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In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the
incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called no-split
no-merge requirement arises in unit train scheduling where train consists should remain intact at stations
that lack necessary equipment and manpower to attach/detach them. Solving the unsplittable network
flow problems with standard mixed-integer programming formulations is computationally difficult due to
the large number of binary variables needed to determine matching pairs between incoming and outgoing
arcs of nodes with no-split no-merge constraint. In this paper, we study a stochastic variant of the unit
train scheduling problem where the demand is uncertain. We develop a novel decision diagram (DD)-based
framework that decomposes the underlying two-stage formulation into a master problem that contains the
combinatorial requirements, and a subproblem that models a continuous network flow problem. The master
problem is modeled by a DD in a transformed space of variables with a smaller dimension, leading to a
substantial improvement in solution time. Similarly to the Benders decomposition technique, the subproblems
output cutting planes that are used to refine the master DD. Computational experiments show a significant

improvement in solution time of the DD framework compared with that of standard methods.
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1. Introduction

Over the past several decades, rail freight transportation has continued to grow as the prime
means of transportation for high-volume commodities. Advantages of rail transportation include
reliability, safety, cost-efficiency and environmental-sustainability as compared with alternative
methods of transportation. In terms of scale, the rail network accounted for 27.2 percent of U.S.
freight shipment by ton-miles in 2018 (Furchtgott-Roth et al. 2021); see Figure 1. The Federal
Highway Administration estimates that the total U.S. freight shipments will be 24.1 billion tons
in 2040, a 30 percent increase from the 2018 total transportation of 18.6 billion tons. With the

purpose of meeting such market growth, America’s freight railway companies have invested nearly
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$740 billion on capital expenditures and maintenance from 1980 to 2020 (Association of American

Railroads 2021).
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Figure 1 Pie chart for ton-miles of freight shipments by mode within the U.S. in 2018. Multiple modes includes

mail. Air and truck-air with the share of 0.1% are omitted.

To reduce rail freight transportation costs and shipment delays, railroad companies offer unit
train services for carrying high-volume products. Unit trains haul a single type freight in a way that
no car is attached or detached while the cargo train is on its way from an origin to a destination,
except in specific locations that are equipped with required manpower and machinery. These trains
usually operate all day, use dedicated equipment, and can be loaded/unloaded in 24 hours. They
are known to be one of the fastest and most efficient means of railroad transportation. (Association
of American Railroads 2021). Traditionally, unit trains are used to carry bulk cargo such as coal,
grain, cement, and rock. Bulk liquids like crude oil and food such as wheat and corn are also
shipped by unit trains. According to the Federal Railroad Administration data, bulk commodities
account for 91 percent of the U.S. railroad freights. Approximately all coal shipped through railways
in the U.S. are transported by unit trains. Moreover, these trains contribute significantly to the
shipping process of crude oil as each unit train is capable of carrying 85,000 barrels (Association
of American Railroads 2021). In an operational level, the core unit train model can be described
as follows. Given a set of supply, intermediate, and demand locations in a railroad network, the
unit train scheduling problem seeks to find optimal routes for unit trains to send flows from supply
to demand points with the objective of minimizing the total transportation cost while meeting
demand of customers, respecting capacities of tracks, and satisfying no-car attaching/detaching

requirements in specific locations. As a result, designing blocking plans to determine locations
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where cars need to be switched between trains is irrelevant in this problem, unlike scheduling other
types of trains (Davarnia et al. 2019).

Despite the significance of unit train scheduling, exact optimization approaches to solve associ-
ated problems are scarce, partially due to their structural complexities. One of the main challenges
in modeling unit trains is the requirement that the train consists must remain intact when passing
through stations that lack necessary busting/formation equipment. In optimization, this require-
ment is referred to as no-split no-merge (NSNM), which guarantees that the flows entering to or
exiting from certain nodes of the unit train network cannot be split or merged. Incorporating this
requirement into typical transportation network models yields the so-called generalized unsplittable
flow problem (GUFP), where the objective is to determine the minimum-cost unit train sched-
ules that satisfy the given demand. Numerous studies have shown that considering deterministic
demands might result in the complete failure of the transportation scheduling (Demir et al. 2016,
Layeb et al. 2018), motivating the study of stochastic variants of the unit train scheduling problems
where the demand is uncertain. As a result, in this paper, we consider a stochastic variant of the
GUFP, referred to SGUFP, that is modeled as a two-stage optimization problem. The first stage
decides a matching between the incoming and outgoing arcs of the nodes of the railroad network,
and the second stage determines the amount of flow that should be sent through the matching arcs
of the network to satisfy the uncertain demand represented by a number of demand scenarios. We
propose a novel exact solution framework to solve this problem in the operational level.

Our proposed methodology is based on decision diagrams (DDs), which are compact graphical
data structures. DDs were initially introduced to represent boolean functions with applications in
circuit design. Over the past decade, researchers have successfully extended DDs domain by devel-
oping DD-based algorithms to solve discrete optimization problems in different areas of application.
Because of its structural limitation to model integer programs only, DDs have never been used
to solve transportation problems that inherently include continuous variables. In this paper, we
extend the application scope of DDs by introducing a novel framework that is capable of modeling

network problems with both integer and continuous components as in the SGUFP.

1.1. Literature Review on Train Scheduling

Many variants of train routing and scheduling problems with different objective functions and
set of constraints under deterministic and stochastic conditions have been introduced and vastly
studied in the literature; see surveys by Cordeau, Toth, and Vigo (1998), Harrod and Gorman
(2010), Lusby et al. (2011), Cacchiani and Toth (2012), and Turner et al. (2016) for different
problems classifications and structures. Mixed integer linear and nonlinear programming formu-
lations are among the most frequent exact approaches to model different classes of these prob-

lems (Jovanovi¢ and Harker 1991, Huntley et al. 1995, Sherali and Suharko 1998, Lawley et al.
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2008, Haahr and Lusby 2017, Davarnia et al. 2019). Proposed solution techniques include but are
not limited to branch-and-bound methods (Jovanovi¢ and Harker 1991, Fuchsberger and Liithi
2007), branch-and-cut frameworks (Zwaneveld, Kroon, and Van Hoesel 2001, Ceselli et al. 2008),
branch-and-price approaches (Lusby 2008, Lin and Kwan 2016), graph coloring algorithms (Cor-
nelsen and Di Stefano 2007), and heuristics (Carey and Crawford 2007, Liu and Kozan 2011, Igyiiz
et al. 2016). Rolling stock scheduling (Abbink et al. 2004, Alfieri et al. 2006, Haahr et al. 2016,
Borndorfer et al. 2016) that assigns rolling stocks to a given timetable, and crew scheduling (Kwan
2011, Shen et al. 2013, Heil, Hoffmann, and Buscher 2020) that covers train activities by assigning
crews to the associated operations are other major problems arising in the area of railroad planning.

Due to the inherent uncertainty in different types of train scheduling and routing problems, many
researchers have studied stochastic variants of the problems where the supply /demand is considered
to be uncertain. Jordan and Turnquist (1983) propose a model for railroad car distribution where
supply and demand of cars are uncertain. Jin et al. (2019) study a chance-constrained programming
model for the train stop planning problem under stochastic demand. Ying, Chow, and Chin (2020)
propose a deep reinforcement learning approach for train scheduling where the passenger demand
is uncertain. Recently, Gong et al. (2021) propose a stochastic optimization method to solve a train
timetabling problem with uncertain passenger demand. Also see works by Meng and Zhou (2011),
Quaglietta, Corman, and Goverde (2013), Larsen et al. (2014) that consider train dispatching
problems under stochastic environments.

In the context of unit train scheduling, Lawley et al. (2008) study a time-space network flow
model to schedule bulk railroad deliveries for unit trains. In their model, the authors consider char-
acteristics of underlying rail network, demands of customers, and capacities of tracks, stations, and
loading/unloading requirements. They propose a mixed integer programming (MIP) formulation
that maximizes the demand satisfaction while minimizing the waiting time at stations. Lin and
Kwan (2014) (cf. Lin and Kwan (2016)) propose a model for a train scheduling problem that is capa-
ble to capture locations where coupling/decoupling is forbidden. They develop a branch-and-price
algorithm inspired by column generation to solve the associated problem. Lin and Kwan (2018)
also propose a heuristic branch-and-bound approach to decrease coupling/decoupling redundancy.
Igyiiz et al. (2016) study the problem of planning coal unit trains that includes train formation,
routing, and scheduling. As noted by the authors, their proposed MIP formulation fails to solve
the problem directly due to its large size. As a remedy, they develop a time-efficient heuristic that
produces good quality solutions. More recently, Davarnia et al. (2019) introduce and study the
GUFP with application to unit train scheduling. In particular, the authors show how to impose
NSNM restrictions in network optimization problems. They present a polyhedral study and pro-
pose a MIP formulation to model a stylized variant of the unit train scheduling problem. In the

present paper, we use their formulation (see section 3.1) as a basis for our solution framework.
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The unsplittable flow problem (UFP) was first introduced by Kleinberg (1996) as a generalization
of the disjoint path problem. Given a network with capacities for arcs and a set of source-terminal
vertex pairs with associated demands and rewards, the objective in the UFP is to maximize the
total revenue by selecting a subset of source-terminal pairs and routing flows through a single
path for each of them to satisfy the associated demand. In the GUFP, however, there can exist
nodes that do not need to respect the NSNM requirement, and demands can be satisfied by
passing flows through multiple paths. It is well-known that different variants of UFP are NP-
hard (Baier, Ko6hler, and Skutella 2005, Kolman and Scheideler 2006, Chakrabarti et al. 2007). Since
its introduction, the UFP structure has been used in different areas of application, from bandwidth
allocation in heterogeneous networks (Kolman and Scheideler 2006), to survivable connection-
oriented networks (Walkowiak 2006), and virtual circuit routing problems (Hu, Lan, and Wan
2009). Considering the hardness of the problem, approximation algorithms have been a common
technique to tackle different variants of the UFP in the literature (Baier, Koéhler, and Skutella
2005, Chakrabarti et al. 2007).

1.2. Literature Review on Decision Diagrams

DDs are directed acyclic graphs with a source and a terminal node where each source-terminal path
encodes a feasible solution to an optimization problem. In DDs, each layer from the source to the
terminal represents a decision variable where labels of arcs show their values. Hadzi¢ and Hooker
(2006) proposed to use DDs to model the feasible region of a discrete optimization problem and used
it for postoptimality analysis. Later, Andersen et al. (2007) presented relaxed DDs to circumvent
the exponential growth rate in the DD size when modeling large discrete optimization problems.
Bergman et al. (2016b) introduced a branch-and-bound algorithm that iteratively uses relaxed and
restricted DDs to find optimal solution. The literature contains many successful utilization of DDs
in different domains; see works by Bergman and Cire (2018), Serra and Hooker (2019), Davarnia
and Van Hoeve (2020), Gonzalez et al. (2020), and Hosseininasab and Van Hoeve (2021) for some
examples.

Until recently, applications of DDs were limited to discrete problems, and the question on how to
use DDs in solving optimization problems with continuous variables was unanswered. To address
this limitation, Davarnia (2021) proposed a technique called arc-reduction that generates a DD
that represents a relaxation of the underlying continuous problem. In a follow-up work, Salemi
and Davarnia (2022a) established necessary and sufficient conditions for a general MIP to be
representable by DDs. They showed that a bounded MIP can be remodeled and solved with DDs
through employing a specialized Benders decomposition technique. In this paper, we build on this

framework to design a novel DD-based methodology to solve the SGUFP.
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1.3. Contributions

While there are several studies in the literature dedicated to the unit train problem, exact method-
ologies that provide a rigorous treatment of the NSNM requirement at the heart of unit train
models are scarce. In this paper, we design a novel exact DD-based framework to solve the SGUFP,
as a more realistic and more challenging variant of this problem class. To our knowledge, this is
the first work that studies SGUFP from an exact perspective, and the first application of DDs
to a transportation problem. Our proposed framework formulates the problem in a transformed
space of variables, which has a smaller dimension compared to the standard MIP formulations
of the SGUFP. This presentation mitigates the computational difficulties stemmed from the MIP
formulation size, providing a viable solution approach for large-scale network problems. The core
principles of our DD framework can also be used to model other transportation problems with
similar structure, as an alternative to traditional network optimization techniques.

The remainder of this paper is organized as follows. In Section 2 we provide basic definitions
and a brief overview on discrete and continuous DD models, including the DD-BD method to
solve bounded MIPs. In Section 3, we adapt the DD-BD method to solve the SGUFP. We propose
algorithms to construct exact and relaxed DDs to solve the problem in a transformed space.
Section 4 presents computational experiments to evaluate the performance of the DD-BD method

for the SGUFP. We give concluding remarks in Section 5.

2. Background on DDs

In this section, we present basic definitions and results relevant to our DD analysis.

2.1. Overview
A DD D= (U, .A,l) with node set U, arc set A, and arc label mapping [ : A — R is a directed acyclic
graph with n € N arc layers A;, As, ..., A,, and n+ 1 node layers U, ,Us, ...,U, 1. The node layers
U, and U, 1, with |U;| = |U, 1| =1, contain the root r and the terminal ¢, respectively. In any arc
layer j € [n] :={1,2,...,n}, an arc (u,v) € A, is directed from the tail node u € U; to the head node
v € Uj41. The width of D is defined as the size of its largest ;. DDs can model a bounded integer
set P CZ" in such a way that each r-t arc-sequence (path) of the form (ay,...,a,) € A; X ... x A,
encodes a point y € P where [(a;) =y; for j € [n], that is y is an n-dimensional point in P whose
j-th coordinate is equal to the label value [(a;) of arc the a;. For such a DD, we have P = Sol(D),
where Sol(D) denotes the finite collection of all r-t paths.

The graphical property of DDs can be exploited to optimize an objective function over a discrete
set P. To this end, DD arcs are weighted in such a way that the cumulative weight of an r-t

path that encodes a solution y € P equals to the objective function value evaluated at y. Then, a
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shortest (resp. longest) r-t path for the underlying minimization (resp. maximization) problem is
found, an operation that can be performed in polynomial time.

The construction of an exact DD as described above is computationally prohibitive due to the
exponential growth rate of its size. To alleviate this difficulty, relazed and restricted DDs are
proposed to keep the size of DDs under control. In a relaxed DD, nodes are merged in such a way
that the width of the resulting diagram is bounded by a predetermined width limit. This node-
merging process ensures that all feasible solutions of the original set are encoded by a subset of
all r-t paths in the resulting DD. Optimization over this relaxed DD provides a dual bound to the
optimal solution of the original problems. In a restricted DD, the collection of all r-t paths of the
DD encode a subset of the feasible solutions of the original set. Optimization over this restricted
DD provides a primal bound to the optimal solution of the original problems. The restricted and
relaxed DDs can be iteratively refined in a branch-and-bound scheme to find the optimal value of
a problem through convergence of their primal and dual bounds. The following example illustrates
an exact, relaxed and restricted DD for a discrete optimization problem.

EXAMPLE 1. Consider the discrete optimization problem max{5y; + 10y, + 4y3 | y € P} where
P={(1,0,0),(1,0,1),(0,1,0),(0,0,1),(0,0,0)}. The exact DD D with width 3 in Figure 2(a) models
the feasible region P. The weight of each arc a € A;, for j € {1,2,3}, shows the contribution of
variable y;’s value assignment to the objective function. The longest r-t path that encodes the
optimal solution (y7,vs,vs) = (0,1,0) has length 10, which is the optimal value to the problem.
By reducing the width limit to 2, we can build relaxed and restricted DDs for P as follows. The
relaxed DD D in Figure 2(b) provides an upper bound to the optimal solution, where the longest
path with length 14 is obtained by an infeasible point (7;,%,,75) = (0,1,1). Finally, the restricted
DD D in Figure 2(c) gives a lower bound to the optimal solution, where the longest path with
length 9 encodes a feasible solution (yi,y2,¥s) = (1,0,1).

2.2. Continuous DD Models

While the framework described in the previous section can be applied to solve different classes of
discrete optimization problems, its extension to model sets with continuous variables requires a
fundamentally different approach. The reason that the traditional DD structure is not viable for
continuous sets is that representing the domain of a continuous variable through arcs requires an
infinite number of them, spanning all values within a continuous interval, which is structurally
prohibitive in DD graphs. Fortunately, there is a way to overcome this obstacle by decomposing
the underlying set into certain rectangular formations, which can in turn be represented through
node-sequences in DDs. In what follows, we give an overview of these results as relevant to our

analysis.
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(a) Exact DD D (b) Relaxed DD D (c) Restricted DD D

Figure 2 The exact, relaxed, and restricted DDs representing P in Example 1. Solid and dotted arcs indicate

one and zero arc labels, respectively. Numbers next to arcs represent weights.

Consider a bounded set P C R™. Salemi and Davarnia (2022a) give necessary and sufficient
conditions for P to admit the desired rectangular decomposition. Such a set is said to be DD-
representable w.r.t. a fixed index set I C [n], as there exists a DD D such that max{f(x) |z €
P} =max{f(x)|x € Sol(D)} for every function f(x) that is convex in the space of variables x;.

A special case of DD-representable sets is given next.

PROPOSITION 1. Any bounded mized integer set of the form P C Z"™ x R is DD-representable
wrt. I={n+1}. O

This result gives rise to a novel DD-based framework to solve general bounded MIPs as outlined
below. Consider a bounded MIP H := max{cy +dx | Ay+ Gz <b, y € Z"}. Using Benders decom-
position (BD), formulation H is equivalent to max,ezn{cy + max,{dx | Gx <b— Ay}}, which can
be reformulated as M = max{cy+ z | (y; z) € Z™ x [l,u]}, where [,u € R are some valid bounds on z
induced from the boundedness of H. Here, M is the master problem and z represents the objective
value of the subproblem max,{dx | Gx <b— Ay} for any given y as an optimal solution of the
master problem. The outcome of the subproblems is either an optimality cut or a feasibility cut
that will be added to the master problem. Then, the master problem will be resolved. Proposition 1
implies that formulation M can be directly modeled and solved with DDs. For this DD, we assign n
arc layers to the integer variables vy, ys,...,yn, and one arc layer to the continuous variable z with
only two arc labels showing a lower and upper bound for this variable. To find an optimal solution,
the longest path is calculated, which will be used to solve the subproblems. Note that since M is
a maximization problem, a longest path of the associated DD encodes an optimal solution, and
its length gives the optimal value; see Example 2. The feasibility and optimality cuts generated
by the subproblems will then be added to refine the DD, whose longest path will be recalculated.
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The refinement technique consists of removing arcs of the DD that lead to solutions that violate
the added inequality, as well as splitting nodes of the DD that lead to different subsequent partial
assignments; see Bergman et al. (2016a) for a detailed account on DD refinement techniques. We
illustrate this approach in Example 2.

EXAMPLE 2. Suppose that max{2y; +4ys + z | y € P,z <25} forms the master problem at the
penultimate iteration of a BD algorithm, where P = {(0,0),(1,1)}. This problem is represented
by the DD D in Figure 3(a) where —M is a valid lower bound for z. The longest path of D
encodes the solution (91,92,2) = (1,1,25). Assume that using the point (9;,92) = (1,1) in the
associated subproblem generates an optimality cut z < 3y; + 2y, + 10 for the final iteration of the
BD algorithm. Refining DD D with respect to this cut yields the new DD in Figure 3(b). The
longest path represents the optimal solution (yi,ys,z*) = (1,1,15) with length 21, which is the

optimal value.

W

(a) penultimate iteration (b) final iteration

Figure 3 The last two iterations of solving the master problem in Example 2

Using the DD framework as outlined above can be computationally challenging due to exponen-
tial growth rate of the size of an exact DD. To mitigate this difficulty, restricted /relaxed DDs can
be employed inside of the BD framework as demonstrated in Algorithm 1. We refer to this solution
method as DD-BD (Salemi and Davarnia 2022a).

In explaining the steps of Algorithm 1, let point § € Z*, where k < n, be a partial value assignment
to the first k coordinates of variable y, i.e., y; =, for all i € [k]. We record the set of all partial
value assignments in Y = {§ € Z* | k € [n]} U{&}, where & represents the case where no coordinate
of y is fixed. Set C contains the produced Benders cuts throughout the algorithm, and we denote
the feasible region described by these cuts by F¢. Further, define M () = max{cy + 2| (y;2) €
Z" x [l,u) N FC, y; = 1;,Vi € [k]} to be the restricted master problem M obtained through adding
cuts in C and fixing the partial assignment 4. In this definition, the case with C =0 and ) = {e}
is denoted by M?(©) = M, which is an input to Algorithm 1.
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Algorithm 1: DD-BD
Data: MIP H, construction method to build restricted and relaxed DDs for M

Result: An optimal solution (y*,2*) and optimal value w* to H

=

initialize set of partial assignments y= {6}, set of Benders cuts C =0, and w* = —o0

if V=0 then
‘ terminate and return (y*, z*) and w*

w N

else
select y € Y and update Y < Y\ {y}

6 create a restricted DD D associated with M (%)
7 | if D#() then

[S

8 find a longest 7-t path of D with encoding point (y,z) and length w
9 solve the BD subproblem using y to obtain Benders cut C

10 if C €C then

11 | go to line 17

12 else

13 update C <+~ CUC and refine D w.r.t. C

14 go to line 8

15 else

16 | go to line 2

17 if w>w* then

18 L update w* <—w and (y*,2*) + (y,2)

19 if D provides an exact representation of MC(y) then

20 | go to line 2

21 else

22 create a relaxed DD D associated with M (%)

23 find a longest r-t path of D with length w

24 if w > w* then o
25 solve the BD subproblem using ¥ to obtain Benders cut C
26 if C €C then

27 | go to line 31

28 else

29 update C <~ CUC and refine D w.r.t. C

30 go to line 23

31 forall u in the last exact layer of D do

32 L update Y < YU {y} where ¢ encodes longest r-u path of D

33 | go to line 2
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The algorithm starts with constructing a restricted DD D corresponding to M (¢) with empty
initial values for C' and §. We then find a longest r-t path of D encoding solution (y,z). Next,
using y, we solve the associated subproblem to obtain a feasibility /optimality cut C'. We add this
cut to C, refine D according to it, and find a new longest r-t path. We repeat these steps until no
new feasibility /optimality cut is generated. At this point, the length of a longest r-t path of D,
denoted by w, gives a lower bound to the master problem M, which is also a valid lower bound
to the original problem H. The value of w can be used to update w*, the optimal value of H
at termination. Next, we create a relaxed DD D corresponding to M (g). We find a longest r-t
path of D that provides an upper bound w to M. If the upper bound w is strictly greater than
the current value of w*, we follow steps similarly to the case for D to iteratively refine D w.r.t.
feasibility /optimality cuts through solving the subproblems, until no new cut is generated. Next,
we perform a specialized branch-and-bound procedure to improve the bound through expanding
merged layers of the DD. To this end, we add all the partial assignments associated with nodes in
the last exact layer of D (the last node layer in which no nodes are merged) to the collection V.
The nodes corresponding to partial assignments in Y are required to be further explored to check
whether or not the value of w* can be improved. That is, the above process is repeated for every
node v with partial assignment in Y as the r-v path is fixed in the new restricted/relaxed DDs.

The algorithm terminates when Y becomes empty, at which point w* is the optimal value.

3. DD-BD Formulation for the SGUFP
In this section, we adapt the DD-BD framework described in Section 2.2 to solve the SGUFP.

3.1. MIP Formulation

We study the MIP formulation of the SGUFP based on that of its deterministic counterpart given
in Davarnia et al. (2019). Consider a network G = (V, A) with node set V :=V’U{s,t} and arc set
A, where s and t are source and sink nodes, respectively. The source node is connected to all the
supply nodes in .S C V', and the sink node is connected to all the demand nodes in D C V'. Figure 4
illustrates the general structure of this network. For a node g € V', let 6~ (¢q) :=={i €V | (i,q) € A}
and 07 (q) ={j € V| (q,j) € A} show the set of incoming and outgoing neighbors of ¢, respectively.
Define V C V' as a subset of vertices that must satisfy the NSNM requirement. For each node
q € V, let binary variable yfj € {0,1} represent whether or not the flow entering node q € V through
arc (i,q) leaves node ¢ through arc (g,7). The first stage of SGUFP determines the matching pairs

between incoming and outgoing arcs of unsplittable nodes as follows:

max 2z (1la)
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S D
Figure 4  lllustration of network G = (V' U{s,t}, A)
st Y gL <1 Vied (q), VgeV (1b)
j€st(a)
RS Vi€t (q), VaeV (1c)
i€6~ (q)
yi; €40, 1} V(i,j) €67 (q) x 67 (q), YgeV, (1d)

where constraints (1b) ensure that each incoming arc to a node with NSNM requirement is
assigned to at most one outgoing arc, and constraints (1c) guarantee that each outgoing arc from
such a node is matched with at most one incoming arc.

In (1a)-(1d), variable z represents the objective value of the second stage of SGUFP where
the demand uncertainty is taken into account. This demand uncertainty is modeled by a set = of
scenarios for the demand vector d¢ with occurrence probability Pr® for each scenario & € . Let
continuous variable xfj € R, denote the flow from node i to node j through arc (7, j) under scenario
¢ € Z. We further assign a reward r;; per unit flow to be collected by routing flow through arc (3, 7).
It follows that z = 2565 Pr*z¢, where 2¢ is the objective value of the second stage of SGUFP for

each scenario £ € =. This subproblem is formulated as follows for a given y vector:

max Z Z rqjxgj (2a)

q€V jest(q)

s.t. z qu - z xgj =0 VgeV’ (2b)
i€d~(q) j€§T(q)
3 3 £ . _
‘giq < Liq < Ujq Vi€ d (Q), Vq eV (2C)
a, —ah; <ug,(1—yl) V(i,5) €6 (q) x 5*(q), YgeV (2d)
ng - x§q < Ugj(l - yij) V(i,j) €6 (q) x 6 (q), VgV (2e)
qu < ufq Z y'?j Vied (q), Vg€ v (2f)

j€8T(q)
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xgj < Ugj Z ygg Vje 5+(‘1), Vg e 1% (2g)
i€d~ (q)

25, >0 v(i,j) € A. (2h)

In the above formulation, the objective function captures the total reward collected by routing
flows throughout the network (from the source s to the sink ¢) to satisfy demands. The flow-balance
requirements are represented by (2b). Constraints (2c) bound the flow on each arc from below
and above. To impose the demand requirement for each scenario £ € =, we fix Egt = ugt = dg for all
demand nodes g € D with demand dg, and leave the lower and upper bound values unchanged for all
other arcs. Constraints (2d)—(2g) model the NSNM requirement for each node g € V. In particular,
(2d) and (2e) ensure that matching arcs (i,q) and (g, j) have equal flows. Constraints (2f) and (2g)
guarantee that an arc without a matching pair does not carry any flow. We note here that the
Constraint (2b) is implied by other constraints of the above subproblem under the assumption
that y is feasible to the master problem (la)—(1d). However, we maintain this constraint in the
subproblem because the master formulation in our DD-based approach, as will be described in
Section 3.2, may produce a solution that is not feasible to (la)-(1d). As a result, the addition of
the Constraint (2b) will lead to a tighter subproblem formulation.

As discussed in Section 2.2, the first step to use the DD-BD algorithm is to decompose the
underlying problem into a master and a subproblem. The above two-stage formulation of the
SGUFP is readily amenable to BD since the first stage problem (1a)-(1d) can be considered as the
master problem together with some valid lower and upper bounds —I" and I on z induced from the
boundedness of the MIP formulation. For a given y value obtained from the master problem and
a scenario £ € =, the second stage problem (2a)-(2h) can be viewed as the desired subproblems.
The optimality /feasibility cuts obtained from each scenario-based subproblem are then added to

the master problem through aggregation as described in Section 3.3.

3.2. DD-BD: Master Problem Formulation

While the DD-BD Algorithm 1 provides a general solution framework for any bounded MIP, its DD
component is problem-specific, i.e., it should be carefully designed based on the specific structure
of the underlying problem. In this section, we design such an oracle for the SGUFP that represents
the feasible region {(1b) — (1d), z € [-T',I']} of the master problem (1a)-(1d). To model this feasible
region in the original space of (y;z) variables, a DD would require ) __ [67(q)| % [6%(q)| arc
layers to represent binary variables y and one arc layer to encode the continuous variable z.
Constructing such a DD, however, would be computationally cumbersome due to the large number
of the arc layers. To mitigate this difficulty, we take advantage of the structural flexibility of DDs

in representing irreqular variable types that cannot be used in standard MIP models. One such
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variable type is the index set, where arc layers represent indices, rather than domain values. We
next show that we can remarkably reduce the number of DD arc layers by reformulating the master
problem in a transformed space of variables defined over index sets.

Consider anode g € V. In the following, we define mappings that assign an index to each incoming
and outgoing arc of q. These mappings enable us to define new variables to reduce the number
of DD arc layers. Let ind™ (4,q) be a one-to-one mapping from incoming arcs (,q), for i € 6~ (q),
to the index set {1,2,...,|6(¢)|}. Similarly, let ind* (g, j) be a one-to-one mapping from outgoing
arcs (q,7), for j € 67 (q), to the index set {1,2,...,]67(q)|}. For each incoming arc (i,q) with index
h=ind™ (4,q), we define an integer variable w} € {0,1,...,]67(q)|} such that w} = 0 if this incoming
arc is not paired with any outgoing arc, and wj =k > 0 if this arc is matched with an outgoing arc
(q,7) with index k =ind" (g, 7).

Next, we give a formulation in the space of w variables that describes the matching between
incoming and outgoing arcs of ¢ for all ¢ € V. In the following, sign(.) represents the sign function
that returns 1 if its argument is strictly positive, 0 if the argument is zero, and —1 otherwise.
Further, the operator |.|, when applied on a set, represents the set size; and when applied on a real

number, it represents the absolute value.

PROPOSITION 2. Formulation

Z sign(‘wfnd_(i’q)—ind+(q,j)‘> > ’(T(q)!—l Vji€dt(q), VgeV (3a)
1€0~ (q)
w?nd_(m)6{0,17...7 5+(q)|} Vie s (q), VgeV (3b)

models the matching between incoming and outgoing arcs of nodes ¢ €V .

Proof. We show the result for a single node ¢ € V. The extension to the multiple node case
is straightforward as the matching problem for each node is independent from other nodes. For
the direct implication, assume that M? is a matching between incoming and outgoing arcs of ¢,
with elements of the form (7,j) that represent a matching between the incoming arc (i,q) and
the outgoing arc (q,j). We show that variables w associated with matching pairs in M9 satisfy

constraints (3a) and (3b). It follows from the definition of w that, for each (i,7) € M9, we have

wiqnd_(i_q) =ind* (g, 7). Also, for any i € §~(¢) that does not have a matching pair in M9, we have
wiqn A= (ig) = 0. These value assignments show that w satisfies (3b) as the image of ind* mapping is

{1,...,10%(¢)|}. For each i € 6~ (¢q) and j € §"(q), we have ‘wiqnd_(i 0 ind+(q,j)‘ >0, with equality
holding when (i,7) € M. For each j € 7 (q), there are two cases. For the first case, assume that

(1,7) ¢ M? for any i € 6~ (q). As a result, |w!

ind~ (i,q

) —ind+(q,j)) >0 for all i € 6 (q). Applying

the sign(.) function on these terms yields sign ( wiqnd_(i " —ind+(q,j)D =1, which implies that
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Zie(;,(q) sign (

(i*,7) € M7 for some i* € 6~(q). As a result, we have 3, s, sign(’wiqnd,(i o —ind*(q,j)D =

wi - | —ind+(q,j)‘> =16 (q)|, satisfying (3a). For the second case, assume that

(iq

wi"nd_(i*,q) - ind+(q,j)D = ’wi‘]nd_(i*7q) —ind*(q,7)| =0, satisfying (3a).

For the reverse implication, assume that w is a feasible solution to (3a)—-(3b). We show that the

|0~ (q)] — 1 since sign (

pairs of the form (i, j) encoded by these variables constitute a feasible matching between incoming
and outgoing arcs of ¢, i.e., (i) each arc (i,q) is matched with at most one arc (g,7), and (ii) each
arc (q,7j) is matched with at most one arc (i,¢q). It follows from constraint (3b) that, for each i €

6~ (q), variable w{ 2 takes a value between {0,1,...,[67(¢)|}. If w! =0, then (i,q) is not

ind~ (4,q9)
matched with any outgoing arc, otherwise it is matched with arc (g,) with ind*(q,j) =w

d—(i
q
ind~ (i,q)"
This ensures that condition (i) above is satisfied for this matching collection. Further, for each
j €6 (q), constraint (3a) implies that sign ( wiqnd,(i 2 —ind+(q,j)D can be equal to zero for at
most one i € 67 (g). In such a case, we would have at most one matching pair of the form (¢, 7) in
the collection, showing that condition (ii) above is satisfied. [

It follows from Proposition 2 that constraints (3a)-(3b) can replace (1b)-(1d) in the master

problem (1a)-(1d) to obtain the following master problem in a transformed space of variables.
max {z | (3a) — (3b),z € [-T',T]}. (4)

Note that formulation (4) is an integer nonlinear program (INLP) with nonconvex and non-
continuous constraint functions. Such a formulation is extremely difficult for conventional MINLP
techniques and solvers to handle. However, due to structural flexibility of DDs in representing inte-
ger nonlinear programs, this problem can be easily modeled via a DD; see Davarnia and Van Hoeve
(2020) for a detailed account on using DDs for modeling INLPs. In the following, we present an
algorithm to construct DDs in the space of (w;z) variables for the master problem (4) with a
single node ¢ € V. The extension to the case with multiple nodes follows by replicating the DD
structure. The output of Algorithm 2 is a DD with |07 (¢)| + 1 arc layers where the first [ (q)|
layers represent w variables and the last layer encodes variable z. In this algorithm, s, denotes the
state value of DD node u. The core idea of the algorithm is to use unpaired outgoing arcs of ¢ as
the state value at each DD layer that represents the matching for an incoming arc of q.

Next, We show that the solution set of the DD constructed by Algorithm 2 represents the feasible
region of (4). Note here that DD representation of a MIP set, as described in Section 2.2, does
not imply the encoding of all of the solutions of the set, but rather the encoding of a subset of all
solutions that subsumes all the extreme points of the set. Such a representation is sufficient to solve
an optimization problem over the set with an objective function convex in continuous variables,

which is the case for (4).



Salemi and Davarnia: Solving Unsplittable Network Flow Problems with Decision Diagrams

16

Algorithm 2: Construction of DD for the master problem of SGUFP with a node g€V
Data: node g € V, parameter T

Result: an exact DD D

1 create the root node r € U; with state s, ={0,1,...,|0%(¢)|}

2 forall i €{1,2,...,|07(q)|} and uelU; do
3 forall / € s, do
4 L create a node v € U;,; with state (s, \ {¢})U{0} and an arc a € A; connecting u to v

with label [(a) = ¢

5 forall u €U1+|57(q)‘ do
6 create two arcs ay,as € A j5- (4 connecting u to the terminal node with labels [(a;) =T

and [(ag) = —T.

THEOREM 1. Consider a SGUFP with V = {q}. Let D be a DD constructed by Algorithm 2.
Then, Sol(D) represents the feasible region of (4).

Proof. (C) Consider an r-t path of D that encodes solution (w?, z). According to Algorithm 2,
the labels of the first |67 (g)| arcs of this path belong to {0,1,...,[67(¢)|}, showing that w?
satisfies constraints (3b). Assume by contradiction that w? does not satisfy constraints (3a),
e, D ics— (g Sign (’wfnd_(i7q) - ind+(q,j)‘) < |07 (q)] — 2 for some j € 6"(g). This implies that
wfnd,(i,m = wfnd,(i,,ﬂ) =ind™ (g, 7) for two distinct i’,5” € 6~ (q). In other words, the arcs at lay-
ers ind”~ (i’,q) and ind ™ (i",q) of the selected r-t path both share the same label value ind*(q, j).
According to line 3 of Algorithm 2, we must have that the state value of nodes at layers ind™ (7, q)
and ind~ (i”,q) of the r-t path both contain ind" (g, ). This is a contradiction to the state update
policy in line 4 of Algorithm 2, since positive arc labels at each layer of the DD will be excluded
from the state value of the subsequent nodes.

(2) Consider a feasible solution point (w?; Z) of (4). Suppose w? = ({1, 4s,...,4 ;- () According
to constraints (3a), no two coordinates of w? have the same positive value. The state value at the
root node in D contains all index values {0,1,...,]67(q)|}. According to Algorithm 2, there exists
an arc with label ¢; at the first layer of D. The state value at the head node of this arc, therefore,
contains f5 € {0,1,...,[07(q)|} \ {¢1}, which guarantees an arc with label ¢, at the second layer of
this path. Following a similar approach, we can track a path from the root to layer |~ (¢)| whose
arcs labels match values of w?. Note for the last layer that Z € [-T",T'], which is included in the
interval between arc labels of the last layer of D. As a result, (w?; 2) is represented by an r-t path
of D. O

The main purpose of using a DD that models the master problem (4) over one that models (1a)-

(1d) is the size reduction in arc layers that represent variables w as compared with variables
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y. It turns out that this space transformation can significantly improve the solution time of the
DD approach. We refer the interested reader to Appendix A for a detailed discussion on these
advantages, including preliminary computational results.

Constructing exact DDs as described in Algorithm 2 can be computationally expensive for large
size problems. As discussed in Section 2.2, relaxed and restricted DDs are used to circumvent this
difficulty. Building restricted DDs is straightforward as it involves the selection of a subset of r-t
paths of the exact DD that satisfy a preset width limit. Constructing relaxed DDs, on the other
hand, requires careful manipulation of the DD structure to merge nodes in such a way that it
encodes a superset of all r-t paths of the exact DD. We demonstrate a method to construct such
relaxed DDs in Algorithm 3. Similarly to Algorithm 2, this algorithm is presented for a single
NSNM node, but can be extended to multiple nodes by replicating the procedure.

Algorithm 3: Construction of relaxed DD for the master problem of SGUFP with a node
qeV

Data: node g € V, parameter T
Result: a relaxed DD D
create the root node r € Y, with state s, ={0,1,...,[0%(q)|}

forall i €{1,2,...,[0"(q)|} and ue€lU; do
3 forall / € s, do

=

N

4 create a node v € U, 1, with state (s, \ {¢})U{0} and an arc a € A; connecting u to v
with label I(a) =¢
5 select a subset of nodes vy,vs,...,v, € U;y1 and merge them into node v’ with state

k

L sv=Uiasy

6 forall u €Uy |5, do

create two arcs ay,as € A |5- () connecting u to the terminal node with labels [(a;) =T

and [(ay) = —T.

THEOREM 2. Consider a SGUFP with V = {q}. Let D be a DD constructed by Algorithm 3.

Then, D represents a relazation of the feasible region of (4).

Proof. Let D be the DD constructed by Algorithm 2 for the master problem (4) with a single
node g € V. It suffices to show that the solution set of D provides a relaxation for that of D. Pick
a root-terminal path P of D with encoding point (w?; 2). We show that there exist a root-terminal
path P of D with encoding point (w?;%z) such that w? = w? and Z = 2. Given a DD, define P, to
be a sub-path composed of arcs in the first k layers, for 1 <k <|d~(¢)|. We show for any sub-path

P, of D with encoding point wi = (Wf,...,w}), there exists a sub-path Pj of D with encoding
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point wy = (Wy,...,w,) such that w, = w), for h=1,... k. Note that we only need to prove the
matching values for k < |67 (q)|, because each node at node layer |6~ (q)| + 1 of both D and D
is connected by two arcs with labels —I" and I' to the terminal node, and thus there are always
matching arcs with the same label for the last layer, i.e., Z = 2. We prove the result by induction on
k. The base case for k=1 is trivial, since D contains arcs with labels {0,1,...,]6%(q)|} in the first
layer, which includes the label value of the first arc on P;. For the induction hypothesis, assume
that the statement is true for k =d, i.e., for the sub-path P; with label values wi = (wi,...,w),
there is sub-path P, of D with matching arc labels. We show the statement holds for d + 1. Let
u € Adﬂ and v € A, be the end nodes of Pd and P, respectively. It follows from Algorithm 2
that the index set representing the state value at node w contains wj, ,, i.e., Wi, , € 5, = {0} U
{1,...,10%(¢)|} \ {w1, 2, ...,%w4}. The merging step in line 5 of Algorithm 3, on the other hand,
implies that 5, 2 {0} U{1,...,|07(¢)|} \{w1,@Wa,...,wa} ={0}U{1,...,]|07(q)|} \ {wr, s, ..., W04} =
.4, where the inclusion follows from the fact that state values at nodes on path P, contain those of
each individual path due to merging operation, and the first equality holds because of the induction
hypothesis. As a result, 5, must contain wj, ,, which implies that there exists an arc with W],

connected to node v on P,. Attaching this arc to Py, we obtain the desired sub-path ?dﬂ. O

3.3. DD-BD: Subproblem Formulation

At each iteration of the DD-BD algorithm, an optimal solution of the master problem is plugged into
the subproblems to obtain feasibility /optimality cuts. For the SGUFP formulation, this procedure
translates to obtaining an optimal solution of (4) in the space of w variables, which is used to
solve the subproblem (2a)-(2h). The formulation of the subproblem, however, is defined over the
original binary variables y, and the resulting feasibility /optimality cuts are generated in this space.
To remedy this discrepancy between the space of variables in the master and subproblems, we need

to find a one-to-one mapping between variables w and y, as outlined next.

PROPOSITION 3. Consider a node g € V. Let y? be a feasible solution to (1b)-(1d). Then, w?

obtained as
Wl wn = > md*(g,5)y Vied (q), (5)
j€ST(g)

is a feasible solution to (3a)-(3b). Conversely, let w? be a feasible solution to (3a)-(3b). Then, y?

obtained as

ity =1—sign ([ut,, ) —ind"(g.j)|) ¥(i.j) € 37(q) x 5% (a), (6)

i,q)

is a feasible solution to (1b)-(1d).
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Proof. For the direct statement, let y? be a feasible solution to (1b)-(1d), and construct a
vector w? according to (5). We show that w? satisfies all constraints (3a)-(3b). First, we show
that constraints (3a) are satisfied. Assume by contradiction that there exists j’ € 67 (q) such that

N o q g -
> < |67 (g)| — 2. This implies that Wia—(ira) = Wina-(iv.q) =

Sies- o sien ([l —ind* (a5

ind" (g, j') for some 4',i" € §~(g). Then, we can write that

W= 2 wd (g )yl =ind"(g,5) = Y nd" (g, 0yl = w0
jest(@ jet(a)

where the first and last equalities hold by (5). The second and third equalities in the above chain
of relations imply that yf,j, = yf,,j, = 1, since ind™ (g, ') > 0. This violates constraints (1c), reaching
a contradiction. Next, we show that constraints (3b) are satisfied. The proof follows directly from
construction of w? and constraints (1b).

For the converse statement, let w? be a feasible solution to (3a)-(3b), and construct a vec-
tor y? according to (6). We show that y? satisfies all constraints (1b)-(1d). To show that each
constraint (1b) is satisfied, consider ¢ € 6~ (¢). We can write that

> =1ot@l— Y sign(|ul, (., —ind"(@.4)]) <16 (@) - (6" @] - 1) =1,
j€st(q) i€t (q)
where the first equality follows from the construction of y?, and the inequality holds by (3b) as
‘wiqnd,(i’q) —ind+(q,j)‘ =0 for at most one index j € §7(g). To show that each constraint (1c) is
satisfied, select j € 67 (q). We have

S v =le@l— Y sien (|ut, ., —ind @) <1,

i€6~ (q) €6~ (q)

where the equality follows from the construction of y?, and the inequality holds because of con-

straint (3a). Finally, each constraint (1d) is satisfied due to the fact that 1 — sign(|.|) € {0,1}.
O

PROPOSITION 4. Mappings described by (5) and (6) are one-to-one over their respective

domains.

Proof. Note that the mapping described by (5) is a linear transformation of the form w? = By?
with coefficient matrix B € ZI®” @8~ @IIs7 (@D Tt is clear from the identity block structure of B,
that it is full row-rank, since each column contains a single non-zero element while each row has
at least one non-zero element. As a result, the null space of B is the origin, which implies that
w?=w? only if g7 =gI.

For the mapping described by (6), let distinct points w? and w? satisfy (3b). Construct vectors

y? and g? by (6) using w? and w?, respectively. Because w? and w? are distinct, there must
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exist ¢ € 6~ (q) such that ! . This implies that at least one of these variables, say

ind~ (4,q) 7éu}md (2,9

ﬁ)iqnd_(i o) is mon-zero. Tt follows from (3b) that wfnd_(i 0= ind* (g, ') for some j' € 6*(q), and that
uviqnd,(i 2 #ind" (g, '). According to (6), we write that ;;; = 1 —sign ( wiqnd,(m) —ind™(q,5") ) =1,

and that §,; = 1 — sign (‘@fnd— iy —ind*(g.5) ) — 0, showing that §7 £ g7 O]

Using the results of Propositions 3 and 4, we can apply the DD-BD Algorithm 1 in its entirety for
the SGUFP. In particular, at each iteration of the algorithm, we can transform the optimal solution
(w, ) obtained from the DD representing the master problem (4) into a solution (g, Z) through the
mapping (6). Given an optimal first-stage solution g, we can solve |Z| separate subproblems; one
for each demand realization in the second-stage. The feasibility cuts obtained from subproblems,
which are in the space of y variables, are translated back into the space of w variables through the
mapping (5) and added to the master problem. Further, in a case where all subproblems produce
an optimality cut, they can be aggregated to generate an optimality cut in the space of (y,z),
which is added to the master problem after being translated into the space of (w, z) variables. The
master DD will be refined with respect to the resulting inequalities, and an optimal solution is
returned to be used for the next iteration.

In the remainder of this section, we present details on the derivation of optimality/feasibility cuts

from subproblem (2a)-(2h). Consider the following partitioning of the set of arcs A into subsets

Av={@i.j) € A[07(0) =0, 67 () # 0}, A>:={(i,5) € A| 5 (i) #0, 67(j) =0},
Ag={(i,4) € A[67 (D) #0, 67 () #0}, Av={(i.5) € A[67()) =0, 67(j) =0},

and let 05 = (B%,~%,8%, ¢%, A%, uf) be the vector of dual variables associated with constraints of
(2a)-(2h) for a scenario £ € =. Further, define the bi-function

y’ 05 Z Z eqjﬁgj + qu’yéj) + Z Z (ulq( yl]))\fry + Ugj (1 - y’?j)/"’f{]])

q€V jest(q) g€V (i,5)€67(q) %67 (q)
13
2 D0 e Do whol |40 X | Do whdy
qeV i€s~(q) j€dst(q) qeV jebst(q) €5~ (q)

For a given gy and each scenario £ € Z, the dual of the subproblem (2a)-(2h) can be written as

follows where the symbol x on a node means that it belongs to V.

min f(@;05) (7a)
s.t. — B+ SO - o ot > Y(i,§) € Ay (7b)

ji€6t(q) jii€st(q)

- ﬁfq + Wfq 2 Tz’q V(Za q) € Al (7C)
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3 3 3 3 3 3 xo
et A ng TV Z )‘iéj + Z Mgy + ¢5j 2T ¥(4,7) € Az (7d)
i:i€s—(q) i:ies—(g)
—af— B+ =1y ¥(g,j) € Ay (Te)
- ﬁ § - 5* 5* ¢ * ¢ * 5* - 5* 5* 5* > ** 57 A f
% —|—o¢j 65]’ +7§j + Z (uiﬁj Aiéj) + Z (/\512' uc?jz‘) +a§j +¢)5]- =" V(d.7) €45 (7F)
i€6(q) iest(j)
bl —BE 4Af Y € s, s
o+ o ﬂgj +7;,+ Z (”ujj )‘z'éj) + (baj >y V(g,j) € A3 (Tg)
i€s—(4)
—aé{»af—ﬂﬂ +75 + Z (Agf.*ﬂg*,,)+0§*,27"*- v(QaE)GAS (7h)
J qj qj R qji qji qj a7
i€st(j)
ag + 04§ - 633' + 'ng > Tqj v(ij) € As (71)
— Bi 5 = T V(i,q) € As (Tj)
3
a; €R Vge V' (7k)
ﬁigﬁ 7@%‘7 ij, ¢§j7 )\quﬂ Mzgqj 2 0 Vl,q,] € V (71)

If the above problem has an optimal solution ¢ for all £ € =, the output of the subproblems will
be an optimality cut of the form dez Préf (y; ¢ ) > z. If the above problem is unbounded along a
ray 0¢ for a & € 2, the output of the subproblem will be a feasibility cut of the form f(y;6¢) > 0.
Note that replacing variables y in the above constraints with w through the mapping (5) results
in separable nonlinear constraints. Nevertheless, since these constraints will be used to refine the
master DD, their incorporation is simple due to structural flexibility of DDs in modeling such
constraints; we refer the reader to Davarnia and Van Hoeve (2020) for a detailed account for

modeling INLPs with DDs.

4. Computational Experiments

In this section, we solve SGUFP as a core model for the unit train scheduling problem with demand
stochasticity using three different approaches: (i) the standard MIP formulation that is a deter-
ministic equivalent of the two-stage model and contains all variables and constraints of the master
problem and |Z| subproblems; (ii) the Benders reformulation presented in Section 3.1 composed
of the master problem (la)-(1d) and |Z| subproblems (2a)-(2h); and (iii) the DD-BD algorithm
proposed in the present paper. In the Benders approach, we solve separate subproblems using a
fixed vector y obtained from the master problem. The feasibility cuts generated by subproblems
are added directly to the constraint set of the master problem, and the optimality cuts are added
as an aggregated cut over all scenarios. We note here that when there is a feasibility cut for any
scenario, we add it directly to separate the solution of the current iteration and move on to the
next iteration. To obtain a valid inequality that provides a bound for the single z variable, we need

to aggregate valid inequalities over all scenario subproblems as z is composed of the objective value
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of all these subproblems. Therefore, we can only produce an optimality cut for the z variable when
we have optimality cuts for all of the subproblems. For the DD-BD approach, we use the following
algorithmic choices to build restricted and relaxed DDs. For the restricted DDs, we choose a subset
of the r-t paths with largest lengths, which are more likely to contain an optimal solution. For
the relaxed DDs, we merge nodes that have the largest number of common members in their state
values. We refer the reader to Bergman et al. (2016a) for other heuristic approaches that could be

used for this purpose.

4.1. Test Instances

In our experiments, we consider the structure of the SGUFP network given in Section 3.1. To
ensure that the problem is always feasible, we create an artificial node sy to compensate for any
shortage of the supply, and add an arc from the artificial supply sg to each demand node.

We create test instances based on the specification given in Davarnia et al. (2019), which is
inspired by realistic models. In particular, we consider a base rail network G’ = (V’, A") where 10%
and 30% of the nodes are supply and demand nodes, respectively. We assume that 50% of the
nodes must satisfy the NSNM requirement. We then create a network G = (V, A) by augmenting
supply/demand and artificial nodes as described above with the following settings. The integer
supply value at supply nodes is randomly selected from the interval [100,600]. The capacity of arcs
connecting sg to demand nodes are considered to be unbounded, and the integer capacity value
of other arcs is randomly selected from the interval [100,300]. For each demand scenario & € E,
the integer demand value at demand nodes is randomly chosen from the interval [100,200]. The
reward of the arcs connecting sy to the demand nodes are generated from the interval [—10, —5]
to represent the cost of lost demands. The reward of the arcs connecting the source to the supply
nodes is randomly selected from the interval [5,10], and the reward of the arcs connecting the
demand nodes to the sink is fixed to zero since the flow of these arcs is also fixed. The reward
of all other arcs is created randomly from the interval [—2,2] where the negative values indicate
the cost of sending flows through congested arcs. We consider four categories of rail networks with
|V'| € {40,60,80,100}. For each category, we create five scenario classes for the number of demand
scenarios |Z| € {50,100, 150,200, 250}. For each network category and scenario class, we create five
random instances based on the above settings. Test instances are publicly available (Salemi and

Davarnia 2022b).

4.2. Numerical Results
In this section, we present the numerical results that compare the performance of the DD-BD
formulation for the SGUFP instances with that of the MIP formulation, denoted by “MIP”, and the

standard Benders reformulation, denoted by “BD”. All experiments are conducted on a machine
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running Windows 10, x64 operating system with Intel® Core i7 processor (2.60 GHz) and 32 GB
RAM. The Gurobi optimization solver (version 9.1.1) is used to solve instances for the MIP and
BD models. When solving problems with Gurobi, we turn off presolve and cuts for all methods
to have a fair comparison. Tables 1-4 report the running times of each of these formulations for
|V'| € {40,60,80,100} and |Z| € {50,100, 150,200,250} where the time limit is set to 3600 seconds.
The symbol “ > 3600” indicates that the problem was not solved within the time limit. As evident
in these tables, the DD-BD formulation outperforms the other alternatives. In particular, the
gap between the solution time of the DD-BD and the MIP and BD approaches widens as the
problem size increases. For example, as reported in Table 1, while the DD-BD approach solves all
25 instances in under 275 seconds, the MIP approach fails to solve 10 of them within 3600 seconds,
80% of which involve 200 or 250 scenarios. This shows a clear superiority of the DD-BD over the
MIP method. Further, for most of the instances, the DD-BD approach outperforms the standard
BD approach, rendering it as the superior solution method among all three. Figures 5-8 compare
the performance of DD-BD, BD, and MIP formulations through box and whisker plots for each
network size and under each scenario class. In these figures, for uniformity of illustration, we used
3600 seconds for the running time of instances that fail to solve the problem within that time
limit. As the figures show, the minimum, median, and maximum of running times of the DD-BD
method are remarkably smaller than those of the both BD and MIP methods in all cases. These
results show the potential of the DD-BD framework in solving network problems with challenging
combinatorial structures. In Appendix B, we present additional numerical results for the DD-BD

approach to assess its ability to solve larger problem sizes.

Table 1  Running times (in seconds) of MIP, BD, and DD-BD for V'] = 40.

Number of scenarios
Instance # | Model 50 100 150 200 250
MIP 7574 512.62 2877.19 > 3600 > 3600

1 BD 141.83 313.84 339.81 451.93 565.82
DD-BD | 56.94 129.87 163.43 219.02 274.36
MIP 67.59 275.07 906.10 1892.21 2235.53
2 BD 63.44 121.25 141.04 230.81 235.87

DD-BD | 42.60 82.65 128.16 164.52 208.94
MIP 94.86 753.23 2453.05 > 3600 > 3600

3 BD 71.14 139.20 172.86 224.33 244.91
DD-BD | 53.32 93.58 113.93 178.65 217.33
MIP 71.46 309.62 >3600 >3600 > 3600
4 BD 63.55 182.01 267.94 334.74 380.22

DD-BD | 46.61 87.81 130.19 183.23 253.72
MIP 380.33 406.73 >3600 > 3600 > 3600
5 BD 123.69 198.73 205.16 231.56 287.24
DD-BD | 67.04 104.78 138.46 195.69 231.74
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Table 2  Running times (in seconds) of MIP, BD, and DD-BD for V'] = 60.
Number of scenarios

Instance # | Model 50 100 150 200 250
MIP 893.73 >3600 >3600 >3600 > 3600
1 BD 241.85 556.18 582.80 758.54 933.05
DD-BD | 176.16 357.06 603.81 719.27 901.02
MIP 206.87 811.64 1554.10 > 3600 > 3600
2 BD 259.63 351.39 624.08 816.44 1017.95
DD-BD | 189.07 388.85 572.52 764.76 961.35
MIP 139.70 702.96 1035.79 > 3600 > 3600
3 BD 246.48 569.37 628.84 795.56 978.15
DD-BD | 142.81 284.65 422.52 565.23 725.86
MIP 153.16 415.46 938.03 1681.21 2604.25
4 BD 238.33 388.19 563.15 732.59 919.08
DD-BD | 131.29 262.36 393.18 521.12 654.71
MIP 165.57 706.16 2447.15 > 3600 > 3600
5 BD 194.12 244.61 479.32 463.63 617.09
DD-BD | 112.09 221.30 332.25 443.96 556.33

Table 3  Running times (in seconds) of MIP, BD, and DD-BD for |V’| = 80.
Number of scenarios

Instance # | Model 50 100 150 200 250
MIP | 215.82 860.21 >3600 > 3600 > 3600
1 BD 588.51 806.61 1731.50 1860.12 2051.52
DD-BD | 256.12 500.52 757.68 1025.88 1278.13
MIP | 479.76 >3600 >3600 > 3600 > 3600
2 BD 39829 713.01 861.65 1080.79 1709.04
DD-BD | 184.34 379.04 724.66 1088.21 1587.90
MIP [ 238.79 996.22 >3600 >3600 > 3600
3 BD 702.18 1236.58 1650.42 1773.63 2227.89
DD-BD | 285.13 518.46 778.97 1046.39 1326.22
MIP | 404.26 2441.64 285529 > 3600 > 3600
4 BD 572.83 1219.37 1334.21 1745.91 2089.80
DD-BD | 263.78  665.30 1230.81 1277.93 1444.02
MIP | 778.50 >3600 >3600 >3600 > 3600
5 BD 231.11 48131 625.91 1310.24 1452.27
DD-BD | 187.34 376.96 564.34 1205.54 1412.94

Table 4  Running times (in seconds) of MIP, BD, and DD-BD for |V'| = 100.
Number of scenarios

Tnstance 7+ | Model 50 100 150 200 250
MIP 774.18 >3600 >3600 >3600 > 3600
1 BD 1282.59 1728.71 1848.49 2307.74 3309.93
DD-BD | 698.36 1427.38 1731.95 2014.96 3323.54
MIP 480.97 >3600 >3600 >3600 > 3600
2 BD 781.47 1573.23 1820.79 2672.18 2819.61
DD-BD | 586.89 1171.96 1848.49 2471.49 2635.22
MIP 3071.37 >3600 >3600 >3600 > 3600
3 BD 1072.14 1322.96 2112.50 2951.55 3412.99
DD-BD | 485.31 703.70 1055.36 1803.66 2269.97
MIP 838.79 2585.38 >3600 >3600 > 3600

4 BD 1548.93 1738.92 2580.53 2616.19 3169.28
DD-BD | 554.89 743.64 1098.82 2052.73 3094.23
MIP 714.39 >3600 >3600 >3600 > 3600
5 BD 808.48 1013.68 1722.01 2824.14 3282.10

DD-BD | 353.48 700.57 1680.60 2213.81 2907.78
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Figure 5  Comparison of DD-BD, BD, and MIP models when |V’| = 40 under five scenarios
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Figure 6 Comparison of DD-BD, BD, and MIP models when |V’| = 60 under five scenarios

We conclude this section by noting that, while the focus of this paper has been on the unit train
problem with the no-split no-merge requirements, the proposed DD-BD framework can be applied
to model network problems that contain additional side constraints on the flow variables, as those

constraints can be handled in the subproblems while the DD structure in the master problem
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Figure 7  Comparison of DD-BD, BD, and MIP models when |V’| =80 under five scenarios
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Figure 8  Comparison of DD-BD, BD, and MIP models when |V/| = 100 under five scenarios

remains intact. Examples of such side constraints include the usage-fee limitation (Holzhauser,
Krumke, and Thielen 2017b) and the flow ratio requirement (Holzhauser, Krumke, and Thielen
2017a). Applying the DD-BD method to such network models and assessing its effectiveness com-

pared to alternative approaches could be an interesting direction for future research.
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5. Conclusion

In this paper, we introduce a DD-based framework to solve the SGUFP. This framework uses
Benders decomposition to decompose the SGUFP into a master problem composed of the combi-
natorial NSNM constraints, and a subproblem that solves a continuous network flow model. The
master problem is modeled by a DD, which is successively refined with respect to the cuts generated
through subproblems. To assess the performance of the proposed method, we apply it to a variant
of unit train scheduling problem formulated as a SGUFP, and compare it with the standard MIP

and Benders reformulation of the problem.
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Appendix A: Comparison of Master Problem Formulations

In this section, we describe the differences between DDs in the space of w variables and those in the space
of original y in the master problem formulation (4) in Section 3.2. First, we illustrate the size difference
between these DDs in Example 3.

ExAMPLE 3. Consider a directed graph G = (V, A) with node set V = {1,2,¢,3,4} and arc set A =
{(1,9),(2,9),(q,3),(q,4)} where the central node ¢ is subject to NSNM constraints. Let ind™(1,q) =
ind*(¢,3) =1 and ind ™ (2,q) = ind" (q,4) = 2. Then, the exact DDs showed in Figures 9(a) and 9(b) with
three and five arc layers represent the feasible region of master problem (4) and (1a)-(1d), respectively, where

—M and M are valid bounds for variable z.

(a) A DD in the space of w variables. (b) A DD in the space of y variables.
Numbers next to arcs represent labels. Numbers next to arcs represent labels.

Figure 9 Comparison of the number of arc layers for DDs in the space of w and y variables

As evident from the above example, the main advantage of using a DD in the space of w is the reduction in
the number of arc layers, which is the main determinant of the DDs computational efficiency. In particular,
even though such a DD has a larger number of nodes at the layers, a relaxed DD can be constructed to limit
the width, and hence provide an efficient relaxed DD in a smaller dimension, whereas the relaxations of the
DD constructed in the space of y variables would still be higher-dimensional.

To assess the computational efficiency of the solution approach in relation to the DD space, we compare
the performance of the DD-BD method under two different settings: (i) where DDs are built in the space
of w variables, denoted by DD-BD-w), and (ii) where DDs are built in the space of y variables, denoted by
DD-BD-y. We report the results of these two implementations for |V'| € {40,80} and under five different
scenarios in Table 5 and Table 6.

As observed in these tables, the DD-BD-w solves all instances faster than DD-BD-y, with orders of
magnitude time improvement as the problem size (number of scenarios) increases. These preliminary com-
putational results show the advantage of designing the DD-BD method for the SGUFP in a transformed

space of variables.
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Table 5  Running times (in seconds) of DD-BD-w and DD-BD-y for |V'| = 40.
Number of scenarios

Instance 7| Model 50 100 150 200 250
DD-BD-w | 56.94 129.87 163.43 219.02 274.36
DD-BD-y | 89.68 304.08 432.34 642.70 839.57
DD-BD-w | 42.60 82.65 128.16 164.52 208.94

1

2 DD-BD-y | 68.23 148.76 244.53 344.86 605.04
3 DD-BD-w | 53.32 93.58 113.93 178.65 217.33
DD-BD-y | 83.05 157.67 310.07 541.33 658.98
4 DD-BD-w | 46.61 87.81 130.19 183.23 253.72
DD-BD-y | 78.11 149.26 325.31 460.73 694.57
5 DD-BD-w | 67.04 104.78 138.46 195.69 231.74

DD-BD-y | 109.61 223.78 351.80 532.12 669.78

Table 6  Running times (in seconds) of DD-BD-w and DD-BD-y for |V’| = 80.
Number of scenarios
Instance 7+ | Model 50 100 150 200 250
DD-BD-w | 256.12 500.52 757.68 1025.88 1278.13
DD-BD-y [483.42 977.03 1642.27 3175.72 4230.29
DD-BD-w | 184.34 379.04 724.66 1088.21 1587.90

1

2 DD-BD-y |340.13 864.21 1856.96 3010.55 4843.67
3 DD-BD-w | 285.13 518.46 778.97 1046.39 1326.22
DD-BD-y |568.32 1176.44 2401.98 3326.76 4283.58
4 DD-BD-w | 263.78 665.30 1230.81 1277.93 1444.02
DD-BD-y |501.04 1430.77 2868.92 3356.39 4356.48
5 DD-BD-w | 187.34 376.96 564.34 1205.54 1412.94

DD-BD-y |354.37 781.18 1279.73 3001.72 3834.08

Appendix B: Additional Computational Experiments

In this section, we present additional numerical results to assess the limits of the DD-BD method for larger
problem instances. These results are given in Tables 7 and 8, where the columns are defined similarly to
those of Tables 1-4. For these instances, the time limit is set to 3600 seconds, and the symbol “> 3600”

indicates that the problem is not solved within this time limit.

Table 7 Running times (in seconds) of DD-BD for |V'| =120.
Number of scenarios
Instance 7 | Model 50 100 150 200 250
1 DD-BD | 1494.49 2824.58 > 3600 > 3600 > 3600
DD-BD | 975.47 1892.41 3198.18 > 3600 > 3600
DD-BD | 1150.30 2263.09 3454.47 > 3600 > 3600
DD-BD | 1261.59 2403.79 > 3600 > 3600 > 3600
DD-BD | 906.34 1863.15 3050.68 > 3600 > 3600

T W N
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Table 8  Running times (in seconds) of DD-BD for |V'| = 150.
Number of scenarios
Instance 7 | Model 50 100 150 200 250
1 DD-BD | 2496.16 > 3600 > 3600 > 3600 > 3600
2 DD-BD | 2944.20 > 3600 > 3600 > 3600 > 3600
3 DD-BD | 2321.62 > 3600 > 3600 > 3600 > 3600
4 DD-BD | 2590.34 > 3600 >3600 > 3600 > 3600
5 DD-BD | 2298.36 > 3600 > 3600 > 3600 > 3600




