
Strong Partitioning and a Machine Learning Approximation for

Accelerating the Global Optimization of Nonconvex QCQPs

Rohit Kannan1, Harsha Nagarajan2, and Deepjyoti Deka2

1Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
2Applied Mathematics & Plasma Physics (T-5), Los Alamos National Laboratory, Los Alamos, NM, USA.

E-mail: {rohitkannan@vt.edu, harsha@lanl.gov, deepjyoti@lanl.gov}

Version 3 (this document): September 15, 2024

Version 2: February 22, 2023

Version 1: December 31, 2022

Abstract

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-
constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based convex mixed-
integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong parti-
tioning to optimally partition variable domains without sacrificing global optimality. Since solving this
max-min strong partitioning problem exactly can be very challenging, we design a local optimization
method that leverages generalized gradients of the value function of its inner-minimization problem.
However, even solving the strong partitioning problem to local optimality can be time-consuming. To
address this, we propose a simple and practical machine learning (ML) approximation for homogeneous
families of QCQPs. We conduct a detailed computational study on randomly generated QCQP families,
including instances of the pooling problem, using the open-source global solver Alpine. Numerical exper-
iments demonstrate that our ML approximation of strong partitioning reduces Alpine’s solution time by
a factor of 2 to 4.5 on average, with a maximum reduction factor of 10 to 200 across the different QCQP
families.

Key words: Nonconvex Quadratically-Constrained Quadratic Programming, Global Optimization,
Piecewise McCormick Relaxations, Strong Partitioning, Sensitivity Analysis, Machine Learning, Pooling
Problem

1 Introduction

Many real-world applications involve the repeated solution of the same underlying quadratically-constrained
quadratic program (QCQP) with slightly varying model parameters. Examples include the pooling problem
with varying input qualities [44] and the cost-efficient operation of the power grid with varying loads and
renewable sources [9]. These hard optimization problems are typically solved using off-the-shelf global
optimization software [8, 45, 47, 54] that do not fully exploit the shared problem structure—heuristics
within these implementations are engineered to work well on average over a diverse set of instances and
may perform suboptimally for instances from a specific application [38]. Recent work [6, 39] has shown that
tailoring branching decisions can significantly accelerate branch-and-bound (B&B) algorithms for mixed-
integer linear programs (MILPs). In contrast, only a few papers (see Section 2.2) attempt to use machine
learning (ML) to accelerate the guaranteed global solution of nonconvex nonlinear programs.

1

We use ML to accelerate partitioning algorithms [7, 55, 60] for the global minimization of nonconvex
QCQPs. Partitioning algorithms determine lower bounds on the optimal value of a nonconvex QCQP using
piecewise convex relaxations. They begin by selecting a subset of the continuous variables involved in
nonconvex terms for partitioning. At each iteration, they refine the partitions of these variables’ domains
and update the piecewise convex relaxations in their lower bounding formulation. A convex mixed-integer
program (MIP) is then solved to determine a lower bound [40, 59]. Partitioning algorithms typically use
heuristics to specify the locations of partitioning points and continue to refine their variable partitions until
the lower bounds converge to the optimal objective value. Since the complexity of their MIP relaxations can
grow significantly with each iteration, the choice of partitioning points in the initial iterations can have a
huge impact on the performance of these algorithms [47]. Despite their importance, the optimal selection of
partitioning points is not well understood, and current approaches resort to heuristics such as bisecting the
active partition [15, 55, 60] or adding partitioning points near the lower bounding solution [7, 47] to refine
variable partitions.

Proposed approach. We learn to optimally partition variables’ domains in a given QCQP without sac-
rificing global optimality. Similar to strong branching in B&B algorithms for MIPs [1, 44], we introduce
strong partitioning, a new concept in the global optimization literature, to select partitioning points for the
construction of piecewise convex relaxations of nonconvex problems. The key idea behind strong partitioning
is to determine a specified number of partitioning points per variable such that the resulting piecewise convex
relaxation-based lower bound is maximized. We formulate strong partitioning as a max-min problem, where
the outer-maximization selects the partitioning points and the inner-minimization solves the piecewise convex
relaxation-based lower bounding problem for a given partition. Since solving this max-min problem exactly
can be very challenging, we design a local optimization method that uses generalized gradients of the value
function of the inner-minimization problem within a bundle solver for nonsmooth nonconvex optimization.
However, even finding a local solution to this max-min problem can be computationally expensive as each
iteration of the bundle method requires the solution of a MIP. Therefore, we propose a simple and practical
off-the-shelf ML model to imitate the strong partitioning strategy for homogeneous QCQP instances. We
evaluate the performance of strong partitioning and its ML approximation on randomly generated QCQP
instances, including instances of the pooling problem, using the open-source global solver Alpine [46, 47].
Numerical experiments demonstrate that our ML approximation of strong partitioning reduces Alpine’s so-
lution time by a factor of 2 to 4.5 on average, with a maximum reduction factor of 10 to 200 across the
different QCQP families. Additionally, the results indicate that if an efficient ML model could perfectly
imitate the strong partitioning strategy, it would reduce Alpine’s solution time by a factor of 3.5 to 16.5 on
average and by a maximum factor of 15 to 700 over the same set of instances. This underscores the potential
of strong partitioning as an expert strategy for learning to accelerate the global optimization of nonconvex
QCQPs.

This paper is organized as follows. Section 2 reviews ML approaches to accelerate the guaranteed global
solution of MILPs and mixed-integer nonlinear programs. Section 3 outlines partitioning-based bounding
methods for nonconvex QCQPs. Section 4 introduces strong partitioning and designs an algorithm for its
local solution with theoretical guarantees. Section 5 outlines our ML approximation of strong partitioning
for homogeneous QCQP families, and Section 6 presents detailed computational results demonstrating the
effectiveness of using strong partitioning and our ML approximation to select Alpine’s partitioning points
for randomly generated families of QCQPs. We conclude with directions for future research in Section 7.

Notation. Let [n] := {1, . . . , n}, R+ denote the set of nonnegative reals, Sn denote the set of symmetric
n × n matrices, and ⟨A,B⟩ denote the Frobenius inner product between A,B ∈ Sn. We write vi to denote
the ith component of v = (v1, v2, . . . , vn) ∈ Rn, Mi and Mij to denote the ith row and (i, j)th entry of a
matrix M , and |C|, ri(C), and conv(C) to denote the cardinality, relative interior, and convex hull of a set C.

2

2 Related work

Optimization solvers tune algorithmic parameters through extensive testing on benchmark libraries. Many
solvers also incorporate problem-specific analysis to set key parameters. However, these tunings are typically
based on efficiently computable heuristics designed to perform well across a broad range of instances, which
may not fully exploit the unique characteristics of each specific instance. Machine learning offers the poten-
tial to efficiently approximate more sophisticated, instance-specific heuristics, and could lead to significant
computational gains for particularly challenging instances. Bengio et al. [6], Cappart et al. [14] and Lodi and
Zarpellon [39] survey the burgeoning field of using ML to accelerate MILP and combinatorial optimization
algorithms. In the next sections, we review related approaches on learning to branch for MILPs and learning
to accelerate the guaranteed solution of (mixed-integer) nonlinear programs.

2.1 Learning to branch for MILPs

Branch-and-bound and its variants form the backbone of modern MILP solvers. The choice of branching
variable at each node of the B&B tree can have a huge impact on the run time of B&B algorithms [1].
Strong branching is a heuristic for selecting the branching variable that often empirically results in a small
number of B&B nodes explored. It selects the variable that maximizes the product of improvements in the
lower bounds of the two child nodes, assuming both are feasible. While strong branching results in a 65%
reduction in the number of nodes explored by the B&B tree on average (relative to the default branching
strategy) over standard test instances, it also leads to a 44% increase in the average solution time [1]. MILP
solvers therefore tend to use computationally cheaper heuristic approximations of strong branching, such as
reliability, pseudocost, or hybrid branching. Motivated by the promise of strong branching, most approaches
on learning to branch for MILPs aim to develop a computationally efficient and effective ML approximation,
e.g., using extremely randomized trees [3], support vector machines [33], or graph neural networks [23, 48].
Other ML approaches for branching variable selection use online and reinforcement learning [27], or learn
combinations of existing heuristics to make better branching decisions [18].

2.2 Learning to solve mixed-integer nonlinear problems

There are relatively fewer approaches in the literature for accelerating the guaranteed global solution of
nonconvex (mixed-integer) nonlinear programs using ML. To the best of our knowledge, none of these
approaches use ML to accelerate partitioning-based global optimization algorithms.

Baltean-Lugojan et al. [4] consider the global solution of nonconvex QCQPs using semidefinite program-
ming relaxations. To mitigate the computational burden of these relaxations, they use ML to construct
effective linear outer-approximations. Specifically, they train a neural network to select cuts from a semidef-
inite relaxation based on their sparsity and predicted impact on the objective. Their approach results in
computationally efficient relaxations that can be effectively integrated into global solvers.

Ghaddar et al. [24] explore branching variable selection in a B&B search tree embedded within the
reformulation-linearization technique for solving polynomial problems [56]. They use ML to choose the
“best branching strategy” from a portfolio of branching rules, designing several hand-crafted features to
optimize a quantile regression forest-based approximation of their performance metric. González-Rodŕıguez
et al. [25] build on this approach by using ML to select a subset of second-order cone and semidefinite
constraints and further strengthen the formulation.

Bonami et al. [11] train classifiers to predict whether linearizing products of binary variables or binary
and continuous variables is computationally advantageous for solving mixed-integer quadratic programs.
Nannicini et al. [49] train a support vector machine classifier to decide if an expensive optimality-based bound
tightening routine should replace a cheaper feasibility-based routine for mixed-integer nonlinear programs.
Cengil et al. [16] consider the AC optimal power flow problem and train a neural network to identify a small
subset of lines and buses for which an optimality-based bound tightening routine is applied. Finally, Lee
et al. [36] use classification and regression techniques to identify effective cuts for the generalized Benders
decomposition master problem.

3

In the next section, we review partitioning algorithms for the global minimization of QCQPs, before
introducing strong partitioning and an ML approximation to accelerate these algorithms.

3 Partitioning-based bounds for QCQPs

Consider the nonconvex QCQP

min
x∈[0,1]n

xTQ0x+ (r0)Tx (1)

s.t. xTQix+ (ri)Tx ≤ bi, ∀i ∈ [m],

where b ∈ Rm, ri ∈ Rn, ∀i ∈ {0} ∪ [m], and Qi ∈ Sn, ∀i ∈ {0} ∪ [m], are not assumed to be positive
semidefinite. QCQPs with equality constraints and different variable bounds can be handled using simple
transformations. Polynomial optimization problems may also be reformulated as QCQPs through the addi-
tion of variables and constraints. Pardalos and Vavasis [52] show that the special case of problem (1) where
Q0 has a single negative eigenvalue and Qi = 0, ∀i ∈ [m], is NP-hard.

QCQPs arise in several applications [22, 44] such as facility location [35], refinery optimization [30, 61],
and electric grid optimization [9]. By introducing auxiliary variables and constraints, we can reformulate
problem (1) into the following equivalent form:

v∗ := min
x∈[0,1]n,W∈Sn

(r0)
T
x+ ⟨Q0,W ⟩ (QCQP)

s.t. (ri)
T
x+ ⟨Qi,W ⟩ ≤ bi, ∀i ∈ [m],

Wij = xixj , ∀(i, j) ∈ B,
Wkk = x2

k, ∀k ∈ Q,

where the index sets B ⊂ {(i, j) ∈ [n]2 : i < j} and Q ⊂ [n] denote the (pairs of) variables participating
in distinct bilinear and univariate quadratic terms. We assume for simplicity that (QCQP) is feasible, and

define F := {(x,W) ∈ [0, 1]n × Sn : (ri)
T
x+ ⟨Qi,W ⟩ ≤ bi, ∀i ∈ [m]} for convenience.

Al-Khayyal and Falk [2] propose to use termwise McCormick relaxations [43] to construct lower bounds
on the optimal value of (QCQP). Specifically, they employ the following convex lower bounding problem
within a spatial B&B framework for solving (QCQP) to global optimality:

min
(x,W)∈F

(r0)
T
x+ ⟨Q0,W ⟩ (2)

s.t. max{0, xi + xj − 1} ≤Wij ≤ min{xi, xj}, ∀(i, j) ∈ B,
x2
k ≤Wkk ≤ xk, ∀k ∈ Q.

Several papers [e.g., 5, 7, 10, 13, 50, 51, 55–57, 60] improve upon this termwise McCormick bound, usually at
an increase in the computational cost but with the goal of reducing the overall time for the B&B algorithm
to converge. In this work, we use piecewise McCormick relaxations [7, 15, 47, 55, 60] to iteratively strengthen
the lower bounding problem (2).

Piecewise McCormick relaxations begin by partitioning the domains of (a subset of) variables participat-
ing in nonconvex terms into subintervals. Let

NC :=
{
i ∈ [n] : ∃j ∈ [n] such that (i, j) ∈ B or (j, i) ∈ B

}
∪Q

denote the set of indices of variables participating in nonconvex terms within (QCQP). We assume, without
loss of generality, that NC = {1, 2, . . . , |NC|}, i.e., only the first |NC| variables xi participate in nonconvex
terms. Furthermore, we assume for simplicity that the domain of each variable xi, i ∈ NC, is partitioned

4

into d + 1 subintervals, where d ≥ 1 (other partitioning schemes can be handled similarly). Let P denote
the |NC| × (d+ 2) matrix of partitioning points (including the variable bounds 0 and 1), where

Pi := (Pi1, Pi2, . . . , Pi(d+1), Pi(d+2)), with 0 =: Pi1 ≤ Pi2 ≤ · · · ≤ Pi(d+1) ≤ Pi(d+2) := 1, ∀i ∈ NC,

denotes the vector of d+2 partitioning points for variable xi, i ∈ NC. Unlike approaches that select a subset
of variables xi, i ∈ NC, involved in nonconvex terms for partitioning [47], we partition the domains of all such
variables. While partitioning only a subset may suffice to guarantee convergence, the resulting partitioning
algorithms for (QCQP) may suffer from the cluster problem in reduced-space global optimization [31, 32],
potentially requiring significantly more iterations.

The piecewise McCormick relaxation-based lower bounding problem for (QCQP) can be expressed as:

min
(x,W)∈F

(r0)
T
x+ ⟨Q0,W ⟩ (3)

s.t. (xi, xj ,Wij) ∈ PMRB
ij(Pi, Pj), ∀(i, j) ∈ B,

(xk,Wkk) ∈ PMRQ
k (Pk), ∀k ∈ Q,

where PMRB
ij(Pi, Pj) and PMRQ

k (Pk) denote the feasible regions of the piecewise McCormick relaxations
of Wij = xixj and Wkk = x2

k, respectively, obtained using the partitioning matrix P . While there are several
ways of formulating these piecewise McCormick relaxations, we use the “convex combination” or “lambda”
formulation below [see 34, for enhancements in the multilinear setting].

The piecewise McCormick relaxation for the constraint Wij = xixj is written as [59]:

PMRB
ij(Pi, Pj) :=

{
(xi, xj ,Wij) : ∃Λij ∈ R(d+2)×(d+2)

+ , Yi ∈ {0, 1}(d+1), Yj ∈ {0, 1}(d+1)

s.t. (xi, xj ,Wij ,Λ
ij , Yi, Yj) satisfies (4a)− (4d)

}
,

where

xi =

d+2∑
k,l=1

Λij
klPil, xj =

d+2∑
k,l=1

Λij
klPjk, Wij =

d+2∑
k,l=1

Λij
klPilPjk, (4a)

d+1∑
l=1

Yil = 1,

d+1∑
k=1

Yjk = 1,

d+2∑
k,l=1

Λij
kl = 1, (4b)

d+2∑
k=1

Λij
k1 ≤ Yi1,

d+2∑
k=1

Λij
k(d+2) ≤ Yi(d+1),

d+2∑
k=1

Λij
k(l+1) ≤ Yil + Yi(l+1), ∀l ∈ [d], (4c)

d+2∑
l=1

Λij
1l ≤ Yj1,

d+2∑
l=1

Λij
(d+2)l ≤ Yj(d+1),

d+2∑
l=1

Λij
(k+1)l ≤ Yjk + Yj(k+1), ∀k ∈ [d]. (4d)

Only equations (4a) depend on the partitioning matrix P , which is a parameter in these constraints. The
binary vectors Yi and Yj denote the active partition of xi and xj—these variables are reused in the piecewise
McCormick relaxations of other nonconvex terms involving xi or xj .

The piecewise McCormick relaxation for Wkk = x2
k is written as [40, 47]:

PMRQ
k (Pk) :=

{
(xk,Wkk) : ∃Λk ∈ R(d+2)

+ , Yk ∈ {0, 1}(d+1) s.t. (xk,Wkk,Λ
k, Yk) satisfies (5a)− (5c)

}
,

5

Figure 1: Illustration of piecewise McCormick relaxations for a bilinear and a univariate quadratic term.
The variable domains are changed from [0, 1] to [−1, 1] for better illustration. The left and middle plots
illustrate the lower and upper parts, respectively, of the piecewise McCormick relaxation for the bilinear term
w12 = x1x2 on the domain x1, x2 ∈ [−1, 1] with partitions P1 = P2 = (−1, 0, 1). The right plot illustrates
the piecewise McCormick relaxation for the quadratic term w11 = x2

1 on the domain x1 ∈ [−1, 1] (the lower
part coincides with the red quadratic curve) with the partition P1 = (−1, 0, 1).

−1 −0.5 0 0.5 1 −1
0

1−1

0

1

x1
x2

w
12

−1 −0.5 0 0.5 1 −1
0

1−1

0

1

x1
x2

w
12

−1 1

0.5

1

(0, 0)

(1, 1)(−1, 1)

x1

w11

where

xk =

d+2∑
l=1

Λk
l Pkl, Wkk ≤

d+2∑
l=1

Λk
l (Pkl)

2,

d+1∑
l=1

YklPkl ≤ xk ≤
d+1∑
l=1

YklPk(l+1), (5a)

d+1∑
l=1

Ykl = 1,

d+2∑
l=1

Λk
l = 1, Wkk ≥ x2

k, (5b)

Λk
1 ≤ Yk1, Λk

d+2 ≤ Yk(d+1), Λk
l+1 ≤ Ykl + Yk(l+1), ∀l ∈ [d]. (5c)

Only equations (5a) depend on the partitioning matrix P , which is again a parameter in these constraints.

The third set of constraints in (5a) are redundant for the description of the set PMRQ
k (Pk), but strengthen

its convex relaxation. Note that equations (5b) involve convex quadratic functions of xk. Figure 1 illustrates
the piecewise McCormick relaxations for a bilinear and a univariate quadratic term.

Using the above representations of PMRB
ij and PMRQ

k , we get the following extended convex mixed-
integer QCQP formulation for the piecewise McCormick relaxation problem (3):

min
(x,W)∈F
Λ≥0,Y ∈Y

(r0)
T
x+ ⟨Q0,W ⟩ (PMR)

s.t. (xi, xj ,Wij ,Λ
ij , Yi, Yj) satisfies (4a)− (4d), ∀(i, j) ∈ B,

(xk,Wkk,Λ
k, Yk) satisfies (5a)− (5c), ∀k ∈ Q,

where Y ∈ {0, 1}|NC|×(d+1), Y :=
{
Y ∈ {0, 1}|NC|×(d+1) :

∑d+1
l=1 Yil = 1, ∀i ∈ NC

}
is an intersection of

special-ordered sets of type 1, and Λ comprises Λij , (i, j) ∈ B, and Λk, k ∈ Q. We call the jth partition
[Pij , Pi(j+1)] of variable xi, i ∈ NC, active if there exists an optimal solution to (PMR) with an x-component
x̄ ∈ [0, 1]n such that Pij ≤ x̄i ≤ Pi(j+1). Equivalently, the jth partition [Pij , Pi(j+1)] of xi is said to be active
if there exists an optimal solution to (PMR) with a Y -component Ȳ ∈ Y such that Ȳij = 1.

Algorithm 1 outlines a partitioning-based global optimization algorithm that solves problem (PMR) to
determine a sequence of lower bounds on the optimal value of (QCQP). It assumes that local search can find
a near-optimal solution to (QCQP) within a finite number of iterations—a standard assumption that often
holds in practice. The convergence of the lower bound is typically the limiting factor in the convergence of
partitioning-based algorithms. In particular, the choice of heuristic on line 7 of Algorithm 1 for refining the

6

Algorithm 1 Partitioning-based global optimization algorithm for (QCQP)

1: Input: relative optimality tolerance εr > 0.

2: Initialization: partitioning points P 0
i := (0, 1), ∀i ∈ NC, best found solution {x̂} = ∅ with objective

UBD = +∞, lower bound LBD = −∞, and iteration number l = 0.

3: Solve (QCQP) locally. Update the incumbent x̂ and upper bound UBD if relevant.

4: Solve the termwise McCormick relaxation (2). Update the lower bound LBD.

5: while
UBD − LBD

|UBD|+ 10−6
> εr or UBD = +∞ do

6: Update l← l + 1.
7: Partition refinement: add new partitioning points to P l−1 to obtain the partitioning matrix P l.
8: Solve (PMR) with the partitioning matrix P l. Update the lower bound LBD.
9: Solve (QCQP) locally. Update the incumbent x̂ and upper bound UBD if needed.

10: end while

11: Return the εr-optimal x-solution x̂, upper bound UBD, and lower bound LBD.

Algorithm 2 Generic partition refinement policy for iteration l

1: Input: partitioning matrix P l−1 used to construct piecewise McCormick relaxations at iteration l − 1,
index A(i, l − 1) ∈ N of an active partition for variable xi at iteration l − 1, ∀i ∈ NC, and the number
of new partitioning points dl ∈ N to be added to P l−1

i , ∀i ∈ NC.
2: Initialization: set P l = P l−1.

3: for i ∈ NC do
4: Add dl new partitioning points to the active partition

[
P l−1
i(A(i,l−1)), P

l−1
i(A(i,l−1)+1)

]
for variable xi

to obtain a refined vector of partitioning points P l
i for xi.

5: end for

6: Output: partitioning matrix P l used to construct piecewise McCormick relaxations at iteration l.

partitioning matrix P can greatly impact both the number of iterations and the time required for convergence.
This motivates the concept of strong partitioning, which selects the partitioning matrix P to maximize the
piecewise McCormick relaxation-based lower bound. We define partition refinement policies in Section 3.1,
and introduce the strong partitioning policy and an ML approximation in Sections 4.2 and 5. Section 6.4
details the partition refinement policy implemented within Alpine [47]. Note that Algorithm 1 can be readily
adapted to include enhancements such as bound tightening.

3.1 Partitioning policy

Algorithm 2 outlines a generic policy for refining variable partitions at any given iteration l of Algorithm 1.
It adds dl new partitioning points to the active partition of each variable xi involved in nonconvex terms.
Various partition refinement strategies, such as bisecting the active partition [15, 55, 60], adding partitioning
points near the lower bounding solution [7, 47], and the strong partitioning and ML-based policies described
in Sections 4.2 and 5, can be seen as specific instantiations of Algorithm 2.

In the next two sections, we introduce the strong partitioning and ML-based policies, which differ from
the partitioning policy implemented in Alpine (see Section 6.4 for details) only during the first iteration.

7

4 Strong partitioning for nonconvex QCQPs

The choice of partitioning points in the initial iterations can greatly impact the strength of lower bounds,
the number of iterations needed for convergence, and the overall solution time. We introduce the Strong
Partitioning (SP) policy to overcome the limitations of existing heuristics for selecting partitioning points.

Before presenting the concept of strong partitioning, we further relax (PMR) by outer-approximating
the convex quadratic terms in equation (5b) to obtain the following MILP relaxation. For purely bilinear
programs (Q = ∅), problem (PMR) is already an MILP, and this outer-approximation step is unnecessary.

v(P) := min
(x,W)∈F
Λ≥0,Y ∈Y

(r0)
T
x+ ⟨Q0,W ⟩ (PMR-OA)

s.t. (xi, xj ,Wij ,Λ
ij , Yi, Yj) satisfies (4a)− (4d), ∀(i, j) ∈ B,

(xk,Wkk,Λ
k, Yk) satisfies (5a) and (5c), ∀k ∈ Q,

d+2∑
l=1

Λk
l = 1, Wkk ≥ (2αk

j)xk − (αk
j)

2, ∀j ∈ Jk, k ∈ Q. (6)

We explicitly indicate the dependence of the piecewise McCormick lower bound v on the partitioning
matrix P . Constraints (6) outer-approximate the inequalities Wkk ≥ x2

k in equation (5b) at the points
{αk

j }j∈Jk
⊂ [0, 1], which are assumed to include Pk1, . . . , Pk(d+2). This outer-approximation step is needed

to compute a generalized gradient of the value function v with respect to the partitioning matrix P , a key
component of our SP algorithm (see Section 4.1 for details). We solve problem (PMR-OA) only during strong
partitioning and revert to solving problem (PMR) when computing lower bounds within Algorithm 1.

We recast (PMR-OA) into the following abstract form for mathematical convenience, using suitably
defined vectors c and d, matrices M̄ and B̄, matrix-valued function M with co-domain Rnr×nc , and a vector
of variables z (including variables x, W , Λ, and auxiliary/slack variables):

v(P) := min
Y ∈Y

v(P, Y), where v(P, Y) := min
z≥0

cTz (PMR-OA-LP)

s.t. M(P)z = d,

M̄z = B̄ vec(Y),

where vec(Y) denotes the vectorization of matrix Y . We omit in (PMR-OA-LP) the third set of constraints in

equation (5a) because they are redundant for the piecewise McCormick relaxations PMRQ
k . The constraints

M̄z = B̄ vec(Y) represent equations (4c), (4d), and (5c) by adding slack variables. They ensure that for any
Y ∈ Y, at most four of the Λij variables in the extended formulation of each set PMRB

ij and at most two

of the Λk variables in the extended formulation of each set PMRQ
k may be nonzero.

The concept of strong partitioning is analogous to strong branching in B&B algorithms for MILPs. While
strong branching for MILPs involves selecting the branching variable—a discrete choice—to maximize the
product of improvements in the lower bounds of the two child nodes, strong partitioning selects partition-
ing points for each partitioned variable—continuous choices within the variable domains—to maximize the
piecewise McCormick relaxation lower bound. It can be formulated as the following max-min problem:

P ∗ ∈ argmax
P∈Pd

v(P), (SP)

where v(P) is the optimal value function of problem (PMR-OA), and the set Pd is defined as:

Pd :=
{
P ∈ [0, 1]|NC|×(d+2) : 0 = Pi1 ≤ Pi2 ≤ · · · ≤ Pi(d+1) ≤ Pi(d+2) = 1, ∀i ∈ NC

}
.

The strong partitioning problem (SP) is challenging to solve even to local optimality because the inner
problem (PMR-OA) includes binary decisions and its feasible region depends on P (variables of the outer

8

problem). While (SP) can be formulated as a generalized semi-infinite program, current global optimization
algorithms for this problem class do not scale well [29]. Therefore, we design a local optimization method
for (SP) aimed at determining a partitioning matrix P̄ ∈ Pd that yields a tight lower bound v(P̄). We use
this local solution of (SP) to specify the partitioning matrix P 1 at the first iteration of Algorithm 1. If the
resulting lower and upper bounds LBD and UBD in Algorithm 1 do not converge after the first iteration,
we use the partitioning policy implemented within Alpine (see Section 6.4) to specify the partitioning matrix
P l from its second iteration (l ≥ 2). Section 4.2 outlines the strong partitioning policy.

We use generalized gradients of the value function of problem (PMR-OA) within a bundle solver for nons-
mooth nonconvex optimization to solve problem (SP) to local optimality. Although value functions of MILPs
are generally discontinuous, problem (PMR-OA) possesses special structure because outer-approximations

of the piecewise McCormick relaxations PMRB
ij(Pi, Pj) and PMRQ

k (Pk) can be described using nonconvex
piecewise-linear continuous functions (cf. Figure 1). As shown in Theorems 3 and 4 in Section 4.1, this
structure allows us to compute sensitivity information for the value function v.

We use the bundle solver MPBNGC, which requires function and generalized gradient evaluations at
points P ∈ Pd during its algorithm [see 42, for details]. Each function evaluation v(P) necessitates solving
an MILP, (PMR-OA). Under suitable assumptions, a generalized gradient ∂v(P) can be obtained by fixing
variables Y to an optimal Y -solution of (PMR-OA) and computing a generalized gradient of the resulting LP,
(PMR-OA-LP). We formalize these details in Section 4.1. Before proceeding, we summarize the convergence
guarantees of MPBNGC [42] below for completeness.

Definition 1. Let Z ⊂ RN be open. A locally Lipschitz function f : Z → R is said to be weakly semismooth

if the directional derivative f ′(z, d) = lim
t↓0

f(z+td)−f(z)
t exists for all z ∈ Z and d ∈ RN , and we have

f ′(z, d) = lim
t↓0

ξ(z + td)
T
d for some ξ(z + td) ∈ ∂f(z + td).

Definition 2. Let f : RN → R and g : RN → RM be locally Lipschitz continuous functions. Consider the
problem min

z:g(z)≤0
f(z). A feasible point z∗ is said to be substationary if there exist multipliers λ ≥ 0 and

µ ∈ RM
+ , with (λ, µ) ̸= (0, 0), such that 0 ∈ λ∂f(z∗) +

∑M
j=1 µj∂gj(z

∗) and µjgj(z
∗) = 0, ∀j ∈ [M].

Theorem 1. Suppose the value function v of (PMR-OA) is weakly semismooth. Then MPBNGC either
terminates finitely with a substationary point to (SP), or any accumulation point of a sequence of MPBNGC
solutions is a substationary point to (SP).

Proof. See Theorem 9 of Mäkelä [42].

The example below shows that the value function v of problem (PMR-OA) may be nonsmooth.

Example 1. Consider the following instance of the QCQP (1):

min
x∈[0,1]

x s.t. x2 ≥ (0.4)2.

Its optimal solution is x∗ = 0.4 with optimal value v∗ = 0.4. Suppose we wish to partition the domain of x
into two sub-intervals (d = 1). Let P = (0, p, 1) denote partitioning points for x with 0 ≤ p ≤ 1. After some
algebraic manipulation, the outer-approximation problem (PMR-OA) can be equivalently written as:

v(p) = min
x∈[0,1]

x s.t. w ≥ (0.4)2, w ≤ max{px, (1 + p)x− p}, w ≥ 2αjx− α2
j , ∀j ∈ J ,

where {αj}j∈J ⊂ [0, 1] and we write v(p) to only indicate the dependence of the value function v on the
single nontrivial partitioning point p. We can derive the piecewise McCormick lower bound to be:

9

v(p) =

{
0.16+p
1+p , if 0 ≤ p ≤ 0.4

0.16
p , if 0.4 < p ≤ 1

,

p

v(p)

0 0.4 1

0.16

0.4

which shows that v is continuous and piecewise differentiable at p = 0.4 for this example.

4.1 Computing a generalized gradient of v

We identify conditions under which a generalized gradient of the value function v can be computed in
practice. (For notational simplicity, we discuss generalized gradients of v on Pd rather than on ri(Pd).) We
start with the following useful result. It implies that the active partitions of the variables xi, i ∈ NC, in
problem (PMR-OA) for a given value of P remain active for all partitioning matrices in a sufficiently small
relative neighborhood of P . Its assumption that the Y -solution to problem (PMR-OA) is unique can be
verified by adding a “no-good cut” and re-solving (PMR-OA) to check if the second-best solution for Y has
a strictly greater objective than v(P).

Lemma 2. Fix P ∈ Pd. Suppose problem (PMR-OA) has a unique Y -solution Y ∗ ∈ Y and v(·, Y ∗) is
continuous at P . Then v(P̃) = v(P̃ , Y ∗), ∀P̃ ∈ Pd in a sufficiently small relative neighborhood of P .

Proof. Because Y ∗ is the unique Y -solution to (PMR-OA) at P ∈ Pd, we have v(P, Y ∗) < v(P, Y), ∀Y ∈
Y\{Y ∗}. To demonstrate that v(·) ≡ v(·, Y ∗) in a sufficiently small relative neighborhood of P , we show
that the value function v(·, Y) is lower semicontinuous on Pd for each Y ∈ Y. The stated result then follows,
as v(·, Y ∗) is assumed to be continuous at P .

The set-valued mapping P ∈ Pd 7→ {z ≥ 0 : M(P)z = d, M̄z = B̄ vec(Y)} is locally compact for
each Y ∈ Y due to the continuity of the mapping M and the finite bounds that can be deduced for all
variables in (PMR-OA). Hence, Lemma 5.3 of Still [58] implies v(·, Y) is lower semicontinuous on Pd, for
each Y ∈ Y.

The next result characterizes the gradient of the value function v with respect to the “unfixed” partitioning
points Pi2, . . . , Pi(d+1), i ∈ NC. It assumes that problem (PMR-OA-LP), with Y fixed to the Y -solution Y ∗

of problem (PMR-OA), has unique primal and dual optimal solutions.

Theorem 3. Suppose P ∈ Pd and problem (PMR-OA) has a unique Y -solution Y ∗ ∈ Y. Consider prob-
lem (PMR-OA-LP) with Y fixed to Y ∗. If this LP has a unique primal solution z∗ and a unique dual solution
π∗, then

∂v

∂Pij
(P) =

∂v

∂Pij
(P, Y ∗) =

nr∑
k=1

nc∑
l=1

π∗
kz

∗
l

∂Mkl

∂Pij
(P), ∀i ∈ NC, j ∈ {2, . . . , d+ 1}.

Proof. Lemma 2 implies that v(·) ≡ v(·, Y ∗) in a sufficiently small relative neighborhood of P , provided
v(·, Y ∗) is continuous at P . Theorem 1 of Freund [20] (cf. Proposition 4.1 of De Wolf and Smeers [17] and
Theorem 4.3 of Still [58]) and the fact that the function M is continuously differentiable on Pd together
imply that v(·, Y ∗) is continuously differentiable at P and the stated equalities hold.

Next, we derive a formula for the Clarke generalized gradient ∂v(P) when the assumption in Theorem 3
that the LP (PMR-OA-LP), with Y fixed to Y ∗, has unique primal and dual solutions does not hold.
Note that ∂v(P), ∂v(P, Y ∗), and ∂Mkl

∂P (P) denote generalized gradients only with respect to the “unfixed”
partitioning points Pi2, . . . , Pi(d+1), i ∈ NC.

10

Theorem 4. Suppose P ∈ Pd and problem (PMR-OA) has a unique Y -solution Y ∗ ∈ Y. Consider prob-
lem (PMR-OA-LP) with Y fixed to Y ∗. Suppose v(·, Y ∗) is finite and locally Lipschitz in a sufficiently small
relative neighborhood of P . Then

∂v(P) = ∂v(P, Y ∗) = conv

({ nr∑
k=1

nc∑
l=1

π∗
kz

∗
l

∂Mkl

∂P
(P) : (z∗, π∗) is a primal-dual optimal pair for

(PMR-OA-LP) with Y fixed to Y ∗
})

.

Proof. Lemma 2 implies that v(·) ≡ v(·, Y ∗) in a sufficiently small relative neighborhood of P . The stated
equalities hold by mirroring the proof of Theorem 5.1 of De Wolf and Smeers [17] and noting that the function
M is continuously differentiable on Pd.

The next result ensures that v(·, Y ∗) is locally Lipschitz in a sufficiently small relative neighborhood of
P ∈ Pd, provided that the matrix M(P) in problem (PMR-OA-LP) has full row rank and Slater’s condition
holds. (See Im [28] and Assumption 5.1 of De Wolf and Smeers [17] for details.)

Lemma 5. Suppose P ∈ Pd and Ȳ ∈ Y. Consider problem (PMR-OA-LP) with Y fixed to Ȳ . If the matrix
M(P) has full row rank and d ∈ int

(
{M(P)z : z ≥ 0, M̄z = B̄ vec(Ȳ)}

)
, then v(·, Ȳ) is finite and locally

Lipschitz in a sufficiently small relative neighborhood of P .

Proof. See Proposition 5.3 of [17] and pages 73 to 76 of [28].

We now verify that the full rank assumption in Lemma 5 holds in general.

Lemma 6. The matrix M(P) has full row rank for each P ∈ ri(Pd).

Proof. Fix Y ∈ Y. Since P ∈ ri(Pd), we have 0 = Pi1 < Pi2 < · · · < Pi(d+1) < Pi(d+2) = 1, ∀i ∈ NC. We
show that for each (i, j) ∈ B and k ∈ Q, the equality constraints in (4a)-(4b) and (5a)-(5b) have full row
rank, which implies that M(P) has full row rank. We ignore the inequality constraints because they are
converted into equality constraints by adding unique slack variables.

We begin by focusing on the equality constraints in (4a)-(4b) involving the x, W , and Λ variables.
Consider a fixed (i, j) ∈ B and any pair of indices k, l ∈ [d+1]. We can rewrite these equality constraints as
follows after suppressing the terms associated with most of the Λij variables:

−1 0 0 Pil Pil Pi(l+1) Pi(l+1) . . .

0 −1 0 Pjk Pj(k+1) Pjk Pj(k+1)

. . .

0 0 −1 PilPjk PilPj(k+1) Pi(l+1)Pjk Pi(l+1)Pj(k+1) . . .
0 0 0 1 1 1 1 . . .

xi

xj

Wij

Λij
kl

Λij
(k+1)l

Λij
k(l+1)

Λij
(k+1)(l+1)

...

=

0
0
0
1

 .

We show that the fourth, fifth, sixth, and seventh columns of the matrix above are linearly independent
whenever P ∈ ri(Pd). Suppose, by way of contradiction, that these four columns are linearly dependent.
Then, there exist scalars µ1, µ2, µ3, and µ4, not all zero, such that

µ1

Pil

Pjk

PilPjk

1

+ µ2

Pil

Pj(k+1)

PilPj(k+1)

1

+ µ3

Pi(l+1)

Pjk

Pi(l+1)Pjk

1

+ µ4

Pi(l+1)

Pj(k+1)

Pi(l+1)Pj(k+1)

1

 =

0
0
0
0

 .

11

This implies the following linear equations in µ1, µ2, µ3, and µ4:

(µ1 + µ2)Pil = −(µ3 + µ4)Pi(l+1), (7a)

(µ1 + µ3)Pjk = −(µ2 + µ4)Pj(k+1), (7b)

Pil

(
Pjkµ1 + Pj(k+1)µ2

)
= −Pi(l+1)

(
Pjkµ3 + Pj(k+1)µ4

)
, (7c)

µ1 + µ2 = −(µ3 + µ4). (7d)

Since Pil < Pi(l+1) and Pjk < Pj(k+1), equations (7a) and (7d) imply that µ1 + µ2 = 0 and µ3 + µ4 = 0.
Similarly, equations (7b) and (7d) imply that µ1 +µ3 = 0 and µ2 +µ4 = 0. Together, these equations imply
µ1 = µ4, µ2 = µ3, and µ1 = −µ2. Combining these with equation (7c) leads to µ1 = µ2 = µ3 = µ4 = 0,
which is a contradiction.

Next, we focus on the equality constraints in (5a)-(5b) involving the x, W , and Λk variables for a fixed
k ∈ Q. Consider any index l ∈ [d+1]. We can rewrite these equality constraints as follows after suppressing
the terms associated with most of the Λk variables:

(
−1 Pkl Pk(l+1) . . .
0 1 1 . . .

)
xk

Λk
l

Λk
l+1
...

 =

(
0
1

)
.

The second and third columns of the matrix above are linearly independent whenever Pkl < Pk(l+1).

Finally, we show that for almost every P ∈ Pd with respect to the uniform measure, problem (PMR-OA)
either has a unique Y -solution (allowing us to use Theorem 3 or 4 to compute a generalized gradient of v
under mild conditions), or v(P) = v∗ (i.e., the optimal values of (QCQP) and (PMR-OA) are equal, implying
that the partitioning matrix P is sufficient for the convergence of the lower bound), or both statements hold.

Theorem 7. At least one of the following statements holds for almost every P ∈ Pd:

1. v(P) = v∗,

2. Problem (PMR-OA) has a unique Y -solution.

Proof. Consider P ∈ Pd, and let Ŷ ∈ Y and x̂ ∈ [0, 1]n denote the Y and x components of an optimal
solution to problem (PMR-OA). We examine the following cases:

(a) For each k ∈ Q, we have x̂k ∈ {Pk1, Pk2, . . . , Pk(d+1), Pk(d+2)}. Additionally, for each (i, j) ∈ B, either
x̂i ∈ {Pi1, Pi2, . . . , Pi(d+1), Pi(d+2)}, or x̂j ∈ {Pj1, Pj2, . . . , Pj(d+1), Pj(d+2)}, or both.

(b) Case (a) does not hold, i.e., there either exists at least one index k ∈ Q such that
x̂k ̸∈ {Pk1, Pk2, . . . , Pk(d+1), Pk(d+2)}, or there exists at least one pair of indices (i, j) ∈ B such that
both x̂i ̸∈ {Pi1, Pi2, . . . , Pi(d+1), Pi(d+2)} and x̂j ̸∈ {Pj1, Pj2, . . . , Pj(d+1), Pj(d+2)}.

Suppose case (a) holds. Since we assume that {Pk1, Pk2, . . . , Pk(d+1), Pk(d+2)} ⊂ {αk
j } for each k ∈ Q,

our outer-approximation of the piecewise McCormick relaxation (5a)-(5c) for the constraint Wkk = x2
k

is exact (i.e., there is no relaxation gap) at the partitioning points xk ∈ {Pk1, Pk2, . . . , Pk(d+1), Pk(d+2)}.
Additionally, the piecewise McCormick relaxation (4a)-(4d) for the constraint Wij = xixj is exact either
when xi ∈ {Pi1, Pi2, . . . , Pi(d+1), Pi(d+2)}, or when xj ∈ {Pj1, Pj2, . . . , Pj(d+1), Pj(d+2)}, or both. Therefore,
the point x̂ is feasible to the original QCQP (1), which implies v(P) = v∗.

Suppose instead that case (b) holds. Additionally, suppose there are multiple Y -solutions to (PMR-OA).
Let Ỹ ∈ Y and x̃ ∈ [0, 1]n denote the Y and x components of another optimal solution to problem (PMR-OA)
with Ỹ ̸= Ŷ . Since case (a) does not hold and Ỹ ̸= Ŷ , we have x̃ ̸= x̂. Moreover, there exist nonsingular

12

basis matrices M̂(P) and M̃(P) for the LPs (PMR-OA-LP) corresponding to Ŷ and Ỹ , respectively, such
that

v(P) = v(P, Ŷ) = ĉT[M̂(P)]−1

(
d

B̄ vec(Ŷ)

)
= c̃T[M̃(P)]−1

(
d

B̄ vec(Ỹ)

)
= v(P, Ỹ) (8)

for suitable vectors c̃ and ĉ, which include only the components of c corresponding to the basic variables of
these LPs. Since not all components of x̂ equal 0 or 1, at least some of the entries of M̂(P) are functions
of the partitioning points P . Moreover, v(P, Ŷ) and v(P, Ỹ) are not identical functions of P since x̃ ̸= x̂.
Therefore, equation (8) yields a polynomial equation in P , which implies that the set of all P ∈ Pd for which
equation (8) holds has measure zero. Noting that |Y| < +∞ and the number of possible bases is finite for
each Y ∈ Y concludes the proof.

Algorithm 3 Strong partitioning (SP) policy for the first iteration

1: Input: maximum number d of partitioning points to be added per variable (excluding variable bounds).

Preprocessing steps

2: Initialization: partitioning vectors P̂ 0
i := (0, 1), ∀i ∈ NC.

3: for k = 1, 2, . . . , d do
4: Solve problem (PMR-OA) with the partitioning matrix P̂ k−1. Let x̂k−1 denote an x-solution.
5: for i ∈ NC do
6: if x̂k−1

i ≈ x̃i for some partitioning point x̃i in P̂ k−1
i then

7: Set P̂ k
i = P̂ k−1

i .
8: else
9: Insert x̂k−1

i within P̂ k−1
i to obtain a vector P̂ k

i satisfying P̂ k
ij ≤ P̂ k

i(j+1), ∀j ∈ [dim(P̂ k
i)− 1].

10: end if
11: end for
12: end for

13: For each i ∈ NC, let ni := dim(P̂ d
i)− 2 and set P 0

ij :=

{
0, if j ∈ [d− ni]

P̂ d
i(j−d+ni)

, if j ∈ {d+ 1− ni, . . . , d+ 2} .

14: For each i ∈ NC, fix variables Pi1, . . . , Pi(d+1−ni) to 0 and variables Pi(d+2) to 1 while solving (SP).

15: Preprocessing output: initial guess (and variable fixings) P 0 for problem (SP).

Solving the strong partitioning problem (SP)

16: Solve the max-min problem (SP) using the initial guess (and variable fixings) P 0 to obtain a solution
P 1 ∈ Pd with objective v̄ := v(P 1).

Postprocessing steps

17: for j = 2, 3, . . . , d+ 1 do
18: for i ∈ NC do
19: Set P = P 1, fix Pij = 0, and sort P such that Pik ≤ Pi(k+1), ∀k ∈ [d+ 1].
20: Solve problem (PMR-OA) with this partitioning matrix P to obtain a lower bound v̂ := v(P).
21: if v̂ ≥ v̄ − 10−6|v̄| then
22: Update P 1 = P .
23: end if
24: end for
25: end for

26: Postprocessing output: partitioning matrix P 1 used to construct piecewise McCormick relaxations
in the first iteration of Algorithm 1. (In practice, redundant partitioning points are not added.)

13

4.2 Strong partitioning policy

Algorithm 3 details the strong partitioning policy for the first iteration. It includes preprocessing steps to
mitigate the computational burden of solving problem (SP) to local optimality, and postprocessing steps
to enable the ML model outlined in Section 5 to more effectively imitate this policy. The preprocessing
heuristics determine an initial guess P 0 for the solution of the max-min problem (SP). They also eliminate
a subset of the partitioning points P by fixing them to zero, which can reduce both the per-iteration cost
and the number of iterations required for the bundle solver to converge. Despite these enhancements, we
observe in our numerical experiments that solving the max-min problem (SP) can still be computationally
prohibitive. Therefore, in the next section, we propose a practical off-the-shelf ML model to imitate this
strong partitioning policy for homogeneous families of QCQPs. The postprocessing heuristics in Algorithm 3
remove (redundant) partitioning points in the solution P 1 of the max-min problem that do not significantly
impact the piecewise McCormick relaxation lower bound. Reducing the number of nontrivial partitioning
points can enhance the ability of ML models to effectively imitate the SP policy.

The output partitioning matrix P 1 of Algorithm 3 is used to construct piecewise McCormick relaxations
in the first iteration of Algorithm 1. If the lower bound LBD obtained using P 1 and the upper bound UBD
have not converged, the strong partitioning policy reverts to the heuristic partitioning policy implemented in
Alpine (see Section 6.4 for details) to specify the partitioning matrices P l for iterations l ≥ 2 of Algorithm 1.

5 ML approximation of strong partitioning for homogeneous QCQPs

While strong partitioning can yield more effective partitioning points than existing heuristic partitioning
methods, solving the max-min problem (SP) to local optimality can be time-consuming, making its di-
rect application within Algorithm 1 impractical. To address this, we propose using AdaBoost regression
models [19, 21], with regression tree base estimators [12], to imitate the strong partitioning policy for homo-
geneous QCQP instances. The trained AdaBoost models are then used to efficiently specify the partitioning
matrix P 1 for constructing piecewise McCormick relaxations in the first iteration of Algorithm 1 for new
QCQP instances from the family.

Our AdaBoost regression models sequentially train a series of regression trees, starting with an initial
regression tree that fits the data. Each subsequent regression tree is trained by placing more emphasis
on the training instances that the previous models struggled to predict accurately, achieved by adjusting
the relative weights of those instances. The final predictions of the AdaBoost regression models are then
obtained by combining the outputs of all the regression tree models using a weighted average. By iteratively
focusing on the most challenging training instances, these models capture complex relationships between the
input features and the output strong partitioning points while mitigating overfitting. However, a potential
drawback of AdaBoost regression models is their complexity, which can make them difficult to interpret.

Algorithm 4 outlines the machine learning-based partitioning policy for the first iteration. It takes as
input a feature vector for each of N QCQP instances from the family, along with the strong partitioning
points determined using Algorithm 3 for these instances. The algorithm begins by splitting the training
data into K disjoint folds. For each fold k ∈ [K], it excludes the feature and strong partitioning data from
that fold and learns a separate AdaBoost regression model for each partitioning point P 1

ij , i ∈ NC and
j ∈ {2, . . . , d + 1}, to imitate the strong partitioning policy for specifying that partitioning point. This

trained regression model is then used to predict the strong partitioning points {P 1,l
ij }l∈Ik

for the instances
in the kth fold.

The output partitioning matrix P̂ 1,l from Algorithm 4 is used to construct piecewise McCormick relax-
ations at the first iteration of Algorithm 1 for the lth QCQP instance. Similar to the strong partitioning
policy, this AdaBoost-based policy reverts to the heuristic partitioning policy implemented in Alpine (see
Section 6.4 for details) to specify the partitioning matrices from the second iteration of Algorithm 1.

We use the following instance-specific features as inputs to our AdaBoost regression models:

(i) Parameters θ that uniquely parametrize each QCQP instance in the family (see Section 6.1 for details).

14

Algorithm 4 ML-based partitioning policy for the first iteration

1: Input: maximum number d of partitioning points per variable (excluding variable bounds), data
{(f l, P 1,l)}Nl=1, where f

l ∈ Rdf represents a feature vector and P 1,l ∈ Pd denotes the strong partitioning
points determined using Algorithm 3 for the lth QCQP instance, number of data folds K ∈ {2, . . . , N},
maximum number Nwl of weak learners for the AdaBoostRegressor model, and maximum depth Dmax

of its DecisionTreeRegressor base estimator models.

2: Preprocessing: randomly split the set of instance indices [N] into K disjoint folds of (approximately)
equal size. Let Ik ⊂ [N] denote the set of indices in the kth fold for each k ∈ [K].

3: for k = 1, 2, . . . ,K do
4: for i ∈ NC do
5: for j = 2, 3, . . . , d+ 1 do
6: Gather the training data Tijk := {(f l, P 1,l

ij)}l∈[N]\Ik
consisting of input-output pairs

corresponding to the jth partitioning point of variable xi, omitting the kth data fold.
7: Train an AdaBoostRegressor model on Tijk using a DecisionTreeRegressor

as the base estimator with maximum depth Dmax, and a maximum of Nwl weak learners.
(All other hyperparameters for AdaBoostRegressor and DecisionTreeRegressor

are set to their default values.)
8: Use the trained AdaBoostRegressor model along with the features {f l}l∈Ik

to generate

predictions {P̂ 1,l
ij }l∈Ik

, with each P̂ 1,l
ij ∈ [0, 1], for the strong partitioning points {P 1,l

ij }l∈Ik

for instances in the kth data fold.
9: end for

10: for l ∈ Ik do
11: Sort the predictions {P̂ 1,l

ij }d+1
j=2 such that P̂ 1,l

ij ≤ P̂ 1,l
i(j+1), ∀j ∈ {2, . . . , d}.

12: end for
13: end for
14: end for

15: Output: K-fold out-of-sample ML predictions {P̂ 1,l}Nl=1, where P̂
1,l ∈ Pd is used to construct piecewise

McCormick relaxations in the first iteration of Algorithm 1 for the lth QCQP instance.

(ii) The best found feasible solution during presolve, obtained via a single local solve of (QCQP).

(iii) The McCormick lower bounding solution, obtained by solving the convex problem (2).

Although it is theoretically sufficient to use only the parameters θ as features, since they uniquely identify
each QCQP instance in the family, we also include features (ii) and (iii) as they are relatively inexpensive
to compute and intuitively help inform the partitioning strategy. These additional features are complex
transformations of the parameters θ, which might be difficult to uncover otherwise.

In contrast with much of the literature on learning for MILPs, we train separate ML models for each
QCQP family since both the feature and output dimensions of our AdaBoost regression models depend on
the problem dimensions. While we plan to design more advanced ML architectures that can accommodate
variable feature and output dimensions in future work, we do not view the need to train different ML models
for each QCQP family to be a major limitation. This is because decision-makers often care about solving
instances of the same underlying QCQP with only a few varying model parameters, which means they only
need to train a single set of ML models with fixed feature and output dimensions for their QCQP family.

Finally, we mention that we briefly explored the use of neural network models as alternatives to our
AdaBoost regression models. Although we do not provide detailed results, we found that our AdaBoost
regression models significantly outperformed these simple neural networks, both in predicting the strong
partitioning points and in the performance of the predicted points when used to specify the partitions in the
first iteration of Algorithm 1. We posit that AdaBoost models might perform better than neural networks
for the following reasons. First, AdaBoost models tend to identify redundant strong partitioning points more

15

accurately. The preprocessing and postprocessing heuristics in Algorithm 3 are designed to set partitioning
points to zero (making them redundant) if they are not expected to significantly impact the piecewise
McCormick relaxation lower bound. We observe that our AdaBoost models typically predict these redundant
partitioning points as zero. Consequently, using AdaBoost predictions to inform the partitioning matrix P 1

in Algorithm 1 results in easier piecewise McCormick relaxation problems (PMR) in the first iteration,
leading to significant computational speedups. Next, the optimal solution of the max-min problem (SP) is
often discontinuous when viewed as a function of the QCQP instance features. AdaBoost models may be
better suited to predict this discontinuous mapping from the features of a QCQP instance to an optimal
solution of (SP), particularly in cases where training data is scarce.

In the next section, we evaluate both the quality of our AdaBoost regression model predictions and their
effectiveness when used to specify the partitioning matrix P 1 in the first iteration of Algorithm 1.

6 Numerical experiments

We describe the methodology for generating our random test instances in Section 6.1 and outline our com-
putational setup and the metrics used in our experiments in Section 6.2. We benchmark the difficulty of
our test instances using the solvers BARON and Gurobi in Section 6.3. Section 6.4 details the partitioning
policy implemented within Alpine, which serves as a benchmark for our strong partitioning and AdaBoost
regression-based policies. In Section 6.5, we evaluate the effectiveness of the AdaBoost models in imitating
the strong partitioning policy. Finally, Section 6.6 compares the performance of Alpine’s default partitioning
policy with the strong partitioning and AdaBoost policies when used to select Alpine’s partitioning points.

6.1 Test instances

We describe the process of generating homogeneous families of random QCQPs, motivated by real-world
applications that require solving the same underlying QCQP with slightly varying model parameters. Al-
though QCQP instances are available from libraries such as QPLIB [22], we are not aware of any libraries
containing homogeneous QCQP instances. To address this need, we generate random homogeneous QCQP
instance families by building on instance generation schemes from the literature. Python scripts for gen-
erating these QCQP families can be found at https://github.com/lanl-ansi/Alpine.jl/tree/master/
examples/random_QCQPs.

6.1.1 Random bilinear programs

Based on the numerical study in Bao et al. [5], we consider the following family of parametric bilinear
programs that are parametrized by θ ∈ [−1, 1]dθ to reflect real-world applications where the same underlying
QCQP is solved with slightly varying parameters:

v(θ) := min
x∈[0,1]n

xTQ0(θ)x+ (r0(θ))Tx

s.t. xTQi(θ)x+ (ri(θ))Tx ≤ bi, ∀i ∈ [mI],

(aj)Tx = dj , ∀j ∈ [mE],

where vectors rk(θ) ∈ Rn, ∀k ∈ {0} ∪ [mI], a
j ∈ Rn, ∀j ∈ [mE], b ∈ RmI , d ∈ RmE , and the matrices

Qk(θ) ∈ Sn, ∀k ∈ {0} ∪ [mI], are not assumed to be positive semidefinite.
We generate 1000 instances each with n ∈ {10, 20, 50} variables and |B| = min{5n,

(
n
2

)
} bilinear terms,

|Q| = 0 quadratic terms, mI = n bilinear inequalities, and mE = 0.2n linear equalities [5]. Each family of
instances with a fixed dimension n is constructed to have the same set of |B| bilinear terms. We set the
dimension dθ = 3 × (0.2mI + 1) (an explanation for this choice is provided below). The problem data is
generated as follows [cf. 5]. All entries of the vectors aj and d are drawn i.i.d. from the uniform distribution

16

https://github.com/lanl-ansi/Alpine.jl/tree/master/examples/random_QCQPs
https://github.com/lanl-ansi/Alpine.jl/tree/master/examples/random_QCQPs

U(−1, 1), while all entries of the vector b are drawn i.i.d. from U(0, 100). The components of θ are drawn
i.i.d. from U(−1, 1). Each Qk and rk, k ∈ {0, 1, . . . , 0.2mI}, is of the form:

Qk(θ) = Q̄k +

3k+3∑
l=3k+1

θlQ̃
k,l−3k, rk(θ) = r̄k +

3k+3∑
l=3k+1

θlr̃
k,l−3k.

The nonzero entries of Q̄k ∈ Sn are drawn i.i.d. from U(−0.5, 0.5), whereas the nonzero entries of r̄k ∈ Rn

are drawn i.i.d. from U(−1, 1). The matrices Q̃k,l ∈ Sn, k ∈ {0} ∪ [0.2mI], l ∈ [3], are generated as follows.

For each (i, j) ∈ B, k ∈ {0} ∪ [0.2mI], and l ∈ [3], we set Q̃k,l
ij := Γk,l

ij Q̄
k
ij , where Γk,l

ij are drawn i.i.d. from

U(0, 0.5). We set Q̃k,l
ij = Q̃k,l

ji for each (i, j) ∈ B to ensure that Q̃k,l is symmetric. Next, for each i ∈ [n],

k ∈ {0} ∪ [0.2mI], and l ∈ [3], we set r̃k,li := δk,li r̄ki , where δk,li are drawn i.i.d. from U(0, 0.5). The data
Q̄k, Q̃k,l, r̄k, and r̃k,l are fixed across the 1000 instances for each value of n. Since each Q̃k,l and r̃k,l is a
different perturbation of Q̄k and r̄k, the expansions of Qk and rk can be motivated using principal component
analysis. The nonzero entries of Qk and rk, k ∈ {0.2mI + 1, . . . ,mI}, are identical across all 1000 instances
for each value of n, with each entry of Qk drawn i.i.d. from U(−0.5, 0.5) and each entry of rk drawn i.i.d.
from U(−1, 1). Finally, the constraint coefficients are re-scaled so that all entries of the vectors b and d equal
one. Note that for a fixed dimension n, each instance is uniquely specified by the parameters θ of dimension
dθ = 3(0.2n+1). Given that we assume the forms of each Qk(θ) and rk(θ), k ∈ {0} ∪ [mI], are known, with
only the parameter θ varying across different instances within each QCQP family, we can use θ as part of
the features for each QCQP instance.

6.1.2 Random QCQPs with bilinear and univariate quadratic terms

We also generate 1000 random QCQPs with |B| = min{5n,
(
n
2

)
} bilinear terms and |Q| = ⌊0.25n⌋ univariate

quadratic terms for each of n ∈ {10, 20, 50} variables. Once again, all instances for a fixed dimension n
comprise the same set of bilinear and univariate quadratic terms. The coefficients of quadratic terms in the
objective and constraints are generated similarly to the coefficients of bilinear terms in Section 6.1.1. The
rest of the model parameters and problem data (including θ) are also generated similarly as in Section 6.1.1.

6.1.3 The pooling problem

The pooling problem is a classic example of a bilinear program introduced by Haverly [26]. It has several
important applications, including petroleum refining [30, 61], natural gas production [30, 37], and wastewater
treatment [7, 44, 55]. Its goal is to blend inputs of differing qualities at intermediate pools to produce outputs
that meet quality specifications while satisfying capacity constraints at inputs, pools, and outputs. Solving
the pooling problem is in general NP-hard.

We consider instances of the pooling problem with 45 inputs, 15 pools, 30 outputs, and a single quality.
Each instance has 116 input-output arcs, 71 input-pool arcs, and 53 pool-output arcs, yielding 572 variables
and 621 constraints, including 360 linear constraints and 261 bilinear equations (with 124 variables involved
in bilinear terms). We use the pq-formulation of the pooling problem from Section 2 of Luedtke et al. [41].
Unlike the random bilinear instances in Section 6.1.1 where all of the original “x variables” participate in
bilinear terms, only 124 out of the 311 original variables in the pooling model participate in bilinear terms.

We first generate a nominal instance using the “random Haverly” instance generation approach (see
https://github.com/poolinginstances/poolinginstances for details) in [41] that puts together 15 per-
turbed copies of one of the Haverly [26] pooling instances and adds 150 edges to it. We modify the target
output quality concentrations generated by Luedtke et al. [41] to construct harder instances. For each output
j, we compute the minimum cmin

j and maximum cmax
j input concentrations of the quality over the subset

of inputs from which there exists a path to output j. We then specify the lower and upper bound on the
quality concentration at output j to be cmin

j + αj(c
max
j − cmin

j) and cmin
j + βj(c

max
j − cmin

j), respectively,
where αj ∼ U(0.2, 0.4) and βj ∼ U(0.6, 0.8) are generated independently. We also rescale the capacities of
the inputs, pools, and outputs and the costs of the arcs for better numerical performance. Note that while

17

https://github.com/poolinginstances/poolinginstances

all variables in the formulation are nonnegative, upper bounds on the variables are not necessarily equal to
one after rescaling. After constructing a nominal instance using the above procedure, we use it to generate
1000 random pooling instances by randomly perturbing each input’s quality concentration (parameters θ for
this problem family) by up to 20%, uniformly and independently.

6.2 Computational setup and evaluation metrics for our numerical experiments

6.2.1 Computational setup

We benchmark the difficulty of our test instances using BARON and Gurobi. We use Gurobi 9.1.2 via
Gurobi.jl v0.11.3 and BARON 23.6.23 via BARON.jl v0.8.2, with the option of using CPLEX 22.1.0 as
BARON’s MILP solver. (Note that BARON does not support Gurobi as an MILP solver.) Each BARON
and Gurobi run is assigned a time limit of 2 hours, with target relative and absolute optimality gaps of 10−4

and 10−9. All other settings in BARON and Gurobi were kept at default.
We evaluate the performance of different partitioning policies within Alpine (https://github.com/

lanl-ansi/Alpine.jl). We use Julia 1.6.3 and JuMP.jl v1.1.1 to formulate our test instances and Alpine.jl
v0.4.1 to solve them. We use Gurobi 9.1.2 via Gurobi.jl v0.11.3 with MIPGap = 10−6 for solving LPs,
MILPs, and convex mixed-integer QCQPs within Alpine. We use Ipopt 3.14.4 via Ipopt.jl v1.0.3 (with
max iter = 104) to solve the random bilinear and QCQP instances in Sections 6.1.1 and 6.1.2 locally
within Alpine. To solve the random pooling instances in Section 6.1.3 locally within Alpine, we switch to
Artelys Knitro 12.4.0 via KNITRO.jl v0.13.0 (with algorithm = 3) due to Ipopt’s reduced effectiveness
for these instances. Each Alpine run is assigned a time limit of 2 hours, with target relative and absolute
optimality gaps of 10−4 and 10−9. (Alpine’s definition of relative gap differs slightly from those of BARON
and Gurobi, as noted in Section 6.2.2.) We deactivate bound tightening techniques within Alpine due to
their ineffectiveness on our medium and large-scale instances. We partition the domains of all variables
involved in nonconvex terms within Alpine and set its remaining options to their default values.

We evaluate the performance of the strong partitioning and ML-based policies when used to specify the
partitioning matrix P 1 in Alpine’s first iteration. Algorithm 3 for strong partitioning is implemented in
Julia 1.6.3 and integrated within Alpine.jl v0.4.1 (https://github.com/lanl-ansi/Alpine.jl). To solve
problem (SP) to local optimality, we use the bundle solver MPBNGC 2.0 [42] via MPBNGCInterface.jl
(https://github.com/milzj/MPBNGCInterface.jl), with the options OPT LMAX = 20, OPT EPS = 10−9,
and OPT NITER = OPT NFASG = 500. We do not specify a time limit for Algorithm 3. We consider strong
partitioning with either two or four partitioning points per partitioned variable (d = 2 or d = 4) in addition to
the variable bounds. We use scikit-learn v0.23.2 [53] to design our AdaBoost regression-based approximation
of strong partitioning, setting N = 1000, K = 10, Nwl = 1000, Dmax = 25, and either d = 2 or d = 4 in
Algorithm 4. We do not carefully tune the hyperparameters in Algorithm 4, as our primary focus is on the
performance of partitioning points prescribed by our AdaBoost-based policy when used within Algorithm 1.

All of our experiments were conducted on nodes of the Darwin cluster at LANL, which are equipped
with dual socket Intel Broadwell 18-core processors (E5-2695 v4 CPUs, base clock rate of 2.1 GHz), EDR
InfiniBand, and 125 GB of memory. Each instance was run exclusively on a single node, and different solution
approaches were executed sequentially to minimize the impact of variability in machine performance.

6.2.2 Evaluation metrics for our numerical experiments

We benchmark the difficulty of our test instances using the global solvers BARON and Gurobi with the
following metrics:

i. Solution times: shifted geometric mean (GM), median, minimum, and maximum solution times.

ii. Number of iterations or B&B nodes: GM and median number of iterations or B&B nodes
explored.

iii. Number of instances solved: the number of instances solved within the time limit and the GM of
the residual optimality gap for the unsolved instances.

18

https://github.com/lanl-ansi/Alpine.jl
https://github.com/lanl-ansi/Alpine.jl
https://github.com/lanl-ansi/Alpine.jl
https://github.com/milzj/MPBNGCInterface.jl

The shifted geometric mean of a positive vector t of solution times (in seconds) is defined as:

Shifted GM(t) = exp
(1

N

N∑
i=1

ln(ti + 10)
)
− 10.

The residual optimality gap for an unsolved instance is defined as:

TLE Gap =
UB− LB

10−6 + |UB| ,

where UB and LB are the upper and lower bounds on the optimal value returned by the solver at termination.
We assess the effectiveness of the AdaBoost regression models in imitating the strong partitioning policy

by evaluating the scaled mean absolute errors (MAEs) of their out-of-sample predictions for the strong
partitioning points. We then compare the performance of Alpine’s default partitioning policy with the use
of the strong partitioning and AdaBoost-based policies within Alpine using the following metrics:

i. Solution times: shifted GM, median, minimum, and maximum solution times, as well as statistics
on the speedup or slowdown relative to the performance of Alpine’s default partitioning policy.

ii. Effective optimality gaps: GM, median, minimum, and maximum effective optimality gap after
Alpine’s first iteration, along with the percentage of instances for which the effective optimality gap
reaches the minimum value of 10−4 after the first iteration.

iii. Number of instances solved: the number of instances solved within the time limit and the GM of
the residual optimality gap for the unsolved instances.

We also plot solution profiles comparing the performance of different partitioning policies within Alpine, and
histograms showing the reduction in effective optimality gaps achieved by using the strong partitioning and
ML-based policies relative to Alpine’s default partitioning policy. We do not include performance profiles
due to their known issues (see http://plato.asu.edu/bench.html).

We define the effective relative optimality gap as:

Effective Optimality Gap = max

{
10−4,

v∗ − vLBD

10−6 + |v∗|

}
, (9)

where v∗ is the optimal objective value, vLBD is Alpine’s lower bound after one iteration, and 10−4 is the
target relative optimality gap. By measuring the gap of vLBD relative to the optimal value v∗ instead of the
best found feasible solution, we do not let the performance of the local solver impact our evaluation of the
different partitioning policies. Thresholding this optimality gap at 10−4 also lends equal importance to all
optimality gaps less than this target since all such gaps are sufficient for Alpine’s convergence.

6.3 Benchmarking test instances using state-of-the-art global optimization solvers

To highlight the nontrivial nature of our nonconvex QCQP test instances, we solve them to global optimality
using the state-of-the-art global optimization solvers BARON and Gurobi, evaluating them with the metrics
detailed in Section 6.2.2. It is important to note that our goal is not to compare BARON or Gurobi with the
different versions of Alpine, but rather to demonstrate that both our QCQP instances and the accelerations
of Alpine achieved are nontrivial.

6.3.1 Benchmarking using BARON

Table 1 present statistics of BARON run times across the different QCQP families. BARON solves the
10-variable and 20-variable random bilinear and QCQP instances within seconds. However, it takes over 5
minutes on average to solve the 50-variable random bilinear instances and over 20 minutes on average to

19

http://plato.asu.edu/bench.html

Table 1: Statistics on BARON solution times, including the shifted geometric mean, median, minimum, and
maximum times over the subset of 1000 instances for which BARON does not hit the 2 hour time limit. The
sixth and seventh columns show the geometric mean and median of the total number of BARON iterations
across the 1000 instances. The last two columns denote the number of instances for which BARON hits the
time limit and the corresponding geometric mean of residual optimality gaps at termination, respectively.

Problem Family BARON Solution Time (seconds) BARON Iterations
Shifted GM Median Min Max GM Median # TLE TLE Gap (GM)

Bilinear, n = 10 0.2 0.2 0.1 0.4 1 1 0
Bilinear, n = 20 3.8 3.9 1.3 7.6 9 9 0
Bilinear, n = 50 312.4 281.4 57.7 5194.9 9934 9193 0

QCQP, n = 10 0.4 0.4 0.1 0.7 1 1 0
QCQP, n = 20 5.0 4.8 1.5 9.8 17 13 0
QCQP, n = 50 1311.3 1741.6 16.3 7165.4 54691 73221 107 3.2× 10−2

Pooling 553.5 647.2 17.0 7189.2 50954 263547 417 2.4× 10−2

Table 2: Statistics on Gurobi solution times, including the shifted geometric mean, median, minimum, and
maximum times over the subset of 1000 instances for which Gurobi does not hit the 2 hour time limit. The
sixth and seventh columns show the geometric mean and median of the total number of nodes explored by
Gurobi across the 1000 instances. The last two columns denote the number of instances for which Gurobi hits
the time limit and the corresponding geometric mean of residual optimality gaps at termination, respectively.

Problem Family Gurobi Solution Time (seconds) Gurobi B&B Nodes
Shifted GM Median Min Max GM Median # TLE TLE Gap (GM)

Bilinear, n = 10 0.03 0.03 0.01 0.13 1 1 0
Bilinear, n = 20 0.7 0.7 0.3 1.3 2732 2687 0
Bilinear, n = 50 7.2 7.1 2.6 18.3 17181 17263 0

QCQP, n = 10 0.02 0.01 0.01 0.08 1 1 0
QCQP, n = 20 0.6 0.6 0.3 1.1 2235 2389 0
QCQP, n = 50 8.0 8.1 2.1 25.1 26108 27711 0

Pooling 63.6 44.3 1.1 6367.1 833312 739876 10 3× 10−4

solve the 50-variable random QCQP instances. BARON also times out on 107 out of 1000 of the 50-variable
instances with univariate quadratic terms. BARON finds the random pooling instances to be significantly
harder, timing out on 417 out of 1000 instances and taking roughly 9 minutes on average to solve the
remaining 583 out of 1000 instances (while BARON finds global solutions, it is unable to prove global
optimality within the time limit). The last column in Table 1 indicates the GM of the relative optimality
gap at termination for instances where BARON hits the time limit. Finally, the sixth and seventh columns
note the GM and median of the total number of BARON iterations. BARON requires significantly more
iterations for the 50-variable random bilinear and QCQP instances, as well as for the pooling instances,
compared to the 10-variable and 20-variable instances.

6.3.2 Benchmarking using Gurobi

Table 2 present statistics of Gurobi run times across the different QCQP families. Gurobi solves the 10-
variable and 20-variable random bilinear and QCQP instances within a second and requires about 7 seconds
on average to solve the 50-variable random bilinear and QCQP instances. However, Gurobi finds the random
pooling instances to be relatively more challenging, timing out on 10 out of 1000 instances and taking about
one minute on average to solve the remaining 990 out of 1000 instances. The last column in Table 2 notes

20

Algorithm 5 Alpine’s adaptive partition refinement policy for iteration l

1: Input: partitioning matrix P l−1 ∈ [0, 1]|NC|×2l used to construct piecewise McCormick relaxations at
iteration l−1, index A(i, l−1) ∈ [2l−1] of an active partition for variable xi at iteration l−1, ∀i ∈ NC,
a reference point x̄l−1 within the active partition, i.e., with x̄l−1

i ∈ [P l−1
i(A(i,l−1)), P

l−1
i(A(i,l−1)+1)], ∀i ∈ NC,

and parameter ∆ ≥ 4.

2: Initialization: set P l = P l−1.

3: for i ∈ NC do
4: Let width(A(i, l − 1)) := P l−1

i(A(i,l−1)+1) − P l−1
i(A(i,l−1)). Add two partitioning points pl

i
and p̄li to the

active partition [P l−1
i(A(i,l−1)), P

l−1
i(A(i,l−1)+1)] for variable xi as follows:

P l
i :=

(
P l−1
i1 , . . . , P l−1

i(A(i,l−1)), p
l
i
, p̄li, . . . , P

l−1
i(2l)

)
, where

pl
i
:= max

{
P l−1
i(A(i,l−1)), x̄

l−1
i − width(A(i, l − 1))

∆

}
,

p̄li := min

{
P l−1
i(A(i,l−1)+1), x̄

l−1
i +

width(A(i, l − 1))

∆

}
.

(
In practice, the partitioning points pl

i
and p̄li are not added to P l

i if x̄
l−1
i −width(A(i,l−1))

∆ ≤ P l−1
i(A(i,l−1))

or x̄l−1
i + width(A(i,l−1))

∆ ≥ P l−1
i(A(i,l−1)+1), respectively.

)
5: end for

6: Output: partitioning matrix P l used to construct piecewise McCormick relaxations at iteration l.

the GM of the relative optimality gap at termination for instances where Gurobi hits the time limit. The
sixth and seventh columns note the GM and median of the total number of B&B nodes explored by Gurobi.
Despite requiring a significant number of nodes for convergence, particularly for the pooling instances, Gurobi
solves our test instances much faster than BARON, potentially due to the use of cheaper relaxations, efficient
parallelization and effective engineering.

6.4 Alpine’s partitioning policy

Algorithm 5 outlines the partitioning policy implemented within Alpine [47]. It adds up to two partitioning
points to the active partition for each variable xi, i ∈ NC, around a reference point x̄l−1

i . For the first
iteration, P 0

i := (0, 1), ∀i ∈ NC, and the reference point x̄0 is set either to a feasible local solution from
presolve, if one is found, or to a solution to the termwise McCormick relaxation (2) otherwise. In subsequent
iterations (l > 1), x̄l−1 is specified as the x-component of a solution to the piecewise McCormick relaxation
problem (PMR) at iteration l−1, constructed using the partitioning matrix P l−1. The parameter ∆ (default
value = 10) is a dimensionless scaling factor for the size of the partition constructed around the reference
point x̄l−1. A larger value of ∆ results in a narrower partition around x̄l−1.

This policy empirically performs well on Alpine’s test library and is motivated by the observation that
uniformly partitioning variable domains [as proposed in 15, 55, 60] often creates many partitions that do
not significantly improve the piecewise McCormick relaxation lower bound. However, it relies on heuristic
choices that could be improved. For example, it uses the same parameter ∆ to partition the domains
of all variables and only considers symmetric partition refinements around the point x̄l−1. Additionally,
the quality of its partitioning points P 1 in the first iteration depends on the quality of the feasible solution
found during presolve, with suboptimal presolve solutions potentially leading to slow convergence. Numerical
experiments in Section 6.6 demonstrate how strong partitioning and its ML approximation effectively address
these limitations of Alpine’s partitioning policy.

21

Table 3: Statistics on the scaled mean absolute errors (MAEs) of the out-of-sample predictions of the
AdaBoost regression models when they are trained to predict d = 2 strong partitioning points per variable.

Scaled MAE < 0.01 < 0.02 < 0.05 < 0.1 < 0.2
% of the 2|NC| Partitioning Points

Bilinear, n = 10 60 75 80 95 100
Bilinear, n = 20 15 22.5 60 87.5 97.5
Bilinear, n = 50 31 39 70 94 100

QCQP, n = 10 65 80 95 100 100
QCQP, n = 20 35 37.5 77.5 92.5 100
QCQP, n = 50 56 66 85 99 100

Pooling 65.7 70.9 78.6 89.5 97.2

6.5 Effectiveness of the ML model in imitating the strong partitioning policy

We evaluate the effectiveness of our AdaBoost regression models in imitating the strong partitioning policy
for the different QCQP families. We do not extensively tune the hyperparameters of our AdaBoost models,
as our primary focus is on the performance of the partitioning points they prescribe when used within
Algorithm 1. Section 6.2.1 details the parameter settings used in Algorithm 4.

Table 3 presents statistics on the scaled mean absolute errors (MAEs) of the out-of-sample predictions for
the 2|NC| partitioning points generated by the AdaBoost models. These models are trained to predict d = 2
strong partitioning points per variable. The MAEs are averaged over 1000 instances in each family and are
scaled by the upper bounds of the corresponding x variables (which are equal to one for the random bilinear
and QCQP instances). Approximately 90% or more of the partitioning points predicted by the AdaBoost
models have a scaled MAE of less than 10% for each problem family, indicating that this ML framework
effectively and efficiently imitates strong partitioning across different problem families.

6.6 Evaluating the performance of strong partitioning and ML-based policies
in Alpine

We compare the performance of Alpine’s default partitioning policy with the strong partitioning (Alpine+SP2)
and AdaBoost-based (Alpine+ML2) policies, which select two partitioning points per variable in each it-
eration of Alpine, using the metrics detailed in Section 6.2.2. For the bilinear n = 20 and QCQP n = 20
families, we also compare these policies with the strong partitioning (Alpine+SP4) and AdaBoost-based
(Alpine+ML4) policies that select four partitioning points per variable in Alpine’s first iteration. We reiter-
ate that the strong partitioning and AdaBoost policies differ from Alpine’s default partitioning policy only
during the first iteration of Algorithm 1. All reported times for Alpine with the strong partitioning and
AdaBoost policies exclude the time required to run Algorithm 3 and Algorithm 4.

Table 4 presents statistics on the run times of Alpine with the default, strong partitioning, and AdaBoost-
based partitioning policies across the different QCQP families. Table 5 records the speedup or slowdown of
Alpine with the strong partitioning and AdaBoost-based policies relative to default Alpine. Table 6 provides
statistics on the effective optimality gaps (9) of Alpine with the different partitioning policies after the first
iteration. Table 7 reports statistics on the time required to run Algorithm 3 to determine strong partitioning
points for the different QCQP families. Figures 2, 3, and 4 plot solution profiles and histograms showing
the reduction in effective optimality gaps achieved after the first iteration by the strong partitioning and
AdaBoost policies relative to Alpine’s default partitioning policy.

Bilinear instances. Table 4 indicates that Alpine+SP2 reduces the shifted GM of default Alpine’s solution
time by factors of 4.5, 5.1, and 7.7 for the n = 10, n = 20, and n = 50 families. Alpine+ML2 offers a moderate
approximation of Alpine+SP2, reducing the shifted GM of default Alpine’s solution time by factors of 3.5,

22

Table 4: Statistics on solution times. Columns correspond to the shifted geometric mean, median, minimum,
and maximum times over the subset of 1000 instances that did not hit the 2 hour time limit. The times
for Alpine+SP2 and Alpine+SP4 do not include the time for running Algorithm 3 to determine strong
partitioning points. The last two columns denote the number of instances for which each method hits the
time limit and the corresponding geometric mean of residual optimality gaps at termination, respectively.

Problem Family Solution Method Solution Time (seconds)
Shifted GM Median Min Max # TLE TLE Gap (GM)

Alpine (default) 0.51 0.47 0.14 2.41 0
Bilinear, n = 10 Alpine+SP2 0.11 0.10 0.06 0.28 0

Alpine+ML2 0.15 0.10 0.06 1.64 0

Alpine (default) 21.4 21.9 5.1 161.5 0
Alpine+SP2 4.2 2.0 0.8 132.6 0

Bilinear, n = 20 Alpine+ML2 10.0 7.8 1.1 116.0 0
Alpine+SP4 2.4 1.9 0.8 94.2 0
Alpine+ML4 9.3 7.2 1.0 117.4 0

Alpine (default) 405.9 336.2 48.0 7135.9 24 4.4× 10−4

Bilinear, n = 50 Alpine+SP2 52.8 34.9 4.2 5705.1 4 1.6× 10−4

Alpine+ML2 101.6 83.6 6.6 7071.7 5 1.8× 10−4

Alpine (default) 0.85 0.81 0.62 2.29 0
QCQP, n = 10 Alpine+SP2 0.10 0.09 0.07 0.27 0

Alpine+ML2 0.27 0.12 0.07 2.89 0

Alpine (default) 40.1 35.6 4.6 241.1 0
Alpine+SP2 7.7 1.7 0.8 135.4 0

QCQP, n = 20 Alpine+ML2 13.0 9.5 1.0 180.1 0
Alpine+SP4 2.4 1.5 0.7 125.7 0
Alpine+ML4 9.4 6.4 0.9 101.2 0

Alpine (default) 391.5 289.1 36.6 7198.2 0
QCQP, n = 50 Alpine+SP2 63.3 51.9 4.2 6055.2 0

Alpine+ML2 100.5 118.2 5.3 6514.2 0

Alpine (default) 242.8 212.5 25.9 7091.9 7 2.9× 10−4

Pooling Alpine+SP2 66.7 49.7 1.6 6127.1 5 2.1× 10−4

Alpine+ML2 117.1 101.9 11.4 6097.0 1 2.8× 10−4

2.1, and 4, respectively, for n = 10, n = 20, and n = 50. For the n = 20 instances, Alpine+SP4 and
Alpine+ML4 reduce the shifted GM of default Alpine’s solution time by factors of 9 and 2.3.

Table 5 shows that Alpine+SP2 achieves at least 5× speedup over default Alpine on 41.3% of the n = 10
instances, and at least 10× speedup on 39.9% and 46.1% of the n = 20 and n = 50 instances. Alpine+ML2
achieves at least 5× speedup on 40.1%, 22.2%, and 45.2% of the n = 10, n = 20, and n = 50 instances.
Alpine+SP2 achieves a maximum speedup of 15×, 49×, and 685× on the n = 10, n = 20, and n = 50
instances, while Alpine+ML2 achieves a maximum speedup of 13×, 38×, and 197× on these instances.

It is important to note that the times for Alpine+SP2 and Alpine+SP4 do not include the time required
to run Algorithm 3 to determine strong partitioning points, making these solution times unachievable in
practice. Instead, these times reflect the potential performance that could be realized by an efficient ML
model perfectly imitating the strong partitioning strategy. These results underscore the significant potential
of strong partitioning as an expert strategy for accelerating the global optimization of nonconvex QCQPs.

Table 6 shows that Alpine+SP2 reduces the GM of default Alpine’s effective optimality gap (9) after the

23

Figure 2: Results for the random bilinear instances. The times for Alpine+SP2 and Alpine+SP4 do not
include the time for running Algorithm 3 to determine strong partitioning points. Top row: solution profiles
indicating the percentage of instances solved by the different methods within time T seconds (higher is
better). Bottom row: histograms of the ratios of the effective optimality gaps (9) of default Alpine with
Alpine+SP2 and with Alpine+ML2 after one iteration (larger is better).

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T n=10

Default
SP2
ML2

0.5 2 5 20 50 200
Time T (seconds)

0

20

40

60

80

100
n=20

Default
SP2
ML2
SP4
ML4

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100
n=50

Default
SP2
ML2

1 2 3 5 10 20 50
Gap reduction factor (1st iteration)

0

10

20

30

40

50

%
 o
f i
ns

ta
nc

es

n=10
Default/SP2
Default/ML2

5 20 50 200 500 2000 5000
Gap reduction factor (1st iteration)

0

10

20

30

40

50

60

70

n=20
Default/SP2
Default/ML2

1 2 5 20 50 200 500 2000
Gap reduction factor (1st iteration)

0

10

20

30

40

50

60 n=50
Default/SP2
Default/ML2

first iteration by factors of 5.5, 2200, and 80, respectively, for the n = 10, n = 20, and n = 50 instances.
Alpine+ML2 also reduces the GM of default Alpine’s gap after the first iteration by factors of 4.6, 180, and
15 for n = 10, n = 20, and n = 50. Notably, Alpine+SP2 closes the gap in the first iteration for 100%,
82.3%, and 46% of the n = 10, n = 20, and n = 50 instances, while default Alpine is able to close the gap
in the first iteration for at most 0.1% of the instances across these families, highlighting the effectiveness of
strong partitioning. Table 4 also shows that Alpine+SP2 and Alpine+ML2 terminate with smaller average
gaps on the n = 50 instances where they time out, compared to default Alpine.

QCQP instances. Table 4 shows that Alpine+SP2 reduces the shifted GM of default Alpine’s solution
time by factors of 8.4, 5.2, and 6.2 for the n = 10, n = 20, and n = 50 families. Alpine+ML2 provides a
moderate approximation, reducing the shifted GM of default Alpine’s solution time by factors of 3.1, 3.1,
and 3.9 for these instances. For the n = 20 instances, Alpine+SP4 and Alpine+ML4 reduce the shifted GM
of default Alpine’s solution time by factors of 16.4 and 4.3, respectively.

Table 5 indicates that Alpine+SP2 achieves at least a 10× speedup over default Alpine on 20.5%, 54.6%,
and 42.1% of the n = 10, n = 20, and n = 50 instances. Alpine+ML2 provides at least a 5× speedup on
65.7%, 34.7%, and 42.7% of these instances. Alpine+SP2 achieves a maximum speedup of 22×, 87×, and
98× on the n = 10, n = 20, and n = 50 instances, while Alpine+ML2 results in a maximum speedup of
19×, 56×, and 32× on these instances. We reiterate that the times for Alpine+SP2 and Alpine+SP4 do not
include the time required for running Algorithm 3. These times reflect the potential performance that could
be realized by an efficient ML model perfectly imitating the strong partitioning strategy.

Table 6 shows that Alpine+SP2 reduces the GM of default Alpine’s effective gap (9) after the first
iteration by factors of 13, 300, and 50 for the n = 10, n = 20, and n = 50 instances. Alpine+ML2 reduces

24

Figure 3: Results for the random QCQP instances. The times for Alpine+SP2 and Alpine+SP4 do not
include the time for running Algorithm 3 to determine strong partitioning points. Top row: solution profiles
indicating the percentage of instances solved by the different methods within time T seconds (higher is
better). Bottom row: histograms of the ratios of the effective optimality gaps (9) of default Alpine with
Alpine+SP2 and with Alpine+ML2 after one iteration (larger is better).

0.1 0.2 0.5 1 2 3
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so

lv
ed

 w
it
hi

n
ti
m

e
T n=10

Default
SP2
ML2

0.5 2 5 20 50 200
Time T (seconds)

0

20

40

60

80

100
n=20

Default
SP2
ML2
SP4
ML4

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100
n=50

Default
SP2
ML2

0.05 0.2 0.5 1 2 3 5 20 50
Gap reduction factor (1st iteration)

0

20

40

60

80

%
 o
f i
ns

ta
nc

es

n=10
Default/SP2
Default/ML2

1 5 20 50 200 500 2000
Gap reduction factor (1st iteration)

0

10

20

30

40
n=20

Default/SP2
Default/ML2

1 2 5 20 50 200 500
Gap reduction factor (1st iteration)

0

10

20

30

40

50

n=50

Default/SP2
Default/ML2

Figure 4: Results for the random pooling instances. The times for Alpine+SP2 do not include the time
for running Algorithm 3 to determine strong partitioning points. Left plot: solution profile indicating the
percentage of instances solved by the different methods within time T seconds (higher is better). Right plot:
histograms of the ratios of the effective optimality gaps (9) of default Alpine with Alpine+SP2 and with
Alpine+ML2 after one iteration (larger is better).

2 5 20 50 200 500 2000 7200
Time T (seconds)

0

20

40

60

80

100

%
 in

st
an

ce
s
so
lv
ed

 w
it
hi
n
ti
m
e
T

Default
SP2
ML2

1 2 5 20 50 200 500
Gap reduction factor (1st iteration)

0

10

20

30

40

%
 o
f i
ns

ta
nc

es

Default/SP2
Default/ML2

the GM of default Alpine’s gap by factors of 4.3, 31, and 17 for these instances. Notably, Alpine+SP2 closes
the gap in the first iteration for 100%, 52.2%, and 39% of the n = 10, n = 20, and n = 50 instances, while
default Alpine is unable to close the gap in the first iteration for any of these instances.

25

Table 5: Statistics on the speedup or slowdown of Alpine with the strong partitioning and ML-based policies
relative to default Alpine. The speedups for Alpine+SP2 and Alpine+SP4 do not account for the time spent
in running Algorithm 3 to determine strong partitioning points.

Problem Family Solution Method Speedup/Slowdown Factor
< 0.5 0.5− 1 1− 2 2− 5 5− 10 10− 20 20− 50 > 50

Bilinear, n = 10 % Alpine+SP2 inst. 1.1 57.6 40.1 1.2 0 0
% Alpine+ML2 inst. 0.2 2.1 7.7 49.9 40.0 0.1 0 0

% Alpine+SP2 inst. 0.2 3.3 7.2 18.2 31.2 29.9 10.0 0.0
Bilinear, n = 20 % Alpine+ML2 inst. 3.3 9.8 25.5 39.2 15.3 6.0 0.9 0.0

% Alpine+SP4 inst. 0.2 0.7 1.3 13.4 32.7 37.1 14.5 0.1
% Alpine+ML4 inst. 2.8 10.5 23.3 41.4 15.2 5.9 0.9 0.0

Bilinear, n = 50 % Alpine+SP2 inst. 0.4 1.3 7.2 18.7 26.3 24.3 14.9 6.9
% Alpine+ML2 inst. 0.7 4.7 16.9 32.5 25.3 13.7 5.4 0.8

QCQP, n = 10 % Alpine+SP2 inst. 0.1 3.3 76.1 20.4 0.1 0
% Alpine+ML2 inst. 1.0 3.9 20.9 8.5 53.4 12.3 0 0

% Alpine+SP2 inst. 0.1 3.2 12.2 18.4 11.5 19.4 32.6 2.6
QCQP, n = 20 % Alpine+ML2 inst. 0.5 5.1 19.0 40.7 23.1 9.6 1.9 0.1

% Alpine+SP4 inst. 0 0.2 1.3 3.8 5.5 28.2 53.7 7.3
% Alpine+ML4 inst. 0 2.9 11.6 33.3 27.0 17.2 7.6 0.4

QCQP, n = 50 % Alpine+SP2 inst. 0.9 1.3 10.7 22.0 23.0 32.5 7.2 2.4
% Alpine+ML2 inst. 1.4 4.0 19.5 32.4 22.7 16.6 3.4 0

Pooling % Alpine+SP2 inst. 2.2 6.4 19.7 26.0 21.8 16.8 6.7 0.4
% Alpine+ML2 inst. 2.1 11.5 34.5 40.4 9.8 1.4 0.3 0

Pooling instances. Table 4 indicates that Alpine+SP2 and Alpine+ML2 reduce the shifted GM of default
Alpine’s solution time by factors of 3.6 and 2.1. Table 5 shows that Alpine+SP2 and Alpine+ML2 achieve at
least a 5× speedup over default Alpine on 45.7% and 11.5% of the instances. Table 6 reveals that Alpine+SP2
and Alpine+ML2 reduce the GM of default Alpine’s effective optimality gap (9) after the first iteration by
factors of 28 and 4.5. After the first iteration, Alpine+SP2 closes the effective optimality gap for 45.2% of
the instances, while default Alpine fails to close the gap for any of these instances. Finally, Alpine+SP2 and
Alpine+ML2 result in maximum speedups of 120× and 41×. We reiterate that the times for Alpine+SP2
and Alpine+SP4 do not include the time required for running Algorithm 3.

Summary. Tables 4 to 6 and Figures 2 to 4 clearly demonstrate the advantages of our SP and AdaBoost
policies over Alpine’s default partitioning policy. Comparing Alpine+SP4 and Alpine+SP2 reveals that
using SP to select more partitioning points results in more effective, non-myopic partition refinement, albeit
at a significant increase in the time required to solve the max-min problem (SP). Table 7 indicates that
solving the max-min problem (SP) to local optimality can be time-consuming, making the direct use of
the SP policy in Alpine impractical. However, the performance metrics for Alpine+SP2 and Alpine+SP4
suggest significant potential improvements, reflecting the best-case scenario achievable by an efficient ML
model that perfectly imitates the SP policy. This highlights the substantial potential for accelerating the
global optimization of QCQPs through tailored ML approaches imitating strong partitioning.

26

Table 6: Statistics on the effective optimality gap (9) after Alpine’s first iteration (note: the minimum
possible value of the effective optimality gap is 10−4, the target gap). Columns show the geometric mean,
median, minimum, and maximum effective gaps over 1000 instances. The numbers in these columns have
been multiplied by 104 for ease of readability. The last column indicates the percentage of instances for which
each method achieves the minimum possible effective optimality gap of 10−4 after Alpine’s first iteration.

Problem Family Solution Method 104× Effective Optimality Gap % Instances
GM Median Min Max Gap Closed

Alpine (default) 5.5 4.5 1 343 0.1
Bilinear, n = 10 Alpine+SP2 1 1 1 1 100

Alpine+ML2 1.2 1 1 439 88.3

Alpine (default) 2869 3324 734 4805 0
Alpine+SP2 1.3 1 1 61 82.3

Bilinear, n = 20 Alpine+ML2 16 19 1 1421 18.9
Alpine+SP4 1 1 1 4.7 96.0
Alpine+ML4 22 36 1 994 14.5

Alpine (default) 144 170 1 693 0.1
Bilinear, n = 50 Alpine+SP2 1.7 1.2 1 5371 46.0

Alpine+ML2 9.5 9.4 1 4941 5.6

Alpine (default) 13 12 7.5 187 0
QCQP, n = 10 Alpine+SP2 1 1 1 1 100

Alpine+ML2 3 1 1 1291 71.8

Alpine (default) 627 784 30 2064 0
Alpine+SP2 2.1 1 1 66 52.2

QCQP, n = 20 Alpine+ML2 20 25 1 578 2.0
Alpine+SP4 1.1 1 1 36 92.6
Alpine+ML4 15 17 1 668 14.7

Alpine (default) 81 104 6.3 282 0
QCQP, n = 50 Alpine+SP2 1.6 1.3 1 10 39.0

Alpine+ML2 4.8 5.3 1 148 14.9

Alpine (default) 68 64 12 440 0
Pooling Alpine+SP2 2.4 1.4 1 31 45.2

Alpine+ML2 15 16 1 63 0.1

7 Future work

There are several promising avenues for future research. One potential direction is to move beyond the
current approach of prespecifying a fixed number of partitioning points per variable in the strong partitioning
problem (SP). Instead, we could allocate different numbers of partitioning points to each variable based on
their relative impact on the lower bound. For example, consider a scenario where we aim to allocate up
to d + 2 partitioning points per partitioned variable and have a total budget B ∈ [d × |NC|] for unfixed
partitioning points across all variables (excluding variable bounds). To optimally allocate and specify these
partitioning points, we can solve the following max-min problem:

max

{
v(P) : (P,Z) ∈ Pd × {0, 1}|NC|×d,

∑
i∈NC

∑
j∈[d]

Zij = B, Zij = 0 =⇒ Pi(j+1) = 0, ∀(i, j) ∈ NC × [d]

}
,

27

Table 7: Statistics on the time required to run Algorithm 3 to determine strong partitioning points. Columns
denote the shifted geometric mean, median, minimum, maximum, and standard deviation of these times.

Problem Family Solution Max-Min Solution Time (seconds)
Method Shifted GM Median Min Max Std. Deviation

Bilinear, n = 10 SP2 16 14 6 96 13

Bilinear, n = 20 SP2 528 445 136 2389 544
SP4 1244 1117 374 4360 893

Bilinear, n = 50 SP2 7070 7404 1271 23166 3268

QCQP, n = 10 SP2 8 8 6 53 3

QCQP, n = 20 SP2 1731 1826 171 4244 654
SP4 2152 2740 471 5965 961

QCQP, n = 50 SP2 16964 17074 8626 23551 2319

Pooling SP2 15658 15148 1088 77029 8657

where P ∈ [0, 1]|NC|×(d+2) represents the potential partitioning points and v is the optimal value function of
problem (PMR-OA). Here, if Zij = 0, the partitioning point Pi(j+1) is forced to 0, rendering it redundant.
Unlike the original strong partitioning problem (SP), the outer-maximization problem above involves binary
decision variables Z, which necessitates new techniques for its solution.

Additionally, future work could focus on designing more efficient methods for solving the max-min prob-
lem (SP) to enhance the scalability of generating strong partitioning expert data. Another exciting direction
is designing tailored ML architectures capable of achieving similar speedups as the SP policy while handling
varying feature and output dimensions. Finally, it would be interesting to explore generalizations of the SP
policy that optimally select a subset of variables for partitioning at each iteration of Algorithm 1.

Acknowledgments

We gratefully acknowledge funding from Los Alamos National Laboratory’s Center for Nonlinear Studies and
the U.S. Department of Energy’s LDRD program under the projects “20230091ER: Learning to Accelerate
Global Solutions for Non-convex Optimization” and “20210078DR: The Optimization of Machine Learning:
Imposing Requirements on Artificial Intelligence.” This research used resources provided by LANL’s Darwin
testbed, which is funded by the Computational Systems and Software Environments subprogram of LANL’s
Advanced Simulation and Computing program (NNSA/DOE).

References
[1] T. Achterberg. Constraint integer programming. PhD thesis, TU Berlin, 2007.

[2] F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics of Operations Research, 8(2):
273–286, 1983.

[3] A. M. Alvarez, Q. Louveaux, and L. Wehenkel. A machine learning-based approximation of strong branching. INFORMS
Journal on Computing, 29(1):185–195, 2017.

[4] R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani. Scoring positive semidefinite cutting planes for quadratic
optimization via trained neural networks. Optimization Online, 2019. URL https://optimization-online.org/2018/11/

6943/.

[5] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadratically constrained quadratic program-
ming: A review and comparisons. Mathematical Programming, 129(1):129–157, 2011.

[6] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a methodological tour d’horizon.
European Journal of Operational Research, 290(2):405–421, 2021.

[7] M. L. Bergamini, I. Grossmann, N. Scenna, and P. Aguirre. An improved piecewise outer-approximation algorithm for the

28

https://optimization-online.org/2018/11/6943/
https://optimization-online.org/2018/11/6943/

global optimization of MINLP models involving concave and bilinear terms. Computers & Chemical Engineering, 32(3):
477–493, 2008.

[8] K. Bestuzheva, M. Besançon, W.-K. Chen, et al. The SCIP optimization suite 8.0. arXiv preprint: 2112.08872, 2021.

[9] D. Bienstock, M. Escobar, C. Gentile, and L. Liberti. Mathematical programming formulations for the alternating current
optimal power flow problem. Annals of Operations Research, pages 1–39, 2022.

[10] A. Billionnet, S. Elloumi, and A. Lambert. Extending the QCR method to general mixed-integer programs. Mathematical
Programming, 131(1):381–401, 2012.

[11] P. Bonami, A. Lodi, and G. Zarpellon. Learning a classification of mixed-integer quadratic programming problems. In
International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
pages 595–604. Springer, 2018.

[12] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression trees. Routledge, 2017.

[13] S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for nonconvex quadratic programming via semidef-
inite relaxations. Mathematical Programming, 113(2):259–282, 2008.

[14] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković. Combinatorial optimization and reasoning
with graph neural networks. Journal of Machine Learning Research, 24(130):1–61, 2023.

[15] P. M. Castro. Normalized multiparametric disaggregation: an efficient relaxation for mixed-integer bilinear problems.
Journal of Global Optimization, 64(4):765–784, 2016.

[16] F. Cengil, H. Nagarajan, R. Bent, S. Eksioglu, and B. Eksioglu. Learning to accelerate globally optimal solutions to the
AC optimal power flow problem. Electric Power Systems Research, 212:108275, 2022.

[17] D. De Wolf and Y. Smeers. Generalized derivatives of the optimal value of a linear program with respect to matrix
coefficients. European Journal of Operational Research, 291(2):491–496, 2021.

[18] G. Di Liberto, S. Kadioglu, K. Leo, and Y. Malitsky. DASH: Dynamic approach for switching heuristics. European Journal
of Operational Research, 248(3):943–953, 2016.

[19] H. Drucker. Improving regressors using boosting techniques. In ICML, volume 97, pages 107–115. Citeseer, 1997.

[20] R. M. Freund. Postoptimal analysis of a linear program under simultaneous changes in matrix coefficients. In Mathematical
Programming Essays in Honor of George B. Dantzig Part I, pages 1–13. Springer, 1985.

[21] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119–139, 1997.

[22] F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, N. Gould, L. Liberti, A. Lodi, R. Misener, H. Mittelmann,
et al. QPLIB: a library of quadratic programming instances. Mathematical Programming Computation, 11:237–265, 2019.

[23] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization with graph convolutional
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[24] B. Ghaddar, I. Gómez-Casares, J. González-Dı́az, B. González-Rodŕıguez, B. Pateiro-López, and S. Rodŕıguez-Ballesteros.
Learning for spatial branching: An algorithm selection approach. INFORMS Journal on Computing, 35(5):1024–1043,
2023.

[25] B. González-Rodŕıguez, R. Alvite-Pazó, S. Alvite-Pazó, B. Ghaddar, and J. González-Dı́az. Polynomial optimization:
Enhancing RLT relaxations with conic constraints. arXiv preprint arXiv:2208.05608, 2022.

[26] C. A. Haverly. Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bulletin, 25:19–28, 1978.

[27] H. He, H. Daume III, and J. M. Eisner. Learning to search in branch and bound algorithms. Advances in Neural Information
Processing Systems, 27:3293–3301, 2014.

[28] J. Im. Sensitivity analysis and robust optimization: A geometric approach for the special case of linear optimization.
Master’s thesis, University of Waterloo, 2018.

[29] D. Jungen, A. Zingler, H. Djelassi, and A. Mitsos. libDIPS–Discretization-Based Semi-Infinite and Bilevel Programming
Solvers. Available on Optimization Online. URL: https: // optimization-online. org/ ?p= 24914 , pages 1–38, 2023.

[30] R. Kannan. Algorithms, analysis and software for the global optimization of two-stage stochastic programs. PhD thesis,
Massachusetts Institute of Technology, 2018.

[31] R. Kannan and P. I. Barton. The cluster problem in constrained global optimization. Journal of Global Optimization, 69
(3):629–676, 2017.

[32] R. Kannan and P. I. Barton. Convergence-order analysis of branch-and-bound algorithms for constrained problems. Journal
of Global Optimization, 71(4):753–813, 2018.

[33] E. Khalil, P. Le Bodic, L. Song, G. Nemhauser, and B. Dilkina. Learning to branch in mixed integer programming. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[34] J. Kim, J.-P. P. Richard, and M. Tawarmalani. Piecewise polyhedral relaxations of multilinear optimization. Optimization
Online, 2022.

[35] T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic activities. Econometrica: Journal
of the Econometric Society, pages 53–76, 1957.

29

https://optimization-online.org/?p=24914

[36] M. Lee, N. Ma, G. Yu, and H. Dai. Accelerating generalized Benders decomposition for wireless resource allocation. IEEE
Transactions on Wireless Communications, pages 1233–1247, 2020.

[37] X. Li, E. Armagan, A. Tomasgard, and P. I. Barton. Stochastic pooling problem for natural gas production network design
and operation under uncertainty. AIChE Journal, 57(8):2120–2135, 2011.

[38] J. Liu, N. Ploskas, and N. V. Sahinidis. Tuning BARON using derivative-free optimization algorithms. Journal of Global
Optimization, 74(4):611–637, 2019.

[39] A. Lodi and G. Zarpellon. On learning and branching: a survey. Top, 25(2):207–236, 2017.

[40] M. Lu, H. Nagarajan, R. Bent, S. D. Eksioglu, and S. J. Mason. Tight piecewise convex relaxations for global optimization
of optimal power flow. In 2018 Power Systems Computation Conference, pages 1–7. IEEE, 2018.

[41] J. Luedtke, C. d’Ambrosio, J. Linderoth, and J. Schweiger. Strong convex nonlinear relaxations of the pooling problem.
SIAM Journal on Optimization, 30(2):1582–1609, 2020.

[42] M. M. Mäkelä. Multiobjective proximal bundle method for nonconvex nonsmooth optimization: Fortran subroutine
MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B. Scientific Computing, B,
13, 2003.

[43] G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating
problems. Mathematical Programming, 10(1):147–175, 1976.

[44] R. Misener and C. A. Floudas. GloMIQO: Global mixed-integer quadratic optimizer. Journal of Global Optimization, 57
(1):3–50, 2013.

[45] R. Misener and C. A. Floudas. ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations.
Journal of Global Optimization, 59(2):503–526, 2014.

[46] H. Nagarajan, M. Lu, E. Yamangil, and R. Bent. Tightening McCormick relaxations for nonlinear programs via dynamic
multivariate partitioning. In International Conference on Principles and Practice of Constraint Programming, pages
369–387. Springer, 2016.

[47] H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar. An adaptive, multivariate partitioning algorithm for global
optimization of nonconvex programs. Journal of Global Optimization, 74(4):639–675, 2019.

[48] V. Nair, S. Bartunov, F. Gimeno, et al. Solving mixed integer programs using neural networks. arXiv preprint: 2012.13349,
2020.

[49] G. Nannicini, P. Belotti, J. Lee, J. Linderoth, F. Margot, and A. Wächter. A probing algorithm for MINLP with failure
prediction by SVM. In International Conference on AI and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems, pages 154–169. Springer, 2011.

[50] C. J. Nohra, A. U. Raghunathan, and N. Sahinidis. Spectral relaxations and branching strategies for global optimization
of mixed-integer quadratic programs. SIAM Journal on Optimization, 31(1):142–171, 2021.

[51] C. J. Nohra, A. U. Raghunathan, and N. V. Sahinidis. SDP-quality bounds via convex quadratic relaxations for global
optimization of mixed-integer quadratic programs. Mathematical Programming, 196(1):203–233, 2022.

[52] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue is NP-hard. Journal of Global
Optimization, 1(1):15–22, 1991.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, . . ., and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[54] N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal of Global Optimization, 8(2):
201–205, 1996.

[55] Y. Saif, A. Elkamel, and M. Pritzker. Global optimization of reverse osmosis network for wastewater treatment and
minimization. Industrial & Engineering Chemistry Research, 47(9):3060–3070, 2008.

[56] H. D. Sherali and W. P. Adams. A reformulation-linearization technique for solving discrete and continuous nonconvex
problems, volume 31. Springer Science & Business Media, 2013.

[57] N. Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and Systems Sciences, 25:1–11, 1987.

[58] G. Still. Lectures on parametric optimization: An introduction. Optimization Online, 2018.

[59] K. Sundar, H. Nagarajan, J. Linderoth, S. Wang, and R. Bent. Piecewise polyhedral formulations for a multilinear term.
Operations Research Letters, 49(1):144–149, 2021.

[60] D. S. Wicaksono and I. A. Karimi. Piecewise MILP under- and overestimators for global optimization of bilinear programs.
AIChE Journal, 54(4):991–1008, 2008.

[61] Y. Yang and P. I. Barton. Integrated crude selection and refinery optimization under uncertainty. AIChE journal, 62(4):
1038–1053, 2016.

30

	Introduction
	Related work
	Learning to branch for MILPs
	Learning to solve mixed-integer nonlinear problems

	Partitioning-based bounds for QCQPs
	Partitioning policy

	Strong partitioning for nonconvex QCQPs
	Computing a generalized gradient of the value function
	Strong partitioning policy

	ML approximation of strong partitioning for homogeneous QCQPs
	Numerical experiments
	Test instances
	Random bilinear programs
	Random QCQPs with bilinear and univariate quadratic terms
	The pooling problem

	Computational setup and evaluation metrics for our numerical experiments
	Computational setup
	Evaluation metrics for our numerical experiments

	Benchmarking test instances using state-of-the-art global optimization solvers
	Benchmarking using BARON
	Benchmarking using Gurobi

	Alpine's partitioning policy
	Effectiveness of the ML model in imitating the strong partitioning policy
	Evaluating the performance of strong partitioning and ML-based policies in Alpine

	Future work

