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Cost-effectiveness analysis (CEA) is extensively employed by healthcare policymakers to guide funding deci-

sions and inform optimal design of medical interventions. In the CEA literature, willingness to pay (WTP)

serves as a common metric for converting health benefits into monetary value and defining the net monetary

benefit of an intervention. However, there is no universally accepted value for WTP. To address this issue,

we propose presenting policymakers with a comprehensive menu of strategies that are proven cost-effective

across a reasonable range of WTP values. In our approach, we consider a setting where the medical decision-

making process can be formulated as a parametric linear programming model. We have developed a novel

algorithm aimed at efficiently constructing the menu of cost-effective policies. Our algorithm is particularly

suited for Constrained Markov Decision Process (CMDP) and Constrained Partially Observable Markov

Decision Process (CPOMDP) models, which are commonly utilized modeling frameworks for addressing

sequential medical decision-making problems. We have applied our modeling framework to design hearing

loss screening strategies for cystic fibrosis patients. Informed by a validated, data-driven model, we have

developed several heuristic and approximate policies, allowing policymakers to balance between performance

and ease of implementation.

Key words : Constrained, non-linear partially observable Markov decision process; cost-effectiveness

analysis; grid-based approximation; sequential medical decision making

1. Introduction

A primary responsibility of public policymakers is to enhance public life by efficiently allocating a

limited budget to programs (i.e., sets of interventions) that improve people’s lives. A systematic,

data-driven approach to budget allocation involves developing mathematical models to optimize

public benefits, such as public health, within budget constraints. These models facilitate the identi-

fication and prioritization of cost-effective interventions for funding. However, as discussed in Glass-

man et al. (2017), such approach involves solving a large-scale, multi-period model and requires
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detailed data on intervention costs, benefits, and resource needs. To address model complexity, it

may be necessary to simplify intervention details. However, this approach could potentially intro-

duce notable inaccuracies concerning intervention design and resource needs. Another challenge

is budget uncertainty, as funds are allocated and reallocated dynamically among interventions

and may be borrowed from future allocations. These complexities are not easily captured by a

centralized planning mathematical model (Drummond et al. 2015).

An alternative and more common approach is a decentralized method, where the inclusion of

each intervention into a program is determined by an effectiveness threshold. This threshold serves

as a monetary exchange rate for an intervention’s benefit, determining its net monetary benefit

(NMB) by subtracting its cost from its monetary value. Within this context, interventions with a

positive NMB are considered cost-effective and included in the program. The composition of the

program depends on the chosen effectiveness threshold value; as the threshold increases, a broader

set of interventions is included, leading to an increase in the program’s overall cost. Thus, this

threshold serves as a straightforward mechanism for efficiently managing the constrained budget

(Glassman et al. 2017).

Another closely related topic in cost-effectiveness analysis involves determining the optimal con-

figuration of a single intervention, such as the screening schedule for a specific chronic disease. In

this context, the cost-effective policy among all variations can be identified by selecting the inter-

vention configuration that yields the highest NMB. Alternatively, Incremental Cost-Effectiveness

Ratio (ICER), another metric for assessing cost-effectiveness, can be employed. ICER quantifies

the additional cost required to achieve a one-unit improvement in effectiveness compared to a

comparator policy, usually the standard of care. The best configuration among all intervention

variations is the one with the largest ICER below the target effectiveness threshold (Drummond

et al. 2015).

In the healthcare domain, the Quality-Adjusted Life Expectancy (QALE) is a widely adopted

metric for quantifying the health benefits of interventions. It offers a comprehensive valuation by

considering both the quantity and quality of life. The willingness to pay (WTP), which represents

the maximum cost society is willing to pay for one additional unit of QALE gain, is commonly

used as the effectiveness threshold in the healthcare Cost-Effectiveness Analysis (CEA) (Macones

et al. 1999).

Determining WTP poses significant ethical challenges, particularly when the primary aim is to

enhance a patient’s well-being (Neumann et al. 2010). Policymakers, recognizing these complexities,

often consider a range of values for WTP rather than relying on a single estimate. For instance, the

United Kingdom’s National Institute for Clinical Excellence (NICE), tasked with offering national

guidance to improve health and social care, takes a nuanced approach by incorporating a spectrum
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of WTP values and considering the unique circumstances of individual cases (Rawlins and Culyer

2004). Additionally, recognizing the evolving nature of efficiency, WTP values require periodic

reassessment to adapt to changes over time (McCabe et al. 2008).

Given the ambiguity of WTP, scenario analysis is often conducted to assess its impact on the

optimal policy. As discussed later, conducting scenario analysis without a careful selection of candi-

date WTPs is not computationally efficient and may overlook cost-effective policies. We propose an

alternative approach: presenting policymakers with a comprehensive range of cost-effective policies.

Providing multiple options enhances the flexibility and adaptability of healthcare decision-making,

accommodating individual circumstances, budget constraints, and resource limitations.

To support this approach, we introduce an efficient algorithm that generate cost-effective policies,

policies optimizing the NMB for an arbitrary WTP, along with their cost and QALE performances.

The latter is referred to as the cost-effectiveness frontier in the CEA literature (Drummond et al.

2015, Glassman et al. 2017). The developed algorithm achieves this objective through iterative

solutions to the ICER minimization problem, updating the comparator policy in each iteration. As

the process unfolds, the comprehensive cost-effectiveness frontier and the corresponding policies

emerges.

The outlined framework has broad applications in medical decision-making, covering chronic

disease management across screening, treatment planning, monitoring, and surveillance pillars.

In this paper, we demonstrate the practicality of our approach by focusing on developing cost-

effective policies for screening hearing loss in a population affected by cystic fibrosis (CF) disease.

To formulate the problem, we employ a Constrained Partially Observable Markov Decision Pro-

cess (CPOMDP) approach. This choice is motivated the framework’s capability to accommodate

screening assessments with limited accuracy.

2. Literature Review

The NMB maximization problem can be framed as a bi-objective problem, aiming to optimize

a weighted sum of conflicting objectives, namely QALE and cost. The assigned weights repre-

sent the trade-off between costs and QALE outcomes, enabling decision-makers to balance these

objectives based on their priorities. This paper focuses on constructing a Pareto frontier using the

weighted sum approach for bi-objective MDP and POMDP problems. This approach filters out

policies exhibiting strong, weak, or extended dominance, aligning with recommendations in the

cost-effectiveness analysis literature (refer to Section 8 for further discussions).

Roijers et al. (2013) presents a comprehensive survey of algorithms for solving multi-objective

Markov decision processes, considering various criteria, including the weighted sum. While the

conversion of POMDPs to MDPs, a common approach for solving POMDPs, enables the application
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of suggested algorithms, it should be noted that this conversion leads to an uncountable state

space. Consequently, none of the surveyed methods is readily adaptable to yield exact solutions

for multi-objective POMDPs with extensive or infinite horizon lengths. Some of the examined

algorithms handle the uncertainty of objective weights by converting an MDP to a POMDP, which

further restricts their applicability to problems originally formulated as a POMDP.

Parametric optimization provides an effective framework to model the uncertainty associated

with objective weights. As MDPs can be solved using linear programming, the utilization of para-

metric linear programming offers an alternative solution strategy. Existing literature on parametric

optimization predominantly concentrates on identifying the parameter range within which a specific

policy remains optimal. However, these studies often fall short of developing algorithms capable of

navigating the entire parameter space. In contrast, some works in this field, such as Holder (2010),

primarily aim at determining the optimal objective function, such as the NMB in our context, for

different weight values. This focus tends to exclude the generation of the Pareto frontier or the

corresponding policies. Moreover, the suggested algorithm faces similar computational challenges

arising from the conversion of POMDPs to MDPs.

Suen and Goldhaber-Fiebert (2016) present an algorithm for constructing the cost-effectiveness

frontier, but it comes with several significant limitations. Firstly, the algorithm is restricted to

scenarios with a finite, predetermined set of policies. Secondly, it assumes that these policies have

already been evaluated, and their performance metrics (cost and QALE) are available as model

inputs. Thirdly, while they explore the relationship between ICER and NMB objectives, their

discussion is confined to cases with pre-defined set of policies and does not readily generalize to

problems formulated as mathematical programming models. Finally, they do not provide a proof

of computational efficiency for their algorithm.

Scenario analysis, which involves considering a pre-determined set of WTP values, is a prevalent

approach in the literature for investigating the impact of WTP variations on the optimal policy.

For instance, Mason et al. (2014), Chen et al. (2018), and Helmeczi et al. (2023b) have utilized this

approach to ascertain cost-effective strategies for various clinical problems modeled as POMDP

or CPOMDP. Although scenario analysis is straightforward and numerically attractive, it has

several limitations. Firstly, since policies may remain optimal over a range of WTP values, some

of the scenario analyses become redundant, leading to computational inefficiency. Secondly, time

constraints may limit the number of WTP values considered for evaluation, potentially resulting in

a failure to capture a broader range of cost-effective policies. Lastly, this approach fails to provide

policy recommendation for WTPs outside the considered set.

Given the inaccuracies in observing patient state within our decision model, the NMB optimiza-

tion problem can be formulated as a POMDP. Similarly, the ICER optimization model takes the
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form of a CPOMDP, as the ICER problem requires policies to surpass the comparator policy in

the QALE metric. The study by Helmeczi et al. (2023a) offers a thorough review of solution meth-

ods for POMDPs and CPOMDPs. This work underscores that while exact solutions do exist for

POMDP problems, they are typically only practicable for small-scale scenarios. Lusena et al. (2001)

discuss the inherent complexity of POMDPs and caution that one must ‘choose between perfor-

mance guarantees and efficient computation’. In practice, approximation methods are commonly

employed to tackle POMDP and CPOMDP problems.

Grid-based approximation, a prevalent method used to solve C/POMDPs, involves approximat-

ing the belief space using a finite grid. Kavaklioglu and Cevik (2022) substantiate the efficacy of

grid-based approximation through numerical experiments, highlighting its high-quality results. The

grid-based approximation not only serves as a solution method for solving POMDPs but, as estab-

lished by Lovejoy (1991), it yields a lower bound for the optimal value in minimization problems.

In Poupart et al. (2015), the authors extend this result to a subset of CPOMDPs where both the

objective function and constraints are linear in the vector of expected total rewards. Considering

the potential value of this result in assessing the optimality gap of the approximation method, we

broaden its scope to encompass non-linear CPOMDPs.

POMDP models have been extensively used in various medical decision-making problems, includ-

ing the optimization of prostate cancer screening strategies (Zhang et al. 2012), breast cancer

screening approaches (Ayer et al. 2016), sepsis detection systems (Liu et al. 2022), and the individ-

ualization of patient monitoring in ICUs (Piri et al. 2022). For an in-depth exploration of additional

applications of POMDPs in medical decision-making, we recommend that readers refer to Li et al.

(2023).

CPOMDPs have also found applications in healthcare, particularly in scenarios where available

resources, such as budget, are constrained. For example, Gan et al. (2019) explored the optimization

of interventions for addressing opioid use disorder within the constraints of a limited budget.

Similarly, Cevik et al. (2018) optimized the breast cancer screening problem, imposing an upper

limit on the number of screenings. To generate deterministic solutions for the CPOMDP, mixed-

integer linear programming is commonly employed. The majority of the reviewed papers utilized

approximate approaches to solve both POMDP and CPOMDP models, except in instances where

the models were of a sufficiently small scale, enabling the derivation of exact solutions.

3. Contributions

We contribute to the literature on cost-effectiveness analysis by developing an efficient algorithm

that discovers the cost-effectiveness frontier for sequential, medical decision-making problems. This
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is a step forward from cost-effectiveness analysis using a single point-estimate for WTP or per-

forming scenario analysis. The algorithm, tailored specifically for bi-objective linear programming

models, presents a novel method to generate exact Pareto frontiers for finite and infinite horizon

C/MDPs, as well as C/POMDPs with relatively short horizons. However, the algorithm yields

an approximate frontier when the horizon is large. We also establish the relationship between the

ICER and NMB optimization problems and characterize the comprehensive sets of optimal policies

for all WTP values. To the best of our knowledge, our work is the first to incorporate ICER as

the objective function in a mathematical programming model for the identification of cost-effective

policies.

The existing literature on generating the cost-effectiveness frontier is limited to finding the fron-

tier for a given finite set of evaluated policies, e.g., see Suen and Goldhaber-Fiebert (2016). In

contrast, our proposed framework defines the domain of feasible policies using a mathematical pro-

gramming model. In this model, the policymaker does not need to generate and evaluate policies in

advance, nor is restricted to a finite set of policies. Instead, they can determine a set of operational,

budgetary, or other types of constraints that define feasibility of policies.

Moreover, we contribute to the literature of CPOMDPs and grid-based approximation methods

by generalizing a well-known bounding result (Lovejoy 1991, Poupart et al. 2015) to non-linear

CPOMDPs and provide an alternative proof strategy. This result asserts that grid-based approx-

imations with linear interpolation produce lower bounds for the objective value in CPOMDP

minimization problems. Moreover, the generated policies can be utilized to derive upper bounds

on the optimal value. We can utilize these bounds to evaluate the optimality gap of the approxi-

mation method. Moreover, we extend the findings in Wagner (1960) by proving that the extreme

points of the set of policy occupancy measures in general MDPs/POMDPs with finite or infinite

horizons correspond to pure (deterministic) policies. Building upon this result, we establish that

certain non-linear CMDP/CPOMDPs, including ICER minimization, admit deterministic policies.

From a computational standpoint, this result obviate the need for employing integer programming

techniques to enforce deterministic policies, as demonstrated in Cevik et al. (2018). Furthermore,

this result guarantees the efficiency of deterministic policies, which are particularly well-suited for

implementation in medical practice. Furthermore, our contribution extends to the CF clinical

literature by developing cost-effective policies for hearing loss screening. We also devise several

easy-to-implement, approximate policies as well as other heuristics and compare their performance

against that of the optimal policy. A policymaker can use the policy evaluation results to decide

the trade-off between performance and ease of implementation.

Finally, we contribute to the literature on screening problems within the context of medical

decision-making. Our particular emphasis is on determining whether screenings should be con-

ducted only when a specific adverse event occurs for the patient, guiding screening decisions during
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a (random) subset of cycles. This targeted and event-driven approach sets our model apart from

the more generic screening scenarios examined in prior studies.

4. Solution to WTP Ambiguity

In this section, we propose an algorithm to generate the menu of cost-effective policies and the

cost-effectiveness frontier. We start by defining and formalizing these concepts using mathematical

notation. Let a policy be denoted by a real-valued vector x∈X, where X, the set of all acceptable

policies, is a non-empty polytope. We assume that the cost and QALE associated with policy x is

linear in x. Let ϕ :X→ℜ2 be the linear policy-to-performance map defined as follows: (q, c) = ϕ(x).

In this equation, q = ax and c = bx, where c and q represent the cost and QALE of the policy

denoted by x, and a and b are coefficients for QALE and cost, respectively. This setup encompasses

many formulations for which there is an exact or approximate linear programming model. When

policies are represented by their state/action occupancy measures, C/MDPs and C/POMDPs, the

standard frameworks for solving sequential decision-making problems, conform to this framework

(Ross 2014).

A cost-effective policy is defined as a policy that maximizes NMB for a specified WTP. In other

words, all solutions to the following problem represent cost-effective policies.

v(λ) =max
x

nmb(x;λ)

s.t. x∈X.
(1)

In this model, nmb(x;λ) represents the NMB function, which satisfies nmb(x;λ) = (λa−b)x, where
λ≥ 0 is the WTP, and v(λ) is the optimal NMB value for WTP λ.

With variations in the value of WTP, distinct cost-effective interventions are generated. Conse-

quently, our objective is to obtain the set of all cost-effective interventions by solving Problem 1

across a reasonable range of WTP values. In essence, our aim is to identify the following set.

V = {x∈X : ∃λ≥ 0 s.t. nmb(x;λ) = v(λ)}.

Set V encompasses all cost-effective policies, which are maximizers to Problem 1 for all values of

λ≥ 0.

The cost-effectiveness frontier is defined as the set of QALE and cost outcomes associated

with cost-effective policies (Glassman et al. 2017). Mathematically, the cost-effectiveness frontier,

denoted as L, satisfies L= ϕ(V ), meaning it contains the QALE and cost of policies within the set

V .

Alternatively, we can construct the cost-effectiveness frontier by solving the following problem.

c∗(z) =min
c,q

c

s.t. q≥ z,

(q, c)∈Ψ,

(2)
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where Ψ= ϕ(X) represents the set of performance metrics of all feasible policies.

In this problem, we leverage the concept that a cost-effective policy is a feasible policy minimizing

the cost while meeting a minimum requirement on QALE (parameter z in this problem). To ensure

feasibility, z should belong to interval [qmin, qmax], where qmax is the highest QALE achievable by a

feasible policy, and qmin is the highest QALE of all policies that have the lowest achievable cost.

To generate the frontier, one needs to solve this problem over the range [qmin, qmax].

Through the following results, we demonstrate the relationship between the two concepts of

cost-effectiveness frontier. Specifically, we establish that L, the cost-effectiveness frontier, is equal

to the graph of function c∗(z). Since c∗(z) is continuous, convex, piece-wise affine, and increasing

in z, the set L can be constructed by identifying the breakpoints of the function c∗.

To accomplish this, let vectors (qi, ci), with i = 1, . . . ,m, correspond to the breakpoints of the

piece-wise affine function c∗(z). Additionally, let λi := (ci+1− ci)/(qi+1− qi) represent the slopes of

its individual segments. We show that the set of solutions to Problem 1 for a specific λ, denoted

by V (λ), can be characterized by comparing λ with the slopes λi’s as follows.

Lemma 1. We have the following.

(a) If λi <λ<λi+1 for some i, we have V (λ) = ϕ−1(qi+1, ci+1),

(b) If λ< λ1, we have V (λ) = ϕ−1(q1, c1),

(c) If λ> λm−1, we have V (λ) = ϕ−1(qm, cm),

(d) If λ= λi for some i, we have V (λ) = ϕ−1(Li),

where Li is the convex hull of points (qi, ci) and (qi+1, ci+1), and ϕ−1(Z) denotes the set of all

feasible policies with QALE q and cost c in any arbitrary set Z, i.e., (q, c)∈Z ⊂Ψ.

The lemma asserts that we can use the slopes of the pieces of c∗ to partition the range for WTP.

Depending on which set in the partition contains the target WTP, policies with performance lying

on one end point of the piece (cases (a)-(c)) or the whole piece (case (d)) optimize the NMB. We

leverage this result in Algorithm 1 to iteratively generate the breakpoints of the cost-effectiveness

frontier and the desired menu of policies. Since there might be multiple optimal solutions to Problem

1 for a specific value of λ, the primary objective of this algorithm is to identify a subset of V that

contains at least one solution for any desired λ≥ 0.

The algorithm’s logic relies on a specific relationship between the ICER and NMB optimization

problems, as outlined in the following proposition.

Proposition 1. Assume (u, v) lies on the frontier, i.e., it satisfies qi−1 ≤ u < qi for some i, and

v= c∗(u). Consider the following ICER minimization problem.

r∗(u, v) = inf
x

r(x;u, v)

s.t. ax> u,

x∈X,

(3)
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where r(x;u, v) = bx−v
ax−u

. Then, ϕ−1(qi, ci) optimizes Problem 3 and r∗(u, v) = λi.

The proposition asserts that given the performance (cost and QALE) of a non-dominated policy,

(a point on the cost-effectiveness frontier), the minimum ICER is attained by the policies associated

with the next breakpoint on the cost-effectiveness frontier. Furthermore, the optimal ICER is equal

to the the slope of the segment containing the point.

Data:

Vectors a, b∈ℜn and polytope X ⊂ℜn.

Result:

Finite set of m points xi ∈X, di ∈ℜ2, and m− 1 slopes λj ∈ℜ.

Initialize:

Let i← 1 and find u, v and qmax as follows:

v=min bx subject to x∈X; (4)

u=maxax subject to x∈X; bx≤ v. (5)

qmax =maxax subject to x∈X;

Let d1← (u, v), and x1 be a solution to Problem 5.

while u< qmax do
Solve

x∗ ∈ argmin
x

r(x;u, v)

s.t., ax> u

x∈X.
Let λ∗

i = r(x∗;u, v) and solve:

xi+1 ∈ argmax
x

ax

s.t., (λ∗
i a− b)(x−x∗) = 0

x∈X.

(6)

Let u← axi+1, v← bxi+1, and di+1← (u, v).

i← i+1
end

return xi and di for j ≤ i, and λj for j < i.

Algorithm 1: Iterative ICER Algorithm

In each iteration of Algorithm 1, we first solve the ICER problem and determine λ∗
i , the slope

of the next piece of the frontier, and identify a new policy that lies on that piece, x∗. Note that
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x∗ does not necessarily correspond to a breakpoint on the frontier; it may strictly lie on the line

connecting the two adjacent breakpoints. This point is related to Lemma 1 (d). As a result, we solve

Problem 6 to find the next breakpoint of the cost-effectiveness frontier, which is the right-most

point on that segment of the frontier. The latter problem finds a policy with the highest QALE

among all optimal policies that optimize the NMB for λ= λ∗
i , i.e., the policies that have the same

NMB as x∗’s. We subsequently use the newly discovered breakpoint as the new comparator policy

in the next iteration of the algorithm. The algorithm terminates once we have reached the highest

possible QALE. In the following proposition, we establish the efficiency and efficacy of Algorithm

1.

Proposition 2. Algorithm 1 terminates in exactly m− 1 iterations. Furthermore,

■ di’s are breakpoints of c∗.

■ m<∞, meaning that the algorithm terminates in finite number of iterations.

■ Let W be a collection of xi’s. Then, W is the smallest set containing at least one solution to

Problem 1 for any given λ≥ 0.

This result implies that in each iteration of the algorithm, a non-redundant policy is discovered,

proving the algorithm’s computational efficiency. It also demonstrates that the algorithm generates

a set with smallest cardinality among all sets containing at least one solution to Problem 1 for any

given λ≥ 0, proving its efficiency and efficacy.

5. Clinical Case

5.1. Case Introduction

In 2018, there were over 100,000 patients worldwide diagnosed with cystic fibrosis (CF) disease

(Choi and Pietrangelo 2019). The average life expectancy of patients with CF in developed countries

is between 42 and 50 years (Nazareth and Walshaw 2013, Ong and Ramsey 2015). Pulmonary

disease is the main cause of morbidity and mortality in CF patients (Ratjen et al. 2015). The disease

trajectory of CF patients is punctuated by acute episodes of pulmonary function deterioration,

referred to as pulmonary exacerbations (PEx) (Sanders et al. 2011). PEx’s are predominantly

caused by infection and colonization of bacteria, viruses, fungi, and yeasts. Lung infections and

PEx’s, regardless of the infection source, are treated by antibiotics (Westerman et al. 2004).

Aminoglycosides (AGs) are commonly used as first-line agents for treating severe infections.

However, their intravenous administration, in particular, is associated with ototoxicity, leading to

potential hearing loss in patients (Prayle and Smyth 2010). Due to their effectiveness, intravenous

(IV) AGs are routinely used in CF to treat severe lung infections, despite their ototoxicity (Gleser

and Zettner 2018). Repeated exposure to IV AG can lead to significant progression of hearing
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Figure 1: State transition diagram of the Markov process.

ModerateNormal

Hearing Aid

Severe

Profound

Death

Note. Gray/white boxes show observable/unobservable states. Hearing status may only progress with PEx incidence.

impairment, necessitating the use of hearing assistance devices. Several studies indicated a 40%–

56% prevalence of hearing loss in adult CF patients (Vijayasingam et al. 2020) and < 29% in

pediatric CF patients (Farzal et al. 2016). Ototoxic treatments such as AGs are suspected to be

the main cause. There is a general agreement in the clinical community that early detection of

hearing loss can potentially improve a patient’s health outcomes (Garinis et al. 2017). For example,

hearing loss impedes the natural speech and language development of children. We can alleviate

the negative consequences of hearing loss by early detection through frequent screening.

There are various methods to assess a patient’s hearing status, varying in precision, cost, capac-

ity, ease of use, patient adherence and safety. Although the American Speech-Language-Hearing

Association and the American Academy of Audiology recommended hearing screening for oto-

toxic medications, screening practices vary between clinics (American Speech-Language-Hearing

Association 1994, Durrant et al. 2009, Huang et al. 2021). To the best of our knowledge, there is

no established local or national guideline with evidence-based recommendations on the modality

and/or frequency of hearing loss screening in CF populations.

5.2. Model Description

We categorize hearing status into several distinct states: normal hearing, as well as moderate,

severe, and profound hearing loss. A hearing aid is prescribed when the hearing status is identified

as severe hearing loss and subsequently confirmed. However, if the progression leads to profound

hearing loss, a cochlear implant, which is a lifelong and permanent solution, becomes necessary.

The underlying Markov process for the state transitions is depicted in Figure 1.

In the effort to detect hearing loss and provide timely intervention through hearing aids, two

primary assessment methods are available:
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■ Formal Audiometry: This method serves as the gold standard for detecting hearing loss. It is

typically performed in an audiometric booth by a trained audiologist. These booths, commonly

located within hospital audiology departments, are designed to minimize background noise

interference, ensuring precise measurements. While formal audiometry is highly accurate and

reliable, it is also associated with substantial costs and limited availability due to capacity

constraints.

■ Mobile Audiometry: In contrast, mobile audiometry offers a point-of-care testing approach

that can be administered by non-specialists. This method only requires basic equipment,

including a tablet or mobile phone, specialized headphones, and appropriate software licens-

ing. As a result, it is highly accessible and incurs lower costs compared to formal audiometry.

However, it is essential to acknowledge that mobile audiometry may be less precise and occa-

sionally yield inaccurate hearing status measurements.

A cost-effective screening strategy aims to strike a balance between the costs and benefits of

screening. While formal audiometry excels in accuracy, the affordability and accessibility of mobile

audiometry can play a valuable role in expanding access to hearing assessments, particularly in

resource-constrained settings.

The outcome of mobile audiometry can be either positive, suggesting potential hearing loss,

or negative, indicating no hearing impairment. When mobile audiometry yields a positive result,

the next step involves confirming this finding through formal audiometry; the prescription of a

hearing aid is contingent upon the confirmation of severe hearing loss through formal audiometry.

To minimize the patient’s visits to the hospital and reduce her exposure to infections, formal

audiometry is conducted only after a positive mobile audiometry result.

Since profound hearing loss is detectable by the patient, screening is no longer necessary once

the patient is prescribed a hearing aid or a cochlear implant. Screening may only be considered

after a PEx incidence since hearing deterioration does not occur in the absence of PEx treatments.

In each cycle with a PEx, we may conduct mobile audiometry, followed by formal audiometry if

the mobile audiometry result is positive. Alternatively, we can choose to postpone screening until

the next PEx. If no screening is conducted or if the result of mobile audiometry is negative, the

patient may still become aware of her hearing impairment through self-detection.

5.3. Model Formulation

In this section, we construct a finite horizon POMDP model to develop cost-effective hearing loss

screening strategies. The decision-making process and the sequence of events in the POMDP model

are illustrated in Figure 2. The following outlines the key components of our model.
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Figure 2: Decision process for hearing loss screening.
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Note. The black box denotes the optimization layer. The beliefs (1, 0, 0) and (0, 1, 0) correspond to noise-free

observations of the normal and moderate hearing loss states, respectively.

■ Decision Epochs: t = 1,2, ..., T . Given the frequency of severe PEx’s and following our

clinician’s recommendation, we assume that screening decisions are made every three months.

We let t denote the number of quarters since age three, the earliest age mobile audiometry

can be used (Yeung et al. 2013). Our decision horizon is set at age 80, which is the maximum

age reported in the CF literature (O’Brien et al. 2014), resulting in T = 309 epochs.

■ Core States: The state is comprised of the patient’s hearing status and whether the patient

is alive or not. We consider five hearing states for the patient, normal hearing status (hn),

moderate, severe, and profound hearing loss states (hm, hs, hp, respectively), and hearing aid

(ha). Reaching death (D), profound hearing loss, and hearing aid states terminates our deci-

sion process. A patient with severe hearing loss stays in this state until the hearing loss is

detected and confirmed, in which case the patient receives a hearing aid or transitions to pro-

found hearing loss or death. A patient with profound hearing loss receives a cochlear implant

immediately. We represent the decision making state space with S̄ = {hn, hm, hs}, and terminal

state space with Ŝ = {ha, hp,D}.
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■ Action Space: At each decision epoch, we have the option to either conduct mobile audiome-

try, which may be subsequently followed by formal audiometry, or wait until the next decision

epoch. Action is represented by a ∈ A = {w,m}, where w and m are the wait and screen

actions, respectively.

■ Belief Space: We define the belief state, denoted by b, as a probability distribution over the

hidden states {hn, hm, hs}. Our belief space, denoted as B and representing all possible beliefs,

is defined as follows:

B = {b∈ [0,1]3 :
∑
s∈S

b(s) = 1}. (7)

In this equation, b(s) represents the probability of being in state s∈ {hn, hm, hs}. Since the

belief state serves as a sufficient statistic for the available observations, a policy in this context

maps the belief state at time t to an action.

■ Observation Probabilities: We represent the conditional probability of observing o when

the true state of the patient is s∈ {hn, hm, hs} as k(o|s).
• Formal audiometry accurately reveals the true hearing state of the patient. Therefore, we

have k(o|s) = 1 for any o= s, with o, s∈ {hn, hm, hs} and k(o|s) = 0 otherwise.

• With mobile audiometry, we may obtain either a positive result indicating some hearing

loss, denoted as m+, or a negative result indicating normal hearing, denoted as m−. Let

1−α represent the specificity of mobile audiometry, which is the probability of obtaining

a negative result when the true state is normal hearing. Additionally, let 1−β(s) denote
the sensitivity of mobile audiometry, which is the probability of obtaining a positive result

when the patient is in one of the two hearing loss states. We then have the following.{
k(m−|hn) = 1−α,
k(m+|s) = 1−β(s), ∀s∈ {hm, hs}.

• Hearing loss may be detected with probability psd by the patient (self-detection) only

when the patient is in the state of severe hearing loss. We define the observation set for

the ‘wait’ action as Ow = {w+,w−}, where w+ represents self-detection of hearing loss,

and w− represents the lack of self-detection. Therefore, we have the following.{
k(w+|hs) = psd,

k(w+|s) = 0, ∀s∈ {hn, hm}.

• Since a positive mobile audiometry result is followed by formal audiometry, and a negative

result may be followed by self-detection, the set of observations for mobile audiometry

satisfies Om = {m+hn,m
+hm,m

+hs,m
−w+,m−w−}. Under the assumption of observation

independence, we have the following.

k
(
[o1o2]|s

)
= k(o1|s).k(o2|s), [o1o2]∈Om.
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■ Transition Probabilities: In period t, the patient may have a pulmonary exacerbation

denoted by e1 or not denoted by e0. The transition probabilities between the core states are

denoted by Pe(s′|s), and the probabilities of death and survival in period t are represented by

det and d̄et , respectively. In both notations, e= 0 represents the absence of a PEx, while e= 1

represents the presence of a PEx.

■ Belief Update: The patient’s hearing status may progress when experiencing a PEx. Conse-

quently, the presence of a PEx provides valuable information, allowing for the calculation of a

posterior belief. The model’s decisions are based on this updated belief. Following the screen-

ing action (screen or wait), the posterior is further updated based on the acquired observation.

The initial posterior update is as follows.

b← τ1[b, e](s
′) =

∑
s∈S̄

b(s)Pe(s′|s), ∀s′ ∈ {hn, hm, hs}, e∈ {0,1}. (8)

We proceed to adjust our belief in response to the observed screening action as follows.

b← τ2[b, o](s
′) =

b(s′)k(o|s′)∑
s∈S̄ b(s)k(o|s)

∀s′ ∈ {hn, hm, hs}. (9)

In these equations, τi[b, o](s
′), i = 1,2 is the posterior probability of being in state s′ after

observing o. Depending on the action taken, the set of possible observations would differ. If we

do not screen, a self-detection may occur, and thus o∈Ow. If we choose to screen, indicating

the presence of a PEx, we observe o∈Om.

■ Rewards: Our objective functions, defined in the next section, optimize functions of the

expected total cost and total health utilities. The expected total health utilities are also

referred to as QALE. The per period health utilities and expected costs are denoted by ue
t(s)

and ct(s, a), respectively, for state s∈ {hn, hm, hs}, action a∈A, t < T , and e∈ {0,1}. Mobile

audiometry and wait actions are followed by a confirmatory formal audiometry test in the

case of a positive result or self-detection. We denote the cost of formal audiometry as cf and

the cost of mobile audiometry as cm. Therefore, we have ct(s,w) = cfk(w
+|s) and ct(s,m) =

cm + cf [k(m
+|s) + k(m−|s)k(w+|s)]. The screening actions do not have an immediate effect

on health utilities, and the potential benefit, such as receiving a hearing aid, is modeled as a

terminal reward.

Upon reaching absorbing states, which render further screening unnecessary, patients are

granted terminal lump-sum rewards in terms of health utilities (QALE) and cost. The ter-

minal cost attributed to profound hearing loss encompasses the fixed and expected lifetime

maintenance cost associated with the cochlear implant. In contrast, the terminal cost associ-

ated with the hearing aid state includes the fixed and expected lifetime maintenance expenses
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of the hearing aid, and it may also encompass the costs of the cochlear implant if the patient

transitions to profound hearing loss before her death. We represent the terminal health utility

and cost for the absorbing states s∈ {ha, hp} as Ru
t (s) and R

c
t(s), respectively.

The health utility for a belief state is defined as the patient’s expected health utility with

respect to the unknown core state. The expected health utility, denoted as qet (b), satisfies the

following.

qet (b) =
∑
s∈S̄

τ1(b, e)(s).u
e
t(s), e∈ {0,1}.

In this equation, τ1(b, e) represents the posterior belief after observing the PEx status. Simi-

larly, the expected cost is defined as follows.

cet(b, a) =
∑
s∈S̄

τ1(b, e)(s)ct(s, a), e∈ {0,1}, a∈ {w,m}.

6. Solution Methodology

In this section, we provide a brief overview of the grid-based approximation technique, a commonly

used approach for solving POMDP and CPOMDP problems. Subsequently, we adapt this approach

to solve our NMB and ICER optimization models.

6.1. Grid-based Approximations

One approach to solve POMDPs involves solving the equivalent MDP model on the set of reachable

beliefs (Altman 1999). This method necessitates the enumeration of reachable beliefs in advance

and subsequently solving the MDP using established MDP solution techniques, such as value

iteration or linear programming. While in finite-horizon POMDPs with finite sets of actions, obser-

vations, and core-states, the set of reachable beliefs is indeed finite, it is important to note that

this set grows exponentially as the horizon length increases. This exponential growth poses a sig-

nificant computational challenge, rendering the problem computationally intractable for longer

horizons. Approximation approaches, including the grid-based approximation method, have been

widely employed in the literature. Numerical and theoretical studies have demonstrated the efficacy

of grid-based approximation in generating high-quality policies (Lovejoy 1991, Kavaklioglu and

Cevik 2022). Grid-based approximation can solve both unconstrained and constrained POMDPs

by transforming them into unconstrained or constrained MDP approximations.

In a grid-based approximation approach, the entire belief simplex is approximated by a limited

set of beliefs, known as grid points. To account for beliefs that are not explicitly part of the grid,

various interpolation strategies can be employed. Linear interpolation stands out as a significant

interpolation technique due to its favorable theoretical characteristics. In linear interpolation, a
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belief b that is not among the grid points is approximated as a convex combination of the beliefs

within the grid set. This convex combination must accurately reproduce the target belief, which can

be expressed mathematically by ensuring that the convex weights satisfy the following condition.

b=

|G|∑
j=1

θbjb
G
j , (10)

where bGj are the grid points in the grid set G, and θ’s are the weights. It is worth noting that, in

general, the weights θ are not uniquely defined, and their selection process can significantly impact

the quality of the approximation. Consequently, the literature has proposed various weighting

methods, which vary in terms of their performance and computational efficiency (Lovejoy 1991,

Poupart et al. 2015, Hauskrecht 2000). After the weights are determined, regardless of the weighting

mechanism used, we can calculate the transition probabilities between the beliefs represented by

the grid points. Through this process, a POMDP can be transformed into an MDP, with the grid

set serving as the state space. The following steps are required to compute the transition probability

between grid points.

■ Use Eq. 8 and Eq. 9 to compute the posterior belief for all combinations of beliefs in the grid

set, observations, and actions. We use baoj to denote the posterior belief corresponding to the

initial belief bGj , action a, and observation o.

■ Utilize the weighting mechanism of choice to calculate weights for the posterior baoj . We denote

weights of grid point bGi corresponding to posterior baoj as θaoji . These weights should satisfy

the following.

baoj =
∑
i

θaoji .b
G
i , ∀bGi ∈G.

■ Use the following formula to compute the transition probabilities between grid points bGi and

bGj in the grid. In this formula, we calculate the total weight for grid point bGj by summing all

weights over all possible posteriors of bGi .

Pe(bGj |bGi , a) =
∑
o∈Oa

k(o|τ1(bGi , e))θaoji , ∀bGj , bGi ∈G,e= 0,1, a∈ {w,m}.

In this equation, k(o|b) represent the total probability of observing o when the belief is b,

satisfying the following equation.

k(o|b) =
∑
s∈S̄

b(s)k(o|s).

Note that transitions occur after observing the PEx status and making a decision. Therefore,

the transition probabilities are calculated for a values of PEx status e and action a.
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It is a well-established fact that grid-based approximation with linear interpolation yields a

lower bound for a POMDP with a minimization objective, as demonstrated in Lovejoy (1991). As

a result, employing a grid-based approach to solve the NMB maximization problem provides an

upper bound on the optimal NMB value. However, the ICER minimization problem presents a

different challenge. This problem constitutes a non-linear CPOMDP, where the single constraint

and the non-linear objective are defined over two expected total rewards (costs and utilities). Thus,

the earlier mentioned result does not directly apply to this context.

Poupart et al. (2015) proposed an extension of the bounding result for CPOMDPs when both

constraints and the objective function are linear in the expected total rewards. Due to the non-

linearity of the ICER objective, this extension also does not directly apply to our problem. In the

subsequent sections, we will extend this result to a general non-linear CPOMDP and provide an

alternative proof to the result in Poupart et al. (2015).

Let us start by formally defining the model setting. We are addressing a sequential decision-

making problem where the system’s state evolves according to a hidden Markov model. During

each time period, multiple reward streams are accumulated. These rewards can be contingent on

both the chosen action and the underlying state, and they may have different natures, including

cost (negative reward) and utility. We can mathematically represent a CPOMDP as follows.

inf
π

φ(r̄1(π), . . . , r̄m(π))

s.t. (r̄1(π), . . . , r̄m(π))∈ χ,

r̄i(π) =E[
∑
t<T

γtri(st, at)+ γTRi(sT )|π],
(11)

In this model, r̄i(π) represents the expected total reward for reward stream i under policy π.

The tuple (r̄1(π), . . . , r̄m(π)) forms the rewards vector, and χ represents the feasibility set for the

rewards vector. In other words, it represents the constraints on the cumulative rewards. Lastly,

φ :ℜm→ℜ represents the non-linear mapping for the objective function.

We can transform Problem 11, which is a CPOMDP, into an equivalent constrained belief state

MDP using the grid-based approximation and linear interpolation techniques described earlier. Let

R(π)∈ℜm and R̂(π)∈ℜm denote the vectors of expected total rewards in the original CPOMDP

and the approximation CMDP, respectively. With these definitions, we can reformulate both the

CPOMDP and its corresponding approximation CMDP as follows.

v= inf
π

φ(R(π))

s.t. R(π)∈ χ.
(12)

v̂= inf
π

φ(R̂(π))

s.t. R̂(π)∈ χ.
(13)

Let A and B be sets of reward vectors R(π) and R̂(π′) for all admissible policies π and π′ in the

original CPOMDP and the approximation CMDP problems, respectively. To clarify, we can define
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A as R(ΠHR) and B as R̂(Π̂HR), where ΠHR and Π̂HR represent the sets of all history-dependent,

random policies for each respective problem. In Theorem 1 below, we establish thatA⊂B, implying

v ≥ v̂. Therefore, we can conclude that the grid-based approximation of minimization CPOMDPs

produces a lower bound for the true objective value.

Theorem 1. We have A⊂B, and hence, v≥ v̂.

Hence, we can utilize Theorem 1 to infer that the optimal ICER obtained through grid-based

approximation serves as a lower bound for the true optimal ICER value. Similarly, we can utilize

this result to prove that the frontier generated using the grid-based approximation is positioned

either below or on the true frontier. This is because the approximation generates lower bounds on

the optimal cost for any given QALE. We leverage this result in Section 7.4 to evaluate the quality

of the approximation.

6.2. NMB Objective

Optimality Equations: Consider vt(b) as the value function at belief state b during period

t. For the absorbing states s ∈ {ha, hp,D}, we define vt(s) as the terminal NMB reward, which is

governed by the equation vt(s) = λ ·Ru
t (s)−Rc

t(s). Here, we explicitly set vt(D) = 0. For the non-

absorbing states, which are the belief states, we define the immediate reward as follows: ret (b, a) =

λqet (b)− cet(b, a).

Given that patient outcomes are contingent on the PEx status and whether transitions to absorb-

ing states occur, we introduce two additional value functions. Let vet (b) denote the value function

conditioned on PEx status, where e= 0,1. We then have the following.

vt(b) = p(e1).v
1
t (b)+ p(e0).v

0
t (b), ∀b∈G. (14)

In this equation, p(ei) with i= 0,1, represents the probability of the absence and presence of a

PEx, respectively. Define zet (b) as the value function at belief state b during period t, conditioned

on remaining in the hidden states without transitioning to either death or the profound hearing

state. For all b∈G and e∈ {0,1}, the following equation holds.

vet (b) = d̄et
{
Pe(hp|b).zet (τ1(b, e))+Pe(hp|b).vt(hp)

}
+ det .vt(D), (15)

where Pe(hp|b) represents the probability of transitioning to profound hearing loss from belief state

b and adheres to the following equation:

Pe(hp|b) =
∑
s∈S̄

b(s).Pe(hp|s), e= 0,1.
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We employ p̄ to represent the complement of the probability p, defined as p̄= 1−p. In the presence

of a PEx, we determine our screening decision as follows.

z1t (b) =max
a∈A
{r1t (b, a)+ γ

∑
b′∈G

P1(b′|b, a)vt+1(b
′)}, ∀b∈G.

In the absence of the PEx event, the following equation applies.

z0t (b) = r0t (b,w)+ γ
∑
b′∈G

P0(b′|b,w)vt+1(b
′), ∀b∈G.

Linear Programming: As an alternative to value-function-based methods, we can approach

the problem using a linear programming model, which is detailed in the following equations.

max λq− c (16a)

s.t.
∑
a∈A

y1(b, a) = δ(b), ∀b∈G, (16b)

y1(s) = 0, ∀s∈ {ha, hp}, (16c)∑
a∈A

yt(b
′, a) = γ

∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)Pi(b′|b, a)yt−1(b, a), ∀b′∈G,1< t< T, (16d)

yt(ha) = γ
∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)Pi(ha|b, a)yt−1(b, a), 1< t, (16e)

yt(hp) = γ
∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)yt−1(b, a), 1< t, (16f)

q=
∑

a∈A,b∈G,t

q1t (b)yt(b, a)+
∑
s∈Ŝ,t

Ru
t (s)yt(s), (16g)

c=
∑

a∈A,b∈G,t

c1t (b, a)yt(b, a)+
∑
s∈Ŝ,t

Rc
t(s)yt(s), (16h)

yt(b, a), yt(s)≥ 0, ∀b∈G,a∈A, t < T, s∈ {ha, hp}. (16i)

In the linear programming model outlined above, δ(b) represents the initial distribution over

the belief states. The continuous decision variable yt(b, a) signifies the discounted state-action

occupancy measure at time t < T , and similarly, yt(s), where s ∈ {ha, hp}, denotes the discounted

probability of occupying the absorbing states. Eq. 16i imposes logical constraints on the decision

variables. The solution to the set of equations Eq. 16b−16f corresponds to the occupancy measures

of the policy described in equation Eq. 17 below (Ross 2014).

πt(a|b) =
yt(b, a)∑

a′∈A yt(b, a
′)
. (17)

In this formula, the policy πt(a|b) represents the probability of taking action a in belief b at time

t. Therefore, once the model is solved, one can extract an (possibly random) optimal policy π∗
t by

normalizing the optimal occupancy measures to 1 as shown in Eq. 17.
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6.3. ICER Formulation

Since the ICER minimization problem is a constrained non-linear POMDP, traditional value-

function-based algorithms such as the value iteration method are no longer applicable. As an

alternative approach, we extend the linear programming model designed for the NMBmaximization

and formulate the following constrained, non-linear programming model.

min
c− c0
q− q0

s.t. Eq. 16b− 16i,

q > q0.

We will demonstrate later that the strict inequality q > q0 does not compromise the validity of the

mathematical model presented above. To handle the non-linearity of the objective function in the

model described above and make it amenable to linear programming, we can employ the Charnes-

Cooper transformation method and develop the following linear programming model (Charnes and

Cooper 1973).

min
∑

a∈A,b∈G,t

c1t (b, a)ζt(b, a)+
∑
s∈Ŝ,t

Rc
t(s)ζt(s)− c0m (18a)

s.t.
∑

a∈A,b∈G,t

q1t (b)ζt(b, a)+
∑
s∈Ŝ,t

Ru
t (s)ζt(s)− q0m= 1, (18b)

∑
a∈A

ζ1(b, a) = δ(b)m, ∀b∈G, (18c)

ζ1(s) = 0, ∀s∈ {ha, hp}, (18d)∑
a∈A

ζt(b
′, a) = γ

∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)Pi(b′|b, a)ζt−1(b, a), ∀b′ ∈G,1< t< T,

(18e)

ζt(ha) = γ
∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)Pi(ha|b, a)ζt−1(b, a), 1< t, (18f)

ζt(hp) = γ
∑
i=0,1

p(ei)d̄
i
t−1

∑
b∈G,a∈A

Pi(hp|b)ζt−1(b, a), 1< t, (18g)

ζt(b, a), ζt(s),m≥ 0, ∀b∈G,a∈A, t < T, s∈ {ha, hp}. (18h)

We can obtain a solution to the original problem by applying the following transformations.

yt(b, a) =
1

m
ζt(b, a),∀b∈G,a∈A, t < T,

yt(s) =
1

m
ζt(s), s∈ {ha, hp}.

(19)

We now discuss a few important points regarding the ICER problem and its reformulation.

■ The system of equations above is feasible when q0 < qmax. We prove this result by constructing

a solution to Eq. 18 based on a policy achieving the maximum QALE. Let y represent the
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occupancy measures associated with one such policy satisfying the constraints in Eq. 16. We

can use Eq. 16g and the transformation in Eq. 19 to reformulate Eq. 18b as qm− q0m= 1.

Let m= (qmax− q0)−1 and calculate ζ from y using Eq. 19. It can easily be verified from Eq.

16 and Eq. 18 that the constructed variables m and ζ collectively form a feasible solution to

the transformed model.

■ The transformations in Eq. 19 is well-defined since m> 0 for any feasible solution to Eq. 18.

To show this, note that qm− q0m= 1 implies m ̸= 0. Since m≥ 0, we have m> 0

■ The strict inequality q > q0 holds in any feasible solution to Eq. 18, thereby establishing the

validity of the ICER model despite its inclusion of a strict inequality. We can prove this by

noting that qm− q0m= 1 implies q− q0 = 1
m
> 0.

In the forthcoming Corollary 1, we establish that a deterministic, optimal policy exists for any

well-defined ICER optimization problem. An ICER optimization problem is considered well-defined

when the comparator policy is non-dominated, and its QALE can be strictly enhanced by a feasible

policy, which holds when q0 < qmax. Let Y be the set of all occupancy measures for an MDP or a

POMDP, with either finite or infinite horizon. We now present the following intermediate result,

which extends the findings of Wagner (1960) to encompass arbitrary MDPs and also provides an

alternative proof strategy.

Lemma 2. The extreme points of Y are associated with deterministic policies.

This result suggests that when an optimal solution for a (potentially constrained) MDP/POMDP

resides at an extreme point of Y , the problem naturally lends itself to deterministic, optimal

policies. One immediate application of this result is to establish that unconstrained POMDPs min-

imizing a quasi-concave objective admit deterministic policies. This conclusion builds on Theorem

3.2 in Bereanu (1974), which demonstrates the existence of a minimizer at the extreme points of a

compact, convex feasible region in a minimization problem with a quasi-concave objective function.

Corollary 1. ICER minimization problems admit a deterministic, optimal policy.

This result ensures the cost-effectiveness of deterministic policies, which are desirable for their

straightforward implementation in medical practice. Moreover, it eliminates the need for using

integer programming techniques to enforce deterministic policies.

7. Numerical Results

In this section, we conduct a numerical study to explore the optimal design of cost-effective strate-

gies for screening hearing loss in individuals with cystic fibrosis. We solve a data-driven model

using the methodology described in Sections 4−6. We use a regular grid with resolution m= 40,
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resulting in 861 grid points. We utilize the Freudenthal triangulation method for linear interpo-

lation (Lovejoy 1991). Increasing the resolution did not yield a notably discernible effect on the

model outcomes. We implemented the value iteration method in R to solve the NMB problem (R

Core Team 2022). The linear programming model for ICER minimization was solved using GAMS

36 (GAMS Development Corporation 2021). All computations were carried out on a quad-core

Intel 3.20 GHz processor with 16 GB of RAM. The computation times for solving the optimization

problems are discussed in the following sections.

7.1. Model Parameters

The model parameters needed for the numerical experimentation were extracted from the literature

(refer to Table 1 for details). We briefly describe them below.

■ State transitions: At each cycle, the patient may experience a PEx with a quarterly prob-

ability of 0.106 (Waters et al. 2015). The presence of PEx during a period has a detrimental

effect on both survival and hearing. We used the survival model in Keogh et al. (2018) along

with the mortality hazard ratio linked to PEx versus non-PEx conditions (6.17, as reported

in Stephenson et al. (2015)) to calculate the survival probabilities. The patient’s hearing

deteriorates exclusively during periods marked by the incidence of a PEx. The chances of

transitioning from normal hearing and moderate and severe hearing loss states to a one-degree

worse hearing state after experiencing a PEx are 0.132, 0.097, and 0.193, respectively (Garinis

et al. 2021). Considering the natural, gradual progression of hearing status, it is improbable

for there to be a deterioration of more than one degree or any significant improvement.

■ Observation probabilities: For the mobile audiometry, we consider a specificity of 88% and

sensitivities of 87.5% and 93.3% for the moderate and severe hearing loss states, respectively

(Yeung et al. 2013, Saliba et al. 2017, Vijayasingam et al. 2020). We calibrated the self-

detection probability using the average hearing loss detection delay from McMahon et al.

(2013) (10 years).

■ Rewards (costs and health utilities): The costs of formal and mobile audiometry visits are

$241 and $31.31, respectively (American Speech Language Hearing Association 2019, United

States Bureau of Labor Statistics 2019). The one-time cost of the hearing aid and annual

maintenance cost are $2,325 and $574, respectively (Gillard and Harris 2020). The initial cost

of the cochlear implant is $51,084, and the annual maintenance cost is $1,253 (Laske et al.

2019). All costs have been adjusted to costs in 2022 based on published inflation rates (United

States Government 2022a).

The patient’s health utility is influenced by the incidence of a PEx and her hearing status,

calculated using the multiplicative approach. The baseline utilities of a CF patient with and
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Table 1: Model input parameters.

Inputs Value Source

Survival model - Keogh et al. (2018)
Mortality hazard ratio PEx vs. No PEx 6.17 Stephenson et al. (2015)
Hearing loss detection delay 10 years McMahon et al. (2013)

State transition probabilities

Quarterly chance of PEx 0.106 Waters et al. (2015)
Normal to moderate 0.132 Garinis et al. (2021)
Moderate to severe 0.097 Garinis et al. (2021)
Severe to profound 0.193 Garinis et al. (2021)

Utilities

Baseline without PEx 0.83 Michael et al. (2003)
Baseline with PEx 0.76 Solem et al. (2016)
Moderate hearing loss 0.89 Abrams et al. (2005)
Severe hearing loss 0.77 Abrams et al. (2005)
With hearing aid 0.83 Abrams et al. (2005), Barton et al.

(2004)
With cochlear implant 0.8 Abrams et al. (2005)

Costs ($)
Formal audiometry 241 American Speech Language Hearing

Association (2019)
Mobile audiometry 31.31 United States Bureau of Labor Statis-

tics (2019)
Hearing aid new user 2,325 Gillard and Harris (2020)
Hearing aid maintenance 574 Gillard and Harris (2020)
Cochlear implant new user 51,084 Laske et al. (2019)
Cochlear implant maintenance 1,253 Laske et al. (2019)

Mobile audiometry accuracy (%)

Specificity 88 Vijayasingam et al. (2020)
Sensitivity at state hm 87.5 Yeung et al. (2013)
Sensitivity at state hs 93.3 Yeung et al. (2015)

Costs are converted to 2022 USD when used in the model (United States Government 2022a).

without PEx are 0.83 and 0.76, respectively (Michael et al. 2003, Solem et al. 2016). The

health utilities of moderate and severe hearing loss are 0.89 and 0.77, respectively (Abrams

et al. 2005). The hearing aid increases the utility by 0.06 (Barton et al. 2004). A patient with

profound hearing loss depends on a cochlear implant, which has a utility of 0.8 (Abrams et al.

2005). The lump-sum total rewards for the terminal states of profound and hearing aid are

determined by calculating the expected (discounted) rewards of a Markov reward model. All

rewards are discounted at an annual rate of 5%.

7.2. Optimal Policy

We utilize a base-case WTP of £20,000, a value commonly employed by NICE in the UK (McCabe

et al. 2008). This amount is approximately equivalent to $27,000 (United States Government
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Figure 3: Optimal policy for the finite and infinite horizon model with WTP=£20,000
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(c) Infinite Horizon Policy

Note. Ternary plots for the optimal policies for age 10 (a) and 60 (b) and the infinite horizon model (c). The red line

shows a threshold of 17% for the severe hearing loss state.

2022b). To visually represent the optimal policy across all beliefs within the belief simplex, we

employ a ternary diagram (Weisstein 2021). In this diagram, axes corresponding to the probabilities

of being in each hidden state s ∈ {hn, hm, hs} are positioned along the sides of a triangle. We

illustrate the optimal policy for CF patients in the age groups of 10 and 60 in Figure 3. A more

detailed plot is provided in Appendix C.

The consistency in the optimal policy observed across different age groups underscores the notion

that age may not significantly influence screening decisions within the typical life expectancy range

for CF patients (between 42 to 50 years). This suggests that a transition from a finite horizon

to an infinite horizon model may be appropriate. Such a transition streamlines the exploration

and communication of optimal policy dynamics regarding changes in model inputs, such as WTP.

Policies that are not influenced by age are more straightforward to comprehend and implement

within a clinical setting. Additionally, this approach leads to decreased computational time. Solving

instances of NMB and ICER problems in the finite horizon model took approximately one minute

and 20 minutes, respectively. However, after the transition, these times were reduced to less than

a second. Furthermore, there is theoretical support for transitioning to an infinite horizon model

when a finite horizon Markov model contains a significant number of cycles, as discussed in Section

6.8 of Puterman (2014). Numerically, it is evident that infinite horizon policies exhibit similarity

in shape and perform well, as illustrated in Figure 3 and Figure 5.

7.3. Easy-to-Implement Policies

In this section, our focus is on deriving practical and effective policies for real-world healthcare

settings. We aim to bridge the gap between advanced mathematical models and practical healthcare
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decisions, translating our research findings into actionable strategies that benefit patients and

healthcare systems.

7.3.1. Threshold-based Policy The pursuit of effective threshold-based policies is moti-

vated by their ease of implementation. Ternary plots in Figure 3, depicting optimal policies for

finite and infinite horizon problems, suggest that regions where screening and waiting are opti-

mal can be roughly differentiated by a discriminant line. The choice of this line can be guided

by various metrics. One approach may seek to minimize classification errors, while another could

focus on identifying the optimal discriminant line associated with more effective approximate poli-

cies. Both approaches are likely to generate threshold policies that rely on the entire belief state.

Another method involves finding a line that delineates belief states based on just one of the three

belief probabilities. If this approximate policy is demonstrated to be effective, it offers even greater

simplicity in implementation. We adopt the latter approach and demonstrate its efficacy through

simulation results.

As demonstrated in Figure 3, we can approximately differentiate the two optimal policy regions

based on the likelihood of severe hearing loss. Thus, we determine a line that minimizes total

deviations (classification errors) from the original policy. Numerically, a threshold of 17% yields

the lowest classification error for a WTP of £20,000.

7.3.2. Simulation-based Approximate Policies Our pursuit of practical policies leads us

to leverage insights gained from investigating the simulated patient trajectories under the optimal

policy. This extensive dataset empowers us to devise two distinct categories of screening policies:

history-dependent and history-independent policies, as elucidated in Figure 4. The feasibility of

these simplified approximations of the optimal policy relies on the observation that the optimal

policy screens patients on average two times over their lifetime.

Within the class of history-dependent policies, the decision-making process depends on two vari-

ables: number of past PEx’s and the specific path of observations, i.e., the observation trajectory.

These policies are tailored to provide patients with screening recommendations based on their

unique medical history, thus optimizing the timing of screenings. History-dependent policies can

be presented on a decision tree, as shown in Figure 4. In contrast, history-independent policies

streamline decision-making by relying solely on the count of PEx’s since the last observation, fur-

ther simplifying the screening schedule. Specifically, in this scenario, the first three assessments

occur after 6, 11, and 15 PEx’s, corresponding to average patient ages of 17, 29, and 38 years.

To accommodate the requirements of real-world clinical settings, we provide flexibility by allow-

ing the adjustment of the number of screenings, ranging from 2 to 3 within each policy class. This

yields four distinct policies, each tailored for specific clinical situations. These policies provide prac-

tical guidance to healthcare providers, ensuring that screenings align with the unique requirements

of individual patients.
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Figure 4: Simulation-based Approximate Policies
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Note. History-dependent (a) and history-independent (b) approximations. Approximate policies may use the number

of PEx’s elapsed since the last observation and observations trajectory (in the case of history-dependent policy) to

advise screening decisions. In both policies, self-detection terminates the decision algorithm.

7.4. Policy Evaluation

We utilize a Monte Carlo simulation in R to assess the effectiveness of the proposed policies across

various metrics. This simulation required approximately 5 minutes to complete. In addition to pri-

mary outcomes such as expected total cost, QALE, and our main objectives, we examine secondary

outcomes critical for assessing the efficiency of hearing loss screening strategies. These include the

expected hearing loss detection delay, lifetime screenings count, and the proportion of patients
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missing hearing aids due to detection delays. The detection delay represents the time elapsed

between a patient reaching severe hearing loss and either receiving a hearing aid, transitioning to

profound hearing loss, or experiencing mortality, whichever occurs first.

To ensure robust results, we conduct 10,000 simulation replications, a number determined based

on result convergence. Additionally, we employ the method of common random numbers to enhance

precision and reduce variability (Glasserman and Yao 1992). This technique ensures that variables

unaffected by screening policies, such as PEx state, mortality, hearing status transitions, etc.,

remain constant within each simulation replication and across all policies evaluated.

We conducted a thorough evaluation of a broad range of policies to offer valuable insights into

different screening approaches, including their respective advantages, disadvantages, and practical

feasibility. The policies are listed below in ascending order of implementation complexity.

■ Extreme policies: (a) no-screening policy, ‘W-All’, a policy that abstains entirely from screen-

ing, and (b) the frequent screening policy, ‘X-All’, which advocates screening at each and all

PEx’s, a policy recommended by Huang et al. (2021).

■ Fixed-interval strategies denoted by ‘T=nY’, which involve screenings scheduled at regular

intervals such as every n= 1,2,5 years; annual screening was proposed by by Vijayasingam

et al. (2020).

■ History-dependent and history-independent policies, denoted by ‘X-HD-n’ and ‘X-HI-n’ for

n= 2 and 3, respectively, where n is the maximum allowed number of screenings.

■ Stationary threshold-based policy

■ Optimal policies derived from the finite and infinite horizon, grid-based approximation models.

Evaluation of grid-based policies requires a special nuanced approach. These policies operate

under the assumption of transitions occurring exclusively between beliefs within the grid set.

When the posterior does not belong to the grid set, we generate a sample posterior belief

using the interpolation weights.

Based on simulation findings, patients exhibit an average life expectancy of approximately 45

years, with roughly 55% experiencing severe hearing loss at an average age of 28 years. The sim-

ulation results, presented in Table 2, underscore the notable advantages presented by the optimal

screening policy. In comparison to a no-screening approach, the optimal strategy offers substan-

tial enhancements in patient outcomes. Specifically, the optimal policy significantly reduces the

detection delay from an average of 32.26 months to 17.66 months. Furthermore, the optimal policy

reduces the proportion of patients who miss out on receiving hearing aids from 50% under the

no-screening policy to 27%. This optimal approach ensures that patients with severe hearing loss

receive hearing aids promptly, potentially leading to enhancements in their overall quality of life.
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The cumulative impact of these enhancements on patient outcomes is reflected in QALE, which

translates to approximately five additional Quality-Adjusted Life Days (QALDs) for each patient.

However, it is essential to note that the magnitude of these health benefits, as indicated by the

improved QALE, is moderated by the effects of discounting over more than two decades. It is worth

highlighting that patients typically require a hearing aid around the age of 28 years, whereas the

QALE is expressed with reference to a hypothetical three-year-old patient.

We provide a visual representation of the performance, including cost and QALE, of all the

policies in Figure 5. These plots also feature the cost-effectiveness frontier, which will be discussed

in the next section. This comprehensive visualization empowers policymakers with the necessary

insights to make informed decisions by balancing policy performance and ease of implementation.

As a result, it contributes to more effective and efficient healthcare decision-making.

Several notable insights emerge from this illustration. Firstly, fixed-interval policies are observed

to be strictly dominated by other strategies, suggesting that they are not optimal choices for

balancing QALE and cost. Secondly, the extreme policies of no screening and screening at every

PEx are positioned on the cost-effectiveness frontier. These policies are associated with WTP

values at the two ends of the WTP spectrum. Thirdly, the threshold-based and infinite horizon

approximations virtually lie on the cost-effectiveness frontier. Finally, while the history-dependent

and history-independent policies are slightly dominated by the optimal policies, they perform

relatively well.

The proximity of the policy performances to the frontier in Figure 5 (b) indicates the quality

of our approximation and a satisfactory optimality gap achieved with a grid resolution of 40. To

illustrate this, we argue that the true frontier lies between the generated frontier and the vectors of

policy performances. In Theorem 1, we showed that the generated frontier is positioned either below

or on the true frontier. Furthermore, evaluating policy performance involves conducting simulation-

based assessments on the true model, not one that is misspecified. This process yields unbiased

vectors of policy performances, which may lie either above or on the true frontier, depending on

whether the policy is inefficient or efficient, respectively.

7.5. ICER Algorithm

We employ Algorithm 1 to systematically identify all cost-effective policies, determine the valid

range of WTP values for each policy, and evaluate their performance. Our findings for WTP ≤

$100,000 per QALY are visually presented in Figure 6. Panel (a) displays the ICER values for a

range of algorithm iterations, while panel (b) showcases the performance of the generated policies,

collectively establishing the cost-effectiveness frontier.
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Table 2: Performance of various screening strategies.

Policy Cost ($) QALDs
Delay

(months)
#Screening

% Missed
Hearing aid

X-All 11,709.06 4579.50 0.93 12.2 1.5
T=1Y 12,720.67 4578.52 2.8 29.6 4.34
T=2Y 11,680.06 4577.01 5.74 15.26 8.83
T=5Y 11,464.01 4573.6 12.66 6.57 19.42
X-HD-3 10,494.73 4571.69 18.86 1.89 30.64
X-HI-3 10,441.93 4571.08 19.7 1.83 32.05
Opt 10,395.72 4570.75 17.66 1.62 27.2
X-HD-2 10,397.45 4570.48 22.8 1.5 37.4
X-HI-2 10,364.72 4570.04 22.9 1.47 37.31
Th 10,337.63 4569.96 18.07 1.63 27.2
Inf-H 10,245.02 4568.95 21.54 1.06 32.9
W-All 9,985.05 4565.60 32.26 0 50.7

‘W-All’ and ‘X-all’ are no-screen and screen at all PEx’s, ‘T=nY’ is the fixed interval screening
every n= 1,2,5 years, ‘X-HD-n’ and ‘X-HI-n’ are history-dependent and history-independent policies
with at most n= 2,3 screenings, ‘Opt’ and ‘Inf-H” are the optimal policies for the finite horizon
and infinite horizon approximation, and ‘Th’ is the stationary threshold-based approximation. Note
that policies are presented in decreasing order of QALDs.

Figure 5: QALE and cost of various screening strategies.
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Note. The policy abbreviations are given in Table 2. The optimal frontier is generated by Algorithm 1. Panel (a)

shows the performance of fixed-interval policies, and panel (b) shows various approximate policies.

The proposed algorithm has the capability to generate the entire spectrum of cost-effective poli-

cies. Each policy can be represented by a set of ternary plots for each age and a single ternary plot

for the finite and infinite horizon models, respectively. However, for enhanced clarity and visual-
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Figure 6: Algorithm 1 Results.
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Note. (a) Successive ICER results for a selection of iterations. (b) The cost-effectiveness frontier. (c) Menu of threshold

policies for various WTP values. The threshold remains fixed within the WTP range of $50k-$100k.

ization of the policy menu, we choose to present the threshold-based approximations outlined in

Section 7.3.1. This strategic decision is in line with the insights discussed in Section 7.4, where it

was observed that this category of easy-to-implement policies consistently exhibits robust perfor-

mance and is positioned on the cost-effectiveness frontier. Panel (c) illustrates the threshold for the

policy associated with various WTP values. Notably, the screening threshold diminishes as WTP

increases, indicating a more intensive screening approach. This trend is expected, as increased

screening frequency enhances patient outcomes, including QALE, which holds greater value at

higher WTP levels.

7.6. Sensitivity Analysis

We conduct a series of scenario analyses to evaluate the sensitivity of the optimal policy and

patient outcomes to variations in model parameters. In summary, our findings indicate that the

model outcomes are most sensitive to changes in the PEx and self-detection probabilities, as well

as the costs associated with screening and hearing aid. The sensitivity analysis results are depicted

in a tornado diagram in Figure 7. We illustrate the impact of model inputs on the policy by

analyzing both the threshold value of the corresponding threshold-based policy and the average

number of screening tests performed. A lower threshold typically indicates more frequent screening.

Additionally, we include the average detection delay as a representative patient outcome in our

reporting.

■ Screening and hearing aid costs: We examine the impact of a one-way, ±25% change in

costs. We expect a less aggressive screening policy, leading to worse patient outcomes, as the

cost of screening and medical device increase. As anticipated, we observe a less aggressive
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Figure 7: Scenario analysis results.
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Note. The tornado plot shows the changes in the optimal policy and its performance under alternative scenarios for

input parameters. The bar charts are drawn relative to the base-case values. The threshold for the scenario involving

an increase in hearing aid cost is 80%, and it has been omitted to maintain the plot scale. For costs, we consider a

deviation of ±25% from the base-case values, while for PEx probability, we consider a deviation of ±37% as high/low

scenarios. For self-detection, we consider scenarios of ±100%, representing doubling the chance and removing it

altogether.

screening policy and consequently poorer patient outcomes with increasing costs of screen-

ing and medical devices. An increase in cost of the hearing aid device diminishes the cost-

effectiveness and the appeal of both the device and screening, especially when the device’s cost

approaches the threshold of being not cost-effective. In the scenario with increased hearing

aid cost, the policy effectively ceases screening any patients, leading to an expected detection

delay exceeding two and a half years. The results indicate that the model outcomes are more

sensitive to changes in the cost of the hearing aid compared to the cost of screening.

■ Self-detection probability: Self-detection serves as a substitute for screening and can help

decrease the detection delay associated with any given policy. We explore scenarios involving

doubling the chance of self-detection and completely removing it as the low and high sce-

narios, respectively. Note that screening, whether through self-detection or actual screening,

exhibits diminishing returns. Therefore, increased self-detection frequency reduces the value

and cost-effectiveness of screening. We observe that decreasing (increasing) the probability of

self-detection increases (decreases) the average number of screenings done, aligning with the

concept of diminishing returns and the substitutability of the two modes of screening. In terms

of detection delay, the net impact of self-detection frequency and the number of screenings

leads to an increase (decrease) in detection delay as the self-detection probability increases

(decreases).

■ Quarterly PEx probability: With advances in medicine, new classes of medications may

potentially reduce the frequency of PEx’s. For example, recent combination therapy has been

shown to reduce the probability of PEx by 37% for a specific genotype of CF patients (Tice
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et al. 2020). Conversely, environmental factors and patient characteristics may contribute to

higher rates of infection and PEx. We explore a change of ±37% in the probability of PEx

in our scenario analysis. Note that the novel combination therapy and its clinical benefits are

applicable only to a subset of CF patients.

In the scenario where the probability of PEx is reduced, the life expectancy and the average

age of reaching severe hearing loss increase to 49 and 35 years. Patients progress through

hearing loss states at a slower pace, resulting in only 18% of patients ever reaching the severe

hearing loss state. However, for those who do reach it, they stay in it for longer (14 vs. 9 years

in the base case). Since a hearing aid has a one-time setup cost, the extended interval of usage

makes it more cost-effective. Therefore, we anticipate a more aggressive screening strategy,

as evidenced by the decreased screening threshold of the optimal policy. Despite the policy

being more aggressive, the lower frequency of PEx events results in fewer tests on average.

However, the policy conducts more frequent tests at each PEx event (12% vs. 8% in the base

case), resulting in an improved detection delay.

Conversely, in the scenario with an increased chance of PEx, the life expectancy and the aver-

age age of reaching severe hearing loss decrease to 42 and 22 years, respectively. Approximately

75% of patients reach the severe hearing loss state. The patient’s duration of severe hearing

loss is shorter (6.5 years vs. 9 years in the base case), leading to reduced cost-effectiveness

of the hearing aid. As a result, we anticipate less aggressive screening, as confirmed by the

decreased threshold of the optimal policy. The policy conducts fewer tests at each PEx event

(3.5% vs. 8% in the base case), resulting in worsened detection delay.

8. Discussion and Conclusion

In cost-effectiveness analysis, maximizing NMB is a common approach for designing interventions.

The UK’s NICE and the US’s Institution for Clinical Economic Review (ICER) rely heavily on

NMB to assess the cost-effectiveness of treatments (Institute for Clinical and Economic Review

2020, National Institute for Health and Care Excellence 2023). However, some studies take budget

constraints into account when designing cost-effective interventions, as seen in the optimization

of breast cancer screening by Ayvaci et al. (2012). This approach is less common in the cost-

effectiveness literature because, in practice, budgets are not usually allocated to individual interven-

tions. Instead, they are fluid and subject to constant negotiation and periodic revision (Drummond

et al. 2015). Given the uncertainty surrounding budgets, scenario analysis at the budget level is

typically conducted in these studies.

CEA utilizes the Cost-Effectiveness Threshold (CET) as a crucial input parameter to quantify

the monetary value of intervention benefits. The methodology for establishing the CET can vary
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widely and remains a topic of considerable debate within health economics, as discussed in McCabe

et al. (2008). One alternative, as seen in models aimed at maximizing NMB, is to determine

the CET based on society’s willingness to pay. Another approach involves using shadow prices

in budget-constrained problems (Epstein et al. 2007). However, the latter approach encounters

resistance within the health economics community due to its practical limitations. Additionally,

CET is influenced by factors extending beyond mere budgetary constraints such as the population’s

mortality rate and the broader economic context of a society, as emphasized by Glassman et al.

(2017). This complexity underscores the challenge of establishing a straightforward relationship

between the CET and budget constraints.

It is customary for both the UK’s NICE and the US’s ICER to consider a range of CET, as

described in Rawlins and Culyer (2004). As a result, constructing a cost-effectiveness frontier that

encompasses the performance of cost-effective policies across a spectrum of CET values becomes

essential. The cost-effectiveness frontier is a vital tool for evaluating and comparing healthcare

interventions or policies. It helps policymakers understand the trade-offs between costs and health

outcomes, ensuring they consider a wide range of effective strategies. This facilitates more informed

resource allocation decisions in healthcare. Although the frontier may include numerous policies, the

number of policies that prove to be cost-effective for a reasonable range of CET values, particularly

those close to the base-case value, is likely to be small and manageable. In our paper, we introduce

a novel algorithm for the efficient construction of the cost-effectiveness frontier. The algorithm

operates by iteratively solving the ICER minimization problem and updating the comparator policy

in each iteration.

It is common in the literature to conduct scenario analysis and solve the NMB problem with

varying values of WTP as an alternative to the developed algorithm. While the computation times

of both methods are comparable, our developed algorithm efficiently discovers a minimal set of

WTPs that fully characterize the cost-effectiveness frontier. It also provides simple instructions to

select a cost-effective policy from the set of generated policies for any desired WTP. Conducting

scenario analysis without a carefully selected set of WTP values fails to provide any indication of

the optimal policy associated with WTP values outside the considered set. Moreover, some of the

generated policies may be redundant since the NMB maximizing policies are valid for a range of

WTP values.

Drummond et al. (2015) and Neumann et al. (2016) underscore the strong appeal of non-

dominated policies to policymakers, while cautioning against all forms of dominance, including

weak and extended dominance. The former can be strictly improved in cost or QALE, while the

latter are strongly dominated in both cost and QALE by a combination of non-dominated policies.



Mohammadi, Skandari, and Shah: Efficient Discovery of Cost-effective Policies
35

Following the recommendation of the domain experts, we have chosen to exclude both weakly and

extended dominated policies from consideration.

The efficient frontier, a widely used concept in different disciplines, may utilize the weighted sum,

epsilon-constraint, or other criteria to define efficiency. In the context of cost-effectiveness analysis,

the epsilon-constraint method translates to formulating either a budget-constrained QALE maxi-

mization problem or a QALE-constrained cost minimization problem. When exclusively focusing

on deterministic policies in MDP and POMDP problems, epsilon-constraint and weighted sum

approaches yield different frontiers. However, when mixed strategies are allowed, the two con-

cepts become equivalent. The utilization of weighted sums simplifies the solution of multi-objective

problems and enhances their tractability, as noted by (Chiandussi et al. 2012).

Although we have emphasized the significance of the cost-effectiveness frontier, it is essential to

recognize a potential limitation: If the policymaker’s primary goal is to maximize QALE within

a budget constraint, policies focused solely on maximizing NMB may be suboptimal, particu-

larly when mixed strategies are not desirable and therefore excluded. Combining strategies can

address this limitation. However, it is worth noting that this issue is less significant when the

cost-effectiveness frontier is dense, as is often observed in MDP/POMDP problems with long hori-

zons or large state spaces. Furthermore, if the policymaker’s goal is to maximize the NMB of an

intervention, they can choose policies along the cost-effectiveness frontier to optimize NMB while

either minimizing costs or maximizing QALE.

The algorithm developed in this study demonstrates potential for broader applications beyond

the specific research context. It can be extended for identifying efficient frontiers in various bi-

objective MDP and POMDP problems. For instance, in the context of optimizing patient outcomes,

the algorithm can facilitate the trade-off between treatment benefits and side-effects. Alternatively,

when focusing on balancing patient and system outcomes, it can be utilized to balance between

treatment benefits and the utilization of scare healthcare resources. One immediate application

might involve balancing the early detection of cancer as the intended outcome of the screening

intervention, alongside either the utilization or costs of imaging services, or the adverse effects of

radiation from imaging. While the literature of multi-objective MDP problems is extensive, it is

noteworthy that existing algorithms frequently prove inadequate for MDP or POMDP problems

with infinite or long finite horizon lengths. Our proposed algorithm effectively bridges this gap.

Since screening methods within our clinical case may produce inaccurate results, we have intro-

duced POMDP and CPOMDP models to address the NMB maximization and ICER minimization

problems, respectively. In general, the optimal policy for CPOMDPs may be non-deterministic. To

ensure the model generates deterministic policies, we may employ integer programming techniques.
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We established conditions under which CPOMDPs with non-linear objective functions admit deter-

ministic policies, eliminating the necessity for integer programming. Furthermore, we demonstrate

that this finding extends to the specific context of the ICER minimization problem. To numeri-

cally solve our C/POMDP problems, we employed grid-based approximation. This method enables

the generation of both lower and upper bounds within linear CPOMDPs, facilitating the calcula-

tion of the optimality gap and assessment of the accuracy of the approximation. We extend the

applicability of this result to CPOMDPs with non-linear objective functions and general feasibility

sets.

In our numerical study, we emphasize the use of highly interpretable threshold policies, which

exhibit robust performance. This approach allows us to showcase a variety of threshold policies

along with the corresponding WTP ranges, effectively addressing concerns related to interpretabil-

ity. When easily implementable policies are not readily available, leveraging visualization software

such as Tableau, Shiny, or similar tools can be valuable. By creating a dashboard populated with

data generated by the developed algorithm, we can offer insights into cost-effective policies and

their performance. Incorporating a visual user interface can greatly enhance the accessibility of

these findings for policymakers and clinicians alike.

Our study has limitations. Due to the unavailability of a comprehensive set of patient trajectories,

our clinical model relied on parameters extracted from the literature. However, we validated our

model by leveraging evidence from the literature and consulting with our clinical collaborator.

With access to patient data, we can enhance the clinical model by incorporating factors such as

the potential seasonality of the PEx’s. There are antibacterial treatments that are less effective yet

have a milder impact on hearing compared to intravenous AGs. The inclusion of these treatments

in the optimization model and developing a joint treatment/screening model is a promising avenue

for future research. We employed regular grids and Freudenthal triangulation to solve the developed

POMDPs. However, we did not compare the efficiency and performance of the proposed algorithm

against alternative interpolation and grid generation methods, leaving this for future research.
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Appendix A Table of notations

Table 3: Symbols used in the paper.

Symbol Description

λ Willingness to pay
γ Discount factor
π Policy
π0 Comparator policy
q0 QALE of comparator policy π0

c0 Cost of comparator policy π0

X Set of all acceptable policies
Y Set of all occupancy measures
Ψ Set of rewards for all feasible policies
χ The feasibility set of rewards
ΠHR Set of random, history-dependent policies
ΠMR Set of random, history-independent policies

Functions

nmb(q, c) NMB function defined as λq− c
r(c, q) ICER function defined as c−c0

q−q0

Horizon

t Decision epoch
T Terminal horizon

State

hn Normal hearing state
hm Moderate hearing loss state
hs Severe hearing loss state
S̄ Set of partially observable states, {hn, hm, hs}
hp Profound hearing loss state
ha Hearing aid received state
D Death state

Ŝ Set of terminal states, {hp, ha,D}
Belief states

b belief state, probability distribution over hidden states {hn, hm, hs}
b(s) Probability of being at hidden state s
B Belief simplex, set of all beliefs
τi[b, o] step i posterior update for prior belief b after observing o, i= 1,2

Action

w Wait action
m Screen action
A Set of actions, {w,m}
Observation

Ow Observation set for action w
Om Observation set for action m
e0 Absence of PEx
e1 Presence of PEx
e PEx status, {0,1}
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Probabilities

k(o|s) Probability of observing o when true state is s
k(o|b) Probability of observing o under belief b
Pe(s′|s) Transition probability between core states s and s′,

conditional on PEx status e
Pe(b′|b, a) Transition probability under action a between belief states b and b′,

conditional on PEx status e
Pe(hp|b) Transition probability to terminal state hp under belief b
Pe(hp|b) Complement probability of Pe(hp|b), i.e., 1−Pe(hp|b)
det Death probability at time t and PEx status e
d̄et Survival probability, 1− det
p(ei) Probability of absence/presence of PEx, i= 0,1
δ(b) Probability the initial belief being b
yt(b, a) Discounted state-action occupancy measure for belief b and action a
yt(s) Discounted occupancy measure of terminal state s
π∗(b, a) Chance of taking action a for belief b under optimal policy

Rewards

ue
t (s) Per-period health utility for PEx status e and state s
ct(s, a) Expected immediate cost of action a under PEx status e and state s
cm Cost of mobile audiometry
cf Cost of formal audiometry
Ru

t (s) Terminal health utility for absorbing state s
Rc

t(s) Terminal cost for absorbing state s
qet (b) Expected per-period health utility for PEx status e and belief b
cet (b, a) Expected immediate cost for action a under PEx status e, belief b
ret (b, a) Expected per-period NMB reward
r̄i Expected discounted total for reward i
R(π) Reward vector for policy π

Optimality equation

vt(b) Value function for belief b at period t
vet (b) Value function for belief b at period t conditional on PEx status e
zet (b) Value function for belief b at period t conditional staying in the hidden states

and under PEx status e

Grid-based approximation

G Set of all grid points
bGj Belief state j in the grid set G
baoj Posterior belief corresponding to the initial belief bGj , action a, and observation o
θaoji Weight of the grid point bGi corresponding to the posterior baoj
R̂(π) Reward vector for policy π in the approximation problem
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Appendix B Proofs

B.1 Solution to WTP Ambiguity

Proof of Lemma 1: We prove the result in a few steps. We first establish the following

relationship between the two concepts of cost-effectiveness; the graph of function c∗, the QALE-

constrained cost-minimization function, is equal to the efficiency frontier for the NMBmaximization

function. To that end, let L′′ be the graph of c∗. We show L=L′′ as follows.

■ L⊂L′′. Fix (q, c)∈L and λ, the associated WTP, arbitrarily. Since (q, c) is on the frontier, for

any feasible reward vector (q′, c′) ∈Ψ, we have λq− c≥ λq′− c′. Therefore, for (q, c∗(q)) ∈Ψ,

we have: λq− c≥ λq− c∗(q), which implies c∗(q)≥ c. Since (q, c) is a feasible point in Problem

2, we have c≥ c∗(q). Therefore, c= c∗(q), and hence (q, c)∈L′′.

■ L′′ ⊂L. Fix (q, c)∈L′′, i.e., c= c∗(q) and q ∈ [qmin, qmax]. It suffices to prove that for a certain

λ, there exists an NMB maximizer with QALE q, i.e., for some cost c′, (q, c′)∈L. To show the

sufficiency, assume this is correct, and therefore, for any (q′′, c′′)∈Ψ we have λq−c′ ≥ λq′′−c′′.

Since (q, c) ∈Ψ, we have λq− c′ ≥ λq− c, which implies c′ ≤ c. Since c is the cost-minimizer

for QALE q, we have c≤ c′. Therefore, c= c′, and therefore (q, c) = (q, c′)∈L.

We now show the existence of one such λ by noting the continuity of the frontier. It is known

that the optimal solution to parametric LP problems is continuous (e.g., see Theorem 3.1 in

Pistikopoulos et al. (2020)). Therefore, x(λ), the optimal solution to the NMB optimization

problem, is continuous in λ, which implies that the optimal QALE and cost parametrized by

λ, q= ax(λ) and c= bx(λ), are continuous in λ. Note that qmin and qmax are achieved in NMB

optimization by setting λ= 0 and λ→∞. The existence then follows the continuity of q, the

optimal QALE, and that q ∈ [qmin, qmax].

Recall that ϕ−1(Z) for any arbitrary set Z contains all feasible policies whose performance (q, c)

belong to Z. Therefore, once L(λ)⊂ L, the section of the optimal frontier associated with λ, has

been constructed, we can characterize V (λ), the set of all NMB maximizers for a specific WTP

λ, by noting V (λ) = ϕ−1(L(λ)). We will show that L(λ) is either a single breakpoint of L′′, or

a line segment connecting two successive breakpoints. Therefore, V (λ) can be characterized by

determining the (1 or 2) breakpoints of c∗’s map that optimize the NMB.

Note that c∗(z) is continuous, convex, and piece-wise affine (e.g., see Theorem 2.1 in Pistikopoulos

et al. (2020)). Therefore, the optimal frontier L can be constructed by successively connecting

the breakpoints of c∗(z) (a fact we use to develop and prove the correctness of Algorithm 1).

Since NMB is affine in q and c, and the frontier is continuous and piece-wise affine, L(λ) can be

constructed by successively connecting the breakpoints of L that maximize the NMB. Below, we

further demonstrate that NMB is maximized at a maximum of two breakpoints.
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For any arbitrary λ, let nmbi = λqi − ci for any (qi, ci) ∈ L. We now show how λi’s, the slope

between two consecutive breakpoints of c∗(z) defined by λi :=
ci+1−ci
qi+1−qi

, can determine which break-

points of L is associated with NMB maximizers for an arbitrary λ. Noting that λ≥ 0 and using

simple algebra, we readily obtain the following.

■ For λ= λj, we have nmbj =nmbj+1.

■ For any j with λ> λj, we have nmbj+1 > nmbj.

■ For any j with λ< λj, we have nmbj+1 < nmbj.

We have c∗(z) is increasing in z since the feasible set in Problem 2 shrinks as z increases.

As a result, λi, slopes of segments of c∗(z), strictly increases with i and λi ≥ 0. Combining this

observation and identities above we have the following.

■ λi <λ<λi+1: nmbj strictly increases for j ≤ i+1 and then strictly decreases for j ≥ i+1.

■ λ= λi: nmbj strictly increases for j ≤ i, stays constant for j = i, i+1 and then strictly decreases

for j ≥ i+1.

We now show which breakpoint(s) of c∗’s map maximize the NMB, for each of the following

conditions.

■ λi <λ<λi+1: Based on the first observation, we have nmbi+1 > nmbj for all j ̸= i+1.

■ λ< λ1: Similarly, nmb1 > nmbj for all j ̸= 1.

■ λ> λm−1: Similarly, nmbm > nmbi for all i ̸=m.

■ λ= λi: Based on the second observation, nmbi =nmbi+1 > nmbj for any j /∈ {i, i+1}. ■

Proof of Proposition 1: We can transform Problem 3 to the following equivalent problem.

r∗(u, v) = inf
q,c

(c− v)/(q−u)

s.t. q > u,

(q, c)∈Ψ.

(20)

We first show that without loss of optimality, we can restrict our optimization to points that satisfy

(q, c∗(q)) ∈Ψ. Since v = c∗(u), by the definition of c∗, we have c≥ v for any point (q, c) ∈Ψ with

q > u. Therefore, the objective function has non-negative numerator and positive denominator at

any feasible point. For any point (q, c) with c > c∗(q), the point (q, c∗(q)) has a strictly better

objective value since the numerator is strictly smaller in the latter point, and the denominator is

identical at both points.

Consequently, we want to find the smallest slope between (u, c∗(u)) and (q, c∗(q)) for all q > u. As

shown in the proof of Lemma 1, we know c∗(q) is convex in q. As a result, the slope is increasing in

q. Since the function is affine between qi−1 and qi, the slope is constant in this region. As a result,
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(qi, ci) is a minimizer for Problem 20, and consequently, ϕ−1(qi, ci) optimizes Problem 3. Moreover,

employing Lemma 1 part (d), ϕ−1(qi, ci) also optimizes Problem 1. ■

Before proving Proposition 2, we show a relationship between the extreme points of the set

resulting from a linear map applied to a set and the original set. We leverage this result to further

prove that linear maps do not increase the number of extreme points when applied to a polytope.

Lemma 3. Let g be a linear map from ℜn → ℜm. Let X ⊂ ℜn be an arbitrary polytope and

Ψ= g(X). The extreme points of Ψ are a subset of the image of extreme points of X, and hence

are (not necessarily strictly) fewer than the extreme points of X.

Proof. Let ψ be any arbitrary point in Ψ and pick x ∈ g−1(ψ) arbitrarily. Since X is a polytope,

we can write x∈X as a convex combination of its finite extreme points, i.e., there are some γi ≥ 0

such that
∑

i γi = 1 and x=
∑

i γixi, where xi’s are extreme points of X. We have:

g(x) = g
(∑

i

γixi

)
=
∑
i

γig(xi),

where the second equality follows the linearity of g. As a result, any arbitrary point of Ψ can be

written as a convex combination of ψi = g(xi). Therefore, the set of g(xi) for all xi is a superset

to the set of extreme points of Ψ. ■

Proof of Proposition 2:

■ We will show that in each iteration of the algorithm, we produce a new breakpoint of c∗,

and hence the algorithm runs in exactly m − 1 iterations. Recall that m is the number of

breakpoints of c∗. Note that the first breakpoint is produced in the initialization step. We

show the claim by induction.

Assume di = (u, v) is a breakpoint of c∗. Note that the assumption holds by the algorithm’s

design for i= 1, the induction base case. In Proposition 1, we showed that r(x∗;u, v) = λi, and

ψ= ϕ(x∗) must lie on Li, the line segment between (qi−1, c
∗(qi−1)) and (qi, c

∗(qi)). By Lemma

1, for λ= λi, we have V (λ) = ϕ−1(Li). As a result, x∗ ∈ V (λ).

Any feasible point in Problem 6 must satisfy (λ∗
i a − b)x = (λ∗

i a − b)x∗ (by re-arranging

terms). Therefore, Problem 6 is equivalent to solving maxx ax subject to x ∈ V (λi). Using

change of variables (q, c) = ϕ(x), this problem transforms to maxq,c q subject to (q, c) ∈ Li,

which solves at q = qi and c= ci. Therefore, Problem 6 is solved at xi+1 ∈ ϕ−1(qi, ci), which

proves our claim that di+1 is a new breakpoint of c∗.

■ We now prove that the breakpoints of the piece-wise affine function c∗(z) are finite. This helps

us to establish that the algorithm terminates in a finite number of iterations. Recall that Ψ
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is a linear map of X, and set X is a polytope and has a finite number of extreme points.

Therefore, by Lemma 3, Ψ has a finite number of extreme points. If we prove that points

(qi, ci)’s are extreme points of Ψ, we immediately obtain m <∞. Towards a contradiction,

assume for some j, ψ= (qj, cj) is a breakpoint but not an extreme point of Ψ, and hence, for

some γ ∈ (0,1) and ψi = (ui, vi)∈Ψ, i= 1,2, we have ψ=ψ1+γ(ψ2−ψ1). Let c
∗
i = c∗(ui). We

have c∗i ≤ vi since (ui, vi) ∈Ψ. It suffices to show that vi = c∗i for i= 1,2 since it contradicts

the fact that ψ is a breakpoint of c∗. Assume c∗i < vi for at least one i∈ {1,2}. We have:

cj ≤ c∗1 + γ(c∗2− c∗1)< v1 + γ(v2− v1) = cj,

where the first inequality follows the convexity of c∗, the second follows the assumption that

c∗i ≤ vi for i ∈ {1,2} and c∗i < vi for at least one i ∈ {1,2}, and the equality follows ψ =

ψ1+γ(ψ2−ψ1). Since we arrived at a contradiction (cj < cj), we must have c∗i = vi for i= 1,2.

■ Our goal now is to demonstrate that set W is the smallest set containing at least one solution

to Problem 1 for any given λ ≥ 0. Note that c∗ is strictly increasing over [qmin, qmax] and

hence λi > 0 for all i. It follows Lemma 1 that x1 ∈ V (λ) for λ∈ I1 = [0, λ1] and xi ∈ V (λ) for

λ ∈ Ii = [λi−1, λi] for i≥ 2, and xm ∈ V (λ) for λ ∈ Im = [λm−1,∞). As a result, W contains a

solution to Problem 1 for any arbitrary λ≥ 0. Moreover, by the same lemma, V (α)∩V (β) = ∅

for any arbitrary α and β in the interior of Ii and Ij, for i ̸= j. Therefore, |V | ≥m. Since

|W |=m, we can conclude that it is the smallest set satisfying the requirements.

■

B.2 CPOMDP Result

Proof of Theorem 1: We prove the result by showing a series of intermediate results. We first

show that we can restrict ourselves without loss of generality to history-independent (Markovian),

random policies, here denoted by ΠMR. The result allows us to transform the problem into a

tractable mathematical programming model.

Lemma 4. We have A=R(ΠMR) and B= R̂(Π̂MR).

Proof. Consider the belief state MDP. Let Ht be the history of the systems at time t, i.e., actions

and states observed up until time t before making a decision in that period. The most general

form of policies, history-dependent random policies, maps Ht to a distribution over permissible

actions. Any such policy induces a joint probability distribution (known as state/action occupancy

measure) yt(b, a) over states b and actions a for t < N and a probability distribution (known as

state occupancy measure) yN(b) over states b for the terminal period. Note that
∑

a yt(b, a) is equal
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to the total probability of occupying state b at t. Let δ(b) be the probability distribution over the

initial belief. We can show that y satisfies the following system of equations.∑
a

y1(b, a) = δ(b), ∀b∈B∑
a

yt(b
′, a) =

∑
a,b

pab,b′yt−1(b, a), ∀b′ ∈B, ∀t= 2, . . . ,N − 1,

yN(b
′) =

∑
a,b

pab,b′yN−1(b, a), ∀b′ ∈B

y≥ 0.

where pab,b′ is the transition probability from b to b′ under action a.

We can conversely show that for any y ≥ 0 satisfying these equations, there exists a history-

independent (possibly random) policy πt(b, a) by letting πt(b, a) = yt(b, a)/
∑

a yt(b, a) for any b with∑
a yt(b, a))> 0. Note that for states with

∑
a yt(b, a) = 0, one can choose any arbitrary policy, since

these states are never visited by the induced policy. It is easy to verify that this is a valid policy

and that the associated occupancy measure coincides with y. Therefore, there is a many-to-one

mapping from policies to the space of state/action and state occupancy measures. Using the law

of total expectation, we can show that the expected cumulative reward r̄i satisfies the following.

r̄i =
∑
t<N

γt
∑
b,a

yt(b, a)ri(b, a)+ γN
∑
b,a

yN(b)Ri(b).

Therefore, for any history-dependent (random) policy, there is a history-independent (random)

policy that performs exactly the same in terms of the expected cumulative reward. Hence, restrict-

ing to random, history-independent policies does not lead to loss of generality. This finding has

frequently been utilized in the development of mathematical programming models for addressing

C/MDP and C/POMDP problems (Ross 2014, Cevik et al. 2018).

We can then transform the search over policies to the space of occupancy measures, as follows.

inf
yt,yN

f(r̄1, . . . , r̄m)

s.t.
∑
a

y1(b, a) = δ(b), ∀b∈B∑
a

yt(b
′, a) =

∑
a,b

pab,b′yt−1(b, a), ∀b′ ∈B, ∀t= 2, . . . ,N − 1,

yN(b
′) =

∑
a,b

pab,b′yN−1(b, a), ∀b′ ∈B,

r̄i =
∑
t<N

γt
∑
b,a

yt(b, a)ri(b, a)+ γN
∑
b,a

yN(b)Ri(b),

(r̄1, . . . , r̄m)∈ χ.

(22)

Note that the same applies to the grid-based approximation problem. ■
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We now prove that sets A and B are compact and convex. We use this in conjunction with results

in convex analysis to prove the claim.

Proposition 3. Sets A and B are compact and convex.

Proof.

We prove this result for both finite and infinite horizon models as follows:

■ Finite horizon:

Let Y be the set of occupancy measures y’s satisfying Eq. 22. Note that Y is a polyhedron

since it is generated by a system of linear equalities and inequalities. Therefore, Y is closed

and convex. Also, note that y’s are probability distributions, and hence y≤ 1. As a result, Y

is bounded. Therefore, Y is compact (closed and bounded) and convex.

■ Infinite horizon:

A result similar to Lemma 4 applies to infinite horizon problems. Any arbitrary stationary

random policy π generates discounted occupancy measures for each state/action pair, which

represents the expected number of times we visit the state and take the action, discounted

over time. Let y(b, a) denote the discounted occupancy measure for the state/action pair (b, a),

formally defined below.

y(b, a) =E

[∑
t

γt−11[bt=b,at=a]

∣∣∣∣π
]
.

We can use y(b, a) to calculate the expected total discounted rewards as follow.

r̄i =E

[∑
t

γt−1ri(bt, at)

∣∣∣∣π
]
=
∑
b,a

ri(b, a)y(b, a) (23)

We can show that the occupancy measures satisfy the following system of linear equations.∑
a

y(b′, a) = δ(b′)+ γ
∑
b,a

pab,b′y(b, a), ∀b′ ∈B y≥ 0,

where δ(b′) is the distribution of the initial beliefs.

Conversely, one can always construct a policy for any y satisfying the system by allowing

π(a′|b) = y(b, a′)/
∑

a y(b, a) for any belief with
∑

a y(b, a) > 0. We utilize this one-to-many

relationship to show our result.

We need to show that Y is convex and compact. Note that Y satisfies a system of linear

equations, and hence it is convex. Also, it is the intersection of hyper-planes and closed half-

spaces. Hence, Y is closed as well. It remains to show Y is bounded. We can show 0≤ y(b, a)≤
1/(1− γ) as follows.

y(b, a) =E

[∑
t

γt−11[bt=b,at=a]

∣∣∣∣π
]

≤E

[∑
t

γt−1

∣∣∣∣π
]
=
∑
t

γt−1 = 1/(1− γ).
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Therefore, Y is compact as it is closed and bounded. ■

We now prove Theorem 1 as follows:

Proof. We show A⊂ B. Toward contradiction, let r′ ∈ A \ B. Since r′ /∈ B and set B is compact

and convex by Proposition 3, we can properly separate r′ from B by a hyperplane (Bazaraa et al.

2013). In other words, there exists a vector ω such that ωr′ >ωr for any r ∈ B. This implies that

ωr′ > maxr∈B ωr. Additionally, we have maxr∈Aωr ≥ ωr′. Combining these two inequalities, we

conclude that maxr∈Aωr >maxr∈B ωr.

Note that the problem maxr∈Aωr (and similarly for maxr∈B ωr) essentially involves maximizing

a weighted sum of the expected total rewards r̄i with weights ωi. This is equivalent to maximiz-

ing an unconstrained POMDP with the same stochastic process and immediate/terminal rewards

defined as r(s, a) =
∑
ωiri(s, a) and R(s) =

∑
ωiR(s). Lovejoy (1991) proved that the grid-based

approximation approach produces an upper bound in maximization POMDPs. Consequently, we

must have maxr∈Aωr≤maxr∈B ωr, which contradicts our earlier assertion. ■

B.3 ICER Minimization Results

Proof of Lemma 2: We show this result separately for finite and infinite horizon models.

Please note that in this proof, the variable x has been redefined and does not denote policy as in

Section 4.

■ Finite horizon:

Consider the occupancy measure y0 associated with an arbitrary non-deterministic policy,

i.e., for some period j and state i we have y0j (i, a)> 0 for m actions a, with m≥ 2. We prove

y0 cannot be an extreme point by showing it is a (non-trivial) convex combination of m

distinct yk ∈ Y for k = 1, . . . ,m. To that end, without loss of generality, reorder actions such

that for actions indexed k = 1, . . . ,m, we have y0j (i, k)> 0. Let π0
t (s, a) be the original policy

and x0
t (s) =

∑
a y

0
t (s, a) be the occupancy measure of state s at time t, both corresponding

to occupancy measure y0. Define m new policies πk
t , k = 1, . . . ,m according to πk

t (s, k) = 1

for t= j and s= i, and πk
t (s, i) = π0

t (s, i), otherwise. Note that these policies differ from the

original policy only for period j and state i: Policy πk deterministically selects the kth action

at state i during period j, otherwise following π0.

In this context πt(s, a) represents the probability of selecting action a at state s during

period t. Let yk and xk be the state/action and state occupancy measures corresponding to

policy k. Also, let wk = π0
j (i, k) for k≥ 1. Note that wk’s constitute a set of non-trivial convex

combination weights since y0j (i, a)> 0 for m> 2 actions, which implies wk > 0 for all k≥ 1. It

remains to show that y0 =
∑
wky

k and that yk are indeed distinct. We first use induction to

show that x0 =
∑
wkx

k as follows.
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Note that x0
t = xk

t and y0t = ykt for t < j since policies πk and π0 concur for periods t < j.

The former holds additionally for t= j since the policy differences do not impact the states

occupancy in periods t ≤ j. Therefore, the results hold trivially for t ≤ j since
∑
wk = 1. It

remains to show the result for t > j. For t= j+1 we have:∑
k

wkx
k
t (s

′) =
∑
s,a,k

wkx
k
t−1(s)π

k
t−1(s, a)P[s′|s, a]

=
∑
a,k

wkx
k
t−1(i)π

k
t−1(i, a)P[s′|i, a] +

∑
s ̸=i,a,k

wkx
k
t−1(s)π

k
t−1(s, a)P[s′|s, a]

=
∑
k

x0
t−1(i)π

0
t−1(i, k)P[s′|i, k] +

∑
s̸=i,a,k

wkx
0
t−1(s)π

0
t−1(s, a)P[s′|s, a]

=
∑
a

x0
t−1(i)π

0
t−1(i, a)P[s′|i, a] +

∑
s̸=i,a

x0
t−1(s)π

0
t−1(s, a)P[s′|s, a]

=
∑
s,a

x0
t−1(s)π

0
t−1(s, a)P[s′|s, a] = x0

t (s
′).

(26)

Here, we have used the following for the first and last equality.

xk
t (s

′) =
∑
s,a

xk
t−1(s)π

k
t−1(s, a)P[s′|s, a].

The third equality follows the fact that wkπ
k
t−1(i, a) is equal to π0

t−1(i, a) for a = k and 0

otherwise, and that xk
t−1 = x0

t−1 and π
k
t−1(i, a) = π0

t−1(s, a) for s ̸= i. The fourth equality follows

the third equality by noting that that the π0
t−1(s, a) = 0 for a > m, and hence the two first

terms are equal, and that the x0
t−1(s)π

0
t−1(s, a)P[s′|s, a] does not depend on k and

∑
wk = 1.

The next two equalities follow directly. We use t= j+1 as our induction basis. For t > j+1

we have: ∑
k

wkx
k
t (s

′) =
∑
s,a,k

wkx
k
t−1(s)π

k
t−1(s, a)P[s′|s, a]

=
∑
s,a,k

wkx
k
t−1(s)π

0
t−1(s, a)P[s′|s, a]

=
∑
s,a

π0
t−1(s, a)P[s′|s, a]

∑
k

wkx
k
t−1(s)

=
∑
s,a

π0
t−1(s, a)P[s′|s, a]x0

t−1(s) = x0
t (s

′).

(27)

Here, the first equality follows directly. The second equality follows the fact that πk
t−1 = π0

t−1

for t ̸= j. The third equality follows the fact that π0
t−1(s, a)P[s′|s, a] does not depend on k. The

fourth equality follows
∑

k wkx
k
t−1(s) = x0

t−1(s), which is implied by the induction assumption.

The last equality follows directly.

We now show y0 =
∑
wky

k for t≥ j. For period t= j, we have:∑
k

wky
k
t (s, a) =

∑
k

wkx
k
t (s)π

k
t (s, a) = x0

t (s)
∑
k

wkπ
k
t (s, a)

= x0
t (s)π

0
t (s, a) = y0t (s, a).

(28)
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Here, the first and last equations follow ykt (s, a) = xk
t (s)π

k
t (s, a), which holds by definition. The

second equality follows since xk
t (s) = x0

t (s) for t= j. The third equality can be explained as

follows. If s ̸= i, then πk
t (s, a) = π0

t (s, a), which implies the result by noting
∑

kwk = 1. If s= i

and a >m, then πk
t (s, a) = π0

t (s, a) = 0. If a≤m, then πk
t (s, k) = 1 and πk

t (s, a) = 0 for k ̸= a.

Therefore,
∑

kwkπ
k
t (s) =wa. Since we chose wa = π0

t (s, a), the result follows. Finally, for t > j

we have. ∑
k

wky
k
t (s, a) =

∑
k

wkx
k
t (s)π

k
t (s, a) = π0

t (s, a)
∑
k

wkx
k
t (s, a)

= x0
t (s)π

0
t (s, a) = y0t (s, a).

(29)

Here, the first and last equality follows directly. The second equality follows since we designed

πk
t (s, a) = π0

t (s, a) for t ̸= j. The third equality follows x0
t (s) =

∑
kwkx

k
t (s), which we just

proved.

Finally, we show that yk’s are distinct. Fix period at j and state at i, i.e., focus on cases

where policies differ. For any policy k ≥ 1, we have πk
j (i, a) = 1 for a= k and πk

j (i, a) = 0 for

a ̸= k. By definition ykt (i, a) = πk
t (i, a)x

k
t (i). Since x

k
j = x0

j , we obtain ykj (i, k) = x0
t (i)> 0 and

ykj (i, a) = 0 for a ̸= k. Therefore, ylj(i, k) ̸= ykj (i, k) for all l ̸= k, and hence the claim.

■ Infinite horizon:

To show this result for the infinite horizon model, we should first show an intermediate

result. Let τ jk be the time between the jth and (j + 1)th passage to state i under policy

k = 0, . . . ,m. We let τ 1k denote the time until the first passage to state i. Note that τ 1k does

not depend on the policy for i and hence, is identical for the original and constructed policies.

Also, note that for a fixed policy k, τ jk are i.i.d. for j ≥ 2.

Consider an arbitrary action/state dependent reward stream and for policy k. Let Rj
k be

the total discounted reward of visiting state i between jth and (j + 1)th passage to state i

under policy k = 0, . . . ,m. Note that the discounting is with respect to the time of the jth

passage. Similarly, R1
k denotes the discounted total reward collected until the first passage to

state i, R1
k is identical for the original and constructed policies, and for a fixed policy k, Rj

k

are i.i.d. for j ≥ 2. Let Rk be the total discounted reward under policy k= 0, . . . ,m. We have

the following result.

Lemma 5. The following identities hold.

(a) ERk =ER1
k +ER2

kEγτ1k/(1−Eγτ2k ),

(b) Eγτ20 =
∑

k≥1 π
0(i, k)Eγτ2k ,

(c) ER2
0 =

∑
k≥1 π

0(i, k)ER2
k.

Proof.
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(a) Let T k
j be the time until the jth visit to state i, i.e., let T k

j =
∑

l≤j τ
k
l . Since for all l, τkl

are independent and for l≥ 2 are i.i.d, we have;

EγTk
j =Eγ

∑
l≤j τ

k
l =E

∏
l≤j

γτkl =
∏
l≤j

Eγτkl =Eγτk1 (Eγτk2 )(j−1).

We also have the following by definition:

Rk =R1
k +

∑
j≥2

Rk
jγ

Tk
j−1 .

Therefore,

ERk =ER1
k +

∑
j≥2

ERk
jEγTk

j−1 =ER1
k +ER2

k

∑
j≥2

EγTk
j−1

=ER1
k +ER2

k

∑
j≥2

Eγτk1 (Eγτk2 )(j−2) =ER1
k +ER2

kEγτk1 /(1−Eγτk2 ).

Here, the first equality follows since Rk
j and T k

j−1 are independent, the second holds since

Rk
j are i.i.d, for j ≥ 2, and the last equality follows the geometric series infinite-sum.

(b) Let t be the time of the first visit to state i and at be the action taken in that period. If

action k is taken under policy π0, we have τ 20 equals τ 2k since, until the next passage to

state i, policies π0 and πk behave the same. In other words, τ 2k = [τ 20 |at = k], where the

equality is in distribution. Therefore, we have:

γτ20 =
∑
k≥1

1[at=k]γ
τ2k ,

=⇒Eγτ20 =
∑
k≥1

π0(i, k)Eγτ2k .

(c) The same line of proof as in part (b) can be used to show this result. ■

Now we can prove the result for the infinite horizon model as follows:

We approach the proof similarly to what we did for the finite horizon problems. Consider the

occupancy measure y0 ∈ Y associated with an arbitrary random policy, i.e., for some state i

we have y0(i, a)> 0 for m> 1 actions a. We prove y0 is not an extreme point of Y by showing

that it is a (non-trivial) convex combination of m distinct yk ∈ Y for k= 1, . . . ,m. To that end,

without loss of generality, reorder actions such that for actions indexed k= 1, . . . ,m, we have

y0(i, k)> 0. Let π0(s, a) be the policy associated with occupancy measure y0. Define policies

πk(s, a), k= 1, . . . ,m according to πk(i, k) = 1 and πk(s, j) = π0(s, j) for any state s ̸= i. Note

that these constructed policies differ from the original policy only for state i, at which the kth

action is taken with certainty in πk.

Let yk be the state/action occupancy measure associated with policy k. Also, let wk =

y0(i, k)/yk(i, k). We show that yk(i, k)> 0 and hence wk’s are well-defined. We also show that
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k≥1wk = 1 and
∑

k≥1wky
k = y0. Note that for any k ≥ 1, yk(i, j) = 0 for any j ̸= k since

in πk we never take action j ̸= k at state i. Also, we assumed y0(i, j) > 0 for j ≤m. As a

result, yk ̸= y0 for all k ≥ 1, i.e., yk are distinct from y0. Therefore, y0 is a non-trivial convex

combination of yk’s.

We now calculate yk(i, k) as follows. Consider a setting where the reward is 1 when we visit

the state/action pair (i, k) and zero otherwise. For this reward process, the total discounted

reward equals the occupancy measure for the state/action pair (i, k), i.e., ERk = yk(i, k). Note

that by the reward definition R1
k = 0 since we start collecting rewards after we visit state i for

the first time. Also, R2
k = 1 if we take action k when we visit i and zero otherwise. Therefore,

ER2
k = πk(i, k). Using Lemma 5 (a), we have

yk(i, k) = πk(i, k)Eγτ1k/(1−Eγτ2k ).

Based on the definition of wk and that τ 1k is identical for all k, we have

wk = π0(i, k)(1−Eγτ2k )/(1−Eγτ20 ).

Note that wk > 0 since all terms on the right side are positive. We next show
∑

k≥1wk = 1

as follows. ∑
k≥1

wk =
∑
k≥1

π0(i, k)[(1−Eγτ2k )/(1−Eγτ20 )]

= 1/(1−Eγτ20 )[
∑
k≥1

(π0(i, k)−
∑
k≥1

π0(i, k)Eγτ2k )

= (1−Eγτ20 )/(1−Eγτ20 ) = 1.

Here, the first equality follows the above result, the second follows re-arranging terms, and

the third follows Lemma 5 (b) and that
∑

k≥1 π
0(i, k) = 1.

It remains to show y0(j, l) =
∑

k≥1wky
k(j, l). For any state/action pair (j, l), the state/action

occupancy measure is the total discounted reward for a setting where the reward is one when

we visit the state/action pair (j, l) and zero otherwise. To show the result, it remains to show

the following for any arbitrary reward process.

ER0 =
∑
k≥1

wkERk.

We have:

ER0 =ER1
0 +ER2

0Eγτ10 /(1−Eγτ20 )

=
∑
k≥1

wkER1
k +

∑
k≥1

π(i, k)ER2
k[Eγτ10 /(1−Eγτ20 )]
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=
∑
k≥1

wkER1
k +

∑
k≥1

wkER2
kEγτ10 /(1−Eγτ2k )

=
∑
k≥1

wk[ER1
k +R2

kEγτ10 /(1−Eγτ2k )] =
∑
k≥1

wkERk.

■

Proof of Corollary 1: Let λ∗ be the optimal ICER value. In Proposition 1, we show that

policies optimizing NMB with a WTP of λ∗ also optimize ICER. The NMB problem is an uncon-

strained POMDP problem with a linear objective, which is quasi-linear (both quasi-convex and

quasi-concave). Therefore, by Lemma 2, it admits a deterministic, optimal policy. As a result, the

ICER problem also admits a deterministic, optimal policy. ■

Appendix C Finite Horizon Ternary Plots

The plot in Figure 8 depicts the optimal policies for the finite horizon problem with WTP=£20,000

for various ages from 10 to 60 years. This visualization indicates that the optimal policy remains

relatively consistent throughout this age range, covering the typical life expectancy of a patient.

Figure 8: Optimal policy for various ages for WTP=£20,000
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(a) Age 10 Policy
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(b) Age 20 Policy
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(c) Age 30 Policy
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(d) Age 40 Policy
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(e) Age 50 Policy
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(f) Age 60 Policy
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