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Abstract

We propose a novel steplength selection rule in proximal gradient methods for minimizing the sum of
a differentiable function plus an `1-norm penalty term. The proposed rule modifies one of the classical
Barzilai-Borwein steplength, extending analogous results obtained in the context of gradient projection
methods for constrained optimization. We analyze the spectral properties of the Barzilai-Borwein-like
steplength when the differentiable part is quadratic, showing that its reciprocal lies in the spectrum
of the submatrix of the Hessian matrix that depends on both the nonzero and the nonoptimal zero
components of the current iterate, allowing for acceleration effects when the optimal zero components
start to be identified. Furthermore, we insert the modified rule into a proximal gradient method with a
nonmonotone line search, for which we prove global convergence towards a stationary point. Numerical
experiments show the ability of the proposed rule to sweep the spectrum of the reduced Hessian on a
series of quadratic `1-regularized problems, as well as its effectiveness in recovering the ground truth in
a least squares regularized problem arising in image restoration.

1. Introduction

In this paper, we are interested in solving the following minimization problem

min
x∈Rn

f0(x) + λ‖x‖1, (1)

where f0 : Rn → R is continuously differentiable, ‖x‖1 =
∑n
i=1 |xi| is the `1−norm of the vector x ∈

Rn, and λ > 0 is a regularization parameter. Problems of the form (1) are widespread in several
domains of applied science, including image reconstruction [2, 22], machine learning [11], and portfolio
selection [12, 15], just to mention a few. In such applications, the discrepancy function f0 describes how
close the model fits the observed data, whereas the `1−norm is used to foster the sparsity of the optimal
solution.

Problem (1) belongs to the more general class of composite convex problems

min
x∈Rn

f(x) ≡ f0(x) + f1(x), (2)

where f0 : Ω → R is continuously differentiable on an open set Ω containing dom(f1), and f1 : Rn →
R ∪ {−∞,+∞} is proper, convex, and lower semicontinuous. A standard approach to address problem
(2) is the proximal gradient (or forward backward) method [2, 8, 13, 14], which typically alternates a
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gradient step on f0 with a proximal step on f1. One popular strategy consists of combining the proximal
gradient method with a line search procedure [6, 7, 13, 40, 49], leading to the following general iteration

y(k) = proxαkf1

(
x(k) − αk∇f0(x(k))

)
(3)

x(k+1) = x(k) + νk(y(k) − x(k)), k = 0, 1, . . . (4)

where αk ∈ [αmin, αmax] is the steplength parameter, with 0 < αmin ≤ αmax, proxαkf1
: Rn → Rn is the

proximal operator of αkf1, i.e.,

proxαkf1
(x) = argmin

z∈Rn

1

2
‖z − x‖2 + αkf1(z),

and νk ∈ (0, 1] is the line search parameter. Convergence for this class of methods usually relies on
appropriate choices of the parameters αk, νk, which can be practically computed by means of backtracking
procedures enforcing some sufficient decrease condition for the f0 term or the objective function f ,
respectively.

The selection of the steplength αk is of crucial importance for improving the practical convergence
behavior of method (3)-(4). If the function f1 is identically zero, and thus problem (2) is differentiable
and unconstrained, the steplength αk can be computed by means of the well-known Barzilai-Borwein
(BB) rules, originally developed in the seminal paper [1]. The BB rules capture second order information
of the objective function f in a quasi-Newton fashion, by imposing the following secant conditions

αBB1
k = argmin

α∈R
‖α−1s(k−1) − z(k−1)‖, αBB2

k = argmin
α∈R

‖s(k−1) − αz(k−1)‖, (5)

where s(k−1) = x(k)−x(k−1) and z(k−1) = ∇f(x(k))−∇f(x(k−1)). From (5), the following two alternative
steplength rules descend

αBB1
k =

s(k−1)T s(k−1)

s(k−1)T z(k−1)
, (6)

αBB2
k =

s(k−1)T z(k−1)

z(k−1)T z(k−1)
. (7)

The special advantage of BB rules lies in their ability of sweeping the spectrum of the inverse of the Hessian
matrix ∇2f(x(k)) [30, 45]. This spectral property was first deduced in the strictly convex quadratic case,
where the BB steplengths can be written as reciprocals of Rayleigh quotients of the Hessian, and are
proven to satisfy the following inequality [31, 47]

1

λmax(A)
≤ αBB2

k ≤ αBB1
k ≤ 1

λmin(A)
, (8)

with λmin(A) and λmax(A) denoting the minimum and the maximum eigenvalues of the Hessian matrix A,

respectively. Assuming that s(k−1)T z(k−1) > 0, the inequality (8) still holds for non-quadratic objective
function; in this case, the inverse of BB rules can be interpreted as Rayleigh quotients related to the
average of the Hessian matrix along the segment s(k−1). In view of (8), adaptive strategies can emphasize
the practical effectiveness of the BB rules in gradient methods, by means of ad-hoc switching criteria
between BB1 and BB2 [54, 32]. The idea of exploiting the alternation of small and large steplengths to
promote a more suitable sweeping of the Hessian spectrum along the iterative procedure, has been adopted
in several spectral-based steplength selections, resulting in significant improvements of the practical
convergence rate of gradient methods, for both quadratic and non quadratic applications [20, 52, 24,
23, 33, 38].

The BB rules and the related alternation strategies have been employed for constrained optimization
as well [4, 10, 21, 47, 28, 5, 44], despite the fact that they were conceived for unconstrained problems, and
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the lack of a related spectral analysis. In the constrained setting, the function f1 in (2) is the indicator
function of a closed convex constraint set, and the scheme (3)-(4) reduces to the Gradient Projection
(GP) method. Recent works [19, 16, 17] have shown that the spectral theory outlined above requires
suitable adaptations for specific constrained problems, in order to take advantage of the presence of the
constraints, exploiting first-order optimality conditions in a proper manner. In particular, in [19], the
authors focused on GP methods of the form (3)-(4) applied to differentiable minimization problems subject
to box constraints, showing that the sequence of steplengths provided by the BB1 rule is able to sweep
the spectrum of the so-called reduced Hessian, which is the sub-matrix of the Hessian that depends on
the inactive constraints at the current iterate. This is coherent with the Karush-Kuhn-Tucker optimality
conditions, which require only the gradient components of the inactive constraints at the solution to be
zero. As a consequence, a steplength rule that is able to neglect the gradient information that depends
on the active constraints can accelerate GP methods, and this effect becomes more and more remarkable
as the active set is stabilizing. Based on these observations, suitable modifications to the BB2 rule were
introduced in [19, 16, 17] to exploit the presence of the constraints, which led to novel BB2-like rules
for box-constrained problems [19], and singly linearly constrained problems subject to lower and upper
bounds [16], respectively. The novel steplength rules have been shown to outperform the standard BB2
rule in practical implementations, leading to a faster reduction of the gradient components that must be
null at the solution, especially when employed within alternating strategies.

Interestingly, the efficiency of the BB rules has been observed also for regularized problems of the form
(2), where f1 is a convex penalty term. More precisely, the BB rules (or their alternated implementations)
have been successfully applied to the `1−regularized problem (1), see e.g. [39, 48, 50, 51], and problems
where f1 is the composition of the `1−norm with some linear operator, as is the case with Total Variation
based image deblurring [6, 7, 9, 36]. However, to the best of our knowledge, an analysis of the spectral
properties of the BB rules for the regularized problem (2) has yet to be proposed in the literature.

In this paper, we analyze the spectral properties of the BB rules when they are adopted within a
proximal gradient method with line search applied to the `1−regularized problem (1). Our work is inspired
by the spectral analysis carried out for constrained problems [19, 16], as we adapt its arguments to the
presence of the `1−penalty term. Under the assumption that the differentiable term f0 is quadratic, we
prove that the BB1 rule possesses the property of automatically discarding the second-order information
related to the zero components of the current iterate that satisfy the optimality condition. Vice versa,
we show that the standard BB2 rule may not well approximate the second-order information of f0, due
to the presence of an error term. Based on this observation, we design a new BB2 rule that mimic the
natural behaviour of BB1. From the numerical viewpoint, we show that the proposed modification can
foster the acceleration of the proximal gradient method on a series of quadratic `1−regularized problems,
enabling a faster fulfillment of the optimality conditions. Additionally, we demonstrate the efficiency
of the proposed rule on a least squares problem regularized with the Total Variation function and the
`1−penalty term, which arises from image deblurring in presence of Gaussian noise.

The paper is organized as follows. In Section 2, we report some preliminary notions of subdifferential
calculus. In Section 3, we provide the spectral analysis of the proposed BB-like rule for `1−regularized
problems. In Section 4, we propose and analyze a proximal gradient method with a nonmonotone Armijo-
like line search, whose steplength can be computed by means of our BB-like rule. Numerical experiments
of the proposed proximal gradient method are reported in Section 5. Our final remarks and future work
are given in Section 6.

2. Preliminaries

In the following, we denote with R̄ = R ∪ {−∞,+∞} the extended real numbers set. The symbol
‖ · ‖ refers to the standard Euclidean norm on Rn. The domain of a function f : Rn → R̄ is the set
dom(f) = {x ∈ Rn : f(x) < +∞}, and f is called proper if dom(f) 6= ∅ and f is finite on dom(f).
The notation×n

i=1
Ωi stands for the Cartesian product of the n sets Ω1, . . . ,Ωn. Finally, the indicator
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function of a set Ω 6= ∅ is given by

ιΩ(x) =

{
0, if x ∈ Ω

∞, otherwise.

We start with the definition of subdifferential for a general (possibly non convex) function.

Definition 2.1. The Fréchet subdifferential of a proper, lower semicontinuous function f : Rn → R̄ at
the point x ∈ dom(f) is given by [46, Definition 8.3(a)]

∂̂f(x) =

{
w ∈ Rn : lim inf

z→x,z 6=x

f(z)− f(x)− (z − x)Tw

‖z − x‖
≥ 0

}
.

The limiting subdifferential of f at x is the set [46, Definition 8.3(b)]

∂f(x) = {w ∈ Rn : ∃ x(k) → x, f(x(k))→ f(x), w(k) ∈ ∂̂f(x(k))→ w as k →∞}.

Below, we recall that the limiting subdifferential reduces to the usual Fenchel subdifferential when f
is a convex function.

Lemma 2.1. [46, Proposition 8.12] Let f : Rn → R̄ be a proper, convex function and x ∈ dom(f). Then
we have

∂f(x) = {w ∈ Rn : f(z) ≥ f(x) + (z − x)Tw ∀z ∈ Rn} = ∂̂f(x).

In the following lemma, we report a useful subdifferential calculus rule holding for the sum of two
functions, one of which is continuously differentiable.

Lemma 2.2. [46, Exercise 8.8] Suppose that the function f : Rn → R̄ can be written as f = f0 + f1,
where f1 : Rn → R̄ is proper, and f0 : Ω0 → R̄ is continuously differentiable on an open set Ω0 ⊇ dom(f1).
Then we have

∂f(x) = {∇f0(x)}+ ∂f1(x), ∀ x ∈ dom(f1).

We now introduce the definition of stationary point.

Definition 2.2. Given a function f : Rn → R̄, a point x ∈ Rn is stationary for f if x ∈ dom(f) and
0 ∈ ∂f(x).

Remark 2.1. If x ∈ Rn is a local minimum point, then x is a stationary point; if f is convex, then
x ∈ Rn is a (global) minimum point if and only x is stationary. The latter remark is a straightforward
consequence of Lemma 2.1.

Definition 2.3. [42] The proximal operator proxf : Rn → Rn associated to a proper, convex function

f : Rn → R̄ is defined as

proxf (x) = argmin
z∈Rn

1

2
‖z − x‖2 + f(z), ∀ x ∈ Rn.

We conclude the section by reporting a nice result holding when a function f is given by a separable
sum of convex functions.

Lemma 2.3. Suppose that the function f : Rn → R̄ is given by

f(x) =

r∑
i=1

fi(xi),

where fi : Rni → R̄ is proper, lower, and semicontinuous for all i = 1, . . . , r and
∑r
i=1 ni = n.
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(i) The subdifferential of f can be written as

∂f(x) =
r×
i=1

∂fi(xi) = (∂f1(x1), . . . , ∂fr(xr)), ∀ x ∈ dom(f).

(ii) The proximal operator of f is given by

proxf (x) =
n×
i=1

proxfi(xi) = (proxf1(x1), . . . ,proxfr (xr)), ∀ x ∈ Rn.

Proof. Item (i) is proved in [53, Corollary 2.4.5]. Regarding Item (ii), we can combine Definition 2.3,
Remark 2.1, and Lemma 2.2, to obtain the following equivalence

y = proxf (x) ⇔ x− y ∈ ∂f(y).

Then, item (ii) follows by applying item (i) to the above equivalence. �

3. A Barzilai-Borwein-like rule for `1−regularized problems

In this section, we analyse the behavior of the BB rules (6)-(7) within the proximal gradient method
(3)-(4) applied to the `1−regularized problem (1), and propose a novel BB2-like rule that takes into
account the optimality conditions of the problem. The spectral analysis and the proposed steplength rule
are first given under the assumption that f0 is quadratic, and then extended to the general non quadratic
case.

3.1. The quadratic case

We turn our attention to a special instance of the `1−regularized problem (1), that is

min
x∈Rn

f(x) ≡ 1

2
xTAx− bTx+ c︸ ︷︷ ︸

:=f0(x)

+λ‖x‖1, (9)

where A ∈ Rn×n is a symmetric positive definite matrix, b ∈ Rn, c ∈ R, and λ > 0 is the regularization
parameter.

Since the objective function f is convex, it follows by Remark 2.1 and Lemma 2.2 that a solution of
problem (9) is identified by the following subdifferential inclusion

x∗ ∈ argmin
x∈Rn

f0(x) + f1(x) ⇔ −∇f0(x∗) ∈ ∂(λ‖ · ‖1)(x∗), (10)

where the subdifferential of the `1−norm can be computed by Lemma 2.3(i) as ∂(λ‖·‖1)(x) =×n

i=1
∂(λ| ·

|)(xi) with

∂(λ| · |)(xi) =

{
λ sign(xi), if xi 6= 0,

[−λ, λ], if xi = 0.
(11)

Therefore, the optimality condition (10) can be reformulated component-wise as

x∗ ∈ argmin
x∈Rn

f0(x) + f1(x) ⇔ −(∇f0(x∗))i ∈ ∂(λ| · |)(x∗i ), i = 1, . . . , n. (12)

Let us assume to apply the line search based proximal gradient scheme defined in (3) with f1(x) =
λ‖x‖1 to solve problem (9). Due to the separable structure of the `1−norm and Lemma 2.3(ii), the
proximal operator of f1 can be decomposed in the following manner

proxαk−1f1
(x) = proxαk−1λ‖·‖1(x) =

(
proxαk−1λ|·|(x1), . . . ,proxαk−1λ|·|(xn)

)
,
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where proxαk−1λ|·| denotes the classical soft-thresholding operator of parameter αk−1λ, i.e.,

proxαk−1λ|·|(xi) =


xi − αk−1λ, if xi > αk−1λ,

0, if xi ∈ [−αk−1λ, αk−1λ],

xi + αk−1λ, if xi < −αk−1λ.

(13)

Then, the k−th iteration of the proximal gradient method (3)-(4) applied to problem (9) can be written
component-wise as

y
(k−1)
i = proxαk−1λ|·|

(
x

(k−1)
i − αk−1g

(k−1)
i

)
(14)

x
(k)
i = x

(k−1)
i + νk−1(y

(k−1)
i − x(k−1)

i ), i = 1, . . . , n, (15)

where we use the notation g(k−1) = (g
(k−1)
1 · · · g(k−1)

n )T = ∇f0(x(k−1)) for all k ≥ 1.
We now proceed with the spectral analysis of the BB rules when employed inside method (14)-(15).

To this aim, by analogy with the corresponding definitions derived for box-constrained problems in [19],
we consider the following partition of the indices set

Jk−1 =
{
i : x

(k−1)
i = 0 ∧ −g(k−1)

i ∈ ∂(λ| · |)(x(k−1)
i )

}
=
{
i : x

(k−1)
i = 0 ∧ −g(k−1)

i ∈ [−λ, λ]
}

Ik−1 = {1, . . . , n} \ Jk−1.

The set Jk−1 contains the indexes corresponding to the zero components of the iterate x(k−1) that satisfy
the scalar optimality condition (12), namely, the active components of x(k−1) that are optimal. If i ∈ Jk−1,

x
(k−1)
i − αk−1g

(k−1)
i ∈ [−αk−1λ, αk−1λ], and from (13) and (14) we have y

(k−1)
i = proxαk−1λ|·|(x

(k−1)
i −

αk−1g
(k−1)
i ) = 0, which implies

x
(k)
i = x

(k−1)
i + νk−1(y

(k−1)
i − x(k−1)

i ) = x
(k−1)
i , i ∈ Jk−1.

Hence, we can split the components of the k−th iterate as follows

x
(k)
i =

{
0 if i ∈ Jk−1

x
(k−1)
i − νk−1αk−1g

(k−1)
i −νk−1αk−1v

(k)
i , if i ∈ Ik−1

(16)

where v
(k)
i ∈ ∂(λ| · |)(x(k)

i ) takes the values

v
(k)
i =

{
λ, if x

(k−1)
i − αk−1g

(k−1)
i > αk−1λ,

−λ, if x
(k−1)
i − αk−1g

(k−1)
i < −αk−1λ.

(17)

Consequently, the vector s(k−1) = x(k) − x(k−1) can be partitioned as:

s(k−1) =

[
s

(k−1)
Jk−1

s
(k−1)
Ik−1

]
=

[
0

−νk−1αk−1(g
(k−1)
i +v

(k)
i )

,

]
(18)

where, without loss of generality, we assume that the first components of s(k−1) are indexed in Jk−1 and
the last ones are indexed in Ik−1. Analogously, each component of the vector z(k−1) = g(k) − g(k−1)
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expressing the difference between the corresponding gradients becomes

z
(k−1)
i = g

(k)
i − g

(k−1)
i =

=
n∑
j=1

aijx
(k)
j −

n∑
j=1

aijx
(k−1)
j

=
∑

j∈Ik−1

aij

(
x

(k−1)
j − νk−1αk−1g

(k)
j −νk−1αk−1v

(k)
j

)
−

∑
j∈Ik−1

aijx
(k−1)
j

=
∑

j∈Ik−1

aij

(
−νk−1αk−1(g

(k)
j +v

(k)
j )
)

=
∑

j∈Ik−1

aijs
(k−1)
j (19)

,
and we may write

z(k−1) =

[
z

(k−1)
Jk−1

z
(k−1)
Ik−1

]
=

[
AJk−1 Ik−1

s
(k−1)
Ik−1

AIk−1 Ik−1
s

(k−1)
Ik−1

]
. (20)

When Ik = Ik−1, i.e., when the active optimal components are stabilized from one iteration to the other,
the previous equation yields the following recurrence formula

g
(k+1)
Ik = g

(k)
Ik − νkαkAIk Ikg

(k)
Ik − νkαkAIk Ikv

(k+1)
Ik . (21)

Then, letting (u1, . . . , ur) denote a basis of orthonormal eigenvectors for AIk Ik with associated eigenvalues

(γ1, . . . , γr), where r = ]Ik, we can write g
(k+1)
Ik =

∑r
i=1 µ

(k+1)
i ui, g

(k)
Ik =

∑r
i=1 µ

(k)
i ui and v

(k+1)
Ik =∑r

i=1 ζ
(k+1)
i ui as unique representations of g

(k+1)
Ik , g

(k)
Ik , and v

(k+1)
Ik with respect to the basis (u1, . . . , ur).

In this way, equation (21) allows us to obtain the following relation

µ
(k+1)
i = (1− νkαkγi)µ(k)

i − νkαkγiζ
(k+1)
i , i = 1, . . . , r. (22)

Hence, when a steplength selection rule provides a suitable approximation of 1/γi and νk = 1, it follows

that µ
(k+1)
i +ζ

(k+1)
i = 0, i.e., the corresponding i−th eigencomponent of the subgradient g(k+1) +v(k+1) ∈

∂f(x(k+1)) is annihilated, thus improving optimality. As a consequence, at the (k + 1)-th iteration, a
steplength selection rule must aim at approximating the inverses of the eigenvalues of the submatrix
AIk Ik in order to be effective.

In view of these considerations, the BB1 rule computed at a given k-th iteration possesses the intrinsic
property of sweeping the spectrum of the matrix A−1

Ik−1 Ik−1
. This fact can be proved, by analogy with

[19, Theorem 2], in the following theorem.

Theorem 3.1. Given the problem (9), if the matrix A is symmetric positive definite, then

1

γmax(AIk−1 Ik−1
)
≤ αBB1

k ≤ 1

γmin(AIk−1 Ik−1
)

(23)

where γmax(AIk−1 Ik−1
) and γmin(AIk−1 Ik−1

) are the maximum and the minimum eigenvalue of the matrix
AIk−1 Ik−1

, respectively.

Proof.From definition (6) and equations (18)-(20)
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αBB1
k =

s(k−1)T s(k−1)

s(k−1)T z(k−1)
=

s
(k−1)
Jk−1

T
s

(k−1)
Jk−1

+ s
(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Jk−1

T
z

(k−1)
Jk−1

+ s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

=
s

(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

=
s

(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Ik−1

T
AIk−1Ik−1

s
(k−1)
Ik−1

,

then, the steplength αBB1
k corresponds to the inverse of a Rayleigh quotient of the submatrix AIk−1Ik−1

,
and the thesis follows from the extremal properties of the Rayleigh quotients (see [37], Theorem 4.2.2).
�

From the previous theorem, we can recover the quasi-Newton interpretation of the BB1 rule as the
steplength satisfying the following secant condition

αBB1
k = argmin

α∈R
‖α−1s

(k−1)
Ik−1

− z(k−1)
Ik−1

‖ =
s

(k−1)
Ik−1

T
s

(k−1)
Ik−1

s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

. (24)

On the other hand, the use of the BB2 rule defined in (7) applied to problem (9) may not guarantee the
sweeping of the spectrum of the submatrix AIk−1 Ik−1

, due to the presence of an additional term that

depends on the components of the vector z(k−1) that are indexed in Jk−1. Indeed, from (7) we obtain

αBB2
k =

s(k−1)T z(k−1)

z(k−1)T z(k−1)
=

s
(k−1)
Jk−1

T
z

(k−1)
Jk−1

+ s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

z
(k−1)
Jk−1

T
z

(k−1)
Jk−1

+ z
(k−1)
Ik−1

T
z

(k−1)
Ik−1

=

=
s

(k−1)
Ik−1

T
z

(k−1)
Ik−1

z
(k−1)
Jk−1

T
z

(k−1)
Jk−1

+ z
(k−1)
Ik−1

T
z

(k−1)
Ik−1

.

Following the idea proposed in [19], we introduce a modified BB2 rule, with the aim of imitating the
spectral behaviour of BB1. The new rule, which we refer to as BB2−`1, is defined as follows:

αBB2−`1
k =

s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

z
(k−1)
Ik−1

T
z

(k−1)
Ik−1

. (25)

Now, for the BB2 version above defined, a similar result to Theorem 3.1 can be proved:

Theorem 3.2. Given problem (9), if the matrix A is symmetric positive definite, then

1

γmax(AIk−1 Ik−1
)
≤ αBB2−`1

k ≤ 1

γmin(AIk−1 Ik−1
)

(26)

where γmax(AIk−1 Ik−1
) and γmin(AIk−1 Ik−1

) are the maximum and the minimum eigenvalue of the matrix
AIk−1 Ik−1

, respectively.

In addition, from the Cauchy-Schwarz inequality, we obtain

αBB2−`1
k ≤ αBB1

k . (27)
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Remark 3.1. This analysis is similar to the one developed in [19]. More precisely, the set Jk−1 is defined
according to the same principle followed for the gradient projection scheme applied to a box-constrained
minimization problem in [19, Section 2.1]. Indeed, by denoting with Ω = {x ∈ Rn : `i ≤ xi ≤ ui, i =
1, . . . , n} a box-constraint, a point x∗ solves the box-constrained problem if and only if

x∗ ∈ argmin
x∈Rn

f(x) + ιΩ(x) ⇔ −∇f(x∗) ∈ ∂ιΩ(x∗)

⇔ −(∇f(x∗))i ∈ N`i≤x≤ui(x
∗
i ), i = 1, . . . , n,

where N`i≤x≤ui(x
∗
i ) is the normal cone of the interval [`i, ui] at x∗i . Then, in this case,

Jk−1 =
{
i : x

(k−1)
i ∈ {`i, ui} ∧ −g(k−1)

i ∈ N`i≤x≤ui(x
(k−1)
i )

}
=
{
i : (x

(k−1)
i = `i ∧ g

(k−1)
i ≥ 0) ∨ (x

(k−1)
i = ui ∧ g

(k−1)
i ≤ 0)

}
,

which is the binding set at x
(k−1)
i . Given Ik−1 = {1, . . . , n} \ Jk−1, the proposed BB2-like for box-

constrained problems is then defined as [19, eq. (28)]

αBoxBB2
k =

s
(k−1)
Ik−1

T
z

(k−1)
Ik−1

z
(k−1)
Ik−1

T
z

(k−1)
Ik−1

,

specularly to our proposed BB2-like rule (25) for `1−regularized problems.

3.2. The non-quadratic case

Let us now consider the general `1-regularized problem (1). We want to recover the spectral properties of
BB1 and BB2-`1 for the general non-quadratic case. To this aim, we assume that the curvature condition

s(k−1)T z(k−1) > 0 (28)

holds. We remark that when f0 is the strictly convex quadratic function defined in the previous subsection,
condition (28) is satisfied for any x(k) and x(k−1) [43]. Let us define the average Hessian as [43, eq. (8.11)]

H̃(k−1) =

∫ 1

0

∇2f0(x(k−1) + ts(k−1))dt.

From the multidimensional variant of the Taylor’s theorem [43, Thm. 11.1], we have

z(k−1) = ∇f0(x(k))−∇f0(x(k−1)) =

∫ 1

0

∇2f0(x(k−1) + ts(k−1))s(k−1)dt = H̃(k−1)s(k−1).

Since s
(k−1)
Jk−1

= 0, which holds by repeating the same passages employed to get (16) in Section 3, the
previous equation yields

1

αBB1
k

=

∫ 1

0

s(k−1)T∇2f0(x(k−1) + ts(k−1))s(k−1)dt

‖s(k−1)‖2

=

∫ 1

0

s
(k−1)
Ik−1

T
∇2f0(x(k−1) + ts(k−1))Ik−1,Ik−1

s
(k−1)
Ik−1

dt

‖s(k−1)
Ik−1

‖2

=
s

(k−1)
Ik−1

T
H̃

(k−1)
Ik−1,Ik−1

s
(k−1)
Ik−1

‖s(k−1)
Ik−1

‖2
. (29)
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The above equation expresses the fact that the inverse of the steplength defined by the BB1 rule can

be interpreted as the Rayleigh quotient related to the average matrix H̃
(k−1)
Ik−1,Ik−1

. Assuming that the

average Hessian is positive definite, there exists a square root (H̃(k−1))1/2, and we may write

αBB2−`1
k =

(
(H̃

(k−1)
Ik−1,Ik−1

)1/2s
(k−1)
Ik−1

)T
(H̃

(k−1)
Ik−1,Ik−1

)1/2s
(k−1)
Ik−1(

(H̃
(k−1)
Ik−1,Ik−1

)1/2s
(k−1)
Ik−1

)T
H̃

(k−1)
Ik−1,Ik−1

(H̃
(k−1)
Ik−1,Ik−1

)1/2s
(k−1)
Ik−1

.

Again, the above formula tells us that the reciprocal of the BB2-`1 steplength approximates one of the

eigenvalues of the average matrix H̃
(k−1)
Ik−1,Ik−1

.
As a final observation, we expect that the simple correction introduced to the BB2 rule, in both single

and alternating strategies, can affect the practical performance of the proximal gradient scheme (3),
fostering the acceleration of the method. Section 5 is dedicated to highlight this fact by evaluating the
proposed rules on different `1−regularized test problems, both quadratic and non-quadratic.
4. A non monotone line search based proximal gradient method

We are now interested in defining a line search procedure for computing the parameter νk in the
proximal gradient method (3)-(4) that fits properly with the BB2-`1 steplength selection rule (25). The
proposed line search aims at generalizing the non monotone strategies adopted in combination with the
BB rules for gradient projection methods, see e.g. [4, 10, 19, 18, 27]. The resulting algorithm and related
convergence analysis is valid for the general composite problem (2).

Several existing line search strategies proposed for (3)-(4) are monotone, i.e., they enforce the sequence
{f(x(k))}k∈N to be monotone decreasing. Here, we recall the generalized monotone Armijo-type line
search first proposed in [49], and then further employed and studied in [6, 8, 9, 40]. Given σ, β ∈ (0, 1),
γ ∈ [0, 1], and the function h(k) : Rn → R̄ defined as [6, Section 3, eq. (9)]

h(k)
γ (z, x) = ∇f0(x)T (z − x) +

γ

2αk
‖z − x‖2 + f1(z)− f1(x), z, x ∈ Rn, (30)

the aforementioned line search sets the parameter as νk = βmk , where mk is the first nonnegative integer
such that

f(x(k) + βmk(y(k) − x(k))) ≤ f(x(k)) + σβmkh(k)
γ (y(k), x(k)). (31)

Note that, due to the fact that y(k) is the minimum point of h
(k)
1 (·, x(k)), there holds

h(k)
γ (y(k), x(k)) ≤ h(k)

1 (y(k), x(k)) ≤ h(k)
1 (x(k), x(k)) ≤ 0,

hence (31) enforces the sequence {f(x(k))}k∈N to be monotone non increasing. The generalized Armijo-
type line search based on (31) is well-defined and terminates in a finite number of steps, see [6, Proposition
3.1]. Condition (31) naturally reduces to the classical Armijo condition for constrained differentiable
problems when we set γ = 0 and f1(x) = ιΩ(x), being Ω ⊆ Rn a non empty, closed and convex set.

Since the rules defined in Section 3 aim at providing larger steplengths αk than the ones defined by
the inverse of the Lipschitz constant of ∇f0, it might happen that the point y(k) yields an increase of the
objective function, rather than a decrease. As a consequence, a monotone line search procedure might
require several backtracking iterations before the Armijo-like condition (31) is met, which in turn might
dissipate the acceleration effect of the Barzilai-Borwein-like strategy. Thus, it is important to equip
(3)-(4) with a line search procedure that preserves the intrinsic non monotonicity of the BB-like rules
(24)-(25).

In this light, we propose to compute the line search parameter νk in (3)-(4) as νk = βmk , where mk

is the first nonnegative integer such that the following nonmonotone Armijo-like condition holds

f(x(k) + βmk(y(k) − x(k))) ≤ f̄k + σβmkh(k)
γ (y(k), x(k)), (32)
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where f̄k is a reference value with respect to which the objective function must decrease. By introducing
a nonnegative sequence {ξk}k∈N, we can specify the reference value as follows

f̄k = f(x(k)) + ξk, ξk ≥ 0. (33)

Note that, when ξk ≡ 0, (32) reduces to the monotone Armijo-like condition (31). We also remark that
the line search based on (32) is performed along the feasible direction d(k) = y(k) − x(k), and thus we do
not require the recalculation of the proximal operator at each backtracking iteration. In this sense, our
proposal differs substantially from other non monotone line searches adopted in the non differentiable
setting, which perform the backtracking directly on the steplength parameter αk rather than on νk, see
e.g. [2, 48, 51].

We report the proximal gradient method (3)-(4) combined with the non monotone Armijo-like condi-
tion (32) in Algorithm 1.

Algorithm 1 Proximal gradient method with non monotone line search

Choose 0 < αmin ≤ αmax, γ ∈ [0, 1], σ, β ∈ (0, 1), x(0) ∈ dom(f1).
For k = 0, 1, 2, ...

Step 1 Choose αk ∈ [αmin, αmax].

Step 2 Compute y(k) = proxαkf1
(x(k) − αk∇f0(x(k))).

Step 3 Set d(k) = y(k) − x(k) and f̄k = f(x(k)) + ξk with ξk ≥ 0.

Step 4 Compute the smallest nonnegative integer mk such that

f(x(k) + βmkd(k)) ≤ f̄k + σβmkh(k)
γ (y(k), x(k)) (34)

and set νk = βmk .

Step 5 Compute x(k+1) = x(k) + νkd
(k).

In the following, we present the convergence analysis of Algorithm 1 for problem (2). The analysis
will combine elements from the works [6, 27]. From now on, {x(k)}k∈N, {y(k)}k∈N, {νk}k∈N will denote
the sequences generated by Algorithm 1. Furthermore, we assume that f0 : Ω → R is continuously
differentiable on an open set Ω containing dom(f1), and f1 : Rn → R ∪ {−∞,+∞} is proper, convex,
and lower semicontinuous throughout the entire analysis. Further assumptions on the involved functions
will be specified where needed.

In the following result, we state that the line search performed at Step 4 of Algorithm 1 terminates
in a finite number of steps.

Theorem 4.1. Suppose that
hγ(y(k), x(k)) < 0, ∀ k ≥ 0. (35)

Then, for all k ≥ 0, the generalized Armijo line search at Step 4 of Algorithm 1 is well-defined, i.e.,
there exists mk <∞ such that (34) holds.

Proof.See the Appendix. �
The theorem below states that each limit point of the sequence {x(k)}k∈N is stationary, under appro-

priate conditions on the parameters {ξk}k∈N. As the result is an easy generalization of [6, Theorem 3.1]
to the case where the line search is non monotone, we postpone the proof to the Appendix.
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Theorem 4.2. Suppose that the sequence {x(k)}k∈N admits a limit point, and let K ⊆ N be a subset
of indices such that limk∈K,k→∞ x(k) = x̄. Assume that the sequence {ξk}k∈N satisfies the following
conditions

lim
k→∞

ξk = 0, (36)

0 ≤ ξk+1 ≤ (1− δk+1)(f(x(k)) + ξk − f(x(k+1))), where 0 ≤ δmin ≤ δk+1 ≤ 1. (37)

Then x̄ is a stationary point for problem (2).

Proof.See the Appendix. �
In the experiments of Section 5, we will perform Step 4 of Algorithm 1 with the following reference

value
f̄k = max

0≤j≤min{k,M−1}
f(x(k−j)), (38)

i.e., at each backtracking iteration i, we compare the trial function value f(x(k) + βid(k)) with the
maximum among the M past function values, where M is a positive integer. The same max-type strategy
has been frequently used in the differentiable setting, see e.g. [34, 10, 19, 27]. The following corollary
states that the stationarity of the limit points holds when Algorithm 1 is equipped with the choice (38)
for the reference value.

Corollary 4.1. Suppose that the parameter νk ∈ (0, 1] is computed according to (34) with the following
choice of the reference value ξk:

ξk = max
0≤j≤min{k,M−1}

f(x(k−j))− f(x(k)) ≥ 0, ∀ k ≥ 0, (39)

where M ≥ 1 is an integer parameter. Assume that dom(f1) is closed, f1 is continuous on dom(f1), and
the level set Ω0 = {x ∈ dom(f1) : f(x) ≤ f(x(0))} is bounded. Then, any limit point x̄ of the sequence
{x(k)}k∈N is stationary for problem (2).

Proof. The proof follows by extending the arguments employed in [27, Proposition 14] from the
constrained differentiable setting to a more general nondifferentiable setting.

Without loss of generality, we assume that hγ(y(k), x(k)) < 0 for all k ≥ 0; if this is not true, then
one of the iterate is stationary and the sequence remains indefinitely stuck to that iterate (see proof of
Theorem 4.2).

Our goal is to show that the sequence {ξk}k∈N defined in (39) satisfies the hypotheses (36)-(37) of
Theorem 4.2, from which the stationarity of the limit points follows. For the sake of brevity, we let
f(x(`(k))) = max0≤j≤min{k,M−1} f(x(k−j)).

First, we note that condition (37) holds by setting

ξk = f(x(`(k)))− f(x(k)), 0 = δmin ≤ δk+1 ≤
f(x(`(k)))− f(x(`(k+1)))

f(x(`(k)))− f(x(k+1))
. (40)

Indeed, since hγ(y(k), x(k)) < 0, the nonmonotone Armijo-like condition (32) with the reference value (39)
implies that f(x(`(k)))−f(x(k+1)) > 0. Since `(k+1) ≤ `(k)+1, we deduce that f(x(`(k)))−f(x(`(k+1))) ≥
0. Therefore, since f(x(k+1)) ≤ f(x(`(k+1))) by definition of `(k + 1), we conclude that δk+1 ∈ [0, 1].
Moreover, the right-hand side inequality is equivalent to

δk+1(f(x(`(k)))− f(x(k+1))) ≤ f(x(`(k)))− f(x(`(k+1))),

or, recalling the definition of ξk in (39), also as

δk+1(f(x(k)) + ξk − f(x(k+1))) ≤ (f(x(k)) + ξk)− (f(x(k+1)) + ξk+1).

By rearranging terms in the previous inequality, we obtain (37).
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Second, we show that condition (36) is satisfied. To this aim, we start by recalling that the function
h1(·;x(k)) is strongly convex with modulus m = 1/αmax, i.e,

h
(k)
1 (x, x(k)) ≥ h(k)

1 (y, x(k)) + wT (x− y) +
m

2
‖x− y‖2, ∀ x, y ∈ Rn, ∀ w ∈ ∂xh(k)

1 (y, x(k)). (41)

Applying inequality (41) with x = x(k), y = y(k), w = 0 ∈ ∂h(k)
1 (y(k), x(k)), and m = 1/αmax, yields

‖y(k) − x(k)‖2 ≤ −2αmaxh
(k)
1 (y(k), x(k)). (42)

Since (37) holds, we know from (A.1) that the sequence {f(x(k)) + ξk}k∈N = {f(x(`(k)))}k∈N is monotone
nonincreasing. Consequently, we can write f(x(k+1)) ≤ f(x(k+1)) + ξk+1 ≤ f(x(k)) + ξk ≤ f(x(0)), where
the last inequality comes from the fact that ξ0 = 0. Thus, we have that the sequence {x(k)}k∈N is
contained in the compact set Ω0, which implies (being f continuous) that the monotone nonincreasing
sequence {f(x(`(k)))}k∈N is bounded from below, hence convergent. Note also that `(k) is an integer such
that

k −min{M − 1, k} ≤ `(k) ≤ k. (43)

Since x(`(k)) = x(`(k)−1) + ν`(k)−1(y(`(k)−1) − x(`(k)−1)), condition (32) equipped with (39) implies that

f(x(`(k))) ≤ f(x(`(`(k)−1))) + σν`(k)−1hγ(y(`(k)−1), x(`(k)−1)), ∀ k > M.

Observing that hγ(z, x(`(k)−1)) ≤ h1(z, x(`(k)−1)) for all z ∈ Rn, and combining the previous inequality
with (42), we get

f(x(`(k))) ≤ f(x`(`(k)−1))−
σν`(k)−1

2αmax
‖y(`(k)−1) − x(`(k)−1)‖2, ∀ k > M.

Since {f(x(`(k)))}k∈N is a convergent sequence, and {‖y(`(k)−1) − x(`(k)−1)‖}k∈N is a bounded sequence
(due to the boundedness of {x(k)}k∈N, {αk}k∈N, and the continuity of the proximal operator) the previous
inequality implies that

lim
k→∞

ν`(k)−1‖y(`(k)−1) − x(`(k)−1)‖ = 0. (44)

Our aim is now to show that limk→∞ f(x(`(k))) = limk→∞ f(x(k)), where the latter limit exists finite due
to the monotonicity of {f(x(k)) + ξk}k∈N and the continuity of f (see proof of Theorem 4.2). To this aim,

we set ˆ̀(k) = `(k +M + 1), and prove by induction that

lim
k→∞

νˆ̀(k)−j‖y
(ˆ̀(k)−j) − x(ˆ̀(k)−j)‖ = 0, lim

k→∞
f(x(ˆ̀(k)−j)) = lim

k→∞
f(x`(k)), (45)

for all j ≥ 1 and k ≥ j − 1. For j = 1, the first equality in (45) follows directly from (44), as {ˆ̀(k) :

k ≥ 0} ⊆ {`(k) : k ≥ 0}. Consequently, from (4), there holds limk→∞ ‖x(ˆ̀(k)) − x(ˆ̀(k)−1)‖ = 0. Since

Ω0 is compact and f is uniformly continuous on Ω0, the previous limit yields limk→∞ f(x(ˆ̀(k)−1)) =

limk→∞ f(x
ˆ̀(k)) = 0, which implies the second equality in (45), due again to {ˆ̀(k) : k ≥ 0} ⊆ {`(k) :

k ≥ 0}. Now, assume that (45) holds for a given j ≥ 1. From (4), we can write

x(ˆ̀(k)−j) = x(ˆ̀(k)−j−1) + νˆ̀(k)−j−1(y(ˆ̀(k)−j−1) − x(ˆ̀(k)−j−1)).

Hence, condition (32) equipped with (39) implies again that

f(x(ˆ̀(k)−j)) ≤ f(x(`(ˆ̀(k)−j−1))) + σνˆ̀(k)−j−1h
(k)
γ (y(ˆ̀(k)−j−1), x(ˆ̀(k)−j−1)).

Analogous arguments employed to obtain (44) show that

lim
k→∞

νˆ̀(k)−(j+1)‖y
(ˆ̀(k)−(j+1)) − x(ˆ̀(k)−(j+1))‖ = 0,
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namely, the first limit in (45) holds for j+1, from which we obtain limk→∞ ‖x(ˆ̀(k)−j)−x(ˆ̀(k)−(j+1))‖ = 0.
By using again the fact that f is uniformly continuous on Ω0, we get

lim
k→∞

f(x(ˆ̀(k)−(j+1))) = lim
k→∞

f(x(ˆ̀(k)−j)),

from which the second limit in (45) follows thanks to the induction hypothesis. Thus, the proof of (45)
is complete.

Finally, note that from(43) and ˆ̀(k) = `(k + M + 1), it follows that ˆ̀(k) − k − 1 ≤ M . Then, since

from (4) we can write the following relation between the iterates x(k+1) and x
ˆ̀(k)

x(k+1) = x
ˆ̀(k) −

ˆ̀(k)−k−1∑
j=1

νˆ̀(k)−j(y
(ˆ̀(k)−j) − x(ˆ̀(k)−j)),

it follows from the first limit in (45) that

lim
k→+∞

‖x(k+1) − xˆ̀(k)‖ = 0.

Therefore, the uniform continuity of f on Ω0 and the convergence of the the sequence {f(x`(k))}k∈N allow
us to conclude that

lim
k→∞

f(x(k)) = lim
k→∞

f(x
ˆ̀(k)) = lim

k→∞
f(x`(k)),

which is equivalent to say that (36) holds with the choice of ξk specified in (39). Now, the stationarity of
the limit points follows from Theorem 4.2. �

5. Numerical experiments

In this section, we provide numerical experiments on both quadratic and non-quadratic `1-regularized
problems, with the aim of evaluating the numerical performances obtained by Algorithm 1 equipped with
different BB-based steplengths. In particular, we compare the behaviour of the modified rule introduced
in (25) with the standard BB rules employed in both single and alternating strategies. The experiments
were performed in the Matlab R2022b environment on the magicbox server operating at the Dept. of
Mathematics and Physics of the University of Campania ”L. Vanvitelli”, equipped with 8 Intel Xeon
Platinum 8168 CPUs, 1536 GB of RAM and Linux CentOS 7.5 operating system. A single Intel Xeon
CPU with 192 GB of RAM was used in the experiments.

5.1. Numerical results on quadratic `1−regularized problems

In this subsection, we inspect the spectral behaviour in practical implementations of the BB rules
introduced in Section 3 on some special problems of type (9), which were built by considering different
eigenvalues distributions for the matrix A. In these numerical tests, we equipped Algorithm 1 with
the steplength rules BB1, BB2, BB2-`1, ABBmin [32] and ABBmin-`1, the latter of which refers to the
modified adaptive strategy obtained from ABBmin by replacing the standard BB2 rule with the modified
version BB2-`1 (25).

All the methods were stopped when the relative difference between two consecutive iterations was
sufficiently small, i.e.,

‖x(k) − x(k−1)‖∞ ≤ ε · ‖x(k)‖∞ (46)

with ε = 10−15 or a maximum number of 2000 iterations was reached. The parameter setting used is
the following: M = 10, β = 0.5, γ = 1, σ = 10−4, α0 = 1, αmin = 10−10, αmax = 106; in ABBmin, and
ABBmin-`1 the parameter τ that controls the switching between the two BB rules was set equal to 0.6.
The values chosen for the Armijo linesearch parameters M,β, γ, σ are quite common in the literature, see
e.g. [4, 10, 6, 40, 27], where similar or identical values are adopted. It has been noted that the performance
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of Armijo linesearches is not particularly sensitive with respect to the choice of these parameters [10, 6].
Concerning αmin, αmax, we opted for the strategy of using a tiny value for αmin and a huge value for
αmax, employing the same values adopted in [19, 18], whereas α0 was set to 1 for simplicity. Finally, the
switching parameter τ was selected as an intermediate value in the interval (0, 1), as a value too close
to 1 might favour the selection of the BB2 rule for most iterations, whereas a value too close to 0 might
impose a bias towards the selection of the BB1 rule.

We considered four test problems of size n = 1000, denoted by LQP1, LQP2, LQP3, LQP4. For each
problem, the solution x∗ is defined in order that half of the entries are zero and the remaining ones are
uniformly randomly chosen within an interval around 0. Furthermore, we report the distributions of the
eigenvalues of the matrix A and the starting vectors for each test problem:

� LQP1: random uniform distribution in [1, 103] such that γmin = 1 and γmax = 103, x(0) = 2 · r
where r ∈ Rn has random entries from uniform distribution in [1, 103];

� LQP2: for i = 1, . . . , n,

γi =
γmin + γmax

2
+
γmin − γmax

2
cos

(
π(i− 1)

n− 1

)
,

where γmin = 1 and γmax = 103, x(0) = 2 · r where r ∈ Rn has random entries from uniform
distribution in [1, 103];

� LQP3: for i = 1, . . . , n,

γi =
(γb− γa)

(b− a)
+

(γ − γ)

(b− a)
ωi,

where γ = 1, γ = 104, a = (1 − c)2, b = (1 + c)2, c = 1/2 and the values ωi are distributed in

accordance with the Marčenko-Pastur density pc(x) =

√
(b− a)(x− a)

2πxc2
, a < x < b [41], such that

γmin = 15, γmax = 9863, x(0) = 10 · r where r ∈ Rn has random entries from uniform distribution
in [1, 103];

� LQP4: logarithmic distribution in [1, 103] generated through the MATLAB function logspace, such
that γmin = 1, γmax = 103, x(0) = 10 · r where r ∈ Rn has random entries from uniform distribution
in [1, 103].

Figures 1-4 show how the spectral properties of the considered proximal gradient scheme can be
affected by different choices of the steplength, resulting in different effects on the acceleration. In the top

panels of the figures, for each version of the algorithms the errors ‖x
(k)−x∗‖
‖x∗‖ (left panel) and f(x(k))−f(x∗)

(right panel) are compared; the remaining panels of the figures show how the sequence of the inverse of
steplengths { 1

αk
} distributes with respect to the spectra of the submatrices AIk−1,Ik−1

: in particular,
at the k-th iteration, the black dots denote 20 eigenvalues of AIk−1,Ik−1

with linearly spaced indices
(included the maximum and the minimum eigenvalues), the red crosses represent the quantities 1

αk
, and

the blue lines correspond to the maximum and the minimum eigenvalues of A respectively. For all the
test problems, we may observe that the standard BB2 steplength reveals unsatisfactory results, since it is
not able to properly exploit the correct information deriving from the spectra of the matrices AIk−1,Ik−1

along the iterative procedure, causing also damaging effects on the ABBmin strategy. On the other
hand, the BB1 rule confirms its natural ability of capturing the second order information correctly; a
similar behaviour is realized by the modifications introduced in the BB2-`1 rule, which enable an earlier
stabilization of the nonzero components with respect to the original BB2 rule. Finally, the benefits of the
alternating strategy are preserved when the modified rule BB2-`1 is employed, as we can observe from
the plots related to ABBmin-`1.

To better assess the performance of the proposed strategies, we prepared a set of l1-regularized QP
problems inspired by the synthetic problems used in [25]. As done for the previous test, we first fix a
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Figure 1: Results on LQP1. Errors on the computed solution and on the objective function for the different rules (first row).
Distribution of 1

αk
with respect to the iterations for BB1, BB2 (second row), BB2-`1, ABBmin (third row), ABBmin-`1
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point x∗ and set the regularization parameter to λ = 10−2, and then build a problem having solution x∗.
We built a set of problems with the following parameters:

� n, number of variables, in {10000, 15000, 20000};

� ncond, log10 of the Hessian condition number, in {4, 5, 6};

� zerosol, fraction of zero variables at x∗, in {0.25, 0.5, 0.75}.

For all the problems we generated a set of four random starting point with fraction of zero entries
respectively equal to 0, 0.25, 0.5, 0.75. This process results in a total number of 108 instances onto
which we compared the various steplength selection strategies. The results are presented by using the
performance profiles proposed by Dolan and Moré [26].

We first run a test on the whole set of instances with the set of parameters described above and the
stopping criterion (46), where ε = 10−5, together with a maximum number of 2000 iterations.
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Figure 5: Performance profiles corresponding to matrix-vector products (left panel) and relative error (right panel) on a set
of 108 synthetic quadratic `1-regularized test problems

From the results shown in Figure 5, it is clear how the proposed modified strategies are able to
perform comparably in terms of computational cost but have an advantage in terms of relative error with
respect to the solution x∗. This suggests that the methods equipped with the proposed `1-specialized
steplengths converge faster towards the solution. To better visualize this, we decided to perform a second
test, in which we restricted our focus on the problems with ncond in {4, 5}. We tested the ability of each
algorithm to reach a certain neighborhood of the solution, and compared them in terms of matrix-vector
products performed. In detail, we run each method until they found a point satisfying the condition

‖x(k) − x∗‖∞ ≤ 10−2 · ‖x∗‖∞. (47)

or a maximum number of 7500 iterations was reached.
From the results of this test, reported in Figure 6, one can see how the novel strategies are able to

outperform the original ones, both in terms of efficiency and robustness, especially when the conditioning
of the problems increases. It is worth noting that in the case of problems with condition number equal
to 105 (right panel), BB1 always failed to reach the desired tolerance in 7500 iterations.

5.2. Comparisons with SpaRSA and GPSR-BB on `2-`1 problems

In this subsection, we show a comparison among the versions of Algorithm 1 equipped with BB2-`1
and ABBmin-`1 and some well-known algorithms emplyoing standard versions of the BB rules, namely
SpaRSA [51] and GPSR-BB [28], for which we considered the Matlab implementations freely available
at http://www.lx.it.pt/~mtf/SpaRSA/ and http://www.lx.it.pt/~mtf/GPSR/, respectively.
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Figure 6: Performance profiles corresponding to matrix-vector products on a subset of synthetic quadratic `1-regularized
test problems generated by setting Hessian condition number equal to 104 (left panel) and 105 (right panel)

For these experiments, we solve the problem

min
x∈Rn

f(x) :=
1

2
‖Ax− y‖2 + λ‖x‖1,

generated as in [51] Section IV-A. In particular, the main features of the test problem are the following:

� A ∈ Rk×n is a random matrix with Gaussian i.i.d. entries of zero mean and variance 1/2n, where
k = 210 and n = 212;

� the solution x∗ ∈ Rn is a vector with 160 randomly placed ±1 spikes, with zeros in the other
components, such that its density (fraction of non-zero elements is ρ = 0.039;

� y = Ax∗ + e, where e is a Gaussian white vector with variance 10−4;

� regularization parameter: λ = 0.1‖A>y‖∞.

Coherently with the test performed in [51], the stopping rule shared by all the methods is

f(x(k)) ≤ fb (48)

where fb is a benchmark objective value obtained by running Fixed Point Continuation (FPC) algorithm
[35]. The parameters settings for BB2-`1 and ABBmin-`1 are the same as those considered in the previous
experiments, whereas for the parameters of SpaRSA and GPSR-BB we considered the values suggested
in the original papers [51] and [28] respectively, except for the line search parameter M in SpaRSA that
was set equal to 10 for consistency with BB2-`1 and ABBmin-`1. The maximum number of iterations was
set equal to 10000. The numerical performance of each solver are reported in Table 1, for two different
choices of the starting point, i.e. when x(0) is the zero vector and when x(0) is a random vector whose
entries are extracted from a standard normal distribution. In particular, we compare the average values
over 10 runs of the elapsed time and the mean squared error (MSE); the number of iterations needed to
satisfy the stopping criterion and the fraction of non-zero elements of the computed solutions (denoted
by ρ) are also reported. The final value of the objective function is approximately equal to 3.52 for all the
algorithms. Although the considered methods show comparable performances in terms of computational
time, it is interesting to note that the method employing ABBmin-`1 shows slightly better results in terms
of MSE values.
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Table 1: Elapsed times, iterations, mean squared error (MSE) values and density of the estimate (average over 10 runs)

times (secs). iterations MSE ρ

x(0) = 0
SpaRSA 0.02 23 3.044e-03 0.065
GPSR-BB 0.04 25 2.995e-03 0.064
BB2-`1 0.02 25 2.943e-03 0.069
ABBmin-`1 0.03 28 2.975e-03 0.066

x(0) random
SpaRSA 0.03 39 3.017e-03 0.064
GPSR-BB 0.03 37 2.938e-03 0.064
BB2-`1 0.03 46 3.000e-03 0.064
ABBmin-`1 0.04 50 2.837e-03 0.062

5.3. Total Variation based image deblurring with Gaussian noise

Next, we consider an image deblurring test problem inspired by the Helsinki Deblur Challenge (HDC)
2021 [29]. Our aim is to recover a binary image of some text string from a noisy blurred acquisition.
The ground truth image has been generated by randomly picking an image from the HDC dataset (the
ones acquired by Camera 1), and resizing and binarizing it. The resulting image has size 83 × 295 and
its pixels are zero (black) or one (white). We generate the noisy blurred image by convolving the ground
truth with an out-of-focus PSF of radius 7, and then adding Gaussian noise with zero mean and standard
deviation 0.01. Following a Maximum A Posteriori approach, it is then feasible to restore the acquired
image by addressing the following regularized least squares problem

min
x∈Rn

1

2
‖Hx− g‖2 + ρTVδ(x) + λ‖x‖1, (49)

whereH ∈ Rn×n represents the blurring matrix corresponding to the out-of-focus PSF, g ∈ Rn is the noisy
blurred image, ρ > 0 and λ > 0 are the regularization parameters, and TVδ is a smooth approximation
of the Total Variation term given by [3]

TVδ(x) =
n∑
i=1

√
(∇iu)2

1 + (∇iu)2
2 + δ2,

where δ > 0 is the smoothing parameter, and ∇i ∈ R2×n is the discrete gradient operator at pixel i.
Note that the `1−norm is introduced to enforce sparsity in the image, whereas the TVδ term is used to
preserve the sharp edges of the text string. This test problem is quite interesting for testing the behavior
of the proposed BB2-like rule (25), as we expect the solution of problem (49) to possess several active
variables. The regularization parameters are set as ρ = 5 · 10−5, δ = 10−2, λ = 10−3. A solution of
problem (49), denoted by x∗, is approximated by running the FISTA algorithm with constant steplength
[2] for 10000 iterations, and the corresponding function value is denoted by f∗.

We apply Algorithm 1 to problem (49) with f0(x) = 1
2‖Hx− g‖

2 + ρTVδ(x) and f1(x) = λ‖x‖1. For
this test problem, we compare the performances of Algorithm 1 equipped with the steplength selection
strategies BB1, BB2, BB2-`1, ABBmin, and ABBmin-`1. The parameter setting of the resulting algorithms
is the same as the previous numerical tests, except for the switching parameter τ in the alternating
strategies, which is set equal to 0.6 for ABBmin and equal to 0.8 for ABBmin-`1. This choice is motivated
by the fact that the standard BB2 rule may be less reliable than BB2-`1, as the theoretical spectral analysis
prescribed as well as the previous experiments showed, and hence it seems reasonable to differentiate the
selected value for the switching parameter, in order to reduce or promote, respectively, the effect of the
corresponding rule. We also compared the results with those obtained by using SpaRSA with its default

22



0 5 10 15
10

-10

10
-5

10
0

0 2 4 6 8 10 12 14 16 18

10
-2

10
-1

10
0

0 500 1000 1500 2000
10

-10

10
-5

10
0

0 500 1000 1500 2000 2500

10
-2

10
-1

10
0

Figure 7: Histories of the relative function errors and the relative minimization errors vs time (top row). Histories of the
relative function errors and the relative minimization errors vs iterations (bottom row)

parameters settings and M = 10. All the methods, including SpARSA, were stopped when either the
stopping criterion (46) was met with ε = 10−8, or the maximum number of 2000 iterations was reached.

In Figure 7, we plotted the relative error on the objective function f(x(k))−f∗
f∗ and the relative mini-

mization error ‖x
(k)−x∗‖
‖x∗‖ both versus computational time (top row) and iterations (bottom row). Table

2 shows the number of iterations, the relative minimization error and the computational time (in sec-
onds), required by each algorithm to reduce the relative error on the objective function below a prefixed
threshold tol. Finally, in Figure 8 we reported the original object, its corrupted version, and the recon-
structed images provided by the considered methods. These results clearly highlight the accelerating effect
achieved by employing the new steplength BB2-`1 compared to the other steplength selection strategies
and SpaRSA. Interestingly, we can observe that the use of the single modified rule BB2-`1 turned out to
be competitive with the alternating strategy ABBmin-`1, which however is able to gain efficiency at the
later iterations, improving the accuracy on the reconstruction, due to the combined effect of the two BB
rules when the active components start to stabilize. Table 2 shows that the gap between the modified and
the original BB steplengths in terms of number of iterations becomes more evident as the threshold tol
decreases. As a final remark, we can observe that SpaRSA and Algorithm 1 equipped with BB1 turned
out to be less efficient compared to the other solvers in terms of per-iteration cost. This is due to the
higher numbers of overall backtracking steps performed by the two methods, respectively 888 and 914,
compared to the ones needed by BB2, BB2-`1, ABBmin and ABBmin-`1, which were respectively, 2, 27,
0, and 31.
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Table 2: Number of iterations and execution times required to reduce the relative function error below a prefixed tolerance
tol. The corresponding relative minimization error obtained is reported.

tol = 10−2 tol = 10−4 tol = 10−6

It. ‖x(k)−x∗‖
‖x∗‖ Time(s) It. ‖x(k)−x∗‖

‖x∗‖ Time(s) It. ‖x(k)−x∗‖
‖x∗‖ Time(s)

BB1 98 0.260 1.093 996 0.042 6.699 1484 0.012 10.036
BB2 128 0.262 0.072 717 0.048 4.020 1323 0.012 7.308
BB2-`1 116 0.253 0.734 568 0.048 3.327 935 0.012 5.427
ABBmin 161 0.260 0.871 870 0.048 4.567 1581 0.012 8.238
ABBmin-`1 142 0.259 0.899 614 0.048 3.842 854 0.007 5.302
SpaRSA 121 0.260 1.001 859 0.048 7.570 1649 0.012 14.787

Figure 8: Original object (top-left panel) followed by its corrupted version, the reconstruction obtained by FISTA and the
reconstructions obtained by Algorithm 1 equipped with the different steplength selection strategies specified by image title.
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6. Conclusions

In this paper, we investigated the spectral properties of the Barzilai-Borwein rules within a proximal
gradient scheme for solving `1-regularized minimization problems. We proposed a modification to the
second Barzilai-Borwein rule in order to exploit the optimality conditions along the iterative procedure
in a suitable manner, thus obtaining an acceleration of the method. We also provided theoretical results
related to the global convergence to a stationary point of a proximal gradient method equipped with a
nonmonotone line search. Numerical results on quadratic `1−regularized test problems confirmed the
theoretical analysis on the spectral behavior of the Barzilai-Borwein rules, and provided evidences of the
gain in terms of efficiency obtained by employing the modified rule. These advantages are also confirmed
by preliminary numerical results on an image restoration problem, where the performance obtained
using the single modified rule appears competitive with those of the adaptive alternating strategies.
Comparisons with two state-of-the-art solvers for `1 regularized problems on a synthetic test and on a
real application are presented, showing comparable or superior behaviour of the proposed methods. We
plan to further investigate the numerical impact of the proposed steplengths on large-scale minimization
problems arising in signal and image processing, as well as extend our spectral analysis to more general
regularizers.
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[41] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues for some sets of random matrices.
Math. USSR-Sb., 1(4):457, 1967.

[42] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad.
Sci. Ser. A, 255:2897–2899, 1962.

[43] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.
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Appendix A. Proofs of Lemma 4.1 and Theorem 4.2

Proof. [Proof of Lemma 4.1] The proof runs similarly to [6, Proposition 3.1]. By contradiction, assume
that there exists k ≥ 0 such that the line search performs an infinite number of reductions. Therefore,
for all j ≥ 0, we have

σh(k)
γ (y(k), x(k)) <

f(x(k) + βjd(k))− f̄k
βj

=
f0(x(k) + βjd(k))− f0(x(k))

βj
+
f1(x(k) + βjd(k))− f1(x(k))

βj
− ξk
βj

≤ f0(x(k) + βjd(k))− f0(x(k))

βj
+
βjf1(y(k)) + (1− βj)f1(x(k))− f1(x(k))

βj

=
f0(x(k) + βjd(k))− f0(x(k))

βj
+ f1(y(k))− f1(x(k)),

where the second inequality follows from an application of Jensen’s inequality to the convex function f1,
and the fact that ξk ≥ 0 for all k ≥ 0. Taking the limit on the right-hand side for j →∞ yields

σhγ(y(k), x(k)) ≤ ∇f0(x(k))T d(k) + f1(y(k))− f1(x(k))

≤ ∇f0(x(k))T d(k) + f1(y(k))− f1(x(k)) +
γ

2αk
‖y(k) − x(k)‖2

= hγ(y(k), x(k)) < 0,

where the last equality is due to the definition of hγ(·;x(k)) in (30), and the last inequality is assumed
from (35). Since σ ∈ (0, 1), this is absurd. �

Before providing the proof of Theorem 4.2, we make the following useful remark. Suppose that
f = f0 + f1 with f0, f1 satisfying the assumptions of Section 4. By Definition 2.2, a point x̄ is stationary
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for f if and only if 0 ∈ ∂f(x̄). Then, we can apply Lemma 2.2 and Definition 2.3 to write the following
relations

x̄ is stationary for f ⇔ 0 ∈ ∂f(x̄)

⇔ −α∇f0(x̄) ∈ ∂(αf1)(x̄), ∀ α > 0

⇔ x̄ = proxαf1(x̄− α∇f0(x̄)), ∀ α > 0.

Proof. [Proof of Theorem 4.2] The proof is obtained by slightly modifying the arguments in [6,
Theorem 3.1].

If there exists k̄ ≥ 0 such that h
(k)
γ (y(k̄), x(k̄)) = 0, then x(k̄) is stationary [6, Proposition 2.3] and

x(k̄+j) = x(k̄) for all j ≥ 0, hence the thesis holds.
Otherwise, assume that hγ(y(k), x(k)) < 0 for all k ∈ N. Then the sequence {x(k)}k∈N is well-defined

(due to Lemma 4.1) and infinite. Since {x(k)}k∈K converges, it is a bounded sequence. Due to the
continuity of the operator p(x, α) = proxαf1(x − α∇f0(x)) with respect to its arguments, together with

the boundedness of the sequences {x(k)}k∈K and {αk}k∈K , it follows that also {y(k)}k∈K is bounded,
hence it admits a limit point ȳ. Let K ′ ⊆ K be such that limk∈K′,k→∞ y(k) = ȳ and limk→∞ αk = ᾱ > 0.
By continuity of p(x, α), we deduce that ȳ = proxᾱf1(x̄− ᾱ∇f0(x̄)).

Next, we note that condition (37) can be equivalently as

f(x(k+1)) + ξk+1 + δk+1(f(x(k)) + ξk − f(x(k+1))) ≤ f(x(k)) + ξk, (A.1)

which implies that the sequence {f(x(k)) + ξk}k∈N is monotone nonincreasing. Given that (36) holds,
this means that there exists f̄ ∈ R̄ such that limk→∞ f(x(k))+ ξk = limk→∞ f(x(k)) = f̄ . Since f is lower
semicontinuous and x̄ is a limit point of {x(k)}k∈N, we have

f̄ = lim
k→∞

f(x(k)) = lim
k→∞

f(x(k+1)) ≥ f(x̄).

From the previous inequality, it follows that f̄ ∈ R, which in turn gives

lim
k→∞

f(x(k))− f(x(k+1)) = 0. (A.2)

Note that the Armijo-like condition (32) can be rewritten as

0 ≤ −νkhγ(y(k), x(k)) ≤ f(x(k)) + ξk − f(x(k+1))

σ
.

Then, taking the limit for k →∞ and employing (A.2) and (36) yields

lim
k→∞

νkhγ(y(k), x(k)) = 0. (A.3)

We are now ready to show that

lim
k∈K′,k→∞

hγ(y(k), x(k)) = 0. (A.4)

To this aim, we first note that {hγ(y(k), x(k))}k∈K′ is bounded from below. Indeed, we can write

hγ(y(k), x(k)) = ∇f0(x(k))T (y(k) − x(k)) +
γ

2αk
‖y(k) − x(k)‖2 + f1(y(k))− f1(x(k))

≥ ∇f0(x(k))T (y(k) − x(k)) + f1(y(k))− f1(x(k))

= ∇f0(x(k))T (y(k) − x(k)) + f1(y(k))− f(x(k)) + f0(x(k))

≥ ∇f0(x(k))T (y(k) − x(k)) + f1(y(k))− f(x(k))− ξk + f0(x(k))

≥ ∇f0(x(k))T (y(k) − x(k)) + f1(y(k))− f(x(0))− ξ0 + f0(x(k)),
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where the last inequality is due to the fact that {f(x(k)) + ξk}k∈N is monotone nonincreasing. Since
f1 is proper and convex, it admits a supporting hyperplane, namely, there exist a, b ∈ Rn such that
f1(u) ≥ aTu+ b for all u ∈ Rn. Hence

hγ(y(k), x(k)) ≥ ∇f0(x(k))T (y(k) − x(k)) + aT y(k) + b− f(x(0))− ξ0 + f0(x(k)).

Since the function ϕ(x, y) = ∇f0(x)T (y − x) + aT y + b − f(x(0)) − ξ0 + f0(x) is a continuous function
with respect to its variables x, y, and the sequences {x(k)}k∈K′ and {y(k)}k∈K′ are closed and bounded,
we conclude that the sequence {hγ(y(k), x(k))}k∈K′ is bounded from below.

Assume by contradiction that (A.4) does not hold. Then, since {hγ(y(k), x(k))}k∈K′ is a bounded
sequence, there must exist K ′′ ⊆ K ′ such that limk∈K′′,k→∞ hγ(y(k), x(k)) = h̄ < 0. By (A.3), this
implies that

lim
k∈K′′,k→∞

νk = 0. (A.5)

This means that, for all sufficiently large k ∈ K ′′, the linesearch based on (32) performs at least one
reduction. In other words, for all sufficiently large k ∈ K ′′, we have

σ(νk/δ)hγ(y(k), x(k)) < f(x(k) + (νk/δ)d
(k))− f(x(k))− ξk.

Repeating the same arguments as in the proof of Lemma 4.1, we get

σhγ(y(k), x(k)) <
f0(x(k) + (νk/δ)d

(k))− f0(x(k))

νk/δ
+ f1(y(k))− f1(x(k))

≤ f0(x(k) + (νk/δ)d
(k))− f0(x(k))

νk/δ
+ f1(y(k))− f1(x(k)) +

γ

2αk
‖y(k) − x(k)‖2.

Taking the limit on both sides for k ∈ K ′′, k →∞, since {d(k)}k∈K′′ is bounded and by (A.5), we obtain
σh̄ ≤ h̄ < 0, which is absurd, being σ ∈ (0, 1). Thus, the limit (A.4) holds.

Finally, setting x = x(k), y = y(k), w = 0 ∈ ∂h(k)
1 (y(k), x(k)) inside inequality (41) leads to

m

2
‖y(k) − x(k)‖2 ≤ −h(k)

1 (y(k), x(k)) + h
(k)
1 (x(k), x(k)) = −h(k)

1 (y(k), x(k)) −→
k∈K′′,k→∞

0.

Therefore, we have proved that x̄ = ȳ = proxᾱf1(x̄− ᾱ∇f0(x̄)), which implies that x̄ is stationary. �
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