−Qε(x; ξ) = maxy∈Y

1
ε

∑m
i=1 log(−ψi(x, y; ξ))− q(x, y; ξ) is a weakly convex function (c.f. item iv) above),

this model fits the structure (1.1). We highlight that Qε(x; ξ) is generally a nonsmooth (nonconvex) function;
hence, the above problem is challenging. To our knowledge, no practical and mathematically sound optimiza-
tion algorithm could tackle this class of problems before this work. Indeed, [23] requires f2 to be smooth,
[20] assumes q(·, ·, ξ) and ψi(·, ·, ξ) to be concave-convex functions, and [3] requires another degree of approx-
imation by adding a Tikhonov regularization to (1.3) to force Qε(x; ξ) be smooth. In all these references,
function c2 is absent. Being nonsmooth, we mention in passing that a (generalized) subgradient of f2 at x

can be computed and seen to be
∑S

s=1 πsg(y(x; ξ
s)), where g(·) := ∇x[

1
ε

∑m
i=1 log(−ψi(x, ·; ξs))−q(x, ·; ξs)]

is the gradient w.r.t. x of the objective function of (1.3) multiplied by −1, and y(x; ξ) is an arbitrary optimal
solution of (1.3) (see Proposition 2.1 and [30, Thm. 7.3]). □

Our approach is still applicable in more general case, where the probability vector π in the above example
is a function (of class C2) of the first-stage variable x, i.e., πs(x), i = 1, . . . , S. Hence, this work’s class
of optimization problems includes the challenging family of stochastic programming recourse models with
decision-dependent uncertainty considered (e.g. [12] and [20]).

The remainder of this manuscript is organized as follows. Section 2 recalls essential definitions, key ele-
ments, and well-known concepts from variational analysis. Necessary optimality conditions for problem (1.1)
are presented in Section 3 as well as the problem reformulation via an improvement function. Once the link
between the reformulated and the original problem is established in the same section, Section 4 focuses on an
improvement-function-based bundle method for problem (1.1). Section 5 presents the method’s convergence
analysis to critical points, and finally, Section 6 illustrates the practical performance of our approach on
some nonconvex stochastic optimization problems, including a real-life (chance-constrained optimal power
flow) problem from [15, 36], and a compressed sensing problem.

Notation The following notation is employed throughout the text. For a real number a, we denote by
[a]+ the value max{a, 0}. For any points x, y ∈ Rn, ⟨x, y⟩ stands for the Euclidean inner product, and ∥ · ∥
for the associated norm, i.e., ∥x∥ =

√
⟨x, x⟩. For a convex set X, NX(x) stands for its normal cone at the

point x, i.e., the set {y : ⟨y, z−x⟩ ⩽ 0 for all z ∈ X} if x ∈ X and the empty set otherwise. The Bouligand
tangent cone to a (possibly nonconvex) set W ⊂ Rn at a point w ∈ W is the set TW (w) of all tangent
directions in the following sense: d ∈ TW (w) if there exist a sequence of vectors {wk} ⊂ W converging to
w and a sequence of positive scalars tk → 0 such that d = limk→∞(wk − w)/tk. The indicator function of
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X ⊂ Rn is defined as iX(x) = 0 if x ∈ X and iX(x) = +∞ otherwise. The convex hull of a set X is convX
and the relative interior is denoted by riX. The domain of a function φ : Rn → (−∞,+∞] is represented
by Dom(φ) = {x ∈ Rn : φ(x) < +∞}. Notation O stands for an open convex set of the Euclidean space
Rn and, given the definitions of f and c, we have that O ⊂ Dom(f) and O ⊂ Dom(c). The component
functions of f and c are f1, f2, and c1, c2 respectively: f1 and c1 are convex, whereas f2 and c2 are weakly
convex on some neighbourhood of every x ∈ O. Finally, f∗ stands for the Legendre-Fenchel transform of a
function f : Rn → (−∞,+∞].

2 Definition and prerequisites
This section starts by recalling the concept of (generalized) directional derivatives and subdifferentials. Basic
subdifferential calculus is summarized in Proposition 2.1 below, followed by the definitions of weakly convex
and lower-C2 functions. The section closes with Proposition 2.4 asserting that the definition of (locally)
weakly convex function can be globally extended to the whole convex and compact set X. Such a property
is of crucial importance in this work.

A function f : O → R is said to be locally Lipschitz continuous if for each x′ ∈ O there is a neighbourhood
Vx′ ⊂ O of x′ such that, for some Lx′ ≥ 0,

|f(x)− f(y)| ≤ Lx′∥x− y∥ ∀ x, y ∈ Vx′ .

The function f is said to be Lipschitz continuous on O if Lx′ = L can be taken independent of x′ ∈ O, and
Vx′ in the above inequality is replaced with O.

Directional derivatives and subdifferentials. Let ϕ : O → R be a convex function. Then ϕ
is locally Lipschitz continuous and, for each x ∈ O, the directional derivative

ϕ′(x; d) := lim
τ↓0

ϕ(x+ τd)− ϕ(x)
τ

exists (and is finite) in every direction d ∈ Rn [26, Prop. 2.81 and Cor. 2.82]. Such a derivative can be
represented by ϕ′(x; d) = maxs∈∂ϕ(x)⟨s, d⟩, where ∂ϕ(x) is the subdifferential of ϕ at point x:

∂ϕ(x) := {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩ ∀ y ∈ Rn} . (2.1)

The elements of ∂ϕ(x) are referred to as the subgradients of ϕ at x. The approximate subdifferential is
defined, for ϵ ≥ 0, by

∂ϵϕ(x) := {s ∈ Rn : ϕ(y) ≥ ϕ(x) + ⟨s, y − x⟩ − ϵ ∀ y ∈ Rn} .
Let f : O → R be a locally Lipschitz continuous function. Then the generalized directional derivative

defined by

f◦(x; d) := lim sup
x′ → x, τ ↓ 0

f(x′ + τd)− f(x′)

τ

is finite for all x ∈ O in every direction d ∈ Rn [4, Prop. 2.1.1(a)]. Such a mathematical concept permits us
to define the Clarke subdifferential of f at x ∈ O,

∂Cf(x) := {g ∈ Rn : ⟨g, d⟩ ≤ f◦(x; d) for all d ∈ Rn}, (2.2)

which is a nonempty, convex, and compact subset of Rn [4, Prop. 2.1.2(a)] satisfying f◦(x; d) = maxg∈∂Cf(x)⟨g, d⟩.
The elements of ∂Cf(x) are referred to as generalized (or Clarke) subgradients, as they are the usual subgra-
dients, i.e., ∂Cf = ∂f, when f is convex [4, Prop. 2.2.7]. Furthermore, when f is continuously differentiable,
∂Cf(x) reduces to the singleton {∇f(x)}. An alternative representation, in finite dimensions, of ∂Cf(x) is (see
[4, Thm. 2.5.1])

∂Cf(x) := conv
{

lim
ι→∞

∇f(xι), xι → x, f differentiable at xι
}
.

A fundamental result, often evoked in this work, is the following one [4, Prop. 2.1.2]: the mapping ∂Cf
is locally bounded in the interior of Dom(f) := {x ∈ Rn : f(x) < ∞}. As a result, the image ∂Cf(X) of
every bounded set X ⊂ O (⊂ Dom(f)) is bounded in Rn. Useful calculus rules of subdifferentials are listed
in Proposition 2.1 below and rely on the concept of regularity.

A locally Lipschitz continuous function f : O → R is subdifferentially regular (or simply regular) at
x ∈ O if for every d ∈ Rn the ordinary directional derivative at x exists and coincides with the generalized
one:

f′(x; d) = f◦(x; d) ∀ d ∈ Rn.

It holds that smooth functions, as well as convex ones, are regular at every point in the interior of their
domains. Moreover, a finite linear combination (by nonnegative scalars) of regular functions at x is regular
[4, Prop. 2.3.6].
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Proposition 2.1. Let ft : O → R, t = 1, 2, . . . ,m, be locally Lipschitz functions and x ∈ O an arbitrary
point. Then

i) ∂C[
∑m

t=1 atft](x) ⊂
∑m

t=1 at∂
Cft(x) for all a ∈ Rm, and equality holds if

� all but one of ft are smooth [4, Prop. 2.3.3 and Cor. 2];

� or if every ft is regular at x and a ∈ Rm
+ [4, Cor. 3];

ii) ∂Cf(x) ⊂ conv{∂Cft(x) : t ∈ I(x)}, for f(x) = maxt=1,...,m ft(x) and I(x) := argmaxt=1,...,m ft(x),
and equality holds and f is regular if every ft is regular at x. [4, Prop. 2.3.12].

The last item can be strengthened when more structure is present, such as in the case of weakly convex
functions (see Eq. (2.3) below).

Weakly convex functions: definition and main properties

Definition 2.2 (Def. 4.2 [51]). A function f : O → R is said to be (locally) weakly convex on O if, on some
neighbourhood Vx′ ⊂ O of each x′ ∈ O, there exists µx′ ≥ 0 such that, for all µ ≥ µx′

ϕ(x) := f(x) +
µ

2
∥x∥2 is finite and convex on Vx′ .

Furthermore, f is said to be weakly convex in the global sense on O if the above property holds for
Vx′ = O and µx′ = µ̄ ≥ 0 regardless of x′ ∈ O. □

Clearly, a convex function on O is weakly convex in the global sense: it suffices to take µx′ = 0 and
Vx′ = O for all x′ ∈ O. When f is a smooth function with a Lipschitz continuous gradient, then f is weakly
convex in the global sense with µ = L the Lipschitz constant of ∇f [6, Prop. 1]. Moreover, it follows from
[7, Lemma 4.2] that the family of composite functions given in item v) of the Introduction is also weakly
convex in the global sense.

Definition 2.2 implies that weakly convex functions are locally DC : the decomposition f(x) = ϕ(x) −
µ
2
∥x∥2 holds on some neighbourhood of every x′ ∈ O. As a result, [29, Thm. 10.33] ensures that the class

of weakly convex functions coincides with that of Lower-C2 functions; see also [33, Thm. 1.3, Cor. 1.3].

Definition 2.3 (Def. 10.29 [29]). (LC2 functions). A function f : O → R is said to be Lower-C2 or LC2 on
O if, on some neighbourhood Vx′ ⊂ O of each x′ ∈ O, there is a representation

f(x) = max
t∈T

ft(x).

in which the functions ft are of differentiability class C2 on Vx′ and the index set T is a compact space such
that ft(x), ∇ft(x), and ∇2ft(x) depend continuously not just on x ∈ Vx′ but jointly on (t, x) ∈ T × Vx′ . □

In particular, if f is given by f(x) = max{f1(x), . . . , fm(x)} and all functions f1, ..., fm are of class C2,
then f is Lower-C2/weakly convex. Furthermore, the functions of item iv) are also weakly convex, since they
are Lower-C2 by definition.

An important property of LC2 /weakly convex functions is regularity [28, Thm. 1]: for every x ∈ O,
the equality f′(x; d) = f◦(x; d) holds in every direction d ∈ Rn. Furthermore, Theorem 7.3 in [30] gives the
following characterization of the Clarke subdifferential of f at x ∈ O: for I(x) = argmaxt∈T ft(x),

∂Cf(x) = conv {∇xft(x) : t ∈ I(x)} for all x ∈ O. (2.3)

When constrained to a compact convex set X ̸= ∅, we can say more about weakly convex functions. Indeed,
the local property in Definition 2.2 globally extends to the whole X, and we have the following key result
(whose proof can be found in the Appendix A).

Proposition 2.4. Let f : O → Rn be a weakly convex function, and X ⊂ O a compact and convex set.
Then there exist a real number µf ≥ 0 and an open convex set O′ satisfying X ⊂ O′ ⊂ O such that, for all
µ ≥ µf :

i) the function ϕ(x) := f(x) + µ
2
∥x∥2 is convex on O′ and ∂ϕ(x) = ∂Cf(x) + µx for all x ∈ O′;

ii) for all sf ∈ ∂Cf(x) with x ∈ O′, the following inequality holds

f(y) ≥ f(x) + ⟨sf , y − x⟩ −
µ

2
∥y − x∥2 ∀y ∈ X. (2.4)

Concerning the setting of this work where X is compact, the appealing DC decomposition f(x) =
ϕ(x) − µf

2
∥x∥2 is, unfortunately, unavailable: the threshold µf in Proposition 2.4 is in general unknown.

This fact precludes the application of DC techniques to optimization problems featuring general Lower-
C2/weakly convex functions. Interested readers are referred to [41] for a strategy that uses approximated
DC decompositions based on item i) of Proposition 2.4.
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3 Necessary optimality conditions and problem refor-
mulation

Let f, c : O → R be given by (1.1b). We highlight that some properties of their components can be
transferred to these functions. (To ease the presentation, let us focus only on f(x) = f1(x) − f2(x), as
the same conclusions hold for c.) For instance, f is locally Lipschitz continuous because f1 and f2 are so.
Furthermore, as f1 is convex and f2 is (locally) weakly convex, they are both directional differentiable and
these properties extend to f as well: for every x ∈ O, the directional derivative of f is finite in every direction
d ∈ Rn as result of the following relation:

f ′1(x; d)− f ′2(x; d) = lim
τ↓0

[f1(x+ τd)− f1(x)
τ

−
f2(x+ τd)− f2(x)

τ

]
= f ′(x; d).

However, the important regularity condition of both f1 and f2 does not extend to f as a mere fact that
the latter is not a linear combination with nonnegative coefficients of the two former functions (see Propo-
sition 2.1.i)). Hence, we cannot expect to have equality in the following inclusion

∂Cf(x) ⊂ ∂f1(x)− ∂Cf2(x)
unless one of the component functions is smooth at x. Such an inclusion impacts stationary concepts as we
will now discuss. Let us first consider the convexly-constrained problem

min
x∈X

f(x), with f(x) = f1(x)− f2(x). (3.1)

A point x̄ ∈ X is said to be directional (d)-stationary for this problem if f ′(x̄; d) ≥ 0 for all d ∈
TX(x̄). The following result generalizes [27, Prop. 5], where a specific case of problem (3.1) with f2(x) =
max{ψ1(x), . . . , ψm(x)} and convex ψ1, . . . , ψm is considered.

Proposition 3.1. A point x̄ ∈ X is d-stationary of problem (3.1) if, and only if,

x̄ ∈ argmin
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩] ∀ sf2 ∈ ∂
Cf2(x̄).

Proof. Observe that TX(x̄) = cl {d ∈ Rn : d = t(x− x̄), x ∈ X, t ∈ R+} due to convexity of X. Therefore,
the definition of d-stationarity can be equivalently written as f ′(x̄;x− x̄) ≥ 0 for all x ∈ X. Recall that f2
is (locally) weakly convex and thus regular, which implies that f ′2(x̄;x − x̄) = maxsf2∈∂Cf2(x̄)

⟨sf2 , x − x̄⟩.
Hence,

f ′(x̄;x− x̄) ≥ 0 ∀ x ∈ X
⇔f ′1(x̄;x− x̄)− f ′2(x̄;x− x̄) ≥ 0 ∀ x ∈ X

⇔f ′1(x̄;x− x̄)− ⟨sf2 , x− x̄⟩ ≥ 0 ∀ sf2 ∈ ∂
Cf2(x̄), ∀ x ∈ X

⇔x̄ ∈ arg min
x∈X

f1(x)− ⟨sf2 , x− x̄⟩ ∀ sf2 ∈ ∂
Cf2(x̄).

A point x̄ ∈ X is said to be Clarke-stationary of problem (3.1) if

0 ∈ ∂Cf(x̄) +NX(x̄). (3.2)

Furthermore, by following the lead of DC programming (see for instance [6, §3.1]), x̄ ∈ X is said to be a
critical point if

0 ∈ ∂f1(x̄)− ∂Cf2(x̄) +NX(x̄). (3.3)

It is not difficult to see that this inclusion means that

x̄ ∈ argmin
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩] for some sf2 ∈ ∂
Cf2(x̄).

Note that the concept of criticality is weaker than that of Clarke-stationarity, which in turn is weaker than d-
stationarity (because f ′(·; d) ≤ f◦(·; d) for all d ∈ Rn). However, criticality and Clarke-stationarity coincide
when at least one component function is smooth (in which case f is regular). Furthermore, we can see from
Proposition 3.1 and the above alternative characterization of criticality that the three concepts coincide
when f2 is continuously differentiable at x̄.

For the more general problem (1.1), x̄ ∈ X is said to be a Bouligand (B)-stationary point of (1.1) if
f ′(x̄; d) ≥ 0 for all d ∈ TXc (x̄), with Xc the feasible set of (1.1). If the considered point strictly satisfies the
nonconvex constraint, i.e. c(x̄) < 0, then B-stationarity condition is equivalent to d-stationarity condition
for problem (3.1), as TXc (x̄) = TX(x̄). Analogously, B-stationarity boils down to d-stationarity if constraint
c(x) ≤ 0 is absent. Necessary and sufficient conditions for B-stationarity are given in [27, Prop. 4] for the
case of DC-constrained DC problems. The next result deals with a more general case: we assume that only
c2 is convex, while f2 remains a weakly-convex function.
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Proposition 3.2. In addition to our assumptions on problem (1.1), let c2 : O → R be a convex function
and x̄ ∈ Xc := {x ∈ X : c(x) ≤ 0} such that c(x̄) = 0. Moreover, assume that the following constraint
qualification (CQ) holds

cl
{
d ∈ TX(x̄) : c′(x̄; d) < 0

}
=

{
d ∈ TX(x̄) : c′(x̄; d) ≤ 0

}
. (3.4)

Then, x̄ is a B-stationary point of problem (1.1) if and only if x̄ solves the convex problems{
min
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩]
s.t. c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] ≤ 0

}
∀ sf2 ∈ ∂

Cf2(x̄), ∀ sc2 ∈ ∂c2(x̄). (3.5)

Proof. Denote Ȳ (x̄) = {x ∈ X : c1(x) ≤ c2(x̄)+ c′2(x̄;x− x̄)}. As the CQ (3.4) holds, Proposition 2.1 of [42]
ensures that TXc (x̄) = TȲ (x̄)(x̄) = cl

{
d ∈ Rn : d = t(x− x̄), x ∈ Ȳ (x̄), t ∈ R+

}
. Thus, the B-stationary

definition is equivalent to

f ′(x̄;x− x̄) ≥ 0 ∀ x ∈ Ȳ (x̄)

⇔f ′1(x̄;x− x̄) ≥ ⟨sf2 , x− x̄⟩ ∀ sf2 ∈ ∂
Cf2(x̄), ∀ x ∈ Ȳ (x̄). (3.6)

The stated result follows upon establishing the equivalence between (3.6) and (3.5).
[(3.6) ⇒ (3.5)]. Suppose (3.6) holds and let sc2 ∈ ∂c2(x̄) be arbitrary. As

Y (sc2 ) := {x ∈ X : c1(x) ≤ c2(x̄) + ⟨sc2 , x− x̄⟩} ⊂ Ȳ (x̄)

due to convexity of c2, we conclude that f ′1(x̄;x− x̄) ≥ ⟨sf2 , x− x̄⟩ for all sf2 ∈ ∂Cf2(x̄) and all x ∈ Y (sc2 ).
Convexity of the latter set implies that x̄ minimizes f1(x) − ⟨sf2 , x − x̄⟩ over Y (sc2 ) for all sf2 ∈ ∂Cf2(x̄).
Thus, condition (3.5) holds because sc2 ∈ ∂c2(x̄) was taken arbitrarily.

[(3.5) ⇒ (3.6)]. To show the reverse implication, we proceed with a proof by contrapositive. Suppose
that there exist s′f2 ∈ ∂

Cf2(x̄) and x′ ∈ Ȳ (x̄) such that f ′1(x̄;x
′ − x̄) < ⟨s′f2 , x

′ − x̄⟩ (and hence x′ ̸= x̄), i.e.,

(3.6) does not hold. Let s′c2 ∈ ∂c2(x̄) be such that c′2(x̄;x
′ − x̄) = ⟨s′c2 , x

′ − x̄⟩. Therefore, x′ is feasible for
the convex problem

min
x∈X

f1(x)− [f2(x̄) + ⟨s′f2 , x− x̄⟩]

s.t. c1(x)− [c2(x̄) + ⟨s′c2 , x− x̄⟩] ≤ 0.

Together with our assumption f ′1(x̄;x
′ − x̄) < ⟨s′f2 , x

′ − x̄⟩, we have that d = x′ − x̄ is a feasible descent

direction for the above problem, and thus x̄ can not be one of its solution. Hence, x̄ does not satisfy (3.5).
The proof is thus complete.

Note that convexity of c2 plays an important role in the above proposition. Indeed, if c2 is nonconvex,
then the set {x ∈ X : c1(x) ≤ c2(x̄) + ⟨sc2 , x− x̄⟩} is not necessarily a subset of Xc and when solving the
linearized subproblem (3.5) we may get a point that is infeasible for the original problem (1.1).

Example 3.3. Let f1 = x, f2 = 0, c1 = 0, c2 = x3

3
and X = [−2, 2]. We are not in the framework of

Proposition 3.2, since c2 is not convex on [−2, 2], but weakly convex (with modulus µ = 4). At x̄ = 0, which
globally solves (1.1), the convex problem (3.5) becomes minx∈[−2,2] x (because we have dropped the trivial
constraint 0 ≤ 0), and thus does not provide a feasible point for the original problem. □

However, if the modulus µ is known for the weakly convex function c2, adding a quadratic term in
the constraint of the convex problem (3.5) makes the corresponding set feasible for the original problem.
Moreover, Proposition 3.2 is generalized in case of weakly convex c2.

Corollary 3.4. Let c2 : O → R be a weakly convex function and µc ≥ 0 be a real number from Proposition
2.4 corresponding to c2. Moreover, assume that the CQ (3.4) holds. Then, x̄ is a B-stationary point of
problem (1.1) if and only if, for any given µ ≥ µc, x̄ solves the convex problems{

min
x∈X

f1(x)− [f2(x̄) + ⟨sf2 , x− x̄⟩]
s.t. c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] +

µ
2
∥x− x̄∥2 ≤ 0

}
∀ sf2 ∈ ∂

Cf2(x̄), ∀ sc2 ∈ ∂
Cc2(x̄). (3.7)

Proof. Consider the convex functions c̃1(x) = c1(x) +
µ
2
∥x∥2 and c̃2(x) = c2(x) +

µ
2
∥x∥2 with µ ≥ µc. The

result follows from Proposition 3.2 by using instead the DC decomposition c(x) = c̃1(x) − c̃2(x) and by
noting that, for an arbitrary s̃c2 ∈ ∂c̃2(x̄), we obtain

c̃1(x)− [c̃2(x̄) + ⟨s̃c2 , x− x̄⟩] = c1(x)− [c2(x̄) + ⟨sc2 , x− x̄⟩] +
µ

2
∥x− x̄∥2

with sc2 = s̃c2 − µx̄, sc2 ∈ ∂Cc2(x̄).
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Except for some particular cases, checking B-stationarity numerically is out of reach. Therefore, weaker
stationarity concepts need to come into play: x̄ ∈ X is said to be Clarke-stationary for (1.1) if there exists
a Lagrange multiplier λ̄ such that{

0 ∈ ∂Cf(x̄) + λ̄ ∂Cc(x̄) +NX(x̄)

c(x̄) ≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X.
(3.8)

Analogously, x̄ is a critical point of (1.1) if there exists a Lagrange multiplier λ̄ such that{
0 ∈ ∂f1(x̄)− ∂Cf2(x̄) + λ̄ [∂c1(x̄)− ∂Cc2(x̄)] +NX(x̄)

c(x̄) ≤ 0, λ̄ c(x̄) = 0, λ̄ ≥ 0, x̄ ∈ X.
(3.9)

Observe that if f1 or f2 and c1 or c2 are smooth, then criticality boils down to Clarke stationarity. Next,
we revisit the proximal bundle method of [50] and extend it to the more general setting of problem (1.1).
To this end, the method must be modified, and its convergence analysis must be done anew.

3.1 Problem reformulation via improvement function
Nonsmooth and noncovex constraints in optimization problems are in general numerically treated via exact
penalization [18, 21, 34, 14], linearization of certain components [27, 40], and improvement functions [31, 1,
50]. The latter has a recognized good practical performance, does not require the additional assumptions
normally assumed in exact penalization methods, and employs parameters that are simple to set. For these
reasons, we handle problem (1.1) via the improvement function H : O ×O → R given by

H(x; y) = max
{
f(x)− τf (y), c(x)− τc(y)

}
, (3.10a)

with τf (y) = f(y) + ρ[c(y)]+ and τc(y) = σ[c(y)]+, for ρ ≥ 0 and σ ∈ [0, 1). (3.10b)

Observe that if x̄ is a global solution of (1.1), then H(x; x̄) ≥ 0 for all x ∈ X and H(x̄; x̄) = 0.
Improvement functions (also known as progress functions) have been considered within bundle methods

in [31, 48, 39] for convex problems, in [1] for a class of (nonconvex) optimal control problems, and in [24, 50]
for DC-constrained DC programs. In what follows we exploit some relevant mathematical properties of (3.10)
and its link to the original problem (1.1). To this end, we need to consider necessary conditions for a point
x̄ to be a local solution of the reformulated problem

min
x∈X

H(x; x̄) . (3.11)

As the second argument of H is fixed, it follows from (3.2) that x̄ ∈ X is a Clarke-stationary point of (3.11)
if

0 ∈ ∂C1H(x̄; x̄) +NX(x̄), (3.12)

where ∂C1H stands for the generalized subdifferential of H with respect to the first argument. Proposition 2.1
ii) yields

∂C1H(x̄; x̄) ⊂

 ∂Cc(x̄) if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv

{
∂Cf(x̄), ∂Cc(x̄)

}
if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)

∂Cf(x̄) if f(x̄)− τf (x̄) > c(x̄)− τc(x̄).
Since we do not work with generalized subgradients of either f or c, but only with subgradients of the
functions yielding their CwC decompositions (1.1b), we must consider a weaker stationary definition: we
say that x̄ ∈ X is a critical point of the composite problem (3.11) with CwC decompositions (1.1b) if

0 ∈ NX(x̄) +

 ∂c1(x̄)− ∂Cc2(x̄) if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv

{
∂f1(x̄)− ∂Cf2(x̄), ∂c1(x̄)− ∂Cc2(x̄)

}
if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)

∂f1(x̄)− ∂Cf2(x̄) if f(x̄)− τf (x̄) > c(x̄)− τc(x̄).
(3.13)

Note that if both f and c are regular, then the above condition coincides with that of Clarke stationarity:
recall (3.2), Proposition 2.1 i), and observe that the set defined by the expressions in the curly brackets
above is nothing but ∂C1H(x̄; x̄). The following result, inspired by both [1, Lemma 5.1] that deals with the
(stronger) Clarke stationarity and [50, Thm. 2] that works with the (weaker) criticality definition from DC
programming, links condition (3.13) with criticality of the original problem.

Theorem 3.5. Let x̄ ∈ X be a point satisfying condition (3.13). Then, the following hold:

i) If c(x̄) > 0, then x̄ is a critical point (in the sense of (3.3)) of the optimization problem

min
x∈X

c1(x)− c2(x). (3.14)

ii) If c(x̄) = 0 and x̄ is not a critical point of (3.14), then x̄ satisfies (3.9) for some λ̄ > 0.
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iii) If c(x̄) < 0, then x̄ satisfies (3.9) with λ̄ = 0.

Proof. With the τ function defined in (3.10b), note that

f(x̄)− τf (x̄)− [c(x̄)− τc(x̄)] =

 −[ρ+ (1− σ)]c(x̄) < 0 if c(x̄) > 0,
0 if c(x̄) = 0,

−c(x̄) > 0 if c(x̄) < 0.

Hence,

c(x̄) > 0 ⇔ f(x̄)− τf (x̄) < c(x̄)− τc(x̄),
c(x̄) = 0 ⇔ f(x̄)− τf (x̄) = c(x̄)− τc(x̄),
c(x̄) < 0 ⇔ f(x̄)− τf (x̄) > c(x̄)− τc(x̄),

and items i) and iii) follow directly from (3.13). To show item ii), recall that c(x̄) = 0 and condition (3.13)
ensures the existence of λ ∈ [0, 1] such that

0 ∈ λ[∂f1(x̄)− ∂Cf2(x̄)] + (1− λ)[∂c1(x̄)− ∂Cc2(x̄)] +NX(x̄).

By assumption, x̄ is not a critical point of (3.14). Then 0 ̸∈ ∂c1(x̄)−∂Cc2(x̄)+NX(x̄), implying that λ above
must be strictly positive. Dividing the displayed inclusion by λ > 0 we obtain the criticality condition (3.9)
with λ̄ = (1− λ)/λ > 0.

At item ii) above, the assumption that x̄ is not a critical point of (3.14) can be seen as a constraint
qualification, which turns out to be more restrictive than (3.4). Indeed, the latter excludes d-stationary
points of (3.14), but not necessarily critical ones. The following example gives a critical point x̄ of (3.14)
that satisfies (3.4) but not the criticality condition (3.9) for the nonlinearly-constrained problem (1.1).

Example 3.6. Take c1(x) = max{x, 2x}, c2(x) = max{2x, 4x}, X = [−2, 2] and x̄ = 0. Then TX(x̄) = R,
NX(x̄) = {0}, and x̄ is a critical point of (3.14) because 0 ∈ ∂c1(x̄) − ∂c2(x̄) = [1, 2] − [2, 4] = [−3, 0].
Furthermore, note that

c′1(x̄; d) = max
s∈[1, 2]

sd =

{
2d if d ≥ 0
d if d ≤ 0

and c′2(x̄; d) = max
s∈[2, 4]

sd =

{
4d if d ≥ 0
2d if d ≤ 0,

thus c′(x̄; d) = min{−d,−2d}. We conclude that {d ∈ TX(x̄) : c′(x̄; d) < 0} = R+, whereas
{d ∈ TX(x̄) : c′(x̄; d) ≤ 0} = R+ ∪ {0}, showing that x̄ = 0 satisfies the CQ (3.4). However, if we take
f1(x) = 0 and f2(x) = − 1

2
x2 + x, the following system does not have a solution:{

0 ∈ ∂f1(0)− ∂Cf2(0) + λ̄[∂c1(0)− ∂c2(0)]
λ̄ ≥ 0

≡
{

0 ∈ −1 + λ̄[−3, 0]
λ̄ ≥ 0

≡
{

0 ∈ [−3λ̄− 1,−1]
λ̄ ≥ 0,

i.e., x̄ does not satisfy (3.9). Figure 1 illustrates the objective and constraint function in this example: it is
clear that x̄ is indeed a global maximizer of f(x) under the constraints x ∈ X and c(x) ≤ 0.

□

This example shows that, at item ii) of Theorem 3.5, we cannot replace the assumption that x̄ is not a
critical point of (3.14) with the CQ (3.4).

3.2 The DC setting.
In the DC setting, functions f2 and c2 are convex and the improvement function (3.10) is DC. Indeed, for
x̄ fixed, we can write

H(x; x̄) = F (x; x̄)−G(x), with

{
F (x; x̄) = max

{
f1(x) + c2(x)− τf (x̄), f2(x) + c1(x)− τc(x̄)

}
,

G(x) = f2(x) + c2(x).
(3.15)

Since F and G are convex functions, the criticality condition (3.3) for (3.11) (under this DC decomposition)
reads as

0 ∈ ∂1F (x̄; x̄)− ∂G(x̄) +NX(x̄), (3.16)

where ∂1F stands for the subdifferential of F with respect to the first argument. It turns out that our new
condition (3.13) is stronger than (3.16), used in [50].

Lemma 3.7. In addition to our basic assumptions on problem (1.1), suppose that f2 and c2 are convex.
Then the necessary optimality condition (3.13) implies (3.16).
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Figure 1: Function f(x) = 1
2x

2 − x in red and c(x) = max{x, 2x} −max{2x, 4x} in blue.

Proof. Let x̄ ∈ X be a point satisfying (3.13). Let us first observe that since f2, c2 are convex and thus
regular, we have ∂G(x̄) = ∂f2(x̄) + ∂c2(x̄). A similar observation can be made concerning the computation
for F . Our analysis splits into three possible cases.

a) f(x̄)− τf (x̄) < c(x̄)− τc(x̄). It follows from (3.13) that

0 ∈ NX(x̄) + ∂c1(x̄)− ∂c2(x̄) ⊂ NX(x̄) + ∂f2(x̄) + ∂c1(x̄)− [∂f2(x̄) + ∂c2(x̄)].

We claim that this inclusion implies (3.16). To see that, observe that the above inequality
implies f1(x̄)+ c2(x̄)− τf (x̄) < f2(x̄)+ c1(x̄)− τc(x̄), which in turn gives ∂1F (x̄; x̄) = ∂f2(x̄)+
∂c1(x̄). Therefore, the right-hand-side of the above inclusion is (3.16).

b) f(x̄)− τf (x̄) = c(x̄)− τc(x̄). It follows from (3.13) that there exists λ ∈ [0, 1] such that

0 ∈ NX(x̄) + λ[∂f1(x̄)− ∂f2(x̄)] + (1− λ)[∂c1(x̄)− ∂c2(x̄)]
= NX(x̄) + λ[∂f1(x̄) + ∂c2(x̄)]− λ∂f2(x̄) + (1− λ)∂c1(x̄)− ∂c2(x̄)
⊂ NX(x̄) + λ[∂f1(x̄) + ∂c2(x̄)] + (1− λ)[∂f2(x̄) + ∂c1(x̄)]− [∂f2(x̄)+∂c2(x̄)]

⊂ NX(x̄) + ∂1F (x̄; x̄)− ∂G(x̄).

c) f(x̄)− τf (x̄) > c(x̄)− τc(x̄). Again, (3.13) gives

0 ∈ NX(x̄) + ∂f1(x̄)− ∂f2(x̄) ⊂ NX(x̄) + ∂f1(x̄) + ∂c2(x̄)− [∂f2(x̄) + ∂c2(x̄)].

The proof is complete because in this case ∂1F (x̄; x̄) = ∂f1(x̄) + ∂c2(x̄) due to the fact that
f1(x̄) + c2(x̄)− τf (x̄) > f2(x̄) + c1(x̄)− τc(x̄).

Remark 3.8. In the DC setting, the three concepts of criticality (3.12), (3.13), and (3.16) are equivalent
when f2 and c2 are continuously differentiable at x̄. Indeed, in this case f and c are regular at x̄ and (3.12)
coincides with (3.13) (regardless of convexity of f2 and c2). Theorem 2 in [50] ensures that, under these
assumptions, (3.16) is equivalent to (3.12). □

The following example shows that (3.16) does not necessarily imply (3.13) in the nondifferentiable DC case.

Example 3.9. Let X = [−1, 1], f1 = 2x, f2 = |x|, c1 = 4x and c2 = 2|x|. At x̄ = 0, f(x̄) = c(x̄) = 0 and
thus, τf (x̄) = τc(x̄) = 0 due to (3.10b). Furthermore, we have that

∂f1(0) = {2}, ∂f2(0) = [−1, 1], ∂c1(0) = {4}, and ∂c2(0) = [−2, 2].
As a result, ∂f1(0)− ∂f2(0) = [1, 3], ∂c1(0)− ∂c2(0) = [2, 6], ∂f1(0)+ ∂c2(0) = [0, 4], and ∂f2(0)+ ∂c1(0) =
[3, 5]. As in NX(0) = {0}, we conclude that

0 ̸∈ [1, 6] = conv{∂f1(0)− ∂f2(0), ∂c1(0)− ∂c2(0)}+NX(0),

whereas
conv{∂f1(0) + ∂c2(0), ∂c1(0) + ∂f2(0)}+NX(0) = [0, 5]

and ∂f2(0) + ∂c2(0) = [−3, 3], showing that (3.16) is satisfied but not (3.13). □
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The paper [50] proposes a bundle method for DC-constrained DC programs employing the DC decom-
position H = F −G above. Once a critical point satisfying (3.16) is computed, the link with criticality of the
original problem is adequate if f2 and c2 are continuously differentiable at x̄. In the next section we modify
that method to compute a point satisfying the stronger criticality condition (3.13). As a result, the link with
criticality of the original problem is nicely established by Theorem 3.5 without any additional assumption.
In fact, f2 and c2 need not even be convex, but weakly convex on some neighbourhood of each x ∈ O. We,
therefore, strengthen the analysis provided in [50] even though significantly fewer assumptions are required:
[50] works in the DC configuration, whereas here, we deal with the more general CwC structure. These
improvements, together with the optimality conditions presented above, feature the main contributions of
this work.

4 Proximal bundle method with improvement function
This section extends the proximal bundle method of [50] for computing a critical point of problem (1.1). The
main tool in our analysis is the improvement function H given in (3.10). In the DC setting, the algorithm
of [50] works with the explicit DC decomposition (3.15) of H and computes a point x̄ ∈ X satisfying the
classic criticality condition in DC programming (3.16). In this section we do not decompose H and consider
the milder assumption that f2 and c2 are weakly convex and target the stronger criticality condition (3.13).

4.1 The method’s main ingredients: model, subproblem, and de-
scent test

The algorithm requires four oracles (black-boxes) providing, for every given x ∈ X, i ∈ {1, 2}, the function
values fi(x), ci(x), arbitrary subgradients sf1 ∈ ∂f1(x), sc1 ∈ ∂c1(x) (c.f., (2.1)) and arbitrary generalized
subgradients sf2 ∈ ∂Cf2(x), sc2 ∈ ∂Cc2(x) (c.f. (2.2)). We do not impose any assumption on these (gen-
eralized) subgradients, as they are assumed to be computed by (external) oracles that do not accept any
intervention from the algorithm. (This is particularly useful in industrial applications where companies do
not want or cannot share information on the underlying functions with optimizers.)

At iteration k ∈ N, given a trial point xk ∈ X, we construct a linearization of every component (here
skfi

, skci , i ∈ {1, 2}, denote the respective - generalized - subgradients at xk):

f̄ki (x) := fi(x
k) + ⟨skfi , x− x

k⟩ (i = 1, 2) (4.1a)

c̄ki (x) := ci(x
k) + ⟨skci , x− x

k⟩ (i = 1, 2). (4.1b)

Due to convexity of f1 and c1, we have the following inequalities

f̄k1 (x) ≤ f1(x) and c̄k1(x) ≤ c1(x) for all x ∈ Rn. (4.2)

Since X is compact and components f2 and c2 are assumed to be only weakly convex on some neighbourhood
of each x ∈ O, we have weaker inequalities for these functions. Let O′ ⊂ O be an open convex set and
µf , µc real numbers ensured by Proposition 2.4. As xk ∈ X ⊂ O′, the following inequalities are due to
Proposition 2.4, item ii)

f̄k2 (x) ≤ f2(x) +
µ̄
2
∥x− xk∥2 and c̄k2(x) ≤ c2(x) +

µ̄
2
∥x− xk∥2 for all x ∈ X, (4.3)

where µ̄ := max{µf , µc} > 0. Observe that the threshold µ̄ is in general unknown, and the inequalities in
(4.3) are only supposed to hold for x in X, in contrast with the (subgradient) inequalities in (4.2).

Let Bkf and Bkc be two index sets gathering the bundle of information (function values and subgradients)

given by the oracles. In general, Bkf ,B
k
c ⊂ {0, . . . , k} but other possibilities exist making it possible to

design a limited-memory method (see Remark 5.5 below). These index sets are useful to define the following
individual cutting-plane models for the convex functions f1 and c1:

f̌k1 (x) := max
j∈Bk

f

f̄j1 (x) ≤ f1(x) for all x ∈ Rn

čk1(x) := max
j∈Bk

c

c̄j1(x) ≤ c1(x) for all x ∈ Rn.

Furthermore, let ℓk ∈ {0, . . . , k} be the iteration index of the best candidate solution (stability center, in
the parlance of bundle methods) among the trial points {x0, . . . , xk}: whenever a better candidate solution
xk+1 is computed by the algorithm, at a so-called serious step, such a point becomes the new stability center
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and the counter ℓ is increased by one: for κ ∈ (0, 1
2
), we declare a serious step and let ℓk+1 := k + 1 if

xk+1 ̸= xℓk and the inequality

H(xk+1;xℓk ) ≤ H(xℓk ;xℓk )−
κ

2
∥xk+1 − xℓk∥2 (4.5)

holds, and declare a null step and let ℓk+1 := ℓk otherwise. Since the descent test is independent of the
model, the following result from [50] also holds in our framework.

Lemma 4.1 (Lemma 1 in [50]). Let xℓk ∈ X be the stability center at iteration k. Then H(xℓk ;xℓk ) ≥ 0
and if inequality (4.5) holds, we have that either

i) f(xk+1) ≤ f(xℓk )− κ
2
∥xk+1 − xℓk∥2 and c(xk+1) ≤ 0 when c(xℓk ) ≤ 0; or

ii) c(xk+1) ≤ c(xℓk )− κ
2
∥xk+1 − xℓk∥2 when c(xℓk ) > 0.

The rationale of serious iterates is to ensure sufficient decrease on one component function of H(·;xℓk ) while
maintaining feasibility for (1.1) once reached. Having all these ingredients at our disposal, we can now define
our convex model for the improvement function (3.10) at iteration k :

Ȟk(x;xℓk ) = max
{
f̌k1 (x)− f̄

ℓk
2 (x)− τf (xℓk ), čk1(x)− c̄

ℓk
2 (x)− τc(xℓk )

}
. (4.6)

(Even in the particular setting where f2 and c2 are convex functions, this model differs from the one employed
in [50] and is crucial to obtain convergence results stronger than the ones in that paper.) Given a prox-
parameter µk > 0 estimating the threshold µ̄ in (4.3), the next iterate is the solution of the following strict
convex subproblem

xk+1 = argmin
x∈X

Ȟk(x;xℓk ) +
µk

2
∥x− xℓk∥2, (4.7)

which can be transformed into a QP (provided X is a polyhedron) by adding an extra variable r ∈ R
min
x, r

r + µk

2
∥x− xℓk∥2

s.t. f̄j1 (x)− f̄
ℓk
2 (x)− r ≤ τf (xℓk ) ∀ j ∈ Bkf

c̄j1(x)− c̄
ℓk
2 (x)− r ≤ τc(xℓk ) ∀ j ∈ Bkc

x ∈ X, r ∈ R.

(4.8)

The optimality condition for (4.7) gives

xk+1 = xℓk −
1

µk
[pk+1 + sk+1

X ], with

{
pk+1 ∈ ∂1Ȟk(xk+1;xℓk )

sk+1
X ∈ NX(xk+1).

(4.9)

As usual in bundle methods, we may remove from the model the inactive linearizations to keep (4.8)
small. To this end, we denote by B̄kf ⊂ B

k
f and B̄kc ⊂ Bkc the index set of active linearizations in the QP

subproblem (4.8), i.e.,

B̄kf :=
{
j ∈ Bkf : αj

f > 0
}

and B̄kc :=
{
j ∈ Bkc : αj

c > 0
}

(4.10)

where αj
f ≥ 0, j ∈ Bkf , denote the Lagrange multipliers associated with the first set of constraints and

αj
c ≥ 0, j ∈ Bkc , the ones associated with the second family of constraints. We mention in passing that

the index sets Bkf and Bkc can be kept bounded at the price of including artificial (aggregate) linearizations.

We postpone this discussion to Remark 5.5, right after the analysis of null steps (the only place in the
convergence analysis where bundle management plays a role.)

We can now present the following proximal bundle method algorithm for CwC-constrained CwC programs
(1.1), which modifies [50, Alg. 1] in two ways. First, the convex model (4.6) for the improvement function is
distinct. On the one hand, it is a key element to obtain the stronger criticality condition (3.13), and on the
other hand, it leads to a simpler/smaller strongly convex QP (4.8) (more details can be found in Subsection
4.2 below). Second, Algorithm 1 employs an ad-hoc rule to update the proximal parameter µk so that no
pre-estimation of the underlying weakly-convex moduli is needed. The proposed rule employs the following
value

νk := 2max

{
f̄
ℓk
2 (xk+1)− f2(xk+1)

∥xk+1 − xℓk∥2
,
c̄
ℓk
2 (xk+1)− c2(xk+1)

∥xk+1 − xℓk∥2
, 0

}
. (4.11)

(For numerical performance it can be preferable to replace the last term (equal to zero) in (4.11) by a small
machine epsilon.)
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Algorithm 1 Proximal Bundle Method for CwC-constrained CwC programs - CwC-PBM

Step 0 (Initialization) Let x0 ∈ X, κ ∈ (0, 1
2
), κ ≤ µ0, ρ ≥ 0, σ ∈ [0, 1), and Tol ≥ 0 be

given.
Call the oracles to compute fi(x

0), ci(x
0), and (generalized) subgradients s0fi , s0ci ,

i = 1, 2.
Define k := ℓk = 0 and B0

f = B0
c := {0}.

Step 1 (Trial point) Compute xk+1 by solving the QP (4.8).

Step 2 (Stopping test) If ∥xk+1 − xℓk∥ ≤ Tol, then stop and return xℓk .

Step 3 (Oracles call) Compute fi(x
k+1), ci(x

k+1), and subgradients sk+1
fi

, sk+1
ci , i = 1, 2.

Step 4 (Descent test)

(a) If (4.5) holds, then declare a serious step: define ℓk+1 := k + 1, choose
Bk+1

f ,Bk+1
c ⊂ {0, . . . , k + 1} with {k + 1} ∈ Bk+1

f ∩ Bk+1
c and arbitrarily select

µk+1 ∈ (0, µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ,Bk+1

c ⊂ {0, . . . , k+1}
with B̄k

f ∪{k+1, ℓk} ⊂ Bk+1
f and B̄k

c ∪{k+1, ℓk} ⊂ Bk+1
c (B̄k

f and B̄k
c as in (4.10)).

Compute νk by (4.11). If νk ≥ µk − 2κ, set µk+1 = νk + 1; otherwise µk+1 = µk.

Step 5 (Loop) Set k := k + 1 and go back to Step 1.

A drawback of the rule for updating the prox-parameter is that µk only increases after a null step when
the inequality νk ≥ µk − 2κ is verified. As a result, µk may never increase: this is, for instance, the case
when f2 and c2 are convex (thus νk = 0 for all k). The motivation for this rule is to eventually keep the
prox-parameter fixed if the algorithm performs an infinite sequence of null steps after a last serious step
(see Lemma 5.1). This is a condition necessary to prove Proposition 5.4 below. We care to mention that
increasing µk after a null step is a simple strategy that pays off in practice: it helps the algorithm to either
stop or produce a new serious step, and thus accelerate the numerical performance.

4.2 The DC setting: a comparison with the earlier bundle method
for DC programs

In the DC setting, both functions f2 and c2 are convex and the improvement function (3.10) is DC. The DC
decomposition given in (3.15), with x̄ replaced with xℓk , was exploited in the bundle method of [50] through
the following model for the improvement function H(·;xℓk ) (see Eq. (18) therein):

max
{
f̌k1 (x) + čk2(x)− τf (xℓk ), f̌k2 (x) + čk1(x)− τc(xℓk )

}
− [f̄

ℓk
2 (x) + c̄

ℓk
2 (x)]. (4.12)

Differently from our model (4.6), the above gathers also cutting-planes for f2 and c2 and, although gathering
more information, only the weaker criticality condition (3.16) is ensured by the method of [50]. Hence, the
proposed model (4.6) is more advantageous than (4.12) from both practical and theoretical point of view:

� the quadratic program (QP) issued by our model has only half of the linearizations, and is thus
simpler to solve;

� convexity of f2 and c2 are required in (4.12), but not in (4.6);

� both models (4.6) and (4.12) are iteratively updated to ensure that every cluster point x̄ ∈ X of
the sequence of stability centers satisfies a criticality condition. To show that such a point is also
critical for (the DC counterpart of) (1.1), [50, Thm. 2] requires both f2 and c2 to be continuously
differentiable at x̄. As we will show in Theorem 5.8 below, neither convexity nor differentiability of f2
and c2 are required to establish that x̄ issued by Algorithm 1 is also critical for (1.1) in the sense of
(3.9). Thus, Algorithm 1 strengthens the results of [50] even though significantly fewer assumptions
are required.

Although the apparently small changes concerning [50, Alg. 1], the convergence analysis in that paper
cannot be reused here. The reason is that the analysis in [50] strongly depends on the DC decomposition
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of the employed model for the improvement function. That reasoning is no longer valid for our new model,
even if f2 and c2 were convex. Furthermore, our more general setting requires extra steps to cope with the
weakly convex functions.

5 Convergence Analysis

The goal of this section is to show that every cluster point x̄ of the sequence {xℓk}k ⊂ X generated by
Algorithm 1 satisfies the necessary optimality condition (3.13). To this end, we first observe that the
sequence of prox-parameters issued by Algorithm 1 is bounded.

Lemma 5.1. The value µmax := supk∈N µ
k is finite. Furthermore, if the algorithm produces an infinite

sequence of null steps after a last serious step, then the prox-parameter becomes eventually constant.

Proof. Let µ̄ := max{µf2 , µc2 , µ0} > 0 be given, where µf2 and µc2 are as in Proposition 2.4 for the weakly
convex functions f2 and c2, and µ0 is the parameter given to the algorithm at initialization. Then, by taking
y := xk+1 and x := xℓk in (2.4) it follows that

2
f̄
ℓk
2 (xk+1)− f2(xk+1)

∥xk+1 − xℓk∥2
≤ µ̄, and 2

c̄
ℓk
2 (xk+1)− c2(xk+1)

∥xk+1 − xℓk∥2
≤ µ̄ for all k with xk+1 ̸= xℓk .

As a result, νk ≤ µ̄ for all k. Note that the prox-parameter is only increased after a null step such that
νk ≥ µk − 2κ. In this case, the rule employed in Step 4 of the algorithm sets µk+1 = νk + 1, which gives
µk+1 = νk +1 ≤ µ̄+1. Since the algorithm does not increase the prox-parameter after a serious step or null
step such that νk < µk−2κ, we conclude that µmax := supk∈N µ

k ≤ µ̄+1 is finite. Finally, note that the prox-

parameter is sharply increased after a null step such that νk ≥ µk−2κ: µk+1 = νk+1 ≥ µk−2κ+1 > µk+δ
because κ ∈ (0, 1

2
), with δ = 1

2
− κ > 0. As a result, if the algorithm produces an infinite sequence of null

steps after a last serious step, then the inequality νk < µk − 2κ will be satisfied for all k large enough and
the prox-parameter will become constant (otherwise µk would increase indefinitely, which contradicts that
µmax is finite).

We now define the following function H̄ : O ×O → R, which is of key importance in our analysis:

H̄(x; y) := max
{
f1(x)− [f2(y) + ⟨sf2 , x− y⟩]− τf (y), c1(x)− [c2(y) + ⟨sc2 , x− y⟩]− τc(y)

}
, (5.1)

with sf2 ∈ ∂Cf2(y) and sc2 ∈ ∂Cc2(y). As these subgradients are not specified, the above definition is
ambiguous. However, when y is a point previously computed by the algorithm, say y = xj for j ≤ k, then
sjf2
∈ ∂Cf2(xj) and sjc2 ∈ ∂Cc2(xj) are the subgradients provided by the oracles and ambiguity disappears:

H̄(x;xj) := max
{
f1(x)− f̄j2 (x)− τf (x

j), c1(x)− c̄j2(x)− τc(x
j)
}
.

It follows from convexity of f1 and c1 that, for every y ∈ O fixed, the function H̄(·; y) is convex and satisfies
H̄(·;xℓk ) ≥ Ȟk(·;xℓk ) for all k. Furthermore, as ℓk ∈ Bkf ∩ B

k
c for all k, we have that f̌ki (x

ℓk ) = fi(x
ℓk ),

čki (x
ℓk ) = ci(x

ℓk ), i = 1, 2, and thus

H̄(xℓk ;xℓk ) = Ȟk(xℓk ;xℓk ) = H(xℓk ;xℓk ). (5.2)

The following lemma is of particular interest in the remainder of this work.

Lemma 5.2. Suppose that x̄ minimizes H̄(·; x̄) over X. Then, x̄ satisfies the necessary optimality condi-
tion (3.13).

Proof. Convexity of H̄(·; x̄) in the first argument and assumption on x̄ ∈ X imply that 0 ∈ ∂1H̄(x̄; x̄)+NX(x̄).
The result follows by noting that, for some pair of generalized subgradients s̄f2 ∈ ∂Cf2(x̄) and s̄c2 ∈ ∂Cc2(x̄),
the following set

∂1H̄(x̄; x̄) =

 ∂c1(x̄)− s̄c2 if f(x̄)− τf (x̄) < c(x̄)− τc(x̄)
conv

{
∂f1(x̄)− s̄f2 , ∂c1(x̄)− s̄c2

}
if f(x̄)− τf (x̄) = c(x̄)− τc(x̄)

∂f1(x̄)− s̄f2 if f(x̄)− τf (x̄) > c(x̄)− τc(x̄)

is contained in the one defined by the curly brackets in (3.13).

We begin the convergence analysis for the case Tol = 0 with the remark that the sequence of stability
centers {xℓk}k has at least one cluster point, since it is contained in the compact set X. We split the analysis
into three cases: the algorithm performs only finitely many steps; the algorithm performs infinitely many
steps and the sequence {xℓk}k is either finite or infinite.
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Proposition 5.3 (Finitely many iterations). Assume that Algorithm 1 stops at iteration k with Tol = 0.
Then, the last stability center x̄ := xℓk = xk+1 satisfies condition (3.13).

Proof. It follows from the model’s definition (4.6) and (5.1) that H̄(x;xℓk ) ≥ Ȟk(x;xℓk ) for all x ∈ O.
Hence, as xℓk ∈ X we have that

H̄(xℓk ;xℓk ) ≥ min
x∈X

H̄(x;xℓk ) +
µk

2
∥x− xℓk∥2

≥ min
x∈X

Ȟk(x;xℓk ) +
µk

2
∥x− xℓk∥2

= Ȟk(xk+1;xℓk ) +
µk

2
∥xk+1 − xℓk∥2

= Ȟk(xℓk ;xℓk ) = H̄(xℓk ;xℓk ),

where the first equality is due to (4.7), the second one follows by the fact that xk+1 = xℓk since the
algorithm stops at iteration k with Tol = 0, and the last one is due to (5.2). Hence, xℓk minimizes
H̄(·;xℓk )+ µk

2
∥ ·−xℓk∥2 over X and the quadratic term vanishes in the corresponding optimality condition:

0 ∈ ∂1H̄(x̄;xℓk ) +NX(x̄) and the stated result follows from Lemma 5.2.

If the algorithm performs finitely many serious steps and infinite number of null steps, the following
result shows that the last stability center satisfies (3.13).

Proposition 5.4 (Finitely many serious steps). Suppose that Algorithm 1 with Tol = 0 does not stop but
produces only finitely many serious steps. Then the last stability center x̄ satisfies the condition (3.13), and
limk→∞ xk = x̄.

Proof. Let ℓ ∈ N denote the last serious iteration, then x̄ = xℓ and note that, for all subsequent (null)
iterations k > ℓ, ℓk = ℓ and the linearizations f̄ℓ2 and c̄ℓ2 are fixed in the model Ȟk(·; x̄), which is in this case
a cutting-plane model for the convex function H̄(·; x̄). Here we take τℓf = τf (x

ℓ), τℓc = τℓc (x
ℓ), and function

H̄(·; x̄) defined with the fixed linearizations f̄ℓ2 and c̄ℓ2, i.e.,

H̄(·;xℓ) := max
{
f1(·)− f̄ℓ2(·)− τℓf , c1(·)− c̄

ℓ
2(·)− τℓc

}
.

We highlight that the updating rule for µk in Algorithm 1 ensures that the sequence {µk}k>ℓ is non-
decreasing and becomes constant at a certain value µ′ ∈ (0, µmax] after finitely many steps k′ > ℓ, as a
consequence of Lemma 5.1. More precisely, the updating rule at Step 4(b) of Algorithm 1 ensures that

µk = µ′ and νk + 2κ < µ′ for all k > k′. (5.3)

Hence, from iteration k′ on, Algorithm 1 becomes a cutting-plane procedure to compute the unique solution
x̃ of

min
x∈X

H̄(x; x̄) +
µ′

2
∥x− x̄∥2. (5.4)

As the algorithm keeps all the active linearizations in the bundles (Step 4(b)), standard arguments from the
convex bundle methods’ theory (see [5, Prop. 4.3]) ensure that

limk→∞ xk = x̃ and limk→∞[Ȟk(xk+1; x̄)− H̄(xk+1; x̄)] = 0.

(The last inequality implies that the convex model asymptotically coincides with the function at the limit
point.) We claim that x̃ = x̄. To show that, let us assume the opposite, i.e., x̃ ̸= x̄, and arrive to a
contradiction. In this case, for some δ > 0, we may find and index k1 such that ∥xk+1 − x̄∥2 > δ for all
k ≥ k1. We may furthermore find an index k2 such that Ȟk(xk+1; x̄)− H̄(xk+1; x̄) ≥ −κ

2
δ for all k ≥ k2 as

the left-hand side vanishes. Therefore, for k′′ ≥ max{k1, k2, k′}, we have

Ȟk(xk+1; x̄)− H̄(xk+1; x̄) ≥ −
κ

2
∥xk+1 − x̄∥2 ̸= 0 for all k > k′′.
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The following chain of inequalities holds at every iteration k > k′′:

Ȟk(x̄; x̄) ≥ Ȟk(xk+1; x̄) + µ′

2
∥xk+1 − x̄∥2 (by (4.7) and (5.3))

= [Ȟk(xk+1; x̄)− H̄(xk+1; x̄)] + H̄(xk+1; x̄) + µ′

2
∥xk+1 − x̄∥2

≥ −κ
2
∥xk+1 − x̄∥2 + H̄(xk+1; x̄) + µ′

2
∥xk+1 − x̄∥2

≥ −κ
2
∥xk+1 − x̄∥2 +max

{
f1(xk+1)− f̄ℓ2(xk+1)− τℓf + µ′

2
∥xk+1 − x̄∥2

c1(xk+1)− c̄ℓ2(xk+1)− τℓc + µ′

2
∥xk+1 − x̄∥2

}
(by (5.1))

> −κ
2
∥xk+1 − x̄∥2 +max

{
f1(xk+1)− f̄ℓ2(xk+1)− τℓf + νk+2κ

2
∥xk+1 − x̄∥2

c1(xk+1)− c̄ℓ2(xk+1)− τℓc + νk+2κ
2
∥xk+1 − x̄∥2

}
(by (5.3))

≥ −κ
2
∥xk+1 − x̄∥2 +max

{
f1(xk+1)− f2(xk+1)− τℓf + 2κ

2
∥xk+1 − x̄∥2

c1(xk+1)− c2(xk+1)− τℓc + 2κ
2
∥xk+1 − x̄∥2

}
(by (4.11))

= H(xk+1; x̄) + κ
2
∥xk+1 − x̄∥2. (by (3.10))

As x̄ = xℓ and Ȟk(xℓ;xℓ) = H(xℓ;xℓ) due to (5.2), we have shown that the descent test (4.5) is satisfied at
xk+1 ̸= xℓ:

H(xk+1;xℓ) ≤ H(xℓ;xℓ)−
κ

2
∥xk+1 − xℓ∥2,

contradicting thus the assumption that only null steps are performed for k > ℓ. Hence, x̃ = x̄ and the last
stability center solves (5.4). This allows us to conclude (thanks to convexity of H̄(·; x̄)) that x̄ = xℓ solves
minx∈X H̄(x;xℓ). Lemma 5.2 then concludes the proof.

Remark 5.5 (Bundle compression). It is worth mentioning that the index sets Bkf and Bkc gathering the

information bundle can be kept bounded; each one having at most Mmax indices, for a chosen integer
Mmax ≥ 3. Indeed, it suffices to keep in the bundles the linearizations issued by the stability center xℓk , the
new trial point xk+1 and the so-called aggregate linearization as in [5, Eq. 4.5]. When transcribed to our
setting, the aggregate linearizations for f1 and c1 read as

f̄
ak
f

1 (x) := f̌k1 (x
k+1) + ⟨pkf , x− x

k+1⟩ ≤ f1(x) ∀x ∈ Rn

c̄
ak
c

1 (x) := čk1(x
k+1) + ⟨pkc , x− xk+1⟩ ≤ c1(x) ∀x ∈ Rn,

with pkf :=
∑

j∈Bk
f
αj
f s

j
f1

, pkc :=
∑

j∈Bk
c
αj
cs

j
c1 and multipliers αf , αc as in (4.10). We claim that the

following economical rule for managing Bkf and Bkc (in Step 4 of Algorithm 1) is enough to ensure convergence:

Serious step: set Bk+1
f = {k + 1} and Bk+1

c = {k + 1};

Null step: set Bk+1
f = {k + 1, ℓk, a

k
f} and B

k+1
c = {k + 1, ℓk, a

k
c}.

Indeed, Proposition 5.4 is still valid if the algorithm employs the above economical rule for updating the
bundles: the key Proposition 4.3 from [5] still applies and thus the displayed equations right after (5.4)
hold. As it can be noted in the sequel, no bundle management restriction (besides the requirement that

k + 1 ∈ Bk+1
f ∩ Bk+1

c ) is required after a serious steps. □

We consider now the case of infinitely many serious steps. To this end, we need the following auxiliary result.

Lemma 5.6. There exist constants L,M > 0 such that, for all k ∈ N, the three following conditions hold
for pk+1 ∈ ∂1Ȟk(xk+1;xℓk ), sk+1

X ∈ NX(xk+1), and ek+1 = L||xk+1 − xℓk ||:

||pk+1 + sk+1
X || ≤ µmax ||xk+1 − xℓk || ≤M, (5.5a)

pk+1 + sk+1
X ∈ ∂ek+1

[
H̄(xℓk ;xℓk ) + iX(xℓk )

]
, (5.5b)

pk+1 ∈ ∂ek+1 H̄(xℓk ;xℓk ). (5.5c)

Proof. As µk ∈ (0, µmax] (c.f. Lemma 5.1), expression (4.9) yields the first inequality in (5.5a). Recall that
the iterates xk+1 and xℓk are contained in the bounded set X for all k. The second inequality in (5.5a) then
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follows. Convexity of the function Ȟk + iX and (4.9) gives that, for all x ∈ Rn,

Ȟk(x;xℓk ) + iX(x) ≥ Ȟk(xk+1;xℓk ) + ⟨pk+1 + sk+1
X , x− xk+1⟩

≥ Ȟk(xk+1;xℓk ) + ⟨pk+1 + sk+1
X , x− xℓk ⟩+ ⟨pk+1 + sk+1

X , xℓk − xk+1⟩

≥ Ȟk(xk+1;xℓk ) + ⟨pk+1 + sk+1
X , x− xℓk ⟩ −M ||xℓk − xk+1||,

(5.6)

where the last inequality is due to (5.5a) and Cauchy-Schwarz inequality. Definition (4.6) of Ȟk(·;xℓk ) as
well as the fact that ℓk ∈ Bkf ∩ B

k
c give the following chain of inequalities:

Ȟk(xk+1;xℓk ) ≥ max
{
f̄
ℓk
1 (xk+1)− f̄ℓk2 (xk+1)− τf (xℓk ), c̄

ℓk
1 (xk+1)− c̄ℓk2 (xk+1)− τc(xℓk )

}
= max

{
f1(x

ℓk )− f2(xℓk ) + ⟨sℓkf1 − s
ℓk
f2
, xk+1 − xℓk ⟩ − τf (xℓk ),

c1(x
ℓk )− c2(xℓk ) + ⟨sℓkc1 − s

ℓk
c2 , x

k+1 − xℓk ⟩ − τc(xℓk )
}

≥ max
{
f1(x

ℓk )− f2(xℓk )− τf (xℓk ), c1(xℓk )− c2(xℓk )− τc(xℓk )
}

+min
{
⟨sℓkf1 − s

ℓk
f2
, xk+1 − xℓk ⟩, ⟨sℓkc1 − s

ℓk
c2 , x

k+1 − xℓk ⟩
}
.

Since X ⊂ O is compact, we have that ∂f1(X), ∂c1(X), ∂Cf2(X), and ∂Cc2(X) are bounded sets (see

Section 2). Hence, there exist Kf > 0 and Kc > 0 such that, ∥sℓkf1 − s
ℓk
f2
∥ ≤ Kf and ∥sℓkc1 − s

ℓk
c2∥ ≤ Kc for

all k. Applying the Cauchy-Schwarz inequality to the inequalities above and recalling that

max
{
f1(x

ℓk )− f2(xℓk )− τf (xℓk ), c1(xℓk )− c2(xℓk )− τc(xℓk )
}

= H(xℓk ;xℓk ) = H̄(xℓk ;xℓk )

by definition, we get

Ȟk(xk+1;xℓk ) ≥ H̄(xℓk ;xℓk )− L0 ||xk+1 − xℓk ||, with L0 = max{Kf ,Kc}. (5.7)

Recall that H̄(x;xℓk ) ≥ Ȟk(x;xℓk ) for all x ∈ Rn and combine (5.6) with (5.7) to obtain

H̄(x;xℓk ) + iX(x) ≥ Ȟk(x;xℓk ) + iX(x)

≥ Ȟk(xk+1;xℓk ) + ⟨pk+1 + sk+1
X , x− xℓk ⟩ −M ||xℓk − xk+1||

≥ H̄(xℓk ;xℓk )− (L0 +M)||xk+1 − xℓk ||+ ⟨pk+1 + sk+1
X , x− xℓk ⟩.

We have thus shown (5.5b) with L =M + L0. To prove the last inclusion (5.5c), observe that this chain of

inequalities remains true if the term iX(x) is excluded together with corresponding subdifferential sk+1
X : for

all x ∈ Rn,

H̄(x;xℓk ) ≥ Ȟk(x;xℓk ) ≥ Ȟk(xk+1;xℓk ) + ⟨pk+1, x− xℓk ⟩ −M ||xℓk − xk+1||

≥ H̄(xℓk ;xℓk ) + ⟨pk+1, x− xℓk ⟩ − (L0 +M)||xk+1 − xℓk ||.

Lemma 5.6 can be applied to any iteration k+ 1 between the serious step ℓk and ℓk+1 (ℓk+1 included).
Indeed, equation (4.9) used to show (5.5a) holds true. Other arguments used in the proof remain valid for
any iteration between ℓk and ℓk+1, as from the point of view of the algorithm, the only change is the bundle
information, which is not explicitly used in the proof.

Observe that Ȟk(·;xℓk ) given in (4.6) is the pointwise maximum of finitely many affine functions. Hence,
its subdifferential is the convex hull of the “active” linearization slopes, i.e., Proposition 2.1 ii) asserts that

∂1Ȟ
k(xk+1;xℓk ) := conv

{{
sjf1
− sℓkf2

}
j∈B̄k

f

,
{
sjc1 − s

ℓk
c2

}
j∈B̄k

c

}
, (5.8)

with B̄kf and B̄kc given in (4.10). Since X ⊂ O is compact, we have that ∂f1(X), ∂c1(X), ∂Cf2(X), and

∂Cc2(X) are bounded sets (see Section 2). Thus, (4.9) and (5.8) certificate that the sequence of model’s
subgradients

{
pk

}
is bounded. This property is used in the proof of the following proposition.

Proposition 5.7 (Infinitely many serious steps). Assume that the algorithm performs infinitely many
serious steps. Then, any cluster point x̄ ∈ X of the sequence {xℓk}k satisfies the necessary optimality
condition (3.13).
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Proof. We first show that
lim

k→∞
∥xℓk+1 − xℓk∥ = 0 . (5.9)

To this end, we must analyze the two cases of Lemma 4.1. In case i), Algorithm 1 produces a feasible point

for (1.1) after finitely many serious steps and all subsequent points are feasible. Let xℓk1 be the first feasible
serious iterate. Then, Lemma 4.1 i) yields

f(xℓk+1 ) ≤ f(xℓk )− κ
2
∥xℓk+1 − xℓk∥2 and c(xℓk+1 ) ≤ 0 for all k ≥ ℓk1

.

The telescopic sum of the first inequality above yields

∞∑
k=k1

∥xℓk+1 − xℓk∥2 ≤
2

κ

∞∑
k=k1

(
f
(
xℓk

)
− f

(
xℓk+1

))
≤

2

κ

(
f
(
xℓk1

)
− lim

k→∞
f
(
xℓk+1

))
.

Since f is finite-valued and continuous over the bounded set X, the right-hand side of the above inequality is
finite. Hence, (5.9) holds. Assume now that the sequence {xℓk} is infeasible for (1.1). Lemma 4.1 ii) yields

0 < c(xℓk+1 ) ≤ c(xℓk )− κ
2
∥xℓk+1 − xℓk∥2 for all ℓ.

Once again, by using the telescopic sum we get (5.9).
As X ⊂ O is compact, with O an open set contained in the domains of component functions, and the

generalized subdifferential is locally compact, we conclude that for s
ℓk
f2
∈ ∂Cf2(xℓk ) and s

ℓk
c2 ∈ ∂Cc2(xℓk ){

xℓk
}
,

{
s
ℓk
f2

}
and

{
s
ℓk
c2

}
are bounded sequences.

By taking subsequences, we can define an index set K ⊂ {0, 1, 2, . . .} such that

lim
K∋k→∞

xℓk = x̄ ∈ X, lim
K∋k→∞

s
ℓk
f2

= s̄f2 ∈ ∂
Cf2(x̄) and lim

K∋k→∞
s
ℓk
c2 = s̄c2 ∈ ∂

Cc2(x̄),

where the two last limits are due to the fact that the generalized subdifferential is outer-semicontinuous [4,
Prop. 2.1.5(b)]. Let us now define φk(·) = H̄(·;xℓk ) and φ(·) = H̄(·; x̄), with the latter defined in (5.1) with
y = x̄ and the pair of generalized subgradients (s̄f2 , s̄c2 ) above. For every x ∈ Rn fixed, the above limits
imply

lim
K∋k→∞

H̄(x;xℓk ) = H̄(x; x̄),

i.e., {φk}k∈K converges pointwise to φ. Applying Lemma 5.6 for k + 1 = ℓk+1, we obtain pℓk+1 ∈
∂
e
ℓk+1φℓ(x

ℓk ) (Eq. (5.5c)). Furthermore, as the sequence {pℓk+1} is bounded (see the paragraph right before

this proposition), we may take another subsequence indexed by K′ ⊂ K so that limK′∋ℓ→∞ pℓk+1 = p̄ ∈ Rn

and limK′∋ℓ→∞ eℓk+1 = 0 in view of (5.9) and definition of ek+1 given in Lemma 5.6. With these conditions

at hand, Lemma A.1 (in Appendix A) ensures that p̄ ∈ ∂φ(x̄), i.e., p̄ ∈ ∂1H̄(x̄; x̄). Next, observe that {sℓk+1

X }
is a bounded sequence as the inequality

||pℓk+1 + s
ℓk+1

X || ≤ µmax||xℓk+1 − xℓk || (5.10)

holds due to Lemma 5.6 (with µmax finite due to Lemma 5.1). By definition of the convex normal cone, it

follows that there exists a suitable subsequence of {sℓk+1

X }k∈K′′ , with K′′ ⊂ K′ converging to a cluster point
s̄ ∈ NX(x̄) = ∂iX(x̄). Hence, since X is polyhedral and ri(Dom(H̄(·; x̄))) = O ≠ ∅,

p̄+ s̄ ∈ ∂1H̄(x̄; x̄) + ∂iX(x̄) = ∂1
[
H̄(x̄; x̄) + iX(x̄)

]
. (5.11)

Finally, inequality (5.10) combined with (5.9) yield p̄+ s̄ = 0. Hence, 0 ∈ ∂1
[
H̄(x̄; x̄)+ iX(x̄)

]
, showing that

x̄ minimizes H̄(·; x̄) over X. Lemma 5.2 thus concludes the proof.

The following theorem sums up the algorithm’s convergence analysis.

Theorem 5.8 (Convergence analysis). Let X ̸= ∅ be a bounded polyhedron contained in the open set O,
f1, c1 : O → R convex, and f2, c2 : O → R weakly convex functions on some neighbourhood of each x ∈ O.
If in Algorithm 1 the stopping test tolerance Tol is set to zero, then any cluster point x̄ of the sequence of
stability centers {xℓk} satisfies the necessary optimality condition (3.13).

Furthermore, concerning the original problem (1.1), the following holds:

i) If c(x̄) > 0 (which cannot happen if x0 is feasible), then x̄ is a critical point of min
x∈X

c1(x)− c2(x).

ii) If c(x̄) = 0 and x̄ is not a critical point of minx∈X c1(x) − c2(x), then x̄ satisfies the criticality
condition (3.9) with λ̄ > 0.
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iii) If c(x̄) < 0, then x̄ satisfies the criticality condition (3.9) with λ̄ = 0.

If Tol > 0, then the algorithm stops after finitely many steps k ∈ N with an approximate critical point
xℓk of (3.13).

Proof. For the case Tol = 0, condition (3.13) follows directly from Proposition 5.3 if {xℓk} is finite, from
Proposition 5.4 if the the algorithm produces only finitely many serious steps followed by an infinite sequence
of null steps, and from Proposition 5.7 if infinitely many serious steps are produced.

Furthermore, the connection with the necessary optimality condition for the original problem (1.1) is
established by Theorem 3.5.

Proposition 5.4 ensures that lim
k→∞

||xk+1 − xℓ|| = 0 if xℓ is the last stability center. Otherwise,

lim
k→∞

||xℓk+1 − xℓk || = 0, as shown in the proof of Proposition 5.7. Thus, Algorithm 1 stops after finitely

many steps provided Tol > 0.

6 Illustrative numerical examples
A deep analysis of the numerical performance of Algorithm 1 (CwC-PBM) is out of the scope of this paper.
Instead, this section aims to illustrate our approach to solving some challenging test problems. Here we have
two goals: show that it provides good-quality critical points (examples of Subsection 6.2 - Subsection 6.5)
and is able to solve problems that, to the best of our knowledge, could not be resolved with other solvers
(Subsection 6.1). We consider four nonconvex stochastic optimization problems and one coming from signal
processing. Notice that the stochastic problems (example of Subsection 6.1 - Subsection 6.3) do not have
explicit DC decompositions, and thus DC programming algorithms are not directly applicable.

Numerical experiments were performed using MATLAB R2020a and Gurobi 9.5.1 (for solving the master
QP subproblem (4.8) in Algorithm 1) on a personal computer with the following characteristics: Windows
10 Professional, 32 Go, Intel i7-10850H (6 cores). Our implementation allows for simpler problems without
non-linear constraints (as in the case of the problem in Subsection 6.2). We invite the interested reader to
check Appendix B for a brief presentation of how the approach can be simplified in this case.

Unless otherwise specified, the choice of the parameters in Algorithm 1 is as follows: ρ = σ = 1
2
, κ = 0.3,

µ0 = 102 and Tol = 10−4.

6.1 Highly nonconvex chance-constrained problem
In this section we investigate the following optimization problem (having weakly-convex constraint):

min
x∈Rn

c⊤x

s.t. P
[
1

2
ξ⊤Qj(x)ξ + qj(x)

⊤ξ + dj(x) ≤ 0, j = 1, ..., k

]
≥ p (6.1)

x ≤ x ≤ x̄.

We first note that as a result of [47] and the upfollowing concrete data, that the probability function is
continuously differentiable. Furthermore the underlying feasible set is compact and so we are in case ii) of
the introduction: c1(x) = p and −c2 indicating the probability function. The underlying data is not convex
in the parameter replaced by the random vector. As a result, the underlying feasible set is not expected to
be convex. Concretely we will consider the following data, for k = 2:

Q1(x) =

[
3(x1 − 1) −x2
−x2 3(x1 − 1)

]
, Q2(x) =

[
−2x2 x1 − 1
x1 − 1 −2x2

]
as well as

q1(x) =

[
3
1

]
(x1 − 1), q2(x) =

[
1
4

]
x2

d1(x) = −2, d2(x) = −2. We have also picked p = 0.7 together with c = (−1,−1), x = (−2,−2), x = (2, 2).
The random vector is taken to be multivariate Gaussian with mean vector 0 and covariance matrix

Σ =

[
2 −1
−1 2

]
.

This optimization problem is quite challenging. First it can be observed that an alternative sample
average approximation along the lines of [22] would be a MILP. It is thus tempting to first try to solve
the resulting optimization problem with such a formulation. We have done so for the following sample sizes
{100, 1000, 5000, 10000, 50000}, using CPLEX 12.10. The resulting computation times are 0.5, 4, 22, 100, >
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Figure 2: Probability distribution associated with the chance constraint in (6.1)

8000 seconds respectively. The last computation was aborted still showcasing a 25.9% gap after more than
2 hours of computation. Unfortunately, none of the obtained solutions turn out to be feasible, quite to the
contrary: the typically obtained final probability value is roughly 0.04 being far from the required 0.7. We
have also performed a run of a sampled problem with 10000 random realizations, but with a significantly
higher probability level of 0.9. In this case, after roughly one hour of computation, the resulting solution
being at a MIPgap of 3.3 %, is still highly infeasible having only a probability value of 0.02.

Furthermore, we have tested IPOPT solver for the problem resolution: tests have been performed for
the six initial points listed in Table 1 and default tolerance 10−4. After at most 26 seconds of computation,
IPOPT halted with highly infeasible points with a probability constraint value equal to 0. The difficulty
of generating feasible points might come from the form of probability distribution as the probability level
sharply raises from zero (blue, Figure 2) to nearly 1 (yellow, Figure 2) when approaching the feasible area
from most directions, which causes the loss of gradient information in a large zone of zero probability. But
of course this gradient information is not exploited by the MILP formulation at all.

In contrast, as Table 1 shows, the CwC-PBM algorithm manages to improve the probability level if
the starting point is infeasible, and to improve the objective function value while satisfying probability
constraint for a feasible initial point. Moreover, for one of the tested starting points we have managed to
generate the near (globally) optimal solution (1.2400;−0.1126). Since the problem is indeed very difficult,
a precise internal sampling scheme for the probability function is required. This amounts to the number of
samples used to compute a formula of the type (6.4), which subsequently leads to design of the oracle for
c2 component. We can prematurely end further sampling, very much like the implementation of Genz’ code
[9], by checking if sampling variance - in fact the confidence interval bounds - are sufficiently small. Unlike
Genz’ code a crude antithetic Monte-Carlo scheme has been used for sampling, thus leaving much room for
significant improvement in terms of speed and precision, by using for instance QMC as, for instance, in [11].
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Initial point Time (s) Iterations Initial
probability

level

Final
probability

level

Objective
value

(1.2, −0.1)⊤ 47.6 17 0.80 0.70 -1.1097

(1.5, −0.4)⊤ 78.4 28 0.43 0.70 -1.1346

(1.6, −0.3)⊤ 36.9 14 0.42 0.70 -1.0815

(1.7, −0.4)⊤ 59.8 20 0.36 0.70 -1.1443

(1.1, −0.4)⊤ 21.3 10 0.43 0.43 -0.7001

(1, −0.8)⊤ 10.8 9 0.18 0.18 -0.2001

Table 1: Results obtained with the CwC-PBM algorithm for problem (6.1) depending on
initialization.

6.2 Investment like problems
We will see how the structure of Example 1.1 can appear in practice. Here we will follow the general
discussion in [46]. We are interested in the situation wherein we dispose of a set of different technologies
i = 1, ...,m capable of generating electricity. Each technology comes with a specific and detailed set of
constraints Pi, cost function ci attributing to pi ∈ RT the cost of generation. Altogether, the various
technologies are meant to ensure the satisfaction of a given customer load d ∈ RT . We are interested in
finding the optimal mix. Thus for i = 1, ...,m, we are given θi ∈ N, the number of “units” of a given type
we would like to invest in. The vector θ comes with an investment cost F (θ). In a deterministic setting this
would amount to solving

min
θ∈Θ,p

j
i∈Pi

F (θ) +
m∑
i=1

θi∑
j=1

ci(p
j
i )

s.t.

m∑
i=1

θi∑
j=1

pji ≥ d.

Now should for each i, the mappings ci as well as the feasible sets Pi be convex, then it must be so that

the averaged solution: p∗i = 1
θi

∑θi
j=1(p

j
i )

∗, in which each power plant of technology i produces exactly this

amount is also optimal. This follows from using convexity of Pi showing feasibility of p∗i and through using
Jensen’s inequality for ci. This is also exactly what would happen if we would solve the subproblems of the
Lagrangian dual (w.r.t. the load constraint) for a given fixed investment vector. The convexifying effect of
the Lagrangian is well known, e.g., [19, 44] and thus for this dual setting convexity of ci or Pi would not
be essential. Either way, as a result we may thus assume that each power plant of the same technology
produces the same amount. This would thus lead to the simpler problem (less variables):

min
θ∈Θ,pi∈Pi

F (θ) +

m∑
i=1

θici(pi)

s.t.
m∑
i=1

θipi ≥ d.

We will investigate a two-stage stochastic version of the last problem, wherein d is uncertain. We thus define:

Q(θ, ξ) = min
pi∈Pi

m∑
i=1

θici(pi) s.t.

m∑
i=1

θipi ≥ d. (6.2)
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and consider the optimization problem

min
θ∈Θ

F (θ) + E[Q(θ, ξ)], (6.3)

where for the sake of simplicity we will assume θ to be allowed to take continuous values (Θ is a polytope).
We will also assume that the feasible set Pi is convex, although one could investigate problem (6.3) without
this assumption - for instance by arguing through Lagrangian duality.

Let us now look at a concrete instance. We will consider a time horizon of t = 1, ..., T time steps where
each time step is considered to be ∆t hours long. The problem disposes of m types of technology, having
the following characteristics. Each technology type has a maximum power output level pmxi , proportional
cost ci and gradient condition gi. Additionally, each unit is assumed to dispose of a carbon emission rate ei,
and the system subject to a carbon cost f . Concretely this means that the proportional cost gets updated
through the formula ci ← ci + fei.

The system is moreover endowed with a given customer load that we will assume to be multivariate
Gaussian with a given mean and positive definite Covariance matrix. We refer to [37, § 5] for the description
of Pi (polyhedral). Furthermore for the various technologies we will assume that F (θ) = F⊤θ. The purpose
of our experiment is to showcase how concretely the new algorithm can process specifically structured
problems such as these.

Following the description of Example 1.1, we need to computeQε(θ, ξ) at each given θ. The latter involves
the solution of a convex optimization problem, wherein ψt is given by the t-th component of d−

∑m
i=1 θipi.

As a result of the logarithm, the objective function defining Qε is convex in y. We will therefore use a cutting-
plane approach to internally compute Qε, as well as it’s gradient. The inner optimization is initialized from
the optimal solution y0 of the inner optimization problem of Q(x, ξ). The latter can be computed by solving
a linear program. This will give us the oracle for f2 (in the notation of Subsection 4.1).

Table 2 provides the concrete data.

1 2 3 4 5 6 7 8 9 10
pmx (MW) 900 900 900 300 300 200 200 200 100 10000
g (MW/h) 100 100 100 30 30 20 20 70 70 5000
c (e/MWh) 30 35 37 45 47 60 100 110 150 10000
F inv (e) 493151 493151 493151 41096 41096 32877 32877 32877 21918 0
e (t/MW) 0 0 0 1 1 0.5 0.5 0.5 1.1 0

Table 2: Data for the stylized investment problem

We can observe that the last unit described in the previous table is an imbalance unit - a computational
trick to ensure that one can always meet the load, in this case even despite a potentially completely unbal-
anced set of invested assets. In terms of constraints on investment, we do not allow investment in this last
unit, the capacity will remain at 1. The cost of investment was set up using typical values of investment cost
per kW, upon rescaling to match T and while accounting for life span of the various technologies. The data
of the case is stylized and the general purpose of the study is more a demonstration of the capabilities of
the algorithm rather than an attempt to provide practical insights into investment regarding the electrical
system.

We have performed tests with the CwC-PBM algorithm and IPOPT solver, both applied to approxima-
tion with Qε, ε = 10−2, for f = 0 (zero carbon cost) and f = 100. The latter case enables to see the potential
impact of such a penalized setting for emitting technologies. The methods provide comparable results in
terms of objective value with the average relative difference of 0.98% (both for default tolerance 10−4), see
Table 3. (Both algorithms exploit the problem’s decomposable structure and employ the same oracles.) The
average execution time (among 6 considered cases) is 2 579 seconds for the CwC-PBM algorithm, and consti-
tutes to 2 241 seconds for IPOPT (including function evaluation). For initial states v2 = (1 1 1 1 1 0 1 0 1 1)⊤,
the resulting total amount of installed capacity is less for the case with f = 100 (around 3 500 MW for both
methods) compared to the case with zero carbon cost (more than 3 900 MW for both methods). While the
latter remains close to the nominal investment vector, the methods update the set of installed capacities
quite significantly, by shifting essentially all generation from carbon emitting technologies to technologies
1− 3 not emitting CO2 at all for the case with f = 100. This can be explained since the original setting was
slightly overcapacitated - and as a result of the introduction of the ”fictive” imbalance unit - infeasibility is
no longer an issue. The maximum load over the considered scenarios being roughly 3 500 as well. A similar
situation occurs for the initial state v3 = (1 1 1 1 1 1 1 1 1 1)⊤ (roughly, 4 000 MW for f = 100 against 3 700
MW for zero carbon cost). For v1 = (1 1 1 1 1 0 0 0 0 1)⊤, the solution found by IPOPT corresponds to 3 700
MW of installed capacity for f = 100, compared to approximately 3 500 MW suggested by the CwC-PBM
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algorithm. This numerical experiment thus clearly shows that the CwC-PBM algorithm provides meaningful
good quality solutions for this type of problems.

CwC-PBM algorithm IPOPT solver
Initial state CO2 cost Iterations Objective

value
Iterations Objective

value

v1 = (1 1 1 1 1 0 0 0 0 1)⊤
0 49 5 781 983 16 5 864 083
100 33 5 886 797 10 6 001 847

v2 = (1 1 1 1 1 0 1 0 1 1)⊤
0 29 5 965 697 9 5 865 690
100 31 5 938 787 15 5 920 723

v3 = (1 1 1 1 1 1 1 1 1 1)⊤
0 16 5 985 021 6 5 970 187
100 32 5 945 049 11 5 930 397

Table 3: Results obtained with CwC-PBM algorithm and IPOPT solver for (6.3) for carbon
cost f = 0 and 100. Average execution time is 2 579 seconds for the CwC-PBM algorithm and
2 241 seconds for IPOPT.

Setting the prox-parameter µ0 equal to its value at the first serious step µl1 predictably speeds up
the CwC-PBM algorithm’s performance. For initialization at v2 and v3, the prox-parameter µl1 is of the
order of 106, while it is equal to its default value of 102 for initialization at v1. The number of iterations
decreases significantly for the former cases—down to 15 and 24 in the case of v2, and 9 and 28 in the case of
v3—with an average improvement of 27% in execution time. When altering the stopping test tolerance Tol

within the set {10−4, 10−6, 10−8, 10−12} (with fixed µ0 = µl1 ), we observe that the objective value does not
change for all considered initial states and carbon costs. To progress to the next tolerance level within the
specified set, the algorithm undergoes between 1 and 4 iterations, resulting in duration ranging from 44 to
456 seconds depending on the case. Moreover, the objective value shows minimal variation with alterations
in the parameter κ. Varying κ within the set {0.001, 0.01, 0.03, 0.1, 0.3}, the objective value remains within
the limits of ±0.01% (tests have been performed with the initial state v2). The algorithm is thus robust with
respect to the choice of Tol and κ and can be accelerated with the selection of an appropriate prox-parameter
µ.

6.3 Decision dependent probability constraints in two stage prob-
lems

In this section we consider the following stochastic problem having different random vectors: min
x∈X

f1(x) +

S∑
s=1

πsQ(x; ξs)

s.t. P[A1x+ b1 ≥ ω1] ≥ p1

with Q(x; ξ) :=

{
min
y∈Y

q(x, y; ξ)

s.t. Px[A2(ξ)y + b2(ξ) ≥ ω2(x)] ≥ p2.

In this problem, ξ ∈ Ξ := {ξ1, . . . , ξS}, ω1 ∼ N (µ1,Σ1), and ω2(x) ∼ N (µ2(x),Σ2(x)). The latter random
vector depends on the first-stage decisions. We assume that the covariance matrices Σ1 and Σ2(x) are positive
definite for all x ∈ X. As a result, the probability functions are twice-differentiable [13, 45]. Furthermore,
as the multivariate Gaussian distribution is log-concave, we get that c1(x) = log(p1)− log(P[A1x+ b1 ≥ ω1])
is a convex function and so is the objective of the penalized subproblem

Qε(x; ξ) = min
y∈Y

q(x, y; ξ)− 1
ε
log

(
Px[A2(ξ)y + b2(ξ) ≥ ω2(x)]− p2

)
.

We are thus in the setting of Example 1.1 with f2(x) =
∑S

s=1 πs[−Qε(x; ξs)]. We can observe that the just
given optimization problem is a version of two-stage stochastic program having unhedgeable, or post-decision
random realizations.

Now in order to compute the gradient of both of the involved probability functions, we can rely on two
different formulæ for the gradients. The mapping c1 is continuously differentiable and its gradient can be
evaluated by employing the results shown in [49]. The second stage probability function is also differentiable
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under a mild regularity condition, its gradient can be evaluated using the formulæ from [43, Thm. 5.1].
Indeed with L2(x) the matrix resulting from the Cholesky decomposition Σ2(x) = L2(x)L2(x)⊤, we may
write

ci2(x, y) = P[−A2(ξ
i)y − b2(ξi) + µ2(x) + L2(x)ω2 ≤ 0],

where ω2 ∈ Rm, ω2 ∼ N (0, I). Hence we can observe that:

∇ci2(x, y) =
∫

v∈Sm−1:J∗(v)̸=∅,|J∗∗(v)|=1

−
χ(ρ̂(v))

(L2(x))j(v)v

(
ρ̂(v)∇(L2(x))j(v),.v) +∇µ2(x),−(A2)

⊤
j(v),:

)
dµζ(v)

(6.4)
with

J∗(v) = {j = 1, ..., r : (L2(x))jv > 0}

ρ̂(v) = min
j∈J∗(v)

A2y + b2 − µ2(x)
(L2(x))jv

J∗∗(v) =

{
j ∈ J∗(v) : ρ̂(v) =

A2y + b2 − µ2(x)
(L2(x))jv

}
.

and j(v) being the unique element of J∗∗(v). In this case since L2 has linearly independent rows - which is
the case since Σ2 is positive definite - the aforementioned regularity condition (R2CQ) holds true. In fact
(R2CQ) holds true locally and as a consequence it is indeed so that both c1 and c2 are twice continuously
differentiable. This was already clear for c1 upon using well known classic arguments.

Let us now consider the following concrete example of a problem of this kind. We are interested in a
situation considering a manufacturer capable of producing two different products. The first-stage decision
variables of the problem consist of setting prices for the products and an advertisement levels. The price
will be assumed to be in relation to the average second-stage demand for the given product. We will use the
following rule µ2(x) = (µ̄1/x1, µ̄2/x2), with x1, x2 being the price levels for product 1 and 2 respectively.
Advertisement is assumed to have a beneficial effect on the variance of the demand, but simultaneous
advertisement for both products will be counterproductive. In other words:

Σ2(x) :=

[
(0.1µ̄1/x1x3)2 −0.4(0.01µ̄1/x1x3µ̄2/x2x4)

−0.4(0.01µ̄1/x1x3µ̄2/x2x4) (0.1µ̄2/x2x4)2

]
.

The second stage decision y involves the production of the goods. The production process of the goods is
subject to some possible unreliability as the amount of actually produced goods are concerned. The matrix
A2 is thus a diagonal matrix, where the first entry is a uniform random variable over the interval [0.9, 1] -
on average only 95% of the commissioned products actually get manufactured. The second diagonal entry
is uniform over the interval [0.8, 1] - the process of production here is more unreliable. However producing
with the more unreliable process is slightly cheaper. Any products that are manufactured but not sold, will
incur a penalty. The second stage cost function is thus given by

q(x, y, ξ) = (2− x1)y1 + (1− x2)y2 + 12E[max {y1 − (ω2)1, 0}] + 12E[max {y2 − (ω2)2, 0}].

The last two terms correspond to the penalization of produced, but not sold goods. It turns out that the
latter expectations can be computed “analytically” as they are related to the computation of an expectation
of a truncated Gaussian random variable. Therefore, we can observe that the following identity holds true:

E[max {y1 − (ω2)1, 0}] = Φ((y1 − (µ2(x))1)x1/(0.1µ̄1x3))(y1 − (µ2(x))1)

−
1
√
2π
e−

1
2
((y1−(µ2(x))1)x1/(0.1µ̄1x3))

2
0.1µ̄1/x1x3.

The second formula is of course immediately deduced as it is analogous. Both products require a different
setup of the factory, so y1 + y2 ≤ 10. Furthermore, the first-stage cost function is related to the cost of
advertisement f1(x) = q1x23 + q2x24. Furthermore all first-stage variables are bounded.

The implementation of this example requires first the implementation of the formulae for the gradient of
the probability function. Here we can exploit the earlier given formula immediately. It can be observed (see
the more extensive discussion in [38]) that the probability value itself can be computed with exactly the same
cost. Subsequently the algorithm scheme is very similar to the one of the investment problem. In particular,
combining the computations for probability function value and subgradient (6.4) with the reasoning of the
previous example, we will obtain the oracle for f2 component (in the notation of Subsection 4.1), while the
oracle for f1 is straightforward from the formula of the advertisement cost.

Therefore, we have also run this case with the CwC-PBM algorithm and found an approximate criti-
cal solution after a total of 12 iterations (1600 seconds on personal laptop). The found solution is x =
(3.37, 3.21, 0.096, 0.784), showing that there is interest in balancing the prices, i.e., not taking maximal

24



prices, while also investing in advertisement. We have done the same test with IPOPT solver. The com-
putation was aborted after 50 000 seconds with the resulting infeasible point x = (9.997, 9.983, 0.0004, 0.167)
slowly approaching the bound (10, 10, 0, 0).

This example thus shows that the new algorithm allows us to consider settings beyond classic convexity,
even when dealing with probability functions - in this case with decision dependent random vectors.

6.4 Compressed sensing problem
In this section we focus on the problem of compressed sensing considered in [52]:

min
x∈Rn

∥x∥1 − ∥x∥ (6.6)

s.t. ∥Ax− b∥2LL2,γ
≤ δ,

where A ∈ Rq×n is a full row rank matrix and b ∈ Rq . For given γ > 0, Lorentzian norm ∥ · ∥LL2,γ of a
vector y ∈ Rq is defined as

∥y∥2LL2,γ
=

q∑
i=1

log

(
1 +

y2i
γ2

)
.

As discussed in [52], the problem (6.6) is DC with twice continuously differentiable constraint, whose modulus
of Lipschitz gradient is known. This allows us to construct the oracle for the constraint component. To
compute subgradient of the component f1(x) = ∥x∥1, we have chosen the sign function.

As in [52], we have generated A ∈ Rq×n with normally distributed random entries normalizing it so that
each column has a unit norm. To set the original point, we have chosen a subset of size s0 = [ q

9
] among

basis vectors and generated a s0-sparse vector xorig with i.i.d. normally distributed random entries. We
have taken b = Axorig + 0.01η, each ηi having a standard Cauchy distribution, and δ = 1.1∥0.01η∥LL2,γ

with γ = 0.02.
We have performed tests with the CwC-PBM algorithm and SCPls algorithm coded based on Algorithm

2.1 of the paper [52] for q = 720 i, n = 2560 i, with i = 1 (Figure 3) and i = 5 (Figure 4). Both algorithms
were initialized at x0 = A+b with matrix A+ denoting the Moore-Penrose pseudoinverse of A. The gap
between solution provided by the SCPls algorithm (with tolerance 10−4) and CwC-PBM algorithm is 4.45%
and 2.71% for 2 400 and 3 000 iterations, respectively, for the case i = 1. It constitutes 2.2% and 1.16%
for 2 400 and 3 000 iterations, respectively, for the case i = 5, Table 4. However, the execution time of
the CwC-PBM algorithm is higher compared to SCPls, which was designed for a more specific framework
(constraint functions have Lipschitz continuous gradient, and the objective function is decomposed as a sum
of a smooth function and DC function), Table 4.

We have also run the CwC-PBM algorithm with initialization at zero vector. It manages to obtain a feasible
solution after 50 iterations (for both i = 1 and 5), as well as to recover an optimal solution within tolerance
3.2 × 10−4 for i = 1 (10 000 iterations) and 1.2 × 10−3 for i = 5 (3 000 iterations) with execution time of
1 347 seconds and 2 717 seconds, respectively. The SCPls algorithm can not be applied in this case, as a
feasible initial point is required.

CwC-PBM algorithm SCPls algorithm
Iterations Time (s) Objective

value
Time (s) Objective

value

i=1
2 400 324.27 54.16

16.02 51.85
3 000 592.92 53.26

i=5
2 400 2 396.65 289.52

133.37 283.27
3 000 3 180.52 286.56

Table 4: Results obtained with CwC-PBM and SCPls algorithms for (6.6) with the initial point
x0 = A+b

6.5 Chance-Constrained Optimal Power Flow
This section is dedicated to the operational planning problem of distribution energy grid under uncertainties
related to the probabilistic nature of nodal generation and consumption considered in [15, 36]. It is formu-
lated as a chance-constrained Optimal Power Flow (OPF) where the objective function constitutes to the
operational planning cost, deterministic constraints are convex and reflect contractual engagements related
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CwC-PBM algorithm. SCPls algorithm.

Figure 3: Computed solutions (marked by circle) of (6.6) and xorig (marked by asterisk) for
i = 1

to the grid operation, and the joint probability constraint incorporates the stochastic nature of the model.
More precisely, it ensures that for an operational decision, grid operating conditions remain within technical
limits with a given probability 1 − α (security level). An operational decision bears on power modulation
of a grid user (limitation of power injected to the grid for producers and power curtailment for consumers).
Power modulation conditions can be individually contractualized with producers (generators), which may
reduce the operational cost due to lower price of power modulation within the specified limits.

Following notations in [36], we denote the set of producers with such individual contracts by NSCP ,
and the corresponding decisions on power modulation within contractualized limits by (pγ

i , q
γ
i ), i ∈ NSCP .

Decisions on power modulation above those limits as well as decisions concerning other users are denoted

by (pβ
i , q

β
i ) with corresponding set of indexes i ∈ NFiT . To simplify the notation, if there is no need to

distinguish user types, we will denote decision variables by

p := ({pγ
i }i∈NSCP

, {pβ
i }i∈NFiT

) ∈ Rn

q := ({qγ
i }i∈NSCP

, {qβ
i }i∈NFiT

) ∈ Rn

with n = |NSCP |+ |NFiT |.
In [36] the chance-constrained optimal power flow is reformulated as a DC-constrained DC-problem

(with convex objective function, i.e. f2 = 0)

min
(p,q)∈X

∑
i∈NSCP

Ci|pγ
i |+

∑
i∈NFiT

C̃i|pβ
i |+

∑
i∈NSCP

ci(pγ
i )

2 +
∑

i∈NFiT

c̃i(pβ
i )

2 (6.7)

s.t. c1(p,q)− c2(p,q) ≤ 0.

Here all the coefficients Ci, ci, i ∈ NSCP , as well as C̃i, c̃i, i ∈ NFiT are positive, c1, c2 are convex functions.
This reformulation is made based on an oracle enabling to find a DC decomposition of the constraint under
probability sign ([36], Section 3.1), which imposes the OPF solution to be in the required bounds. Applying
the sample average approximation, it leads to a DC approximation of the probability constraint ([36], Section
3.2). This procedure thus provides oracles for the DC constraint in problem (6.7). The proximal bundle
algorithm from [50] (PBMDC2) is applied to solved it.

As in [36], we consider the case of 33-bus network accommodating 31 loads with 3 generation units
among them. One producer has individual contract with corresponding costs C1 = 4.2 · 10−5, and c1 = 0
for power modulation up to 50% of his generation. Above this volume, the costs are C̃1 = 4.2 · 10−3 and
c̃1 = 0.01. For two other producers, the costs are C̃2 = C̃1, C̃3 = 0.02 and c̃2 = c̃1, c̃3 = 0.1, while for the
remaining 28 consumers C̃i = c̃i = 1. We use data from Enedis Open Data2 on July 27, 2020, to construct
load and generation profiles for N = 1000 scenarios, only 545 among which satisfy the technical limits (i.e.
the security level is 0.545 without power modulation).

2https://data.enedis.fr/explore/dataset/coefficients-des-profils/table
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CwC-PBM algorithm. SCPls algorithm.

Figure 4: Computed solutions (marked by circle) of (6.6) and xorig (marked by asterisk) for
i = 5

We have run this problem with the CwC-PBM algorithm and PBMDC2 algorithm. The parameters ρ, σ,
κ and Tol for both methods are set to: ρ = 107, σ = 0.5, κ = 0.3 and Tol = 10−5. The parameter µ0 is
chosen to be 80 for the CwC-PBM algorithm, while µ0 = 102, µmin = 10−6 and µmax = 106 for PBMDC2. We
set 11 values of the security level 1 − α ranging from 0.75 to 1 with a step size of 0.025. The initial vector
(p0,q0) is equal to zero, which corresponds to the case with no power modulation.

For all values of security level 1−α, the CwC-PBM algorithm yields an approximate critical point of (6.7).
It is not necessary the case for PBMDC2, as c2 needs to be differentiable [50][Thm. 2], but this condition does
not hold for (6.7) (see Section 3.1 of [36]).

The CwC-PBM algorithm provides better solutions in terms of the objective value for all values of security
level 1 − α, Figure 5 (a). The maximal improvement is of 13.33% is obtained for 1 − α = 0.775, and
constitutes 3.56% in average. As explained in [36], the obtained security level is less than 1 − α (Figure
5 (b)) due to DC approximation of probability constraint. The relative maximal difference between the
targeted and obtained security level is 5.07% for the CwC-PBM algorithm compared to 4.93% for the PBMDC2

algorithm (both at 1− α = 0.75). Nevertheless, solutions supplied by both algorithms are feasible for (6.7).
The average execution time is less for the PBMDC2 algorithm: 1340 seconds compared to 4232 for CwC-PBM.
However, the objective value corresponding to PBMDC2’s solution is attained after 2387 seconds in average.
The latter difference can be explained by the fact that we have not exploited the DC structure in CwC-PBM.

This use case thus shows that the new algorithm is applicable to real-life industrial problems and capable
to generate approximate critical points in DC-constrained framework, without assumptions on differentia-
bility of DC components. However, achieving criticality comes at the cost of an increase in execution time.

7 Conclusion
In this manuscript, we have considered nonsmooth and nonconvex optimization problems where the objective
function and nonlinear constraint are represented as the difference of convex and weakly convex functions
(CwC). Our work studies various stationary conditions and a bundle method approach enabling to compute
critical (generalized KKT) points. The latter broadens and enhances the algorithm developed in [50] for
the case of Difference-of-Convex (DC)-constrained DC-problems, and likewise relies on problem reformula-
tion via an improvement function. To the best of our knowledge, proposed method is the first one that
directly exploits the CwC-structure of the involved functions and does not require additional assumptions
or transformations as, for instance, explicit Difference-of-Convex decompositions or Moreau envelopes. We
have illustrated the method performance with a few stochastic problems, including two-stage and chance-
constrained problems and a compressed sensing problem with nonlinear constraint. Preliminary results are
meaningful and show that the algorithm enables tackling settings beyond the classic Difference-of-Convex
setting.
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(a) Objective value (b) Security level

Figure 5: Objective value and security level obtained with CwC-PBM and PBMDC2 algorithms.

Appendices

A Some mathematical results
Proof of Proposition 2.4. Since f : O → Rn is weakly convex, it follows by definition that, relative to
some neighbourhood Vx′ of each point x′ ∈ O, there exist µx′ > 0 such that for all µ ≥ µx′ the function
ϕ(x) = f(x) + µ

2
∥x∥2 is finite and convex on Vx′ . In such a representation, there is no loss of generality

in assuming that Vx′ ⊂ O (if necessary we can define a new/smaller neighbourhood as Vx′ ∩ O for which
the above conclusion obviously stands). By considering all the points in X, let V := {Vx′ : x′ ∈ X} be
the collection of all such neighbourhoods. Then, by construction, V is an open cover of the compact set
X and, by definition of compactness, it has a finite open subcover, i.e., there exists finitely many points
{x′1, . . . , x′m} ⊂ X such that O′ := ∪mi=1Vx′

i
⊃ X, and by construction O′ is an open subset of O. The first

part of item i) thus follows by taking µf := maxi=1,...,m µx′
i
< ∞. By writing f(x) = ϕ(x) − µ

2
∥x∥2 and

recalling Proposition 2.1 i) we get ∂Cf(x) = ∂ϕ(x)− µx for all x ∈ O′. This concludes item i).
To show item ii), let us now define ϕ̃(x) = f(x) + µ

2
∥x∥2 + iO′ (x), an extended real-valued convex

function: ϕ̃ : Rn → R ∪ {∞}. Note that for each x ∈ O′, there exists a neighbourhood Vx ⊂ O′ such that
ϕ̃(x′) = ϕ(x′) for all x′ ∈ Vx. This fact permits us to conclude that ∂ϕ̃(x) = ∂ϕ(x) for all x ∈ O′. It
thus follows from item i) that, for every x ∈ O′ and every s ∈ ∂ϕ̃(x), there exists sf ∈ ∂Cf(x) such that
s = sf + µx and the subgradient inequality reads as

ϕ̃(y) ≥ ϕ̃(x) + ⟨sf + µx, y − x⟩ ∀y ∈ Rn,

i.e., f(y)+ µ
2
∥y∥2 + iO′ (y) ≥ f(x)+ µ

2
∥x∥2 + iO′ (x)+ ⟨sf +µx, y−x⟩ for all y ∈ Rn. The latter simplifies to

f(y) + iO′ (y) ≥ f(x) + ⟨sf , y − x⟩ −
µ

2
∥y − x∥2 ∀y ∈ Rn.

By restricting y to the set X and recalling that sf = s − µx ∈ ∂Cf(x) is an arbitrary subgradient (because

no restriction was imposed to s ∈ ∂ϕ̃(x)), the above inequality becomes (2.4). □

Lemma A.1. Let φ : Rn → R be a convex function, and {φℓ}ℓ∈N a sequence of convex functions φℓ : Rn →
R converging pointwise to φ, i.e., lim

ℓ→∞
φℓ(x) = φ(x) for every given point x. Furthermore, let {xℓ} ⊂ Rn

be such that lim
ℓ→∞

xℓ = x̄ and {ϵℓ} ⊂ R+ satisfy lim
ℓ→∞

ϵℓ = 0. If gℓ ∈ ∂ϵℓφℓ(x
ℓ) for all ℓ and lim

ℓ→∞
gℓ = ḡ,

then ḡ ∈ ∂φ(x̄).

Proof. First, let us prove that lim infℓ φℓ(x
ℓ) ≥ φ(x̄). Since dom(φℓ) = dom(φ) = Rn, it follows from [32,

Cor. 2C] that the pointwise convergence of {φℓ}ℓ∈N is equivalent to epi-convergence, which in turn is
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equivalent (see [32, Eq. (4.2)]) to epi-convergence of {φ∗
ℓ}ℓ∈N, the sequence of conjugate functions to φℓ.

Hence, it follows that limℓ φ
∗
ℓ (x) = φ∗(x) for every given x ∈ Rn. Now consider the following development:

φℓ(x
ℓ) = (φ∗

ℓ )
∗(xℓ) = sup

y∈Rn
[⟨y, xℓ⟩ − φ∗

ℓ (y)] ≥ ⟨y, x
ℓ⟩ − φ∗

ℓ (y) ∀y ∈ Rn.

Accordingly, lim infℓ φℓ(x
ℓ) ≥ lim infℓ[⟨y, xℓ⟩ − φ∗

ℓ (y)] = ⟨y, x̄⟩ − φ
∗(y) for all y ∈ Rn, showing that

lim inf
ℓ

φℓ(x
ℓ) ≥ sup

y
[⟨y, x̄⟩ − φ∗(y)] = (φ∗)∗(x̄) = φ(x̄).

Recall that gℓ ∈ ∂ϵℓφℓ(x
ℓ). Then, φℓ(x) ≥ φℓ(x

ℓ) + ⟨gℓ, x − xℓ⟩ − ϵℓ for all x ∈ Rn. By taking the limit
when ℓ goes to infinity we get

φ(x) = lim
ℓ
φℓ(x) = lim inf

ℓ
φℓ(x) ≥ lim inf

ℓ
[φℓ(x

ℓ) + ⟨gℓ, x− xℓ⟩ − ϵℓ]

≥ lim inf
ℓ

φℓ(x
ℓ) + lim inf

ℓ
⟨gℓ, x− xℓ⟩ − lim sup

ℓ
ϵℓ

≥ φ(x̄) + ⟨ḡ, x− x̄⟩,

showing that ḡ ∈ ∂φ(x̄).

B Simplified algorithm for the case without nonlinear
constraints

This section describes how Algorithm 1 can be simplified to deal with the simpler convexly-constrained
problem

min
x∈X

f(x), with f(x) = f1(x)− f2(x). (B.1)

In this case, the problem’s model (4.6) reduces to Ȟk(x;xℓk ) = f̌k1 (x) − f̄
ℓk
2 (x), and the descent test (4.5)

becomes f(xk+1) ≤ f(xℓk )− κ
2
∥x− xℓk∥2. Hence, Algorithm 1 boils down to the following plainer scheme.

Convergence analysis for Algorithm 2 follows from that of Algorithm 1 upon several simplifications.
Instead of doing this exercise, we simply state the following result.

Theorem B.1. Consider problem (B.1) with X ̸= ∅ a bounded polyhedron contained in the open set O,
f1 : O → R convex, and f2 : O → R weakly convex on some neighbourhood of each x ∈ O. If in Algorithm 2
the stopping test tolerance Tol is set to zero, then any cluster point x̄ of the sequence of stability centers
{xℓk} satisfies the necessary optimality condition (3.3).

If Tol > 0, then the algorithm stops after finitely many steps k ∈ N with an approximate critical point
xℓk of (3.3).

To have an intuition of why the above theorem is valid, the reader may think of adding a dummy convex
nonlinear convex function c(x) = c1(x)− 0 to (B.1) and rely on the results from Sections 4 and 5. Indeed,
by selecting a constant M > 0 large enough and function c such that c(x) ≤ −M < 0 for all x ∈ X, we can
see that Algorithm 1 applied to (B.1) with the additional and superfluous constraint c(x) ≤ 0 boils down
to Algorithm 2. Furthermore, in this artificial setting, the above convergence result follows directly from
Theorem 5.8, item iii).
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Algorithm 2 Proximal Bundle Method for Convexly-Constrained CwC programs

Step 0 (Initialization) Let x0 ∈ X, κ ∈ (0, 1
2
), κ ≤ µ0, and Tol ≥ 0 be given.

Call the oracles to compute fi(x
0) and (generalized) subgradients s0fi , i = 1, 2.

Define k := ℓk = 0 and B0
f := {0}.

Step 1 (Trial point) Compute xk+1 the (x-part) solution of the QP
min
x, r

r + µk

2
∥x− xℓk∥2

s.t. f̄ j
1 (x)− f̄

ℓk
2 (x)− r ≤ 0 ∀ j ∈ Bk

f

x ∈ X, r ∈ R.

Step 2 (Stopping test) If ∥xk+1 − xℓk∥ ≤ Tol, then stop and return xℓk .

Step 3 (Oracles call) Compute fi(x
k+1), and subgradients sk+1

fi
, i = 1, 2.

Step 4 (Descent test)

(a) If f(xk+1) ≤ f(xℓk ) − κ
2
∥x − xℓk∥2 holds, then declare a serious step: define

ℓk+1 := k + 1, choose Bk+1
f ⊂ {0, . . . , k + 1} with {k + 1} ∈ Bk+1

f and arbitrarily

select µk+1 ∈ (0, µk].

(b) Else, declare a null step: define ℓk+1 := ℓk and choose Bk+1
f ⊂ {0, . . . , k+1} with

B̄k
f ∪ {k + 1, ℓk} ⊂ Bk+1

f (B̄k
f as in (4.10)).

Compute νk := 2max

{
f̄
ℓk
2 (xk+1)−f2(x

k+1)

∥xk+1 − xℓk∥2
, 0

}
. If νk ≥ µk−2κ, set µk+1 = νk+1;

otherwise µk+1 = µk.

Step 5 (Loop) Set k := k + 1 and go back to Step 1.
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[47] W. van Ackooij and P. Pérez-Aros. Gradient formulae for probability functions depending on a het-
erogenous family of constraints. Open J. Math. Optim., 2:1–29, 2021. doi: 10.5802/ojmo.9.
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