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Abstract

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-
constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based mixed-integer
programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to
optimally partition variable domains without sacrificing global optimality. We design a local optimiza-
tion method for solving this challenging max-min strong partitioning problem and replace this expensive
benchmark strategy with a machine learning (ML) approximation for homogeneous families of QCQPs.
We present a detailed computational study on randomly generated families of QCQPs, including in-
stances of the pooling problem, using the open-source global solver Alpine. Our numerical experiments
demonstrate that strong partitioning and its ML approximation significantly reduce Alpine’s solution
time by factors of 3.5− 16.5 and 2− 4.5 on average and by maximum factors of 15− 700 and 10− 200,
respectively, over the different QCQP families.

Key words: Quadratically-Constrained Quadratic Program, Piecewise McCormick Relaxations, Global
Optimization, Machine Learning, Strong Partitioning, Sensitivity Analysis, Pooling Problem

1 Introduction

Many real-world applications involve the repeated solution of the same underlying quadratically-constrained
quadratic program (QCQP) with slightly varying model parameters. Examples include the pooling problem
with varying input qualities [53] and the cost-efficient operation of the power grid with varying loads and
renewable sources [13]. These hard optimization problems are typically solved using off-the-shelf global
optimization software [8, 12, 45, 54, 56, 61] that do not exploit the shared problem structure—heuristics
within these implementations are engineered to work well on average over a diverse set of instances and may
perform sub-optimally for instances from a specific application [46]. Recent work [9, 47] has shown that
tailoring branching decisions can significantly accelerate branch-and-bound (B&B) algorithms for mixed-
integer linear programs (MILPs). In contrast, only a few papers (see Section 2.2) attempt to use machine
learning (ML) to accelerate the guaranteed global solution of nonconvex nonlinear programs (NLPs).

We use ML to accelerate the global minimization of nonconvex QCQPs. We focus on accelerating
partitioning algorithms [11, 62, 68] since they are effective in solving this challenging class of problems [19, 56].
Partitioning algorithms determine lower bounds on the optimal value of a nonconvex QCQP using piecewise
convex relaxations. They begin by selecting a subset of the continuous variables participating in nonconvex
terms for partitioning. At each iteration, they refine the partitions of the domains of these variables and
update the piecewise convex relaxations in their lower bounding formulation. They then solve a convex

1



mixed-integer program (MIP) [48, 65] to determine a lower bound. Partitioning algorithms typically use
heuristics to specify the locations of partitioning points and continue to refine their variable partitions until
the lower bounds converge to the optimal objective value. Since the complexity of their MIP relaxations can
grow significantly at each iteration, the choice of partitioning points in the initial iterations can have a huge
impact on the overall performance of these algorithms [56]. Despite their importance, the optimal choice of
partitioning points is not well understood and current approaches resort to heuristics such as bisecting the
active partition [19, 62, 68], or adding partitioning points at/around the lower bounding solution [11, 56] to
refine variable partitions.

Proposed approach. We learn to optimally partition the domains of variables in a given QCQP without
sacrificing global optimality. Similar to the concept of strong branching in B&B algorithms for MIPs [1, 8],
we propose the novel concept of strong partitioning to choose partitioning points. The key idea of strong
partitioning is to determine a specified number of partitioning points per variable such that the resulting
piecewise convex relaxation-based lower bound is maximized. We formulate strong partitioning as a max-min
problem, where the outer-maximization chooses the partitioning points and the inner-minimization solves the
piecewise relaxation-based lower bounding problem for a given partition. We solve this max-min problem to
local optimality by using generalized gradients of the value function of the inner-minimization problem within
a bundle solver for nonsmooth nonconvex optimization. Because each iteration of the bundle method requires
the solution of a MIP, solving this max-min problem may be computationally expensive. Therefore, we use
ML to learn the strong partitioning strategy for homogeneous QCQP instances. We evaluate the performance
of strong partitioning and an off-the-shelf ML approximation on randomly generated QCQPs, including
instances of the pooling problem, using the open-source global solver Alpine [55, 56]. Our experiments
demonstrate that using strong partitioning to initialize Alpine’s variable partitions can reduce its solution
time by a factor of 3 .5 − 16 .5 on average and by a maximum factor of 15 − 700 . They also illustrate that
our ML model is able to learn the strong partitioning strategy approximately, reducing Alpine’s solution
time by a factor of 2 − 4 .5 on average and by a maximum factor of 10 − 200 over the same set of instances.

This paper is organized as follows. Section 2 reviews approaches that use ML to accelerate the guaranteed
global solution of MILPs, NLPs, and mixed-integer NLPs (MINLPs). Section 3 outlines partitioning-based
lower bounding methods for nonconvex QCQPs. Section 4 introduces strong partitioning and designs an
algorithm for its solution with theoretical guarantees. Section 5 presents detailed computational results
demonstrating the effectiveness of using strong partitioning and an off-the-shelf ML approximation within
Alpine for randomly generated QCQPs, including instances of the pooling problem. We conclude with
directions for future research in Section 6.

Notation. Let [n] := {1, 2, . . . , n} and R+ denote the set of non-negative reals. We write vi to denote the
ith component of vector v = (v1, v2, . . . , vn) ∈ Rn, Mij to denote the (i, j)th component of matrix M , and
|S|, int(S), and conv(S) to denote the cardinality, interior, and convex hull of a set S, respectively.

2 Related work

Optimization solvers tune key algorithmic parameters by extensive testing on benchmark libraries. However,
they typically only consider a narrow family of efficiently computable heuristics. Moreover, they do not tailor
these heuristics to each problem instance but seek a universal setting for good average solver performance.
Machine learning, on the other hand, can enable efficient approximations of better performing but expensive
heuristics, potentially leading to significant computational gains for hard test instances. Several recent papers
survey the burgeoning field of using ML to accelerate MILP and combinatorial optimization algorithms [9,
18, 42, 47]. In the next sections, we review related approaches on learning to branch for MILPs and learning
to accelerate the guaranteed solution of (MI)NLPs.
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2.1 Learning to branch for MILPs

Branch-and-bound and its variants form the backbone of modern MILP solvers. Besides heuristics for
determining good feasible solutions, selecting the branching variable at each node of the B&B tree is probably
the most impactful decision in terms of the run time of the algorithm [1]. Typically, a subset of the integer
variables with fractional lower bounding solutions at a particular node are considered as the candidate
branching variables for that node. The gold standard branching variable selection heuristic is full strong
branching (FSB), which chooses as the branching variable the one that leads to the maximum product of
improvements in the lower bounds of the two children nodes (assuming they are both feasible). FSB results in
a 65% reduction in the number of nodes explored by the B&B tree (relative to the default branching strategy)
on average over standard test instances; however, this comes with a 44% increase in the cost-per-node that
is not tenable [1]. MILP solvers therefore tend to use computationally cheaper heuristic approximations of
FSB such as reliability, pseudocost, or hybrid branching. Motivated by FSB’s promise, most approaches for
learning to branch for MILPs aim to develop a computationally efficient ML approximation that retains its
attractive performance.

Alvarez et al. [4] propose hand-crafted features to construct an ML approximation of FSB using Extremely
Randomized Trees. Khalil et al. [38] propose an instance-specific on-the-fly ML approximation of FSB using
Support Vector Machines (SVMs) and use the learned approximation for subsequent branching decisions
in the same problem instance. Gasse et al. [28] and Nair et al. [57] design graph neural network (GNN)
approximations of FSB that leverages the bipartite graph representation of MILPs and removes the need for
feature engineering. Zarpellon et al. [70] seek to learn branching policies that generalize to heterogeneous
MILPs by explicitly parametrizing the state of the B&B tree. A few works (see, e.g., [25, 32]) study online and
reinforcement learning approaches for making branching decisions. Some others [5, 23] learn combinations
of existing heuristics to come up with better branching decisions.

2.2 Learning for (MI)NLPs

There are relatively fewer approaches in the literature for accelerating the guaranteed global solution of
nonconvex NLPs and MINLPs using ML. To the best of our knowledge, none of these approaches use ML
to accelerate partitioning-based global optimization algorithms.

Baltean-Lugojan et al. [6] consider the global solution of nonconvex QCQPs using semi-definite program-
ming (SDP) relaxations. They use ML to construct good outer-approximations of these SDP relaxations to
mitigate the computational burden of SDP solvers. They train a neural network to select cuts based on their
sparsity and predicted impact on the objective, and show that their approach results in computationally
cheap relaxations that can be effectively integrated into global solvers.

Ghaddar et al. [29] consider branching variable selection for a B&B search tree that is embedded within
the reformulation-linearization technique (RLT) for solving polynomial problems. They use ML to choose
the “best branching strategy” from a portfolio of branching rules (cf. Di Liberto et al. [23]) based on
violations of RLT-defining identities. They design several hand-crafted features and pick the branching
strategy that optimizes a quantile regression forest-based approximation of their performance indicator.
González-Rodŕıguez et al. [30] consider a portfolio of second-order cone and SDP constraints to strengthen
the RLT formulation for polynomial problems and use ML to select constraints to add within a B&B
framework.

Bonami et al. [15] train classifiers to predict whether linearizing products of binary variables or binary and
bounded continuous variables may be computationally advantageous for solving MIQPs. Nannicini et al. [58]
train an SVM classifier to decide if an expensive optimality-based bounds tightening (OBBT) routine should
be used in lieu of a cheaper feasibility-based routine for nonconvex MINLPs. Cengil et al. [20] consider the
AC optimal power flow problem and train a deep neural network to identify a small subset of lines and buses
for which a reduced-cost OBBT routine is applied. Finally, Lee et al. [43] use classification and regression
techniques to identify effective cuts for the generalized Benders decomposition master problem.

We review partitioning algorithms for the global minimization of QCQPs in the next section before
outlining our proposal to accelerate them using ML.
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3 Partitioning-based bounds for QCQPs

Consider the nonconvex QCQP

min
x∈[0,1]n

xTQ0x+ (r0)Tx (1)

s.t. xTQix+ (ri)Tx ≤ bi, ∀i ∈ [mI ],

where b ∈ RmI and for each k ∈ {0} ∪ [mI ], r
k ∈ Rn and Qk ∈ Rn×n are symmetric but not necessarily

positive semi-definite. QCQPs with equality constraints and different variable bounds can be handled using
simple transformations. Polynomial optimization problems may also be reformulated as QCQPs through the
addition of variables and constraints. It is well known that nonconvex QCQPs are NP-hard [66].

QCQPs arise in several applications (see [53] for a detailed list) such as facility location [41], refinery
optimization [34, 69], electric grid optimization [13], and circle packing [21]. By introducing variables and
constraints, we can reformulate (1) into the following equivalent form:

v∗ := min
x∈[0,1]n,w

cTx+ dTw (QCQP)

s.t. Ax+Bw ≤ b,

wij = xixj , ∀(i, j) ∈ B,
wkk = x2

k, ∀k ∈ Q,

for some vectors c and d, matrices A and B, and index sets B ⊂ {(i, j) ∈ [n]2 : i ̸= j} and Q ⊂ [n] of (pairs
of) variables participating in bilinear and univariate quadratic terms. We assume (QCQP) is feasible for
simplicity, and define the set F := {(x,w) : x ∈ [0, 1]n, Ax+Bw ≤ b} for convenience.

One of the earliest approaches for constructing lower bounds on the optimal value of (QCQP) uses
termwise McCormick relaxations [2, 51] to yield the following lower bounding problem:

min
(x,w)∈F

cTx+ dTw (2)

s.t. (xi, xj , wij) ∈MB
ij , ∀(i, j) ∈ B,

(xk, wkk) ∈MQ
k , ∀k ∈ Q,

where the bilinear and quadratic equality constraints in (QCQP) have been replaced with the following valid
convex relaxations on x ∈ [0, 1]n for each (i, j) ∈ B and k ∈ Q:

MB
ij := {(xi, xj , wij) : 0 ≤ wij ≤ xi, xi + xj − 1 ≤ wij ≤ xj},

MQ
k := {(xk, wkk) : x2

k ≤ wkk ≤ xk}.

Problem (2) can be used within a spatial B&B framework for solving (QCQP) to global optimality. Several
papers (see, e.g., [7, 11, 14, 17, 59, 62, 63, 68]) improve upon the termwise McCormick bound, usually at an
increase in the computational cost but with the goal of reducing the overall time for the B&B algorithm to
converge. In this work, we consider the so-called piecewise McCormick relaxation approach [10, 11, 19, 37,
40, 52, 56, 62, 68] for strengthening the termwise McCormick relaxations.

Piecewise McCormick relaxations begin by partitioning the domains of variables participating in non-
convex terms into sub-intervals. Assume for simplicity that we wish to partition the domain of each xi into
d+ 1 sub-intervals with d ≥ 1 (general partitioning schemes can be handled similarly). For each i ∈ [n], let

Pi := [pi0, p
i
1, p

i
2, . . . , p

i
d, p

i
d+1], with 0 =: pi0 ≤ pi1 ≤ pi2 ≤ · · · ≤ pid ≤ pid+1 := 1,

denote the array of d+ 2 partitioning points for variable xi, including the original variable bounds 0 and 1.
Given partitions Pi, i ∈ [n], the piecewise McCormick relaxation-based lower bounding problem to (QCQP)
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Figure 1: The left and middle plots illustrate the lower and upper parts, respectively, of the piecewise
McCormick relaxation for the bilinear term w12 = x1x2 on the domain x1, x2 ∈ [−1, 1] (domain changed
from [0, 1] for better illustration) with partitions P1 = P2 = [−1, 0, 1]. The right plot illustrates the piecewise
McCormick relaxation for the quadratic term w11 = x2

1 on the domain x1 ∈ [0, 1] (the lower part coincides
with the red quadratic curve) with the partition P1 = [0, 0.5, 1].

can be abstractly written as

min
(x,w)∈F

cTx+ dTw (3)

s.t. (xi, xj , wij) ∈ PMRB
ij(Pi,Pj), ∀(i, j) ∈ B,

(xk, wkk) ∈ PMRQ
k (Pk), ∀k ∈ Q,

where PMRB
ij(Pi,Pj) and PMRQ

k (Pk) denote the feasible regions corresponding to the piecewise Mc-
Cormick relaxations of the bilinear equation wij = xixj and the quadratic equation wk = x2

k, respectively.
While there are several ways of formulating these piecewise McCormick relaxations, we use the so-called
“convex combination” or “lambda” formulation below (see [39] for enhancements in the multilinear setting).
The piecewise McCormick relaxation for the bilinear constraint wij = xixj can be represented as follows [65]:

PMRB
ij(Pi,Pj) :=

{
(xi, xj , wij) : ∃λij ∈ R(d+2)2

+ , yi ∈ {0, 1}(d+1), yj ∈ {0, 1}(d+1)

s.t. (xi, xj , wij , λ
ij , yi, yj) satisfies (4a)− (4d)

}
,

where

xi =

d+1∑
k=0

d+1∑
l=0

λij
k(d+2)+l+1p

i
l, xj =

d+1∑
k=0

d+1∑
l=0

λij
k(d+2)+l+1p

j
k, wij =

d+1∑
k=0

d+1∑
l=0

λij
k(d+2)+l+1p

i
lp

j
k, (4a)

d+1∑
k=1

yik = 1,

d+1∑
k=1

yjk = 1,

(d+2)2∑
k=1

λij
k = 1, (4b)

d+1∑
k=0

λij
k(d+2)+1 ≤ yi1,

d+2∑
k=1

λij
k(d+2) ≤ yid+1,

d+1∑
k=0

λij
k(d+2)+l+1 ≤ yil + yil+1, ∀l ∈ [d], (4c)

d+2∑
k=1

λij
k ≤ yj1,

d+2∑
k=1

λij
(d+2)2−k ≤ yjd+1,

d+2∑
k=1

λij
l(d+2)+k ≤ yjl + yjl+1, ∀l ∈ [d]. (4d)

Note that only equations (4a) depend on the partitions Pi and Pj of xi and xj , respectively, which are
parameters in these constraints. The binary vectors yi and yj denote the active partition of xi and xj—
these variables may be reused in the piecewise McCormick relaxations of other nonconvex terms involving
xi or xj .
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The piecewise McCormick relaxation for the quadratic equality constraint wkk = x2
k can be represented

as follows [48, 56]:

PMRQ
k (Pk) :=

{
(xk, wkk) : ∃λk ∈ R(d+2)

+ , yk ∈ {0, 1}(d+1), s.t. (xk, wkk, λ
k, yk) satisfies (5a)− (5c)

}
,

where

xk =

d+1∑
l=0

λk
l+1p

k
l , wkk ≤

d+1∑
l=0

λk
l+1(p

k
l )

2,

d+1∑
l=1

ykl p
k
l−1 ≤ xk ≤

d+2∑
l=2

ykl−1p
k
l−1, (5a)

d+1∑
l=1

ykl = 1,

d+2∑
l=1

λk
l = 1, wkk ≥ x2

k, (5b)

λk
1 ≤ yk1 , λk

d+2 ≤ ykd+1, λk
l+1 ≤ ykl + ykl+1, ∀l ∈ [d]. (5c)

Note that only equations (5a) depend on the partition Pk of xk. Additionally, equations (5b) involve convex
quadratic functions of xk. Figure 1 illustrates the piecewise McCormick relaxations for a bilinear and a
univariate quadratic term.

Using the above representations of PMRB
ij and PMRQ

k , we obtain the following extended convex MIP
formulation for the piecewise McCormick relaxation-based lower bounding problem to (QCQP):

min
(x,w)∈F, λ≥0, y∈Y

cTx+ dTw (PMR)

s.t. (xi, xj , wij , λ
ij , yi, yj) satisfies (4a)− (4d), ∀(i, j) ∈ B,

(xk, wkk, λ
k, yk) satisfies (5a)− (5c), ∀k ∈ Q,

where Y := {y ∈ {0, 1}|NC|×(d+1) :
∑d+1

l=1 yil = 1, ∀i ∈ NC} is a special-ordered set of type 1, the set
NC := {i : ∃j ∈ [n] s.t. (i, j) ∈ B} ∪ Q collects the indices of variables participating in nonconvex terms,
variables λ comprise λij , (i, j) ∈ B, and λk, k ∈ Q, and variables y comprise yi, i ∈ NC. Problem (PMR) is
a convex mixed-integer QCQP (MIQCQP).

Algorithm 1 outlines a partitioning-based global optimization algorithm that solves problem (PMR) to
determine a sequence of lower bounds on the optimal value of (QCQP). Note that we do not consider bound
tightening steps in this work, but our approach can be readily adapted to the setting where bounds tightening
is employed. As mentioned in the introduction, the choice of heuristics on line 7 of Algorithm 1 for refining
the partitions {Pi}i∈[n] can greatly impact the number of iterations and time for convergence. We detail
an adaptive partition refinement strategy proposed in the literature [56] in Section 3.1, and introduce the
concept of strong partitioning in Section 4 to optimally specify variable partitions.

We further relax (PMR) by outer-approximating the convex quadratic terms in equation (5b) to obtain
the following MILP relaxation for strong partitioning. Note that for purely bilinear problems (i.e., |Q| = 0),
problem (PMR) is already an MILP.

v(P ) := min
(x,w)∈F, λ≥0, y∈Y

cTx+ dTw (PMR-OA)

s.t. (xi, xj , wij , λ
ij , yi, yj) satisfies (4a)− (4d), ∀(i, j) ∈ B,

(xk, wkk, λ
k, yk) satisfies (5a) and (5c), ∀k ∈ Q,

d+2∑
l=1

λk
l = 1, wkk ≥ 2αk

jxk − (αk
j )

2, ∀j ∈ Jk, k ∈ Q. (6)

We explicitly indicate the dependence of the piecewise McCormick lower bound v on the d × n matrix
of partitioning points P := (p1, p2, . . . , pn), excluding points pi0 := 0 and pid+1 := 1. Constraints (6)

outer-approximate the inequalities wkk ≥ x2
k in equation (5b) at the points {αk

j }j∈Jk
⊂ [0, 1] (we assume
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Algorithm 1 Partitioning algorithm for the global optimization of (QCQP)

1: Input: relative optimality tolerance εr > 0
2: Initialization: partitions P0

i = [0, 1], i ∈ [n], best found solution {x̂} = ∅ with objective UBD = +∞,
lower bound LBD = −∞, iteration number l = 0

3: Solve (QCQP) locally. Update incumbent x̂ and upper bound UBD if relevant

4: Solve the termwise McCormick relaxation (2). Update lower bound LBD

5: while
UBD − LBD

|UBD|+ 10−6
> εr or UBD = +∞ do

6: Update l← l + 1
7: Refine partitions {P l−1

i }i∈[n] to {P l
i}i∈[n] by adding partitioning points

8: Solve piecewise McCormick relaxation (PMR) with partitions {P l
i}i∈[n]. Update lower bound LBD

9: Solve (QCQP) locally. Update incumbent x̂ and upper bound UBD if needed
10: end while

11: Return εr-optimal solution x̂, upper bound UBD, and lower bound LBD

{pk0 , pk1 , . . . , pkd+1} ⊂ {αk
j }). We only use the outer-approximation (PMR-OA) for strong partitioning and

revert to solving problem (PMR) while computing lower bounds (see Algorithm 1).
In preparation for Section 4, we recast (PMR-OA) in the following abstract form for suitably defined

vectors b̄ and c̄, matrix B̄, matrix-valued function M with co-domain Rnr×nc , and variables z (that includes
x, w, λ, and slack variables):

v(P ) := min
y∈Y

v(P, y), (7) v(P, y) := min
z≥0

c̄Tz (8)

s.t. M(P, y)z = B̄y + b̄.

We omit in problem (8) the third set of constraints in equation (5a) for simplicity because they only strengthen

the LP relaxation of (PMR-OA) and are redundant for the piecewise McCormick relaxations PMRQ
k . Note

that for any y ∈ Y , at most four of the λij variables in the formulation of each PMRB
ij and at most two

of the λk variables in the formulation of each PMRQ
k may be nonzero. Consequently, for each y ∈ Y , we

eliminate the variables and equations corresponding to the λ variables that are fixed to zero and let M(P, y)
denote the coefficient matrix of the remaining equations (the coefficients of the matrix M(P, y) themselves
do not depend on y).

3.1 Adaptive partitioning strategy

Algorithm 2 outlines the adaptive partitioning strategy proposed in Nagarajan et al. [56] that is implemented
within the solver Alpine. This adaptive strategy empirically performs well on numerous test instances [56]
and is motivated by the fact that uniformly partitioning variable domains (proposed, e.g., in [19, 62, 68])
creates many partitions that do not contribute significantly to improving the piecewise McCormick lower
bound. Instead of selecting a subset of the variables participating in nonconvex terms for partitioning as
in [56], Algorithm 2 partitions the domains of all variables in NC. This is because partitioning only a
subset of variables in NC may result in an analogue of the so-called cluster problem in reduced-space global
optimization [35, 36], potentially resulting in a significant increase in the number of iterations for convergence.

At each iteration l ∈ N, Algorithm 2 adds (up to) two partitioning points per variable around a reference
point x̄l−1. At the first iteration, x̄0 is either set to the feasible local solution from presolve if one is found,
or to a solution to the termwise McCormick relaxation (2) otherwise. At subsequent iterations l > 1,
x̄l−1 is specified as the x-component of a solution to the piecewise McCormick relaxation lower bounding
problem (PMR) at iteration l− 1. Relative to the solution x̄l−1, the jth partition [p̂ij−1, p̂

i
j ] of variable xi is

said to be active at iteration l − 1 (i.e., A(i, l − 1) = j) if p̂ij−1 ≤ x̄l−1
i ≤ p̂ij , or, equivalently, if there exists
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Algorithm 2 Adaptive partition refinement strategy at iteration l

1: Input: parameter ∆ ≥ 4 and ∀i ∈ [n]: partition P l−1
i := [p̂i0, p̂

i
1, . . . , p̂

i
ml−1,i

], index A(i, l− 1) ∈ [ml−1,i]

of the active partition at iteration l − 1, and reference point x̄l−1
i in the active partition, i.e., the point

x̄l−1
i ∈ [p̂iA(i,l−1)−1, p̂

i
A(i,l−1)]

2: Initialization: partition P l
i = P l−1

i , i ∈ [n]

3: for i ∈ NC do
4: Refine P l−1

i to P l
i as follows:

P l
i =

[
p̂i0, . . . , p̂

i
A(i,l−1)−1, max

{
p̂iA(i,l−1)−1, x̄

l−1
i − width(A(i, l − 1))

∆

}
,

min

{
p̂iA(i,l−1), x̄

l−1
i +

width(A(i, l − 1))

∆

}
, p̂iA(i,l−1), . . . , p̂

i
ml−1,i

]
,

where width(A(i, l − 1)) := p̂iA(i,l−1) − p̂iA(i,l−1)−1

5: end for

6: Output: refined partitions {P l
i}i∈[n]

an optimal solution to (PMR) such that yij = 1. The parameter ∆ (default value = 10) in Algorithm 2 is a

dimensionless scaling factor for the size of the partition constructed around the reference point x̄l−1. Larger
values of ∆ result in a narrower partition around x̄l−1.

In the next section, we propose strong partitioning to specify the partitions {P1
i }i∈[n] in the first iteration

instead of using the heuristic in Algorithm 2. If UBD and the lower bound LBD obtained using strong
partitioning are not converged, we revert to using the adaptive partitioning strategy in Algorithm 2 to specify
the partitions {P l

i}i∈[n] in the subsequent iterations l ≥ 2 of our partitioning algorithm.

4 Strong partitioning for nonconvex QCQPs

The choice of partitioning points in the initial iterations can greatly impact the strength of lower bounds,
number of iterations for convergence, and overall solution time. While there are some motivations for the
adaptive partitioning strategy in Section 3.1, it is still ad hoc for a few reasons: it uses the same parameter
∆ to partition the domains of all variables, and it only considers symmetric partitions around the reference
point x̄l−1. The quality of the partitions {P1

i }i∈[n] in the first iteration also depend on the quality of the
feasible solution determined during presolve, with sub-optimal presolve solutions potentially leading to sub-
optimal initial partitions and slow convergence overall. We propose strong partitioning (SP) to address the
above limitations of Algorithm 2.

The concept of strong partitioning is akin to strong branching in B&B algorithms for MI(N)LPs. Strong
branching for MILPs only chooses the branching variable (a discrete choice) at a node to maximize some
function of the lower bound improvements at its two children nodes. Strong partitioning, on the other hand,
chooses partitioning points for each partitioned variable (continuous choices within the variable domains)
such that the resulting piecewise McCormick relaxation lower bound is maximized. It can be formulated as
the following max-min problem:

P ∗ ∈ argmax
P∈P

v(P ), (SP)

where v(P ) is the value function of (PMR-OA) and the set P is defined as

P :=
{
P := (p1, p2, . . . , pn) ∈ Rd×n

+ : 0 ≤ pi1 ≤ pi2 ≤ · · · ≤ pid ≤ 1, ∀i ∈ [n]
}
.

The strong partitioning problem (SP) is challenging to solve even to local optimality because the inner-
minimization problem (PMR-OA) includes binary decisions and its feasible region depends on P (variables
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of the outer-maximization). While (SP) can be formulated as a generalized semi-infinite program [67], state-
of-the-art global optimization algorithms for this problem class do not scale even for moderate problem
dimensions. Therefore, we design a local optimization method for (SP) with the hope of determining parti-
tioning points P̄ ∈ P that yield a tight lower bound v(P̄ ). We use the local solution of (SP) to specify the
initial partitions {P1

i }i∈[n] within Algorithm 1. If the resulting bounds LBD and UBD are not converged

after one iteration of Algorithm 1, we use Algorithm 2 to specify the partitions {P l
i}i∈[n] from the second

iteration.
We use generalized gradients of the value function of the inner-minimization (PMR-OA) within a bundle

solver for nonsmooth nonconvex optimization to solve problem (SP) to local optimality. Although the value
function of an MILP might be discontinuous in general, (PMR-OA) possesses special structure because (outer-
approximations of) piecewise McCormick relaxations are nonconvex piecewise-linear continuous functions
(cf. Figure 1). This allows for the computation of sensitivity information in this setting. The bundle solver,
MPBNGC [50], that we use, requires function and generalized gradient evaluations at points P ∈ P during
the course of its algorithm. Each function evaluation v(P ) requires the solution of the MILP (PMR-OA).
Under suitable assumptions, a generalized gradient ∂P v(P ) can be obtained by fixing y to an optimal
y-solution of (PMR-OA) and computing a generalized gradient of the resulting LP (8) using parametric
sensitivity theory [22]. We formalize these details in the next section. Before we proceed, we include the
convergence guarantees of MPBNGC [50] below for the sake of completeness.

Definition 1. Let Z ⊂ RN be open. A locally Lipschitz function f : Z → R is said to be weakly semismooth

if the directional derivative f ′(z, d) = limt↓0
f(z+td)−f(z)

t exists for all z ∈ Z, d ∈ RN and f ′(z, d) =

limt↓0 ξ(z + td)
T
d for ξ(z + td) ∈ ∂f(z + td).

Definition 2. Let f : RN → R, g : RN → RM be locally Lipschitz continuous. Consider the problem
minz:g(z)≤0 f(z). A feasible point z∗ is said to be substationary if there exist multipliers λ ≥ 0 and µ ∈ RM

+ ,
with (λ, µ) ̸= (0, 0), such that

0 ∈ λ∂f(z∗) +

M∑
j=1

µj∂gj(z
∗), µjgj(z

∗) = 0, ∀j ∈ [M ].

Theorem 1. Suppose the function v is weakly semismooth. Then MPBNGC either terminates finitely
with a substationary point to (SP), or any accumulation point of a sequence of MPBNGC solutions is a
substationary point to (SP).

Proof. See Theorem 9 of [50].

The example below shows the value function v of (PMR-OA) may be nonsmooth.

Example 1. Consider the following instance of the QCQP (1):

min
x∈[0,1]

x s.t. x2 ≥ (0.4)2.

The optimal solution is x∗ = 0.4 with optimal value v∗ = 0.4. Suppose we wish to partition the domain of
x into two sub-intervals (i.e., d = 1). Let P = [0, p, 1] denote the partition of x with 0 ≤ p ≤ 1. After some
algebraic manipulation, the outer-approximation problem (PMR-OA) can be reformulated as

v(p) = min
x∈[0,1]

x s.t. w ≥ (0.4)2, w ≤ max{px, (1 + p)x− p}, w ≥ 2αjx− α2
j , ∀j ∈ J ,

where {αk
j }j∈J ⊂ [0, 1] and we write v(p) to indicate the dependence on the partitioning point p. We can

derive the piecewise McCormick lower bound to be
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v(p) =

{
0.16+p
1+p , if 0 ≤ p ≤ 0.4

0.16
p , if 0.4 < p ≤ 1

,

p

v(p)

0 0.4 1

0.16

0.4

which shows that v is continuous and piecewise differentiable at p = 0.4.

4.1 Computing generalized gradients of v

We identify conditions under which a generalized gradient of the value function v may be computed in
practice (we consider generalized gradients of v on P instead of the open set int(P) for simplicity). We begin
with the following useful result; its assumption that the y-solution of (7) is unique can be verified by adding
a “no-good cut” and re-solving (7) to check if the second-best solution for y has a strictly greater objective
than v(P ).

Lemma 2. Suppose problem (7) has a unique y solution y∗ ∈ Y at P ∈ P and v(·, y∗) is continuous at P .
Then v(P̃ ) = v(P̃ , y∗), ∀P̃ ∈ P in a neighborhood of P .

Proof. Because y∗ is the unique y solution to (7) at P ∈ P, v(P, y∗) < v(P, y), ∀y ∈ Y \{y∗}. To see
v(·) ≡ v(·, y∗) in a neighborhood of P , we show that the value function v(·, y) is lower semicontinuous on P
for each y ∈ Y . The stated result then holds since v(·, y∗) is assumed to be continuous at P .

The set-valued mapping P ∈ P 7→ {z ≥ 0 : M(P, y) = B̄y+ b̄} is locally compact for each y ∈ Y by virtue
of the continuity of the mapping M(·, y) and the finite bounds that can be deduced on all of the variables in
problem (PMR-OA). Lemma 5.3 of Still [64] then implies that v(·, y) is lower semicontinuous on P for each
y ∈ Y .

The next result characterizes the gradient of v in the non-degenerate case.

Theorem 3. Suppose P ∈ P and problem (7) has a unique y solution y∗ ∈ Y . Consider the LP (8) with y
fixed to y∗. If this LP has a unique primal solution z∗ and a unique dual solution π∗, then

∂v

∂pij
(P ) =

∂v

∂pij
(P, y∗) =

nr∑
k=1

nc∑
l=1

π∗
kz

∗
l

∂Mkl

∂pij
(P, y∗), ∀i ∈ [n], j ∈ [d].

Proof. Lemma 2 implies v(·) ≡ v(·, y∗) in a neighborhood of P provided v(·, y∗) is continuous at P . Theorem 1
of Freund [26] (cf. Proposition 4.1 of [22]) and the fact that the functionM(·, y∗) is continuously differentiable
on P together imply v(·, y∗) is continuously differentiable at P and the stated equalities hold.

Next, we derive a formula for the generalized gradient ∂P v(P ) when the assumption that the LP (8) is
non-degenerate fails to hold.

Theorem 4. Suppose P ∈ P and problem (7) has a unique y solution y∗ ∈ Y . Consider the LP (8) with y
fixed to y∗. Suppose v(·, y∗) is finite and locally Lipschitz in a neighborhood of P . Then

∂P v(P ) = ∂P v(P, y
∗) ⊂ conv

({ nr∑
k=1

nc∑
l=1

π∗
kx

∗
l ∂PMkl(P ) : (x∗, π∗) is a primal-dual optimal pair for (8)

})
.

Proof. Lemma 2 implies v(·) ≡ v(·, y∗) in a neighborhood of P . The stated equalities hold by mirroring
the proof of Theorem 5.1 of De Wolf and Smeers [22] and noting that the function M(·, y∗) is continuously
differentiable on P.

10



De Wolf and Smeers [22] (see Assumption 5.1) and Im [33] argue the following result with ȳ = y∗ ensures
v(·, y∗) is locally Lipschitz in a neighborhood of P ∈ P.

Lemma 5. Suppose P ∈ P and ȳ ∈ Y . Consider the LP (8) with y fixed to ȳ. If the matrix M(P, ȳ) has full
row rank and B̄ȳ+ b̄ ∈ int

(
{M(P, ȳ)z : z ≥ 0}

)
, then v(·, ȳ) is finite and locally Lipschitz in a neighborhood

of P .

Proof. See Proposition 5.3 of [22] and pages 73 to 76 of [33].

We now verify that the full rank assumption in Lemma 5 holds in general.

Lemma 6. The matrix M(P, y) has full row rank, ∀P ∈ int(P) and y ∈ Y .

Proof. Fix y ∈ Y . Since P ∈ int(P), we have 0 < pi1 < pi2 < · · · < pid < 1 for each i ∈ [n]. We show that
for each (i, j) ∈ B and k ∈ Q, the equality constraints in equations (4a)-(4d) and equations (5a)-(5c) have
full row rank, which readily imply that M(P, y) has full row rank. We ignore inequality constraints because
they are transformed into equality constraints by the addition of unique slack variables.

We begin by focusing on the equality constraints in (4a)-(4d) involving the x, w, and λ variables. Consider
a fixed (i, j) ∈ B. Since at most four of the λij variables may be nonzero, we can rewrite these equality
constraints as follows after a change of variables (here, A(i) denotes the active partition of xi):


−1 0 0 piA(i)−1

piA(i)−1
piA(i)

piA(i)

0 −1 0 pjA(j)−1
pjA(j)

pjA(j)−1
pjA(j)

0 0 −1 piA(i)−1
pjA(j)−1

piA(i)−1
pjA(j)

piA(i)
pjA(j)−1

piA(i)
pjA(j)

0 0 0 1 1 1 1





xi

xj

wij

λij
1

λij
2

λij
3

λij
4


=


0
0
0
1

 .

We argue that the following sub-matrix is of full rank whenever P ∈ int(P):
piA(i)−1 piA(i)−1 piA(i) piA(i)

pjA(j)−1 pjA(j) pjA(j)−1 pjA(j)

piA(i)−1p
j
A(j)−1 piA(i)−1p

j
A(j) piA(i)p

j
A(j)−1 piA(i)p

j
A(j)

1 1 1 1

 .

Subtracting the first column from the second column, the third from the fourth column, and finally the first
from the third column yields the column vectors(

piA(i)−1, pjA(j)−1, piA(i)−1p
j
A(j)−1, 1

)
,(

0, (pjA(j) − pjA(j)−1), piA(i)−1(p
j
A(j) − pjA(j)−1), 0

)
,(

(piA(i) − piA(i)−1), 0, pjA(j)−1(p
i
A(i) − piA(i)−1), 0

)
,(

0, (pjA(j) − pjA(j)−1), piA(i)(p
j
A(j) − pjA(j)−1), 0

)
.

It is easy to see these vectors are linearly independent if 0 < piA(i)−1 < piA(i) < 1, ∀i.
Next, we focus on the equality constraints in (5a)-(5c) involving the x, w, and λ variables for a fixed

k ∈ Q. Since at most two of the λk variables may be nonzero, we can rewrite these equality constraints as
follows after a change of variables:

(−1 pkA(k)−1 pkA(k)

0 1 1

)xk

λk
1

λk
2

 =

(
0
1

)
.

The last two matrix columns are linearly independent if 0 < pkA(k)−1 < pkA(k) < 1.
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Finally, we show that for almost every (a.e.) P ∈ P with respect to the uniform measure, problem (7)
either has a unique y solution (which ensures that we can use Theorem 3 or 4 to compute a generalized of v
under mild conditions), or v(P ) = v∗ (i.e., the optimal values of (QCQP) and problem (7) are equal, which
implies that partitioning points P are sufficient for convergence of the lower bound), or both.

Theorem 7. At least one of the following holds for a.e. P ∈ P:

1. v(P ) = v∗,

2. Problem (7) has a unique y solution.

Proof. Consider P ∈ P, and let ŷ ∈ Y and x̂ ∈ [0, 1]n denote the y and x components of an optimal solution
to problem (7). We consider the following cases:

(a) For each k ∈ Q, we have x̂k ∈ {pk0 , pk1 , . . . , pkd+1}. Additionally, for each (i, j) ∈ B, we either have

x̂i ∈ {pi0, pi1, . . . , pid+1}, or x̂j ∈ {pj0, pj1, . . . , pjd+1}, or both.

(b) Case (a) does not hold, i.e., there either exists at least one index k ∈ Q such that x̂k ̸∈ {pk0 , pk1 , . . . , pkd+1},
or there exists at least one pair of indices (i, j) ∈ B such that both x̂i ̸∈ {pi0, pi1, . . . , pid+1} and

x̂j ̸∈ {pj0, pj1, . . . , pjd+1}.

Suppose case (a) holds. Since we assume that {pk0 , pk1 , . . . , pkd+1} ⊂ {αk
j } for each k ∈ Q, our outer-

approximation of the piecewise McCormick relaxation (5a)-(5c) for the quadratic constraint wkk = x2
k is

exact (i.e., there is no relaxation gap) at the partitioning points xk ∈ {pk0 , pk1 , . . . , pkd+1}. Additionally,
the piecewise McCormick relaxation (4a)-(4d) for the bilinear constraint wij = xixj is exact either when

xi ∈ {pi0, pi1, . . . , pid+1}, or when xj ∈ {pj0, pj1, . . . , pjd+1}, or both. Therefore, the point x̂ is feasible to the
original QCQP (1), which implies v(P ) = v∗.

Suppose instead that case (b) holds. Additionally, suppose there exist multiple y solutions to problem (7).
Let ỹ ∈ Y and x̃ ∈ [0, 1]n denote the y and x components of another optimal solution to problem (7) with
ỹ ̸= ŷ. Since case (a) does not hold and ỹ ̸= ŷ, we have x̃ ̸= x̂. Moreover, there exist non-singular basis
matrices M̂(P, ŷ) and M̃(P, ỹ) for the LPs (8) corresponding to ŷ and ỹ, respectively, such that

v(P ) = v(P, ŷ) = ĉT[M̂(P, ŷ)]−1(B̄ŷ + b̄) = c̃T[M̃(P, ỹ)]−1(B̄ỹ + b̄) = v(P, ỹ) (9)

for suitable vectors c̃ and ĉ, which only include the components of c̄ corresponding to the basic variables of
these LPs. Since not all components of x̂ equal 0 or 1, at least some of the entries of M̂(P, ŷ) are functions
of the partitioning points P . Moreover, v(P, ŷ) and v(P, ỹ) are not identical functions of P since x̃ ̸= x̂.
Equation (9) thus yields a polynomial equation in P . Therefore, the set of all P ∈ P such that (9) holds has
measure zero. Noting that |Y | < +∞ and the number of possible bases is finite for each y ∈ Y concludes
the proof.

4.2 Algorithmic enhancements

We design preprocessing and postprocessing steps that can be used to mitigate the computational burden
of solving (SP) locally and enable our ML model to more effectively learn its solution.

The outer-maximization in problem (SP) involves n × d partitioning variables. Since larger problem
dimensions may increase both the per-iteration cost and number of iterations taken by the bundle solver to
converge, we propose preprocessing heuristics to fix a subset of the partitioning points P and to compute
an initial guess P 0 for the bundle method. After solving the max-min problem (SP) (line 18), we propose
postprocessing steps to eliminate partitioning points in its solution P̄ that do not significantly affect the lower
bound v(P̄ ). Algorithm 3 includes detailed pseudocode of our preprocessing (lines 1–17) and postprocessing
steps (lines 19–28).
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Algorithm 3 Preprocessing and postprocessing steps for strong partitioning

Preprocessing steps

1: Initialization: partitions P̂0
i := [0, 1], ∀i ∈ [n]

2: Solve the McCormick relaxation (2) to compute a lower bounding solution x̄0

3: for k = 1, 2, . . . , d do
4: for i = 1, 2, . . . , n do
5: if i ̸∈ NC or x̄k−1

i ≈ x̃i for some x̃i ∈ P̂k−1
i then

6: Set P̂k
i = P̂k−1

i

7: else
8: Insert x̄k−1

i in P̂k−1
i to obtain P̂k

i

9: end if
10: end for
11: Solve (PMR-OA) with partitions {P̂k

i }i∈[n] to determine solution x̄k

12: end for

13: Let ni := |P̂d
i | − 2, ∀i ∈ [n]

14: Let [0, pi0d−ni+1, p
i0
d−ni+2, . . . , p

i0
d , 1] denote P̂d

i and set pi0j := 0, ∀j ∈ [d− ni]

15: Set the initial guess for (SP) to P 0, where P 0
ji := pi0j , ∀i ∈ [n], j ∈ [d]

16: Fix variables pij , j ∈ [d− ni], to 0 while solving (SP)

17: Output: initial guess (and variable fixings) P 0 for problem (SP)

18: Solve max-min problem (SP) to obtain a solution P̄ ∈ P with objective v̄ := v(P̄ )

Postprocessing steps

19: for j = 1, 2, . . . , d do
20: for i ∈ NC do
21: Set P̂ = P̄ and replace the element P̂ji with zero

22: Solve (PMR-OA) with partitioning points P̂ to obtain bound v̂ := v(P̂ )
23: if v̂ ≤ v̄ + 10−6|v̄| then
24: Update P̄ = P̂ and sort it such that P̄ki ≤ P̄(k+1)i, ∀k ∈ [d− 1]
25: end if
26: end for
27: end for

28: Output: partitions {P1
i }i∈[n] for Algorithm 1 based on postprocessed P̄

5 Numerical experiments

We study the impact of using strong partitioning to specify Alpine’s partitions at the first iteration and
investigate an off-the-shelf ML model for learning these partitions for homogeneous QCQPs. We begin
by describing the setup for our computational experiments. In Section 5.1, we outline the procedure for
generating families of random QCQP instances, including instances of the pooling problem. We detail our
ML approximation of strong partitioning in Section 5.2, and compare the performance of strong partitioning
and its ML approximation against Alpine’s default partitioning strategy (see Section 3.1 for details) in
Section 5.3.

Our strong partitioning code is written in Julia 1.6.3 and implemented within Alpine.jl v0.4.11. We use
JuMP.jl v1.1.1 and use Gurobi 9.1.2 via Gurobi.jl v0.11.3 for solving LPs, MILPs, and convex MIQCQPs
(with MIPGap = 10−6). We use either Ipopt 3.14.4 via Ipopt.jl v1.0.3 (with max iter = 104), or Artelys

1https://github.com/lanl-ansi/Alpine.jl
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Knitro 12.4.0 via KNITRO.jl v0.13.0 (with algorithm = 3) to solve NLPs locally within Alpine2. We use the
bundle solver MPBNGC 2.0 [50] via MPBNGCInterface.jl3 (with options OPT LMAX = 20, OPT EPS = 10−9,
and OPT NITER = OPT NFASG = 500) to solve the max-min problem (SP) to local optimality. We consider
strong partitioning with either two or four partitioning points per partitioned variable (d = 2 or d = 4)
in addition to the variable bounds and use scikit-learn v0.23.2 [60] to design its ML approximation. To
demonstrate the non-trivial nature of our nonconvex test instances, we also solve them to global optimality
using BARON 22.11.3 via BARON.jl v0.8.0 and provide BARON with the option of using CPLEX 22.1.0 as
an MILP solver.

All of our experiments were run on nodes of the Darwin cluster at LANL with dual socket Intel Broadwell
18-core processors (E5-2695 v4 CPUs, base clock rate at 2.1GHz), EDR InfiniBand, and 125GB of memory.
Each instance was run exclusively on a single node and different solution approaches were run in sequence
to limit the impact of variability in machine performance. All Alpine and BARON runs were given a time
limit of 2 hours with target relative and absolute optimality gaps of 10−4 and 10−9, respectively4. No
time limit was specified for solving the max-min problem (SP). The rest of BARON’s options, including
range reduction options, were kept to default. We deactivate bounds tightening techniques within Alpine
because it is largely ineffective for our medium and large-scale instances (our approaches are easily adapted
to the setting where bounds tightening is employed). We partition the domains of all variables participating
in nonconvex terms within Alpine, and set the rest of Alpine’s options to default, including the partition
scaling factor to ∆ = 10.

5.1 Test instances

We describe how we generate homogeneous families of random QCQPs, including instances of the pooling
problem, based on the literature. Scripts for generating the different families of instances can be found at
https://github.com/lanl-ansi/Alpine.jl/tree/master/examples/random_QCQPs.

5.1.1 Random bilinear programs

We consider parametric bilinear programs of the form [7]:

v(θ) := min
x∈[0,1]n

xTQ0(θ)x+ (r0(θ))Tx

s.t. xTQi(θ)x+ (ri(θ))Tx ≤ bi, ∀i ∈ [mI ],

(aj)Tx = dj , ∀j ∈ [mE ],

where θ ∈ [−1, 1]dθ are parameters, rk(θ) ∈ Rn, k ∈ {0}∪ [mI ], Q
k(θ) ∈ Rn×n, k ∈ {0}∪ [mI ], are symmetric

but not necessarily positive semi-definite, aj ∈ Rn, j ∈ [mE ], b ∈ RmI , and d ∈ RmE .
We generate 1000 instances for each of n ∈ {10, 20, 50} variables with |B| = min{5n,

(
n
2

)
} bilinear terms

(we count xixj and xjxi as the same bilinear term; all instances for a fixed dimension n have the same
set of |B| bilinear terms), |Q| = 0 quadratic terms, mI = n bilinear inequalities, and mE = 0.2n linear
equalities [7]. We let the dimension dθ = 3 × (0.2mI + 1) (see below for why we make this choice). The
problem data is generated as follows (cf. [7]). All entries of the vectors aj and d are generated i.i.d. from
the uniform distribution U(−1, 1), and all entries of the vector b are generated i.i.d. from U(0, 100). The
components of θ are generated i.i.d. from U(−1, 1). Each Qk and rk, k ∈ {0, 1, . . . , 0.2mI}, are of the form:

Qk(θ) = Q̄k +

3k+3∑
l=3k+1

θlQ̃
k,l−3k, rk(θ) = r̄k +

3k+3∑
l=3k+1

θlr̃
k,l−3k.

2We switch Alpine’s local solver between Ipopt for the random bilinear and QCQP instances and Knitro for the random
pooling instances because Ipopt is less effective for the pooling instances.

3https://github.com/milzj/MPBNGCInterface.jl
4Alpine’s definition of relative gap differs slightly from BARON’s definition, see Section 5.3.1.
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The nonzero entries of the “nominal matrices” Q̄k and “nominal vectors” r̄k are generated i.i.d. from U(−1, 1).
For each tuple (i, j) ∈ B, indices k ∈ {0, 1, . . . , 0.2mI} and l ∈ {1, 2, 3}, we set Q̃k,l

ij := γk,l
ij Q̄k

ij , where γ
k,l
ij are

generated i.i.d. from U(0, 0.5). Similarly, for each index i ∈ {1, . . . , n}, k ∈ {0, 1, . . . , 0.2mI}, and l ∈ {1, 2, 3},
we set r̃k,li := δk,li r̄ki , where δk,li are generated i.i.d. from U(0, 0.5). Since each Q̃k,l and r̃k,l is a different
perturbation of Q̄k and r̄k, the expansions of Qk and rk may be motivated using principal components
analysis. The nonzero entries of the remaining matrices Qk and vectors rk, k ∈ {0.2mI + 1, . . . ,mI}, are
the same across all 1000 instances and generated i.i.d. from U(−1, 1). Finally, the constraint coefficients
are re-scaled such that the vectors b = d = 1. Note that for a fixed dimension n, each instance is uniquely
specified by the parameters θ of dimension dθ = 3(0.2n+ 1).

5.1.2 Random QCQPs with bilinear and univariate quadratic terms

We also generate 1000 random QCQPs with |B| = min{5n,
(
n
2

)
} bilinear terms and |Q| = ⌊0.25n⌋ univariate

quadratic terms for each of n ∈ {10, 20, 50} variables (all instances for a fixed n have the same set of bilinear
and univariate quadratic terms). The coefficients of quadratic terms in the objective and constraints are
generated similarly to the coefficients of bilinear terms in Section 5.1.1. The rest of the model parameters
and problem data (including θ) are also generated similarly as in Section 5.1.1.

5.1.3 The pooling problem

The pooling problem is a classical example of a bilinear program introduced by Haverly [31]. It has several
important applications in process systems engineering, including petroleum refining [34, 69], natural gas
production [34, 44], and water treatment network design [11, 53, 62]. Its goal is to blend inputs of differing
qualities at intermediate pools to produce outputs that meet quality specifications while satisfying capacity
constraints at inputs, pools, and outputs. Solving the pooling problem is in general NP-hard [3].

We consider instances of the pooling problem with 45 inputs, 15 pools, 30 outputs, and a single quality.
Each instance has 116 input-output arcs, 71 input-pool arcs, and 53 pool-output arcs, yielding 572 variables
and 621 constraints, including 360 linear constraints and 261 bilinear equations (with 124 variables involved
in bilinear terms). We use the pq-formulation of the pooling problem outlined in Section 2 of [49]. Note that
unlike the random bilinear instances in Section 5.1.1 where all of the original “x variables” participate in
bilinear terms, only 124 out of the 311 original variables in the pooling model participate in bilinear terms.

We first generate a nominal instance using the “random Haverly” instance generation approach5 in [49]
that puts together 15 perturbed copies of one of Haverly’s pooling instances [31] and adds 150 edges to it.
We modify the target output quality concentrations generated by [49] to construct harder instances. For
each output j, we compute the minimum cmin

j and maximum cmax
j input concentrations of the quality over

the subset of inputs from which there exists a path to output j. We then specify the lower and upper bound
on the quality concentration at output j to be cmin

j +αj(c
max
j −cmin

j ) and cmin
j +βj(c

max
j −cmin

j ), respectively,
where αj ∼ U(0.2, 0.4) and βj ∼ U(0.6, 0.8) are generated independently. We also rescale the capacities of
the inputs, pools, and outputs and the costs of the arcs for better numerical performance. Note that while
all variables in the formulation are non-negative, upper bounds on the variables are not necessarily equal to
one after rescaling. After constructing a nominal instance using the above procedure, we use it to generate
1000 random pooling instances by randomly perturbing each input’s quality concentration (parameters θ for
this problem family) by up to 20%, uniformly and independently.

5.2 Machine learning approximation of strong partitioning

Because solving the max-min problem (SP) even to local optimality may be time consuming, we propose
to learn the SP strategy for homogeneous QCQP instances. We detail our off-the-shelf ML approximation
of strong partitioning in this section. Although our ultimate goal is to optimize the ML model so that its
predictions yield good performance when they are used to inform Alpine’s partitions at the first iteration, we

5https://github.com/poolinginstances/poolinginstances
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Scaled MAE < 0.01 < 0.02 < 0.05 < 0.1 < 0.2
% Partitioning Points

Bilinear n = 10 60 75 80 95 100
Bilinear n = 20 15 22.5 60 87.5 97.5
Bilinear n = 50 31 39 70 94 100

QCQP n = 10 65 80 95 100 100
QCQP n = 20 35 37.5 77.5 92.5 100
QCQP n = 50 56 66 85 99 100

Pooling 65.7 70.9 78.6 89.5 97.2

Table 1: Statistics of scaled MAEs of the out-of-sample predictions of the ML model.

instead choose our ML model solely based on its accuracy of predicting the strong partitioning points. We do
so because tuning the hyperparameters of the ML model directly for good performance within Alpine incurs
a huge computational expense due to the need to re-evaluate the performance of the ML predictions within
Alpine for each choice of the hyperparameters. While the choice of the ML model can have a significant
impact on the performance of its predictions within Alpine, we leave the design of more sophisticated ML
architectures for future work.

We use scikit-learn’s AdaBoost regressor6 [27] that implements the “AdaBoost.R2 algorithm” [24] to learn
a mapping from each QCQP instance to the strong partitioning points. Our base estimator is a scikit-learn
regression tree7 [16] with maximum depth equal to 25, and we set the maximum number of weak learners for
the boosting algorithm to 1000. The rest of scikit-learn’s AdaBoostRegressor options are set to default. We
use 10-fold cross-validation to generate out-of-sample ML predictions for all 1000 QCQP instances in each
problem family. Specifically, we randomly split the 1000 instances in each family into 10 folds, use 9 out
of 10 folds for training the ML model, predict the strong partitioning points for the omitted fold, and loop
through different choices of the omitted fold to generate predictions for all 1000 instances. We emphasize
that we fit our ML model for prediction accuracy and do not perform much hyperparameter tuning since
our ultimate goal is good performance of the ML predictions when used within Alpine.

ML model inputs and outputs. The choice of features for the ML model can greatly impact its perfor-
mance. We use the following problem features as inputs to the ML model: i. parameters θ, which uniquely
parametrize each nonconvex QCQP instance, ii. the best found feasible solution during Alpine’s presolve step
(which involves a single local solve), and iii. the McCormick lower bounding solution (obtained by solving
a single convex program). Although it is theoretically sufficient to use only the parameters θ as features
because they uniquely identify each QCQP instance, we also use the features (ii) and (iii) since they are
relatively cheap to compute and intuitively can help inform the partitioning strategy. These additional fea-
tures are also complicated transformations of the instance parameters θ that may otherwise be challenging
to uncover. The outputs of our ML model are the d partitioning points (excluding variable bounds) for
each of the n partitioned variables, resulting in an output dimension of d× n. In contrast with much of the
literature on learning for MILPs, we train separate ML models for each family of 1000 instances since both
the feature and output dimensions of our ML models depend on the problem dimensions. While we plan to
design more advanced ML architectures that can accommodate variable feature and output dimensions as
part of future work, we do not consider the need to train a different ML model for each problem family to be
a major limitation. This is because decision-makers often care about solving instances of the same problem
family with only a few varying parameters, which means they only need to train a single ML model with
fixed feature and output dimensions for their application.

6https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
7https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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Problem Family BARON Solution Time (seconds)
Shifted GM Median Min Max # TLE TLE Gap (GM)

Bilinear n = 10 0.2 0.2 0.1 0.4 0
Bilinear n = 20 3.5 3.6 1.4 7.0 0
Bilinear n = 50 257.1 260.6 54.3 4637.4 0

QCQP n = 10 0.3 0.3 0.1 0.6 0
QCQP n = 20 4.8 4.6 1.6 10.8 0
QCQP n = 50 268.2 246.2 14.7 6897.9 19 2.3× 10−2

Pooling 441.4 422.1 16.6 7114.5 432 2.7× 10−2

Table 2: Statistics of BARON solution times, including the shifted geometric mean, median, minimum, and
maximum times over the subset of 1000 instances for which BARON does not hit the time limit. The last
two columns denote the number of instances for which BARON hits the time limit and the corresponding
geometric mean of residual optimality gaps at termination, respectively.

Solution Method Solution Time (seconds)
Shifted GM Median Min Max # TLE

Alpine (default) 30.7 14.1 0.4 4020.9 2
Alpine+SP2 9.4 1.7 0.2 3864.9 1
Alpine+SP4 5.8 1.4 0.2 3871.3 0

Table 3: (Benchmark QCQPs) Statistics of solution times. Columns correspond to the shifted geometric
mean, median, minimum, and maximum times over the subset of 140 instances that do not hit the time
limit. The last column denotes the number of instances for which each method hits the time limit.

We now summarize the out-of-sample prediction errors of our trained ML models when they are used to
predict two strong partitioning points per partitioned variable (excluding variable bounds). Table 1 provides
statistics of the scaled mean absolute errors (MAEs) of the out-of-sample predictions of the 2n partitioning
points (248 points for the pooling problem) produced by the ML model for each problem family. The MAEs
of the predicted partitioning points are averaged over the 1000 instances in each family and scaled by the
upper bounds of the corresponding x variables—these upper bounds are simply equal to one for the random
bilinear and QCQP instances, but are greater than one for some of the partitioned variables in the pooling
instances. Roughly 90% or higher of the partitioning points predicted using ML have a scaled MAE of less
than 10% for each problem family, which indicates that the same underlying ML model is able to generate
reasonable predictions of the strong partitioning points across these different problem families.

5.3 Results and discussion

We begin by benchmarking the hardness of our instances using BARON. We then compare the performance
of default Alpine with the use of strong partitioning and its ML approximation (described in Section 5.2)
within Alpine through a few metrics. All reported times are in seconds and do not include the time for
solving the max-min problem (SP) or training the ML model.

5.3.1 Benchmarking using BARON

To illustrate the non-trivial nature of our instances, we present statistics of their run times using BARON
in Table 2. BARON solves the 10 variable and 20 variable random bilinear and QCQP instances within
seconds, but takes over 4 minutes on average to solve the 50 variable instances and times out on 19/1000 of
the 50 variable instances with univariate quadratic terms. BARON finds the random pooling instances to be
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Problem Family Solution Method Solution Time (seconds)
Shifted GM Median Min Max # TLE

Alpine (default) 0.51 0.47 0.14 2.41 0
Bilinear n = 10 Alpine+SP2 0.11 0.10 0.06 0.28 0

Alpine+ML2 0.15 0.10 0.06 1.64 0

Alpine (default) 21.4 21.9 5.1 161.5 0
Alpine+SP2 4.2 2.0 0.8 132.6 0

Bilinear n = 20 Alpine+ML2 10.0 7.8 1.1 116.0 0
Alpine+SP4 2.4 1.9 0.8 94.2 0
Alpine+ML4 9.3 7.2 1.0 117.4 0

Alpine (default) 405.9 336.2 48.0 7135.9 24
Bilinear n = 50 Alpine+SP2 52.8 34.9 4.2 5705.1 4

Alpine+ML2 101.6 83.6 6.6 7071.7 5

Alpine (default) 0.85 0.81 0.62 2.29 0
QCQP n = 10 Alpine+SP2 0.10 0.09 0.07 0.27 0

Alpine+ML2 0.27 0.12 0.07 2.89 0

Alpine (default) 40.1 35.6 4.6 241.1 0
Alpine+SP2 7.7 1.7 0.8 135.4 0

QCQP n = 20 Alpine+ML2 13.0 9.5 1.0 180.1 0
Alpine+SP4 2.4 1.5 0.7 125.7 0
Alpine+ML4 9.4 6.4 0.9 101.2 0

Alpine (default) 391.5 289.1 36.6 7198.2 0
QCQP n = 50 Alpine+SP2 63.3 51.9 4.2 6055.2 0

Alpine+ML2 100.5 118.2 5.3 6514.2 0

Alpine (default) 242.8 212.5 25.9 7091.9 7
Pooling Alpine+SP2 66.7 49.7 1.6 6127.1 5

Alpine+ML2 117.1 101.9 11.4 6097.0 1

Table 4: (Solution Times) Statistics of solution times. Columns correspond to the shifted geometric mean,
median, minimum, and maximum times over the subset of 1000 instances that did not hit the time limit.
The last time column denotes the number of instances for which each method hits the time limit.

significantly harder, timing out on 432/1000 instances8 and taking roughly 7 minutes to solve the remaining
568/1000 instances on average. As suggested in the literature, we use the shifted geometric mean to compare
the solution times of different algorithms on a family of test instances. The shifted geometric mean (shifted
GM) of a positive vector t ∈ RN

+ is defined as9:

Shifted GM(t) = exp
( 1

N

N∑
i=1

ln
(
max(1, ti + shift)

))
− shift,

where we set shift = 10 when comparing solution times in seconds. The last column in Table 2 notes the GM
of the relative optimality gap at termination for instances where BARON hits the time limit. Following the
definition of relative optimality gap in Alpine, this residual optimality gap is defined as UB−LB

10−6+|UB| , where UB

and LB are the upper and lower bounds returned by BARON at termination. We emphasize that our goal
is not to compare the different versions of Alpine with BARON but rather to illustrate that our instances

8BARON finds global solutions but is unable to prove global optimality within the time limit.
9http://plato.asu.edu/ftp/shgeom.html
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Figure 2: (Bilinear Instances) Top row: solution profiles indicating the percentage of instances solved by
the different methods within time T seconds (higher is better). Bottom row: histogram plots of the ratios
of the effective optimality gaps (10) of default Alpine with Alpine+SP2 and with Alpine+ML2 after one
iteration (larger gap reduction factors are better).

and accelerations of Alpine are non-trivial.

5.3.2 Evaluating strong partitioning on benchmark QCQPs

We compare Alpine’s default partitioning strategy with the use of two/four strong partitioning points ex-
cluding the bounds (Alpine+SP2 and Alpine+SP4, respectively, see Algorithm 3) on a subset of BARON’s
QCQP test library10 [7]. Specifically, we only consider the 140 QCQP instances from Bao et al. [7] with 20
variables in order to keep the time for solving the max-min problem manageable. Table 3 presents statistics
of the run times of default Alpine, Alpine+SP2, and Alpine+SP4 on these 140 instances. Alpine+SP2 and
Alpine+SP4 are able to reduce the shifted GM of Alpine’s solution time by factors11 of 3.3 and 5.3, respec-
tively, which indicates that strong partitioning has the potential to result in significant speedups on broad
families of QCQPs. Table 8 reports statistics of the solution times for the max-min problem over these 140
instances.

5.3.3 Evaluating the performance of strong partitioning and its ML approximation

We compare Alpine’s default partitioning strategy with the use of two strong partitioning points (excluding
variable bounds) per partitioned variable (Alpine+SP2) and its ML approximation (Alpine+ML2) in Alpine’s
first iteration. For the cases with n = 20, we also compare the above approaches with the use of four strong
partitioning points (excluding the bounds) per partitioned variable (Alpine+SP4) and its ML approximation
(Alpine+ML4) at Alpine’s first iteration. We compare these methods for each family of instances using two
metrics: i. statistics of solution times, and ii. statistics of the effective optimality gap after Alpine’s first

10These 140 “qcqp2” instances are from https://minlp.com/nlp-and-minlp-test-problems
11These factors correspond to 69.7% and 81.1% average reductions in Alpine’s solution times.
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Figure 3: (QCQP Instances) Top row: solution profiles indicating the percentage of instances solved by
the different methods within time T seconds (higher is better). Bottom row: histogram plots of the ratios
of the effective optimality gaps (10) of default Alpine with Alpine+SP2 and with Alpine+ML2 after one
iteration (larger gap reduction factors are better).

iteration. We define the effective relative optimality gap as

Effective Optimality Gap = max

{
10−4,

v∗ − vLBD

10−6 + |v∗|

}
, (10)

where v∗ is the optimal objective value, vLBD is Alpine’s lower bound after one iteration (using any one
of the different approaches for specifying partitions), and 10−4 is the target optimality gap. By measuring
the gap of vLBD relative to the optimal objective value v∗ instead of the best found feasible solution, we
do not let the performance of the local solver impact our evaluation of the different partitioning methods.
Thresholding the optimality gap at 10−4 also lends equal importance to all optimality gaps less than the
target since all such gaps are sufficient for Alpine to converge.

Table 4 presents statistics of run times of default Alpine, Alpine with the different versions of strong
partitioning at the first iteration, and Alpine with the different ML approximations of strong partitioning at
the first iteration for the different problem families. Table 5 records the speedup/slowdown of the different
versions of Alpine+SP and Alpine+ML over default Alpine. Table 6 presents statistics of the effective
optimality gaps (10) of the different approaches after one iteration, whereas Table 7 notes the GM of
the residual effective optimality gaps on instances for which the different approaches hit the time limit.
Table 8 reports statistics of the solution times for the max-min problem for the different problem families.
Figures 2, 3, and 4 plot solution profiles and histograms of the factor improvements of the effective optimality
gaps for the bilinear, QCQP, and pooling families. We do not plot performance profiles due to their known
issues (see http://plato.asu.edu/bench.html).

Bilinear instances. Table 4 implies Alpine+SP2 is able to reduce the shifted GM of default Alpine’s
solution time by factors of 4.5, 5.1, and 7.7, respectively, for n = 10, n = 20, and n = 50 over 1000 instances.
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Figure 4: (Pooling Instances) Left plot: solution profile indicating the percentage of instances solved by
the different methods within time T seconds (higher is better). Right plot: histogram plots of the ratios
of the effective optimality gaps (10) of default Alpine with Alpine+SP2 and with Alpine+ML2 after one
iteration (larger gap reduction factors are better).

Alpine+ML2 is able to generate a moderate approximation of Alpine+SP2 overall, reducing the shifted GM
of default Alpine’s solution time by factors of 3.5, 2.1, and 4, respectively, for n = 10, n = 20, and n = 50
over the same 1000 instances. For the n = 20 instances, Alpine+SP4 and Alpine+ML4 reduce the shifted
GM of default Alpine’s solution time by factors of 9 and 2.3, respectively. Table 5 implies Alpine+SP2
results in at least 5× speedup over default Alpine on 41.3% of the n = 10 instances, and results in at least
10× speedup on 39.9% and 46.1% of the n = 20 and n = 50 instances, respectively. On the other hand,
Alpine+ML2 yields at least 5× speedup over default Alpine on 40.1%, 22.2%, and 45.2% of the n = 10,
n = 20, and n = 50 instances. Alpine+SP4 results in at least 10× speedup over default Alpine on 51.7% of
the n = 20 instances. Finally, Alpine+SP2 results in a maximum speedup of 15×, 49×, and 685× for the
n = 10, n = 20, and n = 50 instances, whereas Alpine+ML2 results in a maximum speedup of 13×, 38×,
and 197× for the same sets of instances.

Table 6 implies Alpine+SP2 reduces the GM of default Alpine’s effective optimality gap (10) after the
first iteration by factors of 5.5, 2200, and 80, respectively, for n = 10, n = 20, and n = 50. Alpine+ML2
reduces the GM of default Alpine’s effective gap after the first iteration by factors of 4.6, 180, and 15,
respectively, for the n = 10, n = 20, and n = 50 instances. Interestingly, Alpine+SP2 is able to close the
effective gap in the first iteration for 100%, 82.3%, and 46% of the n = 10, n = 20, and n = 50 instances,
whereas default Alpine is able to close the gap in the first iteration for at most 0.1% of the instances for these
different problem families, which demonstrates the effectiveness of the strong partitioning strategy. Finally,
Table 7 shows that Alpine+SP2 and Alpine+ML2 terminate with smaller average optimality gaps on the
n = 50 instances where they time out compared to Alpine.

QCQP instances. Table 4 implies Alpine+SP2 is able to reduce the shifted GM of default Alpine’s
solution time by factors of 8.4, 5.2, and 6.2, respectively, for n = 10, n = 20, and n = 50. Alpine+ML2
is able to generate a moderate approximation of Alpine+SP2, reducing the shifted GM of default Alpine’s
solution time by factors of 3.1, 3.1, and 3.9, respectively, for n = 10, n = 20, and n = 50 over the same
1000 instances. For the n = 20 instances, Alpine+SP4 and Alpine+ML4 reduce the shifted GM of default
Alpine’s solution time by factors of 16.4 and 4.3, respectively. Table 5 implies Alpine+SP2 results in at
least 10× speedup over default Alpine on 20.5%, 54.6%, and 42.1% of the n = 10, n = 20, and n = 50
instances, respectively. On the other hand, Alpine+ML2 yields at least 5× speedup over default Alpine on
65.7%, 34.7%, and 42.7% of the n = 10, n = 20, and n = 50 instances. Alpine+SP4 results in at least 20×
speedup over default Alpine on 61% of the n = 20 instances. Finally, Alpine+SP2 results in a maximum
speedup of 22×, 87×, and 98× for the n = 10, n = 20, and n = 50 instances, whereas Alpine+ML2 results
in a maximum speedup of 19×, 56×, and 32× for the same sets of instances.

Table 6 implies Alpine+SP2 reduces the GM of default Alpine’s effective optimality gap (10) after the
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Problem Family Solution Method Speedup/Slowdown Factor
< 0.5 0.5− 1 1− 2 2− 5 5− 10 10− 20 20− 50 > 50

Bilinear n = 10 % Alpine+SP2 inst. 1.1 57.6 40.1 1.2 0 0
% Alpine+ML2 inst. 0.2 2.1 7.7 49.9 40.0 0.1 0 0

% Alpine+SP2 inst. 0.2 3.3 7.2 18.2 31.2 29.9 10.0 0.0
Bilinear n = 20 % Alpine+ML2 inst. 3.3 9.8 25.5 39.2 15.3 6.0 0.9 0.0

% Alpine+SP4 inst. 0.2 0.7 1.3 13.4 32.7 37.1 14.5 0.1
% Alpine+ML4 inst. 2.8 10.5 23.3 41.4 15.2 5.9 0.9 0.0

Bilinear n = 50 % Alpine+SP2 inst. 0.4 1.3 7.2 18.7 26.3 24.3 14.9 6.9
% Alpine+ML2 inst. 0.7 4.7 16.9 32.5 25.3 13.7 5.4 0.8

QCQP n = 10 % Alpine+SP2 inst. 0.1 3.3 76.1 20.4 0.1 0
% Alpine+ML2 inst. 1.0 3.9 20.9 8.5 53.4 12.3 0 0

% Alpine+SP2 inst. 0.1 3.2 12.2 18.4 11.5 19.4 32.6 2.6
QCQP n = 20 % Alpine+ML2 inst. 0.5 5.1 19.0 40.7 23.1 9.6 1.9 0.1

% Alpine+SP4 inst. 0 0.2 1.3 3.8 5.5 28.2 53.7 7.3
% Alpine+ML4 inst. 0 2.9 11.6 33.3 27.0 17.2 7.6 0.4

QCQP n = 50 % Alpine+SP2 inst. 0.9 1.3 10.7 22.0 23.0 32.5 7.2 2.4
% Alpine+ML2 inst. 1.4 4.0 19.5 32.4 22.7 16.6 3.4 0

Pooling % Alpine+SP2 inst. 2.2 6.4 19.7 26.0 21.8 16.8 6.7 0.4
% Alpine+ML2 inst. 2.1 11.5 34.5 40.4 9.8 1.4 0.3 0

Table 5: (Speedup/Slowdown) Statistics of the speedup/slowdown of the different versions of Alpine with
SP and its ML approximation (relative to default Alpine).

first iteration by factors of 13, 300, and 50, respectively, for the n = 10, n = 20, and n = 50 instances. On
the other hand, Alpine+ML2 reduces the GM of default Alpine’s effective gap after the first iteration by
factors of 4.3, 31, and 17, respectively, for n = 10, n = 20, and n = 50. Note that Alpine+SP2 is able to
close the effective gap in the first iteration for 100%, 52.2%, and 39% of the n = 10, n = 20, and n = 50
instances, whereas default Alpine is unable to close the gap in the first iteration for any instance in these
problem families.

Pooling instances. Table 4 implies Alpine+SP2 and Alpine+ML2 reduce the shifted GM of default
Alpine’s solution time by factors of 3.6 and 2.1 over the 1000 instances. Table 5 implies Alpine+SP2
and Alpine+ML2 result in at least 5× speedup over default Alpine on 45.7% and 11.5% of the instances,
respectively. Table 6 implies Alpine+SP2 and Alpine+ML2 reduce the GM of default Alpine’s effective
optimality gap (10) after the first iteration by factors of 28 and 4.5, respectively. After the first iteration,
Alpine+SP2 closes the effective optimality gap for 45.2% of the instances, whereas default Alpine is unable
to close the gap for any of the 1000 instances. Finally, Alpine+SP2 and Alpine+ML2 result in maximum
speedups of 120× and 41×.

Summary. Tables 4 to 6 and Figures 2 to 4 clearly show the benefits of strong partitioning and its ML
approximation over Alpine’s default partitioning strategy. They also demonstrate that Alpine+SP and
Alpine+ML are able to match or even outperform (particularly on the pooling instances) the performance
of the state-of-the-art solver BARON (with default options) on average over the different problem families.
While our off-the-shelf ML model is able to yield a moderate approximation of SP across these different
problem families, there is a clear scope for significant improvement with tailored ML approaches.
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Problem Family Solution Method Effective Optimality Gap after 1 iteration % Instances
GM Median Min Max Gap Closed

Alpine (default) 5.5× 10−4 4.5× 10−4 10−4 3.4× 10−2 0.1
Bilinear n = 10 Alpine+SP2 10−4 10−4 10−4 10−4 100

Alpine+ML2 1.2× 10−4 10−4 10−4 4.4× 10−2 88.3

Alpine (default) 2.9× 10−1 3.3× 10−1 7.3× 10−2 4.8× 10−1 0
Alpine+SP2 1.3× 10−4 10−4 10−4 6× 10−3 82.3

Bilinear n = 20 Alpine+ML2 1.6× 10−3 1.9× 10−3 10−4 1.4× 10−1 18.9
Alpine+SP4 1.0× 10−4 10−4 10−4 4.7× 10−4 96.0
Alpine+ML4 2.2× 10−3 3.6× 10−3 10−4 9.9× 10−2 14.5

Alpine (default) 1.4× 10−2 1.7× 10−2 10−4 6.9× 10−2 0.1
Bilinear n = 50 Alpine+SP2 1.7× 10−4 1.2× 10−4 10−4 5.4× 10−1 46.0

Alpine+ML2 9.5× 10−4 9.4× 10−4 10−4 4.9× 10−1 5.6

Alpine (default) 1.3× 10−3 1.2× 10−3 7.5× 10−4 1.9× 10−2 0
QCQP n = 10 Alpine+SP2 10−4 10−4 10−4 10−4 100

Alpine+ML2 3.0× 10−4 10−4 10−4 1.3× 10−1 71.8

Alpine (default) 6.3× 10−2 7.8× 10−2 3.0× 10−3 2.1× 10−1 0
Alpine+SP2 2.1× 10−4 10−4 10−4 6.6× 10−3 52.2

QCQP n = 20 Alpine+ML2 2.0× 10−3 2.5× 10−3 10−4 5.8× 10−2 2.0
Alpine+SP4 1.1× 10−4 10−4 10−4 3.6× 10−3 92.6
Alpine+ML4 1.5× 10−3 1.7× 10−3 10−4 6.7× 10−2 14.7

Alpine (default) 8.1× 10−3 1.0× 10−2 6.3× 10−4 2.8× 10−2 0
QCQP n = 50 Alpine+SP2 1.6× 10−4 1.3× 10−4 10−4 1.0× 10−3 39.0

Alpine+ML2 4.8× 10−4 5.3× 10−4 10−4 1.5× 10−2 14.9

Alpine (default) 6.8× 10−3 6.4× 10−3 1.2× 10−3 4.4× 10−2 0
Pooling Alpine+SP2 2.4× 10−4 1.4× 10−4 10−4 3.1× 10−3 45.2

Alpine+ML2 1.5× 10−3 1.6× 10−3 10−4 6.3× 10−3 0.1

Table 6: (Effective Optimality Gaps) Statistics of effective optimality gaps (10) after one iteration (note:
minimum possible value = 10−4, the target gap). Columns record the geometric mean, median, minimum,
and maximum effective gaps over 1000 instances. The last column is the percentage of instances for which
each method results in the minimum possible effective optimality gap of 10−4 after one iteration.

6 Future work

There are several interesting avenues for future work.
First, instead of prespecifying the number of partitioning points per variable for SP, we could allocate

a different number of partitions per variable based on their relative impact on the lower bound. Suppose
we wish to specify at most d + 2 partitioning points for each variable and are given a budget B ∈ [d × n]
for the total number of partitioning points across all variables (excluding variable bounds). We can solve
the following max-min problem to determine both the optimal allocation of partitions and the optimal
specification of partitioning points across the partitioned variables:

max
(P,Z)∈Pz

v(P ),

where P := (p1, p2, . . . , pn) denotes the (potential) partitioning points, v(P ) is defined in (PMR-OA), and
Z := (z1, z2, . . . , zn) is a d×n matrix of binary decisions. The partitioning point pij is added to the partition
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Problem Family Bilinear n = 50 Pooling

Method Alpine (default) Alpine+SP2 Alpine+ML2 Alpine (default) Alpine+SP2 Alpine+ML2

TLE Gap (GM) 4.4× 10−4 1.6× 10−4 1.8× 10−4 2.9× 10−4 2.1× 10−4 2.8× 10−4

Table 7: (Effective TLE Optimality Gaps) Geometric mean of residual effective optimality gaps (target
= 10−4) on instances for which methods hit the time limit.

Problem Family Solution Method Max-Min Solution Time (seconds)
Shifted GM Median Min Max Std. Dev.

Bilinear n = 10 SP2 16 14 6 96 13

Bilinear n = 20 SP2 528 445 136 2389 544
SP4 1244 1117 374 4360 893

Bilinear n = 50 SP2 7070 7404 1271 23166 3268

QCQP n = 10 SP2 8 8 6 53 3

QCQP n = 20 SP2 1731 1826 171 4244 654
SP4 2152 2740 471 5965 961

QCQP n = 50 SP2 16964 17074 8626 23551 2319

Pooling SP2 15658 15148 1088 77029 8657

Benchmark QCQPs SP2 413 364 7 27907 4432
SP4 895 651 12 136320 15444

Table 8: (Max-Min Solution Times) Statistics of max-min solution times. Columns correspond to the
shifted geometric mean, median, minimum, maximum, and standard deviation of times for solving the max-
min problem (SP).

Pi of xi only if the variable zij = 1. Finally, the MILP representable set PZ is defined as

PZ :=

{
(P,Z) ∈ P× {0, 1}d×n :

n∑
i=1

d∑
j=1

zij = B, zij = 0 =⇒ pij = 0, ∀(i, j) ∈ [n]× [d]

}
.

If zij = 0, then the partitioning point pij is made redundant by forcing it to 0. Note that the above outer-
maximization problem involves binary decision variables Z unlike the strong partitioning problem (SP),
which necessitates new techniques for its solution.

Second, designing more efficient approaches for solving the strong partitioning problem (SP) would help
scale our approach to larger problem dimensions (and also make it easier to generating more training data).
Third, designing tailored ML architectures that can achieve similar speedups as strong partitioning and can
accommodate variable feature and output dimensions merits investigation. Fourth, motivated by the cluster
problem [35, 36], it would be interesting to explore variants that choose a different subset of variables to be
partitioned at each iteration within Alpine. Finally, using strong partitioning to choose Alpine’s partitions
at the second iteration and beyond can help promote convergence of its bounds in fewer iterations.
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