
A novel stepsize for gradient descent method

Pham Thi Hoai1,∗, Nguyen The Vinh2, Nguyen Phung Hai Chung3

Abstract. We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear
optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain
the complexity O(1

k
) of f(xk) − f∗ at most. By using the idea of the new stepsize, we propose another new

algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed
convex set. The computational experiments show the efficiency of the new method.

Keywords. convex programming, gradient descent method, nonlinear programming, projected gradient method,
constrained optimization problem

Mathematics Subject Classification (2010). 90C25, 90C06, 65K10

1. Introduction

The gradient descent (GD) algorithm is a standard algorithm with a rich history. It has a lot of applications for
many modern real-life problems such as machine learning, deep learning, data science, etc. Although the idea of
this method appeared a long time ago by Cauchy (1847) and became classical [14], it has received a lot of attention
recently (see e.g., [3, 8, 11, 13, 16, 17, 18, 19] and references therein). This algorithm considers solving an important
class of optimization problems

min{f(x) : x ∈ Rn}, (P)

where f : Rn → R is smooth. Throughout the paper, we assume that problem (P) has optimal value f∗ > −∞ and
X∗ ̸= ∅ is the optimal solution set of (P). Starting at some given point x0, GD constructs a sequence {xk} by the
following formula:

xk+1 = xk − λk∇f(xk). (1)

The traditional condition imposed on f to ensure the convergence of gradient descent algorithm is the global
Lipschitzness of ∇f , i.e., there exists L > 0 such that

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn.

One can use some strategies for choosing the stepsize λk in (1) to control the performance of GD algorithm.
Deterministic stepsize selection criterion fall under three main strategies:

(i) The first one takes a constant stepsize. One know that in order to ensure the convergence of GD scheme,
the constant stepsize should belong to (0, 2

L), see e.g [4, 5, 20]. The method’s main advantage is its simple
implementation. The convergence of the obtained GD works for differentiable objectives with global Lipschitz
gradient property. Moreover, if f is convex one get the complexity O(1/k) of f(xk) − f∗. Nevertheless, it is
not easy to compute or estimate the constant L of f in general. If the estimation is inexact, GD may not
converge. Besides this difficulty, from the practical point of view, L may be large and defining the small
stepsize. This may affect the speed of GD.

∗Corresponding author
1Department of Applied Mathematics, School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, 1
Dai Co Viet Road, Hanoi, Vietnam. Email address: hoai.phamthi@hust.edu.vn

2Department of Mathematics, University of Transport and Communications, 3 Cau Giay Street, Hanoi, Vietnam. Email address:
thevinhbn@utc.edu.vn

3Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi, Vietnam. Email address: hchung1997@gmail.com

P.T. Hoai et al.2

(ii) The second one is line search method based on some rules such as the exact minimization rule or backtracking
rules. It is known that the formulation of the exact minimization rule is very brief but its usefulness is just
suitable for some specific classes of objective functions, like strongly convex quadratic functions; see [10] for
more details. Conversely, the backtracking procedure is more generic, as it can be used for any kind of smooth
objective function. The first works considering this topic are [1] and [9]. One can also find recent papers
concerning analogous problems such as [7, 24] and references therein. If f is convex, the complexity of GD
with backtracking stepsize is O(1/k) for f(xk) − f∗. However, this method may cause the expensive cost due
to the backtracking computation and the stepsize may be very small at the large enough iterations.

(iii) The third one is an adaptive method that does not require estimating the Lipschitz constant L or backtracking
calculation. For instance, the Polyak’s stepsize [22] takes λk = f(xk)−f∗

∥∇f(xk)∥2 or Barzilai-Borwein’s stepsize [2] is

λk = ⟨xk−xk−1,∇f(xk)−∇f(xk−1)⟩
∥∇f(xk)−∇f(xk−1)∥2 . In fact, there are some kinds of optimization problems we know their optimal

values in advance. For example, f∗ = 0 in the split feasibility problem considered in [27]. Therefore we can
easily apply Polyak’s stepsize for these ones. Nevertheless, we do not know f∗ in general. We should estimate
this value to ensure the convergence of GD. With Barzilai -Borwein’s method, the convergence of GD works
for only limited class of objectives. In particular, “it may not converge, even when the objective function is
strongly convex” [6]. Note that the Polyak’s stepsize for GD has linear convergence rate for strongly convex
objectives [23].

Recently, Y. Malitsky and K. Mishchenko [17] suggested selecting an adaptive stepsize as “a certain approximation
of the inverse local Lipchitz constant”

λk = min
{√

1 + θk−1λk−1,
∥xk − xk−1∥

2∥∇f(xk) − ∇f(xk−1)∥

}
, k ≥ 1,

where θ0 = +∞, θk = λk

λk−1
, k ≥ 1. The proposed algorithm is called Adaptive Gradient Descent (AdGD). It is

shown that this algorithm involves not only nice theoretical properties but also good practical ability. In particular,
AdGD is convergent for locally Lipschitz gradient and convex objective functions. Besides showing the convergence
of {xk} to an optimal solution of problem (P), the authors proved that f(x̂k) − f(x∗) ≤ O(1

k), where x∗ ∈ X∗ and
x̂k is an ergodic vector obtained from {xk}

x̂k =
λk(1 + θk)xk +

k−1∑
i=1

(λi(1 + θi) − λi+1θi+1) xi

λk(1 + θk) +
k−1∑
i=1

(λi(1 + θi) − λi+1θi+1)
, k ≥ 1.

Additionally, if f is locally strongly convex, the complexity to get ∥xk − x∗∥ < ε is O(L
µ log 1

ε), with L, µ the locally
smoothness and strong convexity constants of f. However, there are some remaining questions related to AdGD:
1. Besides getting the complexity result of f(x̂k) − f∗, can we give an evaluation of complexity for f(xk) − f∗? 2.
Whether the sequence of stepsize can be monotone? 3. Is AdGD convergent for nonconvex objectives even adding
the global Lipschitzness of ∇f? 4. Can we extend this stepsize for a nonlinear optimization problem over a closed
convex set?
Contributions: Motivated by the above questions, in this paper we propose a new adaptive stepsize for GD scheme
that includes the following interesting features:

(i) The convergence of gradient descent algorithm with our new stepsize ({xk} converges to an optimal solution
of (P)) is obtained for smooth, locally Lipschitz gradient and convex objectives.

(ii) We show the complexity computation O(1
k) for f(xk) − f∗. Moreover, the sequence of our stepsize {λk}k≥k

is increasing to a limit λ∗ (k is a finite number). If f satisfies an additional condition that locally strongly
convex we obtain the linear convergent rate of {xk}.

(iii) If f is global Lipschitz gradient, our new stepsize is extensible to the gradient projection algorithm for solving
a class of nonconvex, nonlinear optimization problems over a closed and convex set. Consequently, it is
applicable for a class of nonconvex case of problem (P).

A novel stepsize for gradient descent method 3

The rest of the paper is organized as follows. In Section 2, we propose a GD algorithm with our novel stepsize
for solving the convex case of (P). We analyze and prove the convergence of this algorithm for two situations of f

as presented above. A new version of the projected gradient algorithm using our stepsize is proposed in Section 3.
Numerical experiments for benchmark problems and synthetic data in Section 4 show the efficiency of our method
compared to AdGD and GD with constant stepsize. The paper is finally closed with some conclusions in Section 5.

2. A new adaptive stepsize for GD scheme

Below is our new gradient algorithm (NGD) for solving (P) under the following assumptions:
Assumption 1: Problem (P) has a nonempty optimal solution set X∗ and the optimal value f∗ > −∞.
Assumption 2: f is smooth, convex and locally Lipschitz gradient.

Algorithm 2.1 (NGD)

Step 0 (Initialization). Select λ0 > 0, 0 < η1 < η0 < 1
2 and a positive real sequence {εk} such that

∞∑
k=0

εk < ∞.

Choose x0 ∈ Rn, x1 = x0 − λ0∇f(x0), λ−1 = λ0 and set k = 1.

Step 1. If
∥∇f(xk) − ∇f(xk−1)∥ >

η0

λk−1
∥xk − xk−1∥ (2)

then

λk = η1
∥xk − xk−1∥

∥∇f(xk) − ∇f(xk−1)∥ (3)

else

ε′
k−1 = εk−1 (4)

if λk−1

λk−2
< 1 then update ε′

k−1 = min{εk−1,

√
1 + λk−1

λk−2
− 1} (5)

λk = (1 + ε′
k−1)λk−1. (6)

Step 2. Compute xk+1 = xk − λk∇f(xk).
Step 3. If ∥∇f(xk+1)∥ < ϵ then STOP

else setting k := k + 1, and return to Step 1.

Utilizing well-known tools including Cauchy-Schwarz, convexity inequalities and potential functions [26], the
authors of AdGD [17] eliminates the challenge of global Lipschitz gradient. In order to get the convergence of
AdGD, they prove that the sequence {xk} and {λk} of AdGD are bounded and lower bounded by a positive
number, respectively. For Algorithm 2.1, we also provide the same properties in Lemma 2.1. Inspired by [15] we
use a given convergent positive series

∞∑
k=0

εk and condition (2) to control the stepsize proposed in Algorithm 2.1.

We then obtain further properties of NGD. In particular,

(i) {λk} is convergent to λ∗; (Lemma 2.2)

(ii) there exists k such that for all k ≥ k we have

∥∇f(xk) − ∇f(xk−1)∥ ≤ η0

λk−1
∥xk − xk−1∥, (in Lemma 2.3)

and
λk+1 > λk (in Remark 2.2).

These above properties allow us to prove the convergence of Algorithm 2.1 in Theorems 2.1 and 2.2 via the simple

P.T. Hoai et al.4

and familiar technique (usually applied for line search procedures) of verifying the inequality

f(xk) − f(xk+1) ≥ M∥∇f(xk)∥2

for some M > 0 and k ≥ k. This inequality shows the decreasing monotonic of {f(xk)}k≥k (obtained by NGD).
Remember that, in AdGD [17] one has not known about the descent property of {f(xk)}.

Lemma 2.1. Let {xk} and {λk} be sequences generated by Algorithm 2.1. Then the two statements below hold:

(i) {xk} is bounded,

(ii) {λk} is lower bounded by a positive number.

Proof. Taking x∗ ∈ X∗, it is easy to see that

∥xk+1 − x∗∥2 = ∥xk+1 − xk∥2 + 2⟨xk+1 − xk, xk − x∗⟩ + ∥xk − x∗∥2

= ∥xk+1 − xk∥2 + 2λk⟨∇f(xk), x∗ − xk⟩ + ∥xk − x∗∥2.
(7)

Since f is convex we have
2λk⟨∇f(xk), x∗ − xk⟩ ≤ 2λk(f∗ − f(xk)). (8)

Let us rewrite
∥xk+1 − xk∥2 = A + B − ∥xk+1 − xk∥2, (9)

where
A = 2λk⟨∇f(xk) − ∇f(xk−1), xk − xk+1⟩, B = 2λk⟨∇f(xk−1), xk − xk+1⟩.

From Cauchy Schwarz inequality we have

A ≤ 2λk∥∇f(xk) − ∇f(xk−1)∥∥xk − xk+1∥. (10)

Consider the two possible cases:

1. If condition (2) is satisfied then λk = η1
∥xk−xk−1∥

∥∇f(xk)−∇f(xk−1)∥ . Inequality (10) follows that

A ≤ 2η1∥xk − xk−1∥∥xk − xk+1∥. (11)

2. If condition (2) is not true, i.e.,{
∥∇f(xk) − ∇f(xk−1)∥ ≤ η0

λk−1
∥xk − xk−1∥,

λk = (1 + ε′
k−1)λk−1 ≤ (1 + εk−1)λk−1.

From (10), we get

A ≤ 2η0λk

λk−1
∥xk − xk−1∥∥xk − xk+1∥ ≤ 2η0(1 + εk−1)∥xk − xk−1∥∥xk − xk+1∥. (12)

Since η0 < 1
2 and

∞∑
k=0

εk is convergent then there exists k1 such that

2η0(1 + εk−1) < 1 ∀k ≥ k1. (13)

Combining (11), (12), (13) and the fact that η1 < 1
2 , we obtain

A < ∥xk − xk−1∥ ∥xk − xk+1∥ ≤ 1
2∥xk − xk−1∥2 + 1

2∥xk+1 − xk∥2 ∀k ≥ k1. (14)

A novel stepsize for gradient descent method 5

Using the convexity of f we evaluate

B = 2λ2
k

λk−1
⟨xk−1 − xk, ∇f(xk)⟩ ≤ 2λ2

k

λk−1
(f(xk−1) − f(xk)). (15)

From (9), (14), (15), we infer that

∥xk+1 − xk∥2 ≤ 1
2∥xk − xk−1∥2 − 1

2∥xk+1 − xk∥2 + 2λ2
k

λk−1
(f(xk−1) − f(xk)) ∀k ≥ k1. (16)

Plug (16) in (7) we deduce that

∥xk+1 − x∗∥2 ≤ 1
2∥xk − xk−1∥2 − 1

2∥xk+1 − xk∥2 + 2λk(f∗ − f(xk))

+ 2λ2
k

λk−1
(f(xk−1) − f(xk)) + ∥xk − x∗∥2 ∀k ≥ k1

⇐⇒ ∥xk+1 − x∗∥2 + 1
2∥xk+1 − xk∥2 + 2λk

(
1 + λk

λk−1

)
(f(xk) − f∗)

≤ ∥xk − x∗∥2 + 1
2∥xk − xk−1∥2 + 2 λ2

k

λk−1
(f(xk−1) − f∗) ∀k ≥ k1.

(17)

Next, remember that since
∞∑

k=0
εk is convergent, then there exists k2 such that

εk ≤
√

2 − 1 ∀k ≥ k2. (18)

We now show that
λ2

k+1
λ2

k

≤ 1 + λk

λk−1
, ∀k ≥ k2. (19)

Indeed, for each k ≥ k2 there are two possible cases:

1. If ∥∇f(xk+1) − ∇f(xk)∥ > η0
λk

∥xk+1 − xk∥ then by (2), λk+1 = η1
∥xk+1−xk∥

∥∇f(xk+1)−∇f(xk)∥ < η1
η0

λk, that means
λk+1

λk
< η1

η0
< 1 and hence (19) is proved.

2. Otherwise, λk+1 = (1 + ε′
k)λk then (19) is equivalent to

(1 + ε′
k)2 ≤ 1 + λk

λk−1
⇐⇒ ε′

k ≤

√
1 + λk

λk−1
− 1. (20)

Note that if λk

λk−1
< 1 then by (5) ε′

k = min{εk,
√

1 + λk

λk−1
− 1}, this follows (20) obviously. Otherwise, if

λk

λk−1
≥ 1 then (20) is right due to the way we choose k2 since

√
1 + λk

λk−1
− 1 ≥

√
2 − 1 ≥ εk ≥ ε′

k for all
k ≥ k2.

Take k3 = max{k1, k2}, now, summing up (17) from k = k3 + 1 to ℓ, ℓ ≥ k3 + 1, we get

∥xℓ+1 − x∗∥2 + 1
2∥xℓ+1 − xℓ∥2 + 2λℓ

(
1 + λℓ

λℓ−1

)
(f(xℓ) − f∗) +

+ 2
ℓ−1∑

k=k3

(
λk

(
1 + λk

λk−1

)
−

λ2
k+1
λk

)
(f(xk) − f∗)

≤ ∥xk3+1 − x∗∥2 + 1
2∥xk3+1 − xk3∥2 + 2

λ2
k3+1
λk3

(f(xk3) − f∗) = K ∀ℓ ≥ k3 + 1. (21)

P.T. Hoai et al.6

From (19) we have
ℓ−1∑

k=k3

(
λk

(
1 + λk

λk−1

)
−

λ2
k+1
λk

)
(f(xk) − f∗) ≥ 0 ∀ℓ ≥ k3 + 1.

Combining with (21) we obtain
∥xℓ+1 − x∗∥2 ≤ K ∀ℓ ≥ k3 + 1.

We now conclude that {xk} is bounded.
Since {xk} is bounded we have S = conv{x∗, x0, x1, ...} is compact. Because f is locally Lipschitz gradient then
there exists L1 > 0 such that

∥∇f(x) − ∇f(y)∥ ≤ L1∥x − y∥ ∀x, y ∈ S.

For k = 1 if (2) is satisfied then λ1 ≥ η1
L1

, otherwise λ1 = (1 + ε′
0)λ0 ≥ λ0. By induction, we get that

λk ≥ min{ η1

L1
, λ0} = γ > 0 ∀k ≥ 0. (22)

Remark 2.1. From the proof of Lemma 2.1 we observe that:

(i) We can take k3 = 1 if inequalities (13) and (18) are satisfied from 1. In particular, 2η0(1 + εk−1) < 1 and
εk ≤

√
2 − 1 ∀k ≥ 1. We control that easily by choosing the suitable series

∞∑
k=0

εk.

(ii) We also easily obtain some convergence results of Algorithm 2.1 that are similar to AdGD by using the
analogous arguments in [17]. For instance, the complexity O(1

k) of f(x̂k) − f∗. Indeed, for k = k3, ..., ℓ − 1 we

set rk = λk

(
1 + λk

λk−1

)
− λ2

k+1
λk

and rℓ = λℓ

(
1 + λℓ

λℓ−1

)
. By (22) we have

ℓ∑
k=k3

rk =
ℓ∑

k=k3

λk +
λ2

k3

λk3−1
≥ (ℓ−k3)γ.

Moreover, from (21) we get that
ℓ∑

k=k3

rk(f(xk) − f∗) ≤ K
2 . Next, putting x̂ℓ =

(
ℓ∑

k=k3

rkxk

)
/

(
ℓ∑

k=k3

rk

)
. By

the convexity of f, it follows that

f
(
x̂ℓ
)

− f∗ ≤

ℓ∑
k=k3

rk(f(xk) − f∗)

ℓ∑
k=k3

rk

≤ K

2
ℓ∑

k=k3

rk

≤ K

2γ(ℓ − k3) = O

(
1
ℓ

)
, ∀ℓ ≥ k3 + 1. (23)

The next result provides a nice property of the sequence {λk}.

Lemma 2.2. The sequence of stepsize {λk} generated by Algorithm 2.1 is convergent.

Proof. Let ak = ln λk+1 − ln λk ∀k ≥ 0, we have ak = a+
k − a−

k , where

a+
k = max{0, ak}, a−

k = − min{0, ak}.

Then a+
k ≥ 0 and a−

k ≥ 0 ∀k ≥ 0.

From the definition of λk in Algorithm 2.1, we derive that

ak = ln λk+1

λk
≤ ln(1 + ε′

k) ≤ ε′
k ≤ εk ∀k ≥ 0,

which implies a+
k ≤ εk. Since

∞∑
k=0

εk is convergent, we obtain
∞∑

k=0
a+

k < +∞. Observing that
∞∑

k=0
a−

k is a nonnegative

series and using the following relation

ln λk+1 − ln λ0 =
k∑

i=0
ai =

k∑
i=0

(a+
i − a−

i) =
k∑

i=0
a+

i −
k∑

i=0
a−

i , (24)

A novel stepsize for gradient descent method 7

we assert that if lim
k→+∞

k∑
i=0

a−
i = +∞ then

lim
k→+∞

(ln λk+1) = −∞ ⇐⇒ lim
k→+∞

λk = 0.

But the result of Lemma 2.1 gives inf
k≥0

λk > 0. This contradiction proves the convergence of
∞∑

k=0
a−

k . Finally, from

(24) we get the desired conclusion that lim
k→+∞

λk = λ∗ < +∞.

Lemma 2.3. There exists a fixed number k such that

∥∇f(xk) − ∇f(xk−1)∥ ≤ η0

λk−1
∥xk − xk−1∥ ∀k ≥ k.

Proof. Suppose by contradiction that there exists {kj}, kj → +∞ such that

∥∇f(xkj) − ∇f(xkj−1)∥ >
η0

λkj−1
∥xkj − xkj−1∥.

For this case
λkj

= η1
∥xkj − xkj−1∥

∥∇f(xkj) − ∇f(xkj−1)∥ .

Consequently,

η1∥xkj − xkj−1∥
λkj

= ∥∇f(xkj) − ∇f(xkj−1)∥ >
η0

λkj−1
∥xkj − xkj−1∥,

i.e.,
λkj

λkj−1
<

η1

η0
∀kj .

On the other hand, from Lemma 2.2 we have

lim
kj→+∞

λkj
= lim

kj→+∞
λkj−1 = lim

k→+∞
λk = λ∗, (25)

hence we deduce that
λ∗

λ∗ ≤ η1

η0
< 1.

It is a contradiction and we finish the proof.

Remark 2.2. From Lemma 2.3 we note that from k (obtained by Lemma 2.3):

λk ≤ λk < λk+1 ≤ λ∗ = lim
k→+∞

λk, k ≥ k.

Lemma 2.4. For any x ∈ Rn we have

f(x) − f(xk+1) ≥ 1 − η0

λk
∥xk+1 − xk∥2 + 1

λk
⟨xk − xk+1, x − xk⟩, ∀k ≥ k. (26)

Proof. By the convexity of f , we have

f(x) − f(xk+1) =f(x) − f(xk) + f(xk) − f(xk+1)
≥⟨∇f(xk), x − xk⟩ + ⟨∇f(xk+1), xk − xk+1⟩

= 1
λk

⟨xk − xk+1, x − xk⟩ + ⟨∇f(xk+1) − ∇f(xk), xk − xk+1⟩⟨∇f(xk), xk − xk+1⟩.
(27)

P.T. Hoai et al.8

Since

⟨∇f(xk+1) − ∇f(xk), xk − xk+1⟩ = −⟨∇f(xk) − ∇f(xk+1), xk − xk+1⟩
≥ −∥∇f(xk) − ∇f(xk+1)∥∥xk − xk+1∥

≥ − η0

λk
∥xk+1 − xk∥2 ∀k ≥ k

(28)

and
⟨∇f(xk), xk − xk+1⟩ = 1

λk
∥xk − xk+1∥2. (29)

Combining (27), (28) and (29) we get the desired conclusion (26).

Remark 2.3. If we replace x by xk in (26) then we obtain the decreasing of {f(xk)}k≥k since

f(xk) − f(xk+1) ≥ 1 − η0

λk
∥xk+1 − xk∥2 = (1 − η0)λk∥∇f(xk)∥2 ≥ (1 − η0)λk∥∇f(xk)∥2, ∀k ≥ k. (30)

Theorem 2.1. Suppose that problem (P) satisfies Assumptions 1 and 2. Then the sequence {xk} generated by
Algorithm 2.1 (NGD) converges to an optimal solution of problem (P) and for any x∗ ∈ X∗ we have

f(xk) − f∗ = f(xk) − f(x∗) ≤ 1 − η0

λk

∥x∗ − xk∥2

k − k
= O

(
1
k

)
∀k ≥ k + 1. (31)

Proof. Since f(x∗) − f(xi+1) ≤ 0 then from (26), replacing x by x∗ we get

⟨xi − xi+1, x∗ − xi⟩ ≤ 0, ∀i ≥ k (32)

and

f(x∗) − f(xi+1) ≥ 1 − η0

λi

(
∥xi+1 − xi∥2 + 2⟨xi − xi+1, x∗ − xi⟩

)
+ 2η0 − 1

λi︸ ︷︷ ︸
<0

⟨xi − xi+1, x∗ − xi⟩︸ ︷︷ ︸
≤0(by (32))

≥ 1 − η0

λi

(
∥x∗ − xi+1∥2 − ∥x∗ − xi∥2) ∀i ≥ k. (33)

By (33) we see that ∥x∗ − xi+1∥2 − ∥x∗ − xi∥2 ≤ 0 ∀i ≥ k and using the fact that λi ≥ λk ∀i ≥ k, we have

f(x∗) − f(xi+1) ≥ 1 − η0

λk

(
∥x∗ − xi+1∥2 − ∥x∗ − xi∥2) ∀i ≥ k. (34)

Telescoping inequality (34) from i = k to k + k − 1 (k ≥ 1), we deduce

kf(x∗) −
k+k−1∑

i=k

f(xi+1) ≥ 1 − η0

λk

(
∥x∗ − xk+k∥2 − ∥x∗ − xk∥2

)
. (35)

Moreover, the decreasing of {f(xk)}k≥k obtained in Remark 2.3 follows

−kf(xk+k) ≥ −
k+k−1∑

i=k

f(xi+1). (36)

Then combining (35) with (36), we arrive at

f(xk+k) − f(x∗) ≤ 1 − η0

λk

∥x∗ − xk∥2

k
∀k ≥ 1,

A novel stepsize for gradient descent method 9

i.e.,

f(xk) − f(x∗) ≤ 1 − η0

λk

∥x∗ − xk∥2

k − k
= O

(
1
k

)
∀k ≥ k + 1.

Hence, we get
lim

k→+∞
f(xk) = f∗.

Now, remember that f is continuous and the sequence {xk} is bounded. Consequently, we confirm that every cluster
point of {xk} belongs to X∗. Take x as an arbitrary cluster point of {xk} means that there exists a subsequence {xkj }
such that xkj → x. Moreover, because x ∈ X∗, from (33) we obtain the decreasing monotonicity of {∥x − xk∥}k≥k.

It follows that the sequence {∥x − xk∥}k≥k is convergent because it is decreasing and bounded by zero. Finally, we
get the desired conclusion since

lim
k→+∞

∥x − xk+1∥ = lim
kj→+∞

∥x − xkj ∥ = 0.

Next, we will prove a stronger result for Algorithm 2.1 if f is locally strongly convex. The details are in the
following theorem.

Theorem 2.2. Suppose that problem (P) satisfies Assumptions 1 and 2. In addition, f is locally strongly convex.
Then the sequence {xk} generated by Algorithm 2.1 satisfies

(i)

∥xk+1 − x∗∥2 ≤
(

1 −
σλk

2(1 − η0)

)
∥xk − x∗∥2, ∀k ≥ k (37)

(ii)

f(xk+1) − f(x∗) ≤
(

1 − η0

λk

− σ

2

)(
1 −

σλk

2(1 − η0)

)k+1−k

∥xk − x∗∥2, ∀k ≥ k, (38)

where σ > 0 is strong convexity constant of f on the compact set S = conv{x∗, x0, x1, ...}.

Proof. (i) f is σ-strongly convex over S meaning that

∥∇f(xk) − ∇f(xk−1)∥ ≥ σ∥xk − xk−1∥. (39)

From Lemma 2.3 it is easy to see that σ ≤ η0

λk−1
, ∀k ≥ k, hence σλk ≤ σλk ≤ η0 <

1
2 , ∀k ≥ k.

Because f is σ− strongly convex on S then

f(x) − f(xk) ≥ ⟨∇f(xk), x − xk⟩ + σ

2 ∥x − xk∥2, ∀x ∈ S. (40)

Now, using the second line in formula (27) of Lemma 2.4 we obtain that

f(x) − f(xk+1) ≥ 1 − η0

λk
∥xk+1 − xk∥2 + σ

2 ∥x − xk∥2 + 1
λk

⟨xk − xk+1, x − xk⟩ ∀x ∈ S, k ≥ k. (41)

Let x = x∗ in (41), we derive that

⟨xk − xk+1, x∗ − xk⟩ ≤ 0 ∀k ≥ k. (42)

P.T. Hoai et al.10

Additionally, for all x ∈ S, k ≥ k,

f(x∗) − f(xk+1) ≥ 1 − η0

λk

(
∥xk+1 − x∗∥2 − 2⟨xk − xk+1, x∗ − xk⟩ − ∥x∗ − xk∥2)+ σ

2 ∥x∗ − xk∥2+

+ 1
λk

⟨xk − xk+1, x∗ − xk⟩

≥ 1 − η0

λk
∥x∗ − xk+1∥2 +

(
σ

2 − 1 − η0

λk

)
∥x∗ − xk∥2 + 2η0 − 1

λk
⟨xk − xk+1, x∗ − xk⟩︸ ︷︷ ︸

≥0 (by (42) and η0< 1
2).

(43)

Remember that f(x∗) − f(xk+1) ≤ 0 ∀k then we have

1 − η0

λk
∥x∗ − xk+1∥2 ≤

(
1 − η0

λk
− σ

2

)
∥x∗ − xk∥2, k ≥ k. (44)

establishing

∥xk+1 − x∗∥2 ≤
(

1 − σλk

2(1 − η0)

)
∥xk − x∗∥2 ≤

(
1 −

σλk

2(1 − η0)

)
∥xk − x∗∥2, k ≥ k.

(ii) From (43), we also get

f(xk+1) − f(x∗) ≤ −1 − η0

λk
∥x∗ − xk+1∥2 −

(
σ

2 − 1 − η0

λk

)
∥x∗ − xk∥2

≤
(

1 − η0

λk
− σ

2

)
∥x∗ − xk∥2 ≤

(
1 − η0

λk

− σ

2

)
∥x∗ − xk∥2

≤
(

1 − η0

λk

− σ

2

)(
1 −

σλk

2(1 − η0)

)k+1−k

∥xk − x∗∥2, k ≥ k.

Remark 2.4. Under the assumptions of Theorem 2.2, we end this section by several remarkable points as follows:

(i) The assertion (i) of Theorem 2.2 shows the linear convergence rate of {xk}k≥k.

(ii) By Theorem 2.2 (ii) and taking into account that log(1 − x) < −x for x ∈ (0, 1), we will get f(xk) − f∗ ≤ ε if

k ≥ k + 2(1 − η0)
σλk

log
(

1
ε

)
+ 2(1 − η0)

σλk

log
(2 − 2η0 − σλk

2λk

∥xk − x∗∥2
)

. (45)

3. A new projected gradient descent algorithm for solving a class of nonconvex optimization
over a closed convex set

In this section, we propose a new algorithm for solving a class of nonconvex optimization over a closed convex set
that is

min
x∈C

f(x), (P1)

where C ⊂ Rn is a nonempty closed convex set and f satisfies the followings

(C1) f is smooth and globally gradient Lipschitz with constant L on C,

(C2) For u, v ∈ C, the function guv : R → R defined by

guv(t) = f ′
t(u + t(v − u)) = ⟨∇f(u + t(v − u)), v − u⟩

is quasiconvex on [0, 1].

A novel stepsize for gradient descent method 11

We remember that the necessary optimality condition for a local optimal solution z of problem (P1) is the stationarity
condition that

⟨∇f(z), x − z⟩ ≥ 0, for all x ∈ C.

This is also sufficient if f is convex. The stationarity can be also verified via the simple equality

z = PC(z − s∇f(z)), for some s > 0. (46)

The above condition (46) is ensured for the stationarity of z for any s > 0. One can see [4] for more details.
Motivated by (46) it is known that a traditional method for finding a stationary point of the problem (P1) is the
projected gradient (PG) algorithm that calculates the iterative sequence

xk+1 = PC(xk − λk∇f(xk)), (47)

where PC is the orthogonal projection onto C defined by

PC(x) = argmin{∥y − x∥ : y ∈ C}.

Obviously, the projected gradient algorithm becomes GD as C = Rn. Similar to GD, one can control the performance
of the PG algorithm through stepsize λk. For the general case, the function f is global L-Lipschitz gradient, the
gradient projection method is convergent if we choose constant stepsize λk ∈ (0, 2

L) or by backtracking procedure,
see [4] for more details. However, as presented, it will be saved the computational effort (to estimate L or implement
the backtracking procedure) if we apply some adaptive stepsize for PG like the one used in Algorithm 2.1 or AdGD.
This suggests us to build a new algorithm based on the projected gradient with our new stepsize for solving the
problem (P1).

Before presenting the new algorithm in detail, let us discuss the assumptions (C1) and (C2) of f . It should be
noted that if f is convex then the condition (C2) is always satisfied but the converse is not true. For instance, the
quadratic function f(x) = 1

2 xT Ax + bT x (A is a symmetric matrix in Rn×n and b ∈ Rn) has

guv(t) = ⟨A(u + t(v − u)) + b, v − u⟩

which is linear (with respect to variable t) and hence quasiconvex on R for all u, v ∈ Rn although f may be
nonconvex for non-semipostive definite matrix A. Therefore, functions satisfying (C2) are nonconvex in general.
Now, without the convexity of f we cannot obtain the boundedness of {xk} or the lower boundedness of {λk}
by using similar arguments like in Lemma 2.1. However, the condition (C1) is helpful to prove the existence of
limitation of {λk}. Below is the projected gradient algorithm based on our new stepsize.

Algorithm 3.1 (PG-NGD)
Step 0 (Initialization). Select λ0 > 0, 0 < η1 < η0 < 1, a tolerance ε > 0 and a positive real sequence {εk} such
that

∞∑
k=0

εk < ∞. Choose x0 ∈ Rn, x1 = PC(x0 − λ0∇f(x0)), and set k = 1.

Step 1. If ∥∇f(xk) − ∇f(xk−1)∥ > η0
λk−1

∥xk − xk−1∥ then compute

λk = η1
∥xk − xk−1∥

∥∇f(xk) − ∇f(xk−1)∥ (48)

else
λk = (1 + εk−1)λk−1.

Step 2. Compute xk+1 = PC(xk − λk∇f(xk)).
Step 3. If ∥xk+1 − xk∥ < ϵ then STOP

else setting k := k + 1 and return to Step 1.

To prove the convergence of Algorithm 3.1 we have to confirm some similar results as the previous section.

Lemma 3.1. For Algorithm 3.1, we have inf
k≥0

λk > 0 and {λk} is convergent.

P.T. Hoai et al.12

Proof. By induction, it is easy to show that λk ≥ min{λ0, η1
L } > 0 for all k ≥ 0. Hence inf

k≥0
λk > 0. The remaining

assertion is proved by analogous arguments as Lemma 2.2.

Lemma 3.2. For Algorithm 3.1, there exists k̂ such that

∥∇f(xk) − ∇f(xk−1)∥ ≤ η0

λk−1
∥xk − xk−1∥ ∀k ≥ k̂.

Proof. The same as the proof of Lemma 2.3.

Lemma 3.3. Let f be a function that satisfies the conditions (C1) and (C2). Then the sequence {xk} generated by
Algorithm 3.1 has the following property

f(xk) − f(xk+1) ≥ 1 − η0

λk
∥xk+1 − xk∥2, ∀k ≥ k̂.

Proof. By using the Fundamental Theorem of Calculus, for any k ≥ k̂ we have

f(xk+1) − f(xk) =
∫ 1

0
⟨∇f(xk + t(xk+1 − xk)), xk+1 − xk⟩dt

= ⟨∇f(xk), xk+1 − xk⟩ +
∫ 1

0
⟨∇f(xk + t(xk+1 − xk)) − ∇f(xk), xk+1 − xk⟩dt

= ⟨∇f(xk), xk+1 − xk⟩ +
∫ 1

0
hk(t)dt. (49)

On the other hand,

hk(t) = ⟨∇f(xk + t(xk+1 − xk)) − ∇f(xk), xk+1 − xk⟩ = gxkxk+1(t) − ⟨∇f(xk), xk+1 − xk⟩

is quasiconvex in [0, 1] therefore, for all t ∈ [0, 1],

hk(t) ≤ max{hk(0), hk(1)} = max{0, hk(1)} ≤ |hk(1)| = |⟨∇f(xk+1) − ∇f(xk), xk+1 − xk⟩|. (50)

Next, combining with Lemma 3.2, we infer that∫ 1

0
hk(t)dt ≤ η0

λk
∥xk+1 − xk∥2, ∀k ≥ k̂. (51)

Moreover, xk+1 = PC(xk − λk∇f(xk)) then by Theorem 9.8 in [4] we have

⟨xk − λk∇f(xk) − xk+1, xk − xk+1⟩ ≤ 0,

from which we obtain
⟨∇f(xk), xk+1 − xk⟩ ≤ − 1

λk
∥xk+1 − xk∥2. (52)

It follows from (49), (51) and (52) that

f(xk) − f(xk+1) ≥ 1 − η0

λk
∥xk+1 − xk∥2 ∀k ≥ k̂. (53)

The following theorem gives the convergence of Algorithm 3.1 for solving the problem (P1).

Theorem 3.1. Suppose that f satisfies the conditions (C1) and (C2). Then we have the following assertions for
Algorithm 3.1:

(i) The sequence {f(xk)}k≥k̂ is non-decreasing and f(xk+1) < f(xk) unless xk is a stationary point of problem
(P1) for any k ≥ k̂.

A novel stepsize for gradient descent method 13

(ii) If f is lower bounded on C then f(xk) − f(xk+1) → 0 and ∥xk − xk+1∥ → 0.

Proof. (i) Since η0 < 1 then from (53) we obtain f(xk) ≥ f(xk+1) for all k ≥ k̂ and the equality holds for only
case xk+1 = xk = PC(xk − λk∇f(xk)) or xk is a stationary point of (P1).

(ii) From (i) the sequence {f(xk)}k≥k̂ is nondecreasing and lower bounded on C then it has a finite limitation.
Therefore f(xk) − f(xk+1) → 0 and ∥xk − xk+1∥ → 0 as a consequence.

4. Numerical experiments

Firstly, we test the performance of our new stepsize for the GD scheme by comparing Algorithm 2.1 (NGD) with
GD and AdGD for some benchmark problems provided by [17]. Note that we use the original python code for GD
and AdGD from [17]4. We report the details in Section 4.1.

Secondly, we do a preliminary computational test for Algorithm 3.1 by comparing it with the two related
algorithms including projected gradient with constant stepsize 1/L (PG-GD) and projected gradient with stepsize
of AdGD (PG-AdGD). The tested data for this part is synthetic and will be described in detail in Section 4.2.

To implement Algorithm 2.1 and Algorithm 3.1, it is necessary to choose the suitable parameters λ0, η0, η1, εk

for each kind of tested instance. In particular, we take the convergent series defined by

εk−1 = α(ln k)β

k1.1 , α > 0, β ≥ 0, k ≥ 1. (54)

All the mentioned algorithms were coded in Python.

4.1. Aglorithm 2.1 (NGD)
We reuse some benchmarks in [17] including logistic regression, matrix factorization, and cubic regularization

for testing. The interested readers can see [17] to find more details about the description of these problems. We
use the same notations as [17] for the reported results.

For the logistic regression, the loss function is defined by 1
n

n∑
i=1

log(1 + exp (−bia
T
i x)) + γ

2 ∥x∥2, where (ai, bi) ∈

Rd ×R, i = 1, ..., n are observations and γ > 0 is a l2 regularization parameter. In this case, the objective is strongly
convex. The tested datasets include “covtype”, “w8a” and “mushrooms” from libsvm5 library. The results with
(λ0, η0, η1, α, β) = (1e − 06, 0.2, 0.15, 0.9, 5) are presented in Fig. 1.

The second tested problem is matrix factorization that is common in recommendation systems [25]. The data
is a matrix A ∈ Rm×n and r < min{m, n}; we need to find U ∈ Rm×r and V ∈ Rr×n minimizing the nonconvex
objective f(U, V) = ∥A − UV ∥2

F . Similar to [17], we use MoviLens 100K dataset [12] and do the experiments with
several values of r = 10, 20, 30. The results with (λ0, η0, η1, α, β) = (1e − 05, 0.49, 0.48, 75, 0) are shown in Fig. 2.

The last benchmark is solving the subproblem obtained by cubic regularization of the Newton method. A mod-
ified Newton step xk+1is defined by TM (xk) where TM (xk) is a global optimal solution of min

x∈Rd
F (x) = ⟨∇f(xk), x −

xk⟩+ 1
2 ⟨∇2f(xk)(x−xk), x−xk⟩+ M

6 ∥x−xk∥3. See [20, 21] for more details. Analogous to [17] we set xk = 0; f is logis-
tic loss of the “covtype” dataset and M = 10, 20, 100. The results with (λ0, η0, η1, α, β) = (1e − 04, 0.499, 0.49, 2, 4)
are in Fig. 3.

From Fig. 1, 2 and 3 we see that our NGD provides better performance than the others. Especially for the
nonconvex instances, the deviation between our method and the remaining ones are really significant. NGD makes
the objective value decreasing rapidly after fewer iterations than GD and AdGD. It is not surprising that GD is the
most expensive method among all.

4.2. Algorithm 3.1 (PG-NGD)
In this section, we implement Algorithm 3.1 (PG-NGD) for solving the following problem

min
{

f(x) = 1
2xT Ax + bT x : x ∈ C

}
, (55)

4https://github.com/ymalitsky/adaptive gd
5https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

P.T. Hoai et al.14

0 2000 4000 6000 8000 10000
Iteration

10-6

10-5

10-4

10-3

10-2

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(a) Covtype

0 2000 4000 6000 8000
Iteration

10-13

10-10

10-7

10-4

10-1

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(b) W8a

0 500 1000 1500 2000 2500 3000
Iteration

10-16

10-13

10-10

10-7

10-4

10-1

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(c) Mushrooms

Fig. 1: Results for logistic regression.

0 1000 2000 3000 4000 5000 6000
Iteration

10−10

10−7

10−4

10−1

102

105

‖∇
f(x

k)‖

GD
AdGD
NGD

(a) r = 10

0 5000 10000 15000 20000 25000 30000
Iteration

10−10

10−7

10−4

10−1

102

105

‖∇
f(x

k)‖

GD
AdGD
NGD

(b) r = 20

0 20000 40000 60000 80000 100000
Iteration

10−9

10−6

10−3

100

103

106

‖∇
f(x

k)‖

GD
AdGD
NGD

(c) r = 30

Fig. 2: Results for matrix factorization. The objective is nonconvex.

where A ∈ Rn×n is a real symmetric matrix which is created by M + MT with M is a matrix that has all entries
generated randomly in [−1, 1] by uniform distribution; b ∈ Rn is a vector that is generated randomly in [−1, 1] by
uniform distribution; C can be a box [l, u] = [−1, 1] ⊂ Rn or a simplex △n = {x ∈ Rn

+ |
n∑

i=1
xn = 10}; the starting

point x0 is generated radomly in [0, 1] by uniform distribution and the stopping criteria is ∥xk+1 − xk∥ ≤ 1e − 08.

We set n = 1000, 5000, 10000 and report the results with (λ0, η0, η1, α, β) = (1e − 04, 0.5, 0.45, 100, 3) in Fig. 4 and
5 for box and simplex constraint sets, respectively. It is shown that PG-NGD achieves the required tolerance very
quickly for all the cases.

5. Conclusion

In this paper, we propose a new adaptive stepsize for the GD scheme. Under the locally Lipschitzness of the gradient
of the convex objective we obtain the complexity O(1

k) of f(xk) − f∗. In addition, we show that the locally strong
convexity of f follows the linear convergence of the corresponding GD. Specifically, our stepsize can be applied
for projected gradient scheme to solve a class of nonconvex optimization problems over a closed convex set. The
sequence of our new stepsize is proved increasing from some fixed iteration. Future research include accelerated
and stochastic versions of GD with our new stepsize, as well as convergence of general nonconvex problem without
global Lipschitz assumption on the gradient.

Acknowledgement

The authors wish to thank the anonymous referees for their useful comments which helped them to improve the
paper greatly. This research is funded by Hanoi University of Science and Technology (HUST) under project number
T2023-PC-081.

A novel stepsize for gradient descent method 15

0 1000 2000 3000 4000
Iteration

10-10

10-7

10-4

10-1

102

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(a) M = 10

0 500 1000 1500 2000 2500 3000
Iteration

10-10

10-7

10-4

10-1

102

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(b) M = 20

0 200 400 600 800 1000
Iteration

10-10

10-7

10-4

10-1

102

f(
x
k
)
−
f
∗

GD
AdGD
NGD

(c) M = 100

Fig. 3: Results for solving a subproblem from cubic regularization.

0 500 1000 1500 2000 2500 3000
Iteration

10−8

10−6

10−4

10−2

100

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(a) n = 1000

0 500 1000 1500 2000 2500 3000
Iteration

10−7

10−5

10−3

10−1

101

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(b) n = 5000

0 500 1000 1500 2000 2500 3000
Iteration

10−4

10−2

100

102

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(c) n = 10000

Fig. 4: Results for nonconvex quadratic programming over the box [−1, 1].

0 500 1000 1500 2000 2500 3000
Iteration

10−7

10−5

10−3

10−1

101

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(a) n = 1000

0 500 1000 1500 2000 2500 3000
Iteration

10−7

10−5

10−3

10−1

101

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(b) n = 5000

0 500 1000 1500 2000 2500 3000
Iteration

10−7

10−5

10−3

10−1

101

||x
k
+
1
−
xk
||

PG-GD
PG-AdGD
PG-NGD

(c) n = 10000

Fig. 5: Results for nonconvex quadratic programming over ∆n.

References

[1] L. Armijo, Minimization of functions having lipschitz continuous frst partial derivatives, Pac. J. Math. 16
(1966) 1–3.

[2] J. Barzilai, J.M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141–148.

[3] H. H. Bauschke, J. Bolte, M. Teboulle, A descent lemma beyond Lipschitz gradient continuity: first-order
methods revisited and applications, Math. Oper. Res. 42 (2016) 330–348.

[4] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB,
Society for Industrial and Applied Mathematics, USA, 2014.

[5] D.P. Bertsekas, Nonlinear programming, 3rd Edition, Athena Scientific, 2016.

P.T. Hoai et al.16

[6] O. Burdakov, Y.H. Dai, N. Huang, Stabilized barzilai-borwein method, J. Comput. Math. 37 (2019) 916-936.

[7] J.Y.B. Cruz, T.T.A. Nghia, On the convergence of the forward-backward splitting method with linesearches,
Optim. Methods Softw. 31 (2016) 1209-1238.

[8] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization,
J. Mach. Learn. Res. 12 (2011) 2121-2159.

[9] A.A. Goldstein, Cauchy’s method of minimization, Numer. Math. 4 (1962) 146-150.

[10] O. Güler, Foundations of optimization, Springer, 2010.

[11] N. Hallak, M. Teboulle, A non-euclidean gradient descent method with sketching for unconstrained matrix
minimization, Oper. Res. Lett. 47 (2019) 421-426.

[12] F.M. Harper, J.A. Konstan, The movielens datasets: History and context, ACM Trans. Interact. Intell. Syst.
5 (2016) 1-19.

[13] D.P. Kingma, L.J. Ba, Adam: A method for stochastic optimization, ICLR (Poster) 2015.

[14] C. Lemaréchal, Cauchy and the gradient method, Doc. Math. Extra Vol., Optimization Stories, 251-254 (2012).

[15] H. Liu, T. Wang, Z. Liu, Some modifed fast iterative shrinkage thresholding algorithms with a new adaptive
non-monotone stepsize strategy for nonsmooth and convex minimization problems, Comput. Optim. Appl. 83
(2022) 651-691.

[16] C.J. Maddison, D. Paulin, Y.W. Teh, A. Doucet, Dual space preconditioning for gradient descent, SIAM J.
Optim. 31 (2021) 991-1016.

[17] Y. Malitsky, K. Mishchenko, Adaptive gradient descent without descent, ICML 119 (2020) 6702-6712.

[18] H.B. McMahan, M. Streeter, Adaptive bound optimization for online convex optimization, Proceedings of the
23rd Annual Conference on Learning Theory (COLT) 2010.

[19] A.S. Nemirovsky, D.B. Yudin, Problem complexity and method efficiency in optimization, John Wiley Sons,
Inc., New York, 1983.

[20] Y. Nesterov, Lectures on convex optimization, 2nd Edition, Springer, 2018.

[21] Y. Nesterov, B.T. Polyak, Cubic regularization of newton method and its global performance, Math. Program.
108 (2006) 177-205.

[22] B.T. Polyak, Minimization of nonsmooth functionals, Zh. Vychisl. Mat. Mat. Fiz., 9(3) (1969) 509-521.

[23] M. Prazeres, A.M. Oberman, Stochastic gradient descent with polyak’s learning rate, J. Sci. Comput. 89 (2021)
1-16.

[24] S. Salzo, The variable metric forward-backward splitting algorithm under mild differentiability assumptions,
SIAM J. Optim. 27 (2017) 2153-2181.

[25] P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques for Recommender Systems,
Springer Briefs in Computer Science, 2016.

[26] A. Taylor, F. Bach, Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential
functions, Proceedings of Machine Learning Research 99 (2019), 1-59.

[27] F. Wang, Polyak’s gradient method for split feasibility problem constrained by level sets, Numer. Algor. 77
(2018) 925-938.

