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Urban Air Mobility (UAM) is an emerging air transportation mode to alleviate the ground tra�c burden

and achieve zero direct aviation emissions. Due to the potential economic scaling e↵ects, the UAM tra�c

flow is expected to increase dramatically once implemented, and its market can be substantially large. To be

prepared for the era of UAM, we study the Fair and Risk-averse Urban Air Mobility resource allocation model

(FairUAM) under passenger demand and airspace capacity uncertainties for fair, safe, and e�cient aircraft

operations. FairUAM is a two-stage model, where the first stage is the aircraft resource allocation, and the

second stage is to fairly and e�ciently assign the ground and airspace delays to each aircraft provided the

realization of random airspace capacities and passenger demand. We show that FairUAM is NP-hard even

when there is no delay assignment decision or no aircraft allocation decision. Thus, we recast FairUAM as a

mixed-integer linear program (MILP) and explore model properties and strengthen the model formulation by

developing multiple families of valid inequalities. The stronger formulation allows us to develop a customized

exact decomposition algorithm with both Benders and L-shaped cuts, which significantly outperforms the

o↵-the-shelf solvers. Finally, we numerically demonstrate the e↵ectiveness of the proposed method and draw

managerial insights when applying FairUAM to a real-world network.

Key words : Urban Air Mobility, Fairness, Risk-Averse, Mixed-Integer Linear Programming, Resource

Allocation

1 Introduction

The urban population in the U.S. is expected to increase from 83% in 2020 to 89% in 2050

(United Nations 2018). Albeit benefiting people with better opportunities, urbanization leads to
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more severe tra�c congestion problems with higher tra�c volume, larger travel delays, and more

energy consumption and air pollution (Schrank et al. 2021). This calls for e�cient alternative

transportation modes (Speranza 2018). One promising way is the on-demand point-to-point Urban

Air Mobility (UAM) service, which relies on automated electric Vertical Take-O↵ and Landing

vehicles (eVTOLs) to transport passengers at lower altitudes in and around metropolitan areas.

It has been recognized recently that the UAM has the potential to improve personal mobility by

reducing travel time and cost, reduce energy consumption and air pollution by using eVTOL with

zero direct emission, as well as enhance economic vitality (Price et al. 2020). In the meantime,

thanks to the emerging aircraft technologies in increasing reliability, aviation companies, including

Joby, Archer, Eve, etc., can launch their products and prototypes to make UAM possible in the near

future. Due to the potential economic scaling e↵ects, the UAM tra�c flow is expected to increase

dramatically once implemented, and its market can be substantially large (Lineberger et al. 2018).

To be prepared for the era of UAM, NASA recently established a UAM framework from di↵erent

aspects (Price et al. 2020). One important aspect lies in UAM operations management, namely,

“Provide airspace operations management services as well as fleet operations management

services that ensure safe, e�cient, scalable, and resilient UAM operations in and around

metropolitan areas.”

This high-level view echoes that a reliable and robust UAM tra�c management system is required

to guarantee safety and e�ciency for high-density UAM tra�c. Di↵erent from conventional air

tra�c management, UAM tra�c managers and service providers are facing new challenges in cost

reduction and safety promise due to higher operation density and frequency, new operating envi-

ronment design, and aircraft battery capacity limitations. One possible solution is to design a

sophisticated centralized tra�c management system to guarantee a safe and e�cient operation

environment within a complex UAM network to coordinate among stakeholders, including air-

craft operators, airspace managers, data providers, etc., especially when facing large-scale aircraft

operations, as mentioned in Chapter 4.4.3 in Fontaine (2023).

Within a centralized UAM tra�c management system, the UAM tra�c manager has all the

shared information from the multiple UAM service providers (see Chapter 4.3.4 in Fontaine 2023)

and airspace data support from the third party, including weather and hazard forecasts a priori or

during the flight. The UAM tra�c manager is responsible for suggesting aircraft allocation to their

flight paths, balancing the UAM tra�c flow and airspace capacity, and taking the uncertainties

into consideration. The first type of uncertainty comes from fluctuations in passenger demand (see

Chapter 4.4.2 in Fontaine 2023), while the second one is the airspace capacity uncertainty that

arises from stochastic weather events (see Chapter 4.6 in Fontaine 2023). Specifically, when the

air tra�c demand exceeds the airspace capacity, air tra�c congestion occurs at some bottleneck
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points, i.e., busy areas in the airspace, which causes airborne delay. Since it will be safety-critical

for the eVTOL aircraft to experience long airborne delay due to its limited battery life and aircraft

payload, we must manage the risk of unpredictable long airborne delay. In the UAM network,

balancing the UAM tra�c flow and airspace capacity in the UAM network with a proper tra�c

management system is of great importance to hedge against potential risks as well as to enforce

safety. In this paper, we focus on managing the UAM tra�c in a risk-averse way under passenger

demand and airspace capacity uncertainties to minimize the airspace-level total operation cost.

In addition, sorely minimizing the total cost may cause some UAM service providers to bear the

most delays (Lulli and Odoni 2007). To achieve company-level fairness, we also would like to assign

the airborne delay fairly among di↵erent aircraft. Therefore, this work seeks an appropriate trade-

o↵ between system-level e�ciency (i.e., simultaneously minimizing the total operation cost) and

achieving company-level fairness. More importantly, following the literature (Zhu et al. 2018a), it

is common in the airline industry that the aircraft assignment should be available hours before

the aircraft takes o↵ due to their nontrivial travel time and safety concerns. It is also worth of

mentioning that the proposed modeling framework can address other uncertainties, such as UAM

service supplier uncertainty.

1.1 Literature Review

UAM literature spreads various research fields, including market study, appropriate regulation,

social impact, vehicle development, and infrastructure design. Key operational constraints antic-

ipated to impact on-demand air mobility were proposed and addressed in Vascik and Hansman

(2017). For selecting appropriate vertiport locations, Daskilewicz et al. (2018) studied an inte-

ger programming model to maximize the population-cumulative potential time savings. Besides,

Rajendran and Zack (2019) developed an iterative constrained clustering method to recommend

potential facility locations and Rath and Chow (2022) proposed a mixed-integer linear program-

ming (MILP) model to maximize the revenue and ridership. We refer interested readers to Garrow

et al. (2021) and Rajendran and Srinivas (2020) for a comprehensive review of UAM, including its

history, aircraft technology, demand prediction, infrastructure design, and operations.

Regarding the UAM air tra�c management, the work of Thipphavong et al. (2018) is among

the first that expanded the NASA operational concepts for UAM. Mueller et al. (2017) proposed a

framework for on-demand mobility airspace, including demand-capacity balancing and trajectory

planning. Kleinbekman et al. (2018) introduced an energy-e�cient trajectory optimization model

for UAM arrival with route selection capability, proposing a mixed-integer linear program to deter-

mine aircraft arrival sequence and minimize total arrival delay. Bharadwaj et al. (2019) presented a

decentralized procedure for route planning on individual vehicles using Markov decision processes.
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Bharadwaj et al. (2021) designed a scalable planning framework with safety-oriented constraints

and minimized the violations. Wu and Zhang (2021) designed an integer programming model con-

sidering potential UAM tra�c flow to decide the optimal vertiport locations and user allocation

to vertiports. Wang et al. (2022) developed an aggregate three-dimension air tra�c assignment

framework to plan future UAM operations.

As a generic framework for decision-making under uncertainty (Shapiro et al. 2021), stochastic

programming has been widely used in resource allocation problems in transportation for decades

(Powell and Topaloglu 2003). Mukherjee and Hansen (2009) developed three stochastic air tra�c

flow management (ATFM) models with static ground delay and dynamic rerouting decisions. Ganji

et al. (2009) proposed a stochastic optimization model to assign ground delay and optimize rerout-

ing decisions at the same time by considering the en-route capacity. Gupta and Bertsimas (2011)

presented a robust and adaptive ATFM framework under airspace capacity uncertainty, which was

solved by piecewise a�ne policies. Chen et al. (2017) derived a chance-constrained model based on

probabilistic airspace capacity and developed a polynomial approximation-based approach to solve

a large-scale problem. Zhu et al. (2018b) developed a heuristic saturation technique under demand

uncertainty to find the demand-independent optimal planned acceptance rates for the constrained

airspace resources. Wang and Jacquillat (2020) proposed a two-stage stochastic integrated model

to optimize aircraft scheduling and ground-holding operations under operating uncertainty and

developed a decomposition algorithm with dual integer cuts to solve it. In volatile environments,

instead of optimizing the average performance using risk-neutral objectives, risk aversion is com-

monly used to hedge against uncertainty and enforce safety in the worst case. Shehadeh (2022)

proposed a distributionally robust optimization (DRO) model to plan fleet-sizing, routing, and

scheduling for mobile facilities to minimize the conditional value at risk (CVaR) of the operational

cost. Sun et al. (2022) studied a DRO fair model to optimize the public transit resource alloca-

tion during a pandemic. Moug et al. (2022) formulated a two-stage stochastic model to recruit

drivers and optimize resource planning with constraints on the total number of unserved evacuees.

All these works, unfortunately, do not incorporate operators’ equity in their formulations, which

has been regarded as one of the important features in the UAM strategic planning according to

Fontaine (2023).

Besides hedging against uncertainty, fairness is also another critical issue being considered in

transportation resource allocation problems. Bertsimas et al. (2011) presented a deterministic inte-

ger programming model to assign delay fairly for large-scale instances of ATFM problem. Rodionova

et al. (2017) addressed fairness by adding the min-max fairness measure into their determinis-

tic model to balance the average airline costs among di↵erent airline companies. Hamdan et al.

(2018) developed an ATFM model with rerouting under deterministic capacity considering delay
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distribution and flight reversal fairness among di↵erent airlines. Hamdan et al. (2022) proposed a

deterministic model with central authority considering path rerouting and options and inter-flight

and inter-airline fairness. Following the literature, we also apply the conventional min-max fair-

ness and the fundamental di↵erence between ours and the literature lies in the model formulations

since the UAM often involves short-distance flights and eVTOLs, where addressing uncertainties

is critical to its safety.

Particularly, similar to many airline resource allocation problems, within a centralized UAM

tra�c management system (e.g., under the guideline of FAA), UAM service providers are collabora-

tively managing the resource allocation to achieve systematic e�ciency and reduce risk at the same

time. On the other hand, its decision should also address the equity among di↵erent participating

service providers. In fact, fairness and risk in UAM operations are more critical due to aircraft

limitations (Connors 2020). However, the literature on fair or risk-averse UAM tra�c management

is rather limited. Pelegŕın et al. (2021) proposed a deconfliction model to minimize the total devia-

tion from flight schedules in a fair way and Wu et al. (2022) introduced a path planning algorithm

for multiple aircraft with fairness awareness to generate collision-free paths under the vehicle and

environmental uncertainties. Chin et al. (2021) focused on three fairness metrics for on-demand air

mobility resource allocation in a rolling horizon to incorporate the dynamic demand. Bennaceur

et al. (2022) proposed a MILP model for the UAM air-taxi problem with fairness between the

regular and premium classes. To e�ciently solve the problem, they decomposed the original model

into two subproblems, then used a beam-search algorithm to solve the “Pooling and Scheduling”

part and a variable neighborhood search algorithm to solve the “Routing and Recharging” part.

To the best of our knowledge, Hou et al. (2021) is the only work on risk-averse stochastic UAM

network design in a data-driven framework, considering vertiport location selection and aircraft

route planning. Di↵erent from Hou et al. (2021), we optimize disaggregate tra�c management not

only under passenger demand uncertainty but also under airspace capacity uncertainty related to

weather events. Besides, we incorporate alternative routes on each origin-destination (OD) pair

and intersections of di↵erent routes in the airspace. As far as we are concerned, our model is the

first one focusing on fair and risk-averse UAM resource allocation under passenger demand and

airspace capacity uncertainties.

1.2 Summary of Main Contributions

This paper studies the Fair and Risk-averse Urban Air Mobility resource allocation model

(FairUAM) to coordinate multiple UAM service providers. The goal of FairUAM is to determine

the optimal UAM aircraft resource allocation and delay assignment under passenger demand and

airspace uncertainties to minimize the weighted sum of total cost and highest average company
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cost to achieve both system-level e�ciency (i.e., total operation cost) and company-level fairness.

The main contributions of FairUAM are summarized below.

i. We develop a novel formulation for FairUAM to allocate aircraft from multiple UAM service

providers under passenger demand and airspace capacity uncertainties. The proposed FairUAM

is versatile and can handle the unsatisfied demand (i.e., the UAM tra�c flow needed exceeds

the airspace capacity when passenger demand is very large) and can also address company-level

fairness as well as achieve the overall airspace e�ciency.

ii. Without considering delay assignment, we prove that FairUAM reduces to UAM aircraft

resource allocation problem which is NP-hard even with one UAM service provider. Given

aircraft allocation, FairUAM reduces to UAM delay assignment problem, which is also NP-

hard. These complexity results motivate us to study an e↵ective solution algorithm to solve

FairUAM.

iii. We derive monotonicity properties such that an increase in passenger demand, a decrease in

airspace capacity or an increase in unsatisfied passenger demand leads to a possible increase

in objective value. While achieving the same optimality as the original model, these properties

allow us to simplify the FairUAM model and further relax the integrality of some decision

variables for computational advantages.

iv. To strengthen the formulation, we develop several families of valid inequalities by exploring

the model structures and discovering the hidden relationship between di↵erent decision vari-

ables. Specifically, we derive airspace guarantee inequalities, symmetry-breaking inequalities,

data pre-processing inequalities, bottleneck point arrival time inequalities, total arrival time

inequalities, and accumulated delay inequalities. These valid inequalities allow us to design and

strengthen the decomposition-based algorithm, which can solve larger-scale instances with 5

times more binary variables compared to solving the vanilla model directly via the o↵-the-shelf

solvers.

v. We numerically demonstrate the e↵ectiveness of the proposed method using generated

instances and apply it to a case study of a real-world network. We find that with only 20%

of increase in the total operation cost, we can reduce the unfairness by 68%. We also observe

that the risk-averse solution is more robust compared to the risk-neutral one, when accurate

estimation of the uncertainties is not practical. We show that our framework can be useful

in identifying the network hotspots and supporting UAM service providers with better path-

planning insights.

Notation For readers’ convenience, we list the notation used throughout the paper. Bold letters

(e.g., y) are used to represent vectors and matrices and the corresponding non-bold letters denote

their components. We let bold script letters (e.g., R) denote sets and |R| to denote their cardinality.
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We use e⇠ to represent a random vector and let ⇠ be its realizations. Additional notations related

to our model will be introduced in the next section.

Organization The remainder of the paper is organized as follows. In Section 2, we introduce the

problem setting and model formulation. Section 3 derives model properties. Section 4 proposes valid

inequalities and develops a decomposition algorithm. Finally, Section 5 numerically demonstrates

the performance of the proposed valid inequalities and algorithm, and Section 6 concludes this

paper.

2 Model Formulation

2.1 Overview

In this work, we consider a network, as shown in Figure 1, which consists of multiple UAM service

providers each having their own aircraft, and multiple origin-destination (OD) pairs each having

multiple candidate routes, under airspace capacity and passenger demand uncertainties. Typically,

the intersections of routes are considered as bottleneck points where congestion may occur. Besides,

weather events at bottleneck points further influence their capability to accommodate air tra�c

flow, which leads to airspace capacity uncertainty at bottleneck points. As on-demand services,

passengers are allowed to make the reservation including an origin and a destination, a day or hours

(i.e., our planning horizon is a day or half-day) before the actual departure time, which in turn

brings in passenger demand uncertainty. In our framework, the UAM tra�c manager optimizes

the operation plan for the whole planning horizon (i.e., before the realization of uncertainties)

by assigning the aircraft to OD pairs and routes. After the UAM service providers submit their

realized passenger demand, the UAM tra�c manager assigns delays to aircraft to achieve e�ciency

and company-level fairness at the same time.

Figure 1 An illustration of the FairUAM network and its components
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The FairUAM consists of a set of UAM service providers L, where the service provider ` 2 L
owns |I`| aircraft. Each service provider (or company) would like to satisfy their own passenger

demand to transport passengers from origin vertiports to destination vertiports in their favor. Each

aircraft can transport a certain number of passengers with the same origin and destination. We

let mi be the passenger capacity for each aircraft i 2 I` for each ` 2 L and R represent the set of

OD pairs. While multiple aircraft are operated on di↵erent OD pairs, intersections between OD

pairs may exist and congestion may happen. To circumvent aircraft conflict on such intersected

OD pairs, we suppose that the airspace network consists of a set of bottleneck points K for flow

management. There are multiple routes for each aircraft to choose from, where for a given OD

pair, some aircraft need to reroute or detour such that the number of aircraft passing the same

bottleneck within a time unit is restricted within its capacity. Particularly, we let Jr denote the

sets of routes for each OD pair r 2R. To generate a better operation plan for upcoming travel

needs, we consider a planning horizon T which includes finite time units. The length of a time

unit can be changed based on our needs, for example, according to aircraft density and di↵erent

operation requirements.

Since UAM operations are quite sensitive to severe weather events, airspace capacity is random

due to unexpected weather conditions and safety. Particularly, we let a random parameter eCk
t 2Z+

denote the airspace capacity of each bottleneck point k 2K at a given time unit t2 T . The objective

of FairUAM is to dispatch aircraft to OD pairs and routes based on companies’ needs, but it may

delay some aircraft to achieve better utilization of the limited airspace capacities and minimize

the operation cost. As an on-demand service, passenger demand is stochastic since passengers are

allowed to book their seats just one day or even hours before their departure time. Considering

the relocation of aircraft, passenger demand may be realized after the aircraft assignment. We let

the random parameter eDr
` 2 Z+ denote the passenger demand of service provider ` 2 L on OD

pair r 2R. For notational convenience, we let random parameters e⇠= ( eC, eD). Note that the UAM

tra�c manager and service providers make decisions independently, following all the regulations in

an information-sharing environment. This may not necessarily lead to e�cient aircraft operations

and airspace utilization. In this context, the decisions in FairUAM are made by a central authority

on proposing a collaborative UAM air tra�c management system.

2.2 Model Decisions

In our model, the operation cost for each service provider `2L includes assignment cost, relocation

cost, delay cost, and penalty cost. The assignment cost is the fixed travel cost for an aircraft

assigned to a route, including the cost needed in the free-condition airspace, denoted by crij for

aircraft i2 I` assigned to OD pair r 2R and route j 2Jr. The relocation cost is the fixed cost for
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an aircraft assigned to an OD pair, denoted by qri for aircraft i 2 I` relocated to OD pair r 2R.

The delay cost includes ground delay cost ↵r
ij at the origin vertiport and airborne delay cost �r

ij

at each bottleneck point for aircraft i 2 I` assigned to OD pair r 2R and route j 2 Jr. An UAM

service provider ` bears a penalty cost pr` for the business loss when they are not able to satisfy its

passenger demand on OD pair r 2R. Besides minimizing the total operation cost, we also consider

inter-airline fairness, i.e., the average operation cost per aircraft for each airline. In this case, we

also include the fairness term into our objective so that the largest average airline operation cost

is also minimized. To better balance the two goals, we introduce a weighted scalar � to balance

e�ciency and fairness. Therefore, the objective of FairUAM is to minimize the weighted sum of

the total operation costs and the largest average airline operation cost.

The tra�c manager in FairUAM needs to decide OD pair and route assignment for each aircraft

upfront and determine the aircraft’s delays after random parameters such as passenger demand and

airspace capacity are realized. We let yr
i 2 {0,1} denote whether aircraft i 2 I` of service provider

`2L is assigned to OD pair r 2R and let �rij 2 {0,1} denote whether it is assigned to route j 2Jr

on OD pair r 2R or not. In FairUAM, given a realization ⇠ of the random parameters e⇠, we let

grij(⇠) denote the ground delay of aircraft i 2 I` of service provider ` 2 L on route j 2 Jr and OD

pair r 2R and let the corresponding airborne delay at bottleneck point k 2 K be ar
ijk(⇠). When

the number of aircraft required to satisfy the passenger demand exceeds the available airspace

capacity or the number of available aircraft, some passengers may be turned down, and the service

provider will incur a penalty cost for the loss of business. To model this e↵ect, we let sr`(⇠) denote

the unsatisfied passenger demand of service provider `2L on OD pair r 2R.

2.3 The Risk-averse First-stage Model Formulation

To better ensure safety, it is important to hedge against the risk of passenger demand and airspace

capacity uncertainties in the UAM operating environment. For FairUAM, we consider the Condi-

tional Value-at-Risk (CVaR) (Rockafellar et al. 2000),

⇢(Z) =CVaR1�"(Z) := inf
v2R

⇢
v+

1

"
E[(Z � v)+]

�

where (n)+ := max{n,0} and v = VaR1�"(Z) := inf{v : P(Z  v) � 1� "}. We can simply extend

our model to other coherent risk measures. For simplicity and generality, we mainly focus on

the most representative one- CVaR, which has been widely applied to transportation literature

(Faghih-Roohi et al. 2016, Toumazis and Kwon 2013, Lei et al. 2018, Yu et al. 2021a). Note that

CVaR naturally bridges the conventional stochastic program (i.e., by setting ✏= 1) and the robust

optimization (i.e., by setting ✏= 0). Besides, CVaR can be interpreted as a distributionally robust
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optimization with interval ambiguity set (Shapiro and Ahmed 2004, Jiang and Xie 2023). Under

this setting, FairUAM is given by:

min
�,y

⇢
h
Q
⇣
y,�, e⇠

⌘i
, (1a)

s.t.
X

r2R

yr
i  1, 8i2 I`, `2L, (1b)

X

j2Jr

�rij = yr
i , 8r 2R, i2 I`, `2L, (1c)

yr
i , �

r
ij 2 {0,1}, 8j 2Jr, r 2R, i2 I`, `2L. (1d)

In FairUAM (1), the objective is to minimize the risk of the planning outcome and Q(y,�, e⇠)
denotes the random recourse function, which is specified in the next paragraph. Constraints (1b)

guarantee that each aircraft can only be assigned to at most one OD pair. Constraints (1c) ensure

that if an aircraft is assigned to an OD pair, it can be assigned to only one route. Otherwise, it

will not be assigned to any route. Constraints (1d) specify the boundaries of the decision variables.

Note that in (1), the variables y may not be necessary. However, we keep them for the natational

convenience when introducing valid inequalities.

2.4 The Second-stage Model Formulation

Given a realization ⇠ of random parameters e⇠ and the values of first-stage decisions (y,�), we can

formulate the recourse function as follows:

Q(y,�,⇠) =

min
g(⇠),a(⇠),s(⇠),B(⇠)

Q(y,�,⇠,g(⇠),a(⇠),s(⇠),B(⇠)) :=

(
�
X

`2L

�`(⇠)

|I`|
+(1��)max

`2L

�`(⇠)

|I`|

)
, (2a)

s.t. �`(⇠) =
X

r2R

(
pr`s

r
`(⇠)+

X

i2I`

"
qri y

r
i +

X

j2Jr

 
crij�

r
ij +↵r

ijg
r
ij(⇠)+�r

ij

X

k2K

ar
ijk(⇠)

!#)
,8`2L,

(2b)

sr`(⇠)+
X

i2I`

miy
r
i �Dr

` , 8r 2R, `2L, (2c)

grij(⇠)+
X

k2K

ar
ijk(⇠) �rijL̄, 8j 2Jr, r 2R, i2 I`, `2L, (2d)

X

k2K

ar
ijk(⇠) �rijR̄

r
ij, 8j 2Jr, r 2R, i2 I`, `2L, (2e)

X

t2T

Bk
it(⇠) 1, 8i2 I`, `2L, k 2K, (2f)

X

t2T

tBk
it(⇠) =

X

r2R

0

BBB@
X

j2Jr

0

BBB@
⌧ rijk�

r
ij + grij(⇠)+

X

idj(k)� idj(k
0)

k0 2K

ar
ijk0(⇠)

1

CCCA

1

CCCA
,8i2 I`, `2L, k 2K,

(2g)



Sun, Deng, Wei, Xie: Fair and Risk-averse Urban Air Mobility Resource Allocation Under Uncertainties
11

X

`2L

X

i2I`

Bk
it(⇠)Ck

t , 8k 2K, t2 T \ {0}, (2h)

Bk
it(⇠)2 {0,1}, 8i2 I`, `2L, k 2K, t2 T , (2i)

grij(⇠), a
r
ijk(⇠), s

r
`(⇠)2Z+, 8j 2Jr, r 2R, i2 I`, `2L, k 2K, (2j)

�`(⇠)� 0, 8`2L. (2k)

Here, B(⇠) are auxiliary variables enforcing the connection between time and location for each

aircraft. Specifically, we let Bk
it(⇠) denote whether aircraft i 2 I` for service provider ` 2L arrives

at a bottleneck point k 2K at time t 2 T . Objective (2a) is to minimize the weighted sum of the

e�ciency term (i.e., total operation cost) and the fairness term (i.e., the largest average company

operation cost). Note that one may also bound the fairness term from the above. In this paper,

we use the weighted sum instead of modeling the fairness term into a constraint, which is because

the fairness constraint may be infeasible if we choose an inappropriate upper bound. To make sure

the e�ciency term is of the same magnitude as the fairness term, instead of taking the summation

of the company operation costs, we use the summation of the average company operation cost.

Inspired by Rodionova et al. (2017), we use the widely used min-max fairness for the fairness term

(Radunovic and Le Boudec 2007, Du et al. 2017). Constraints (2b) compute the total operation

cost for each service provider. Constraints (2c) ensure that the satisfied and unsatisfied passenger

demand should meet the requirement. Constraints (2d) and (2e) specify the total delay and airborne

delay limit and postulate the number of passengers on board at each stop, respectively. Constraints

(2f) and (2g) define the auxiliary variables B(⇠) such that each aircraft can only pass a specific

bottleneck point once, and the time it arrives at the bottleneck should be equal to the sum of the

travel time ⌧ rijk needed for aircraft i 2 I` from the service provider ` 2 L on the OD pair r 2R

and the route j 2Jr in the free-condition airspace and the accumulated ground and airborne delay

before visiting this bottleneck point. Note that we use idj(k) to denote the order of bottleneck

point k 2K being visited on route j 2Jr of OD pair r 2R and let
P

idj(k)�idj(k0),k02K ar
ijk0(⇠) denote

the total airborne delay before visiting bottleneck point k. Constraints (2h) guarantee that the

total number of aircraft at the bottleneck point within a unit of time cannot exceed the airspace

capacity. Constraints (2i) - (2k) specify the boundary conditions of the decision variables and the

auxiliary variables.

3 Model Properties

In this section, we first prove the complexity of FairUAM (1) and then explore its properties for

formulation simplification and managerial insights.
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3.1 Computational Complexity of FairUAM (1)

We observe that FairUAM (1) is a mixed-integer nonlinear program which is expected to be a

di�cult problem. This motivates us to develop model properties and a customized algorithm to

accelerate the solution procedure. In fact, we prove that solving FairUAM (1) is NP-hard with the

reduction to the well-known NP-complete partition problem.

Proposition 1. Solving FairUAM (1), in general, is NP-hard even when � = 1, |L| = 1, |R| =

2, |Jr|= 1, and the random variables e⇠ have only one realization.

Proof. See Appendix A.1. ⇤
The complexity of Proposition 1 is owing to the binary variables in the first-stage problem.

In fact, we prove that even with a given first-stage solution, the resulting problem, due to the

special network structure in FairUAM (1) (i.e., bottleneck points), is still NP-hard to solve. More

specifically, assigning ground and airborne delays with a given OD pair and route assignment can

be an NP-hard combinatorial optimization problem. The complexity result is summarized below.

Proposition 2. Solving the second-stage problem (2) is NP-hard even when a first stage decision

is given, the random parameters have one realization, and �= 1, |L|= 1, |Jr|= 1 for all OD pair

r 2R.

Proof. See Appendix A.2. ⇤
Proposition 1 and Proposition 2 show that even under simple settings, FairUAM (1) may not be

polynomial-time solvable. This motivates us to strengthen the original formulation and develop an

exact method to solve it in the next section.

3.2 Sensitivity Analyses

In this subsection, we analyze the properties of the recourse function Q(y,�,⇠) and the second-

stage objective function Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)). These properties allow us to further

simplify FairUAM (1) in the following sections. We first introduce the results for the second-stage

objective function Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)).

Proposition 3. The following hold for the second-stage objective function

Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)):

• Function Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)) is monotone non-decreasing as the second stage

decision unsatisfied trafic demand sr`(⇠) non-decreases for some `2L, r 2R;

• Function Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)) is monotone non-decreasing as the passenger

demand Dr
` increases for some `2L, r 2R; and
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• Function Q(y,�,⇠,g(⇠),a(⇠),s(⇠),u(⇠),B(⇠)) is monotone non-increasing as the airspace

capacity Ck
t increases for some t2 T , k 2K.

Proof. We prove the results according to their order.

• The first monotonicity result is because an increase in unsatisfied passenger demand leads to

an increase in airline operation cost, i.e., both e�ciency and fairness costs increase or stay the

same.

• The second monotonicity result is because when the passenger demand increases, more aircraft

are needed to satisfy the passenger demand which leads to an increase in airline operation cost.

Thus, both e�ciency and fairness costs in the objective decrease or stay the same.

• The third monotonicity result is because when the airspace capacity increases, more aircraft

are allowed to pass the same bottleneck point at the same time instead of waiting before entering

this bottleneck point. In addition, more aircraft if available can be used to satisfy the passenger

demand which helps reduce the airline operation cost. Thus, both e�ciency and fairness costs in

the objective decrease or stay the same. ⇤
As the minimization operator preserves the monotonicity of a function, the second and third

results of Proposition 3 still hold for the recourse function Q(y,�,⇠).

Corollary 1. The following hold for the recourse function Q(y,�,⇠):

• Recourse function Q(y,�,⇠) is monotone non-decreasing as the passenger demand Dr
`

increases for some `2L, r 2R; and

• Recourse function Q(y,�,⇠) is monotone non-increasing as the airspace capacity Ck
t increases

for some t2 T , k 2K.

Proposition 3 and Corollary 1 motivate us that FairUAM (1) can be further simplified based on

the monotonicity. It also shows that when the airspace capacity is large enough, aircraft can be

assigned to OD pairs and routes without any airspace capacity limitation such that the ground

delay and airborne delay can be nearly zero. In this case, when all aircraft can travel in the free-

condition airspace, the original problem can be reduced to an aircraft allocation problem.

3.3 Model Simplification and Integrality of Decision Variables

In this subsection, we first simplify FairUAM (1) by linearizing the nonlinear terms, then prove

that at optimality, several classes of second-stage integer decision variables can be relaxed to be

continuous, which can significantly relieve the computational e↵ort.
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Linearization As mentioned at the beginning of this section, one di�culty of FairUAM (1)

resides in the nonlinear terms in the first-stage objective (1a) and second-stage objective (2a). By

introducing one more variable and two extra constraints, we can equivalently represent FairUAM

(1) as follows:

min
�,y,v

v+ "�1EP

h
h(e⇠)

i
, (3a)

s.t. h(⇠)�Q(�,y,⇠)� v, (3b)

h(⇠), v� 0, (3c)

(1b)� (1d).

For the second-stage problem (2), we let  (⇠) denote the fairness term. Then the second-stage

problem (2) is equivalent to

min
g(⇠),a(⇠),s(⇠),B(⇠)

Q(y,�,⇠,g(⇠),a(⇠),s(⇠),B(⇠)) =�
X

`2L

�`(⇠)

|I`|
+(1��) (⇠), (4a)

s.t. �`(⇠)� (⇠)|I`| 0, 8`2L, (4b)

 (⇠)� 0, (4c)

(2b)� (2k).

Relaxing Integrality of Decision Variables Based on the monotonicity results and problem struc-

ture, we prove that at optimality, we can relax the integrality of variables, which can enhance the

e�cacy to solve FairUAM (1) more e�ciently.

Proposition 4. Relaxing the integrality of s(⇠),g(⇠),a(⇠) in FairUAM (1) preserves the same

optimal value.

Proof. Notice that in constraints (2c) and (2d), at optimality, we must have sr`(⇠) =max{0,Dr
` �

P
i2I`

miyr
i } for all r 2R, ` 2 L. Since Dr

` ,mi, yr
i are all integers, we can relax the integrality of

variables s.

For the constraint matrix related with variables g(⇠) and a(⇠), let (y,�,B,g,a,s,u) be a feasible

solution of the relaxed problem. According to (1b), (1c) and (2d), for any aircraft i2 I`, we must

have �r̄ij̄ = 1 if there exists gr̄ij̄ > 0 or ar̄
ij̄k > 0 for some j̄ 2 Jr̄ and some r̄ 2R, and gr̄ij̄ = ar̄

ij̄k = 0

for any j 6= j̄,8r 6= r̄. Let {k1, k2, . . . , kn} be the bottleneck points in the visiting order on route j̄

of OD pair r̄. According to (2d), (2e), (2g), we must have

�r̄ij̄L̄� gr̄ij̄(⇠)+
X

k2{k1,...,kn}

ar̄
ij̄k,

�r̄ij̄R̄
r̄
ij̄ �

X

k2{k1,...,kn}

ar̄
ij̄k,
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X

t2T

tBk1
i,t(⇠) = ⌧

¯od
ij̄k1

�r̄ij̄ + gr̄ij̄ + ar̄
ij̄k1

,

X

t2T

tBk2
i,t(⇠) = ⌧

¯od
ij̄k1

�r̄ij̄ + gr̄ij̄ + ar̄
ij̄k1

+ ar̄
ij̄k2

,

...
X

t2T

tBkn
i,t (⇠) = ⌧ r̄ij̄k1�

r̄
ij̄ + gr̄ij̄ +

X

k2{k1,...,kn}

ar̄
ij̄k,

for each i 2 I. We see that for each i 2 I, the constraint matrix corresponding to variables g(⇠)

and a(⇠) is an interval matrix. Thus, the overall constraint matrix corresponding to variables g(⇠)

and a(⇠) is an interval matrix. Hence, according to corollary 3 in Kong et al. (2013), the overall

constraint matrix related to variables g(⇠) and a(⇠) is totally unimodular. Thus, both variables

g(⇠),a(⇠) must be integral when fixing the other variables. ⇤
Since in most practical situations, an airborne delay is much more expensive than a ground delay

due to the limitation in aircraft and airspace, Proposition 4 can improve the second-stage problem

(2). We also demonstrate the e↵ectiveness of Proposition 4 in Section 5.1.

4 Valid Inequalities and A Solution Method

In this section, we explore the formulation structure and strengthen FairUAM (1) by developing

di↵erent families of valid inequalities and based on these e↵orts, we develop an e�cient decompo-

sition algorithm.

4.1 Valid Inequalities

In this subsection, we develop di↵erent families of valid inequalities to strengthen FairUAM (1).

All the inequalities are valid for the entire mixed-integer decisions of FairUAM (1) except the

symmetry-breaking ones, where the latter cut o↵ redundant alternative mixed-integer decisions.

All the valid inequalities are obtained by investigating the model properties.

Airspace Guarantee Inequalities According to constraints (1c), if an aircraft is assigned to an

OD pair, it must be assigned to a particular route corresponding to the OD pair. Consequently,

the aircraft must go through the bottleneck points on its assigned route at some time points during

the planning horizon according to constraints (2f) and (2g). Otherwise, no bottleneck point will be

visited when the aircraft is idling. Let ! is the minimum number of bottleneck points that must be

visited among all the possible OD pairs. Then, if
P

r2R yr
i = 1, we must have !

P
t2T Bk

it(⇠) 1.

This motivates us to derive the following valid inequalities:

X

t2T

Bk
it(⇠)

X

r2R

yr
i , 8i2 I`, `2L, k 2K, (5a)

X

t2T

X

k2K

Bk
it(⇠)� !

X

r2R

yr
i , 8i2 I`, `2L. (5b)
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Symmetry-Breaking Inequalities For multiple identical aircraft from the same service provider,

their assignment decisions to OD pairs are interchangeable, which causes unnecessary larger deci-

sion space. To avoid redundant branch and bound time in exploring such equivalent solutions,

this motivates the symmetry-breaking valid inequalities that cut o↵ redundant alternative feasible

solutions. For two identical aircraft i, i0 2 I`, i0 � i+1, ` 2 L with mi =mi0 , qri = qri0 , c
r
ij = cri0j,↵

r
ij =

↵r
i0j,�

r
ij = �r

i0j, we add the following inequalities to FairUAM (1):

X

r2R

2ryr
i �

X

r2R

2ryr
i0 (6)

For two identical aircraft i, i0 2 I`, i0 � i+ 1, ` 2 L assigned to the same OD pairs, we can have

the symmetry-breaking inequalities for di↵erent routes as follows:

if yr
i = yr

i0 , then
X

j2Jr

2j�rij �
X

j2Jr

2j�ri0j, 8r 2R,

which can be equivalently represented as

X

j2Jr

2j�ri0j �
X

j2Jr

2j�rij  |yr
i � yr

i0 |Mr, 8r 2R.

Above, for each route r 2R, we let Mr be the upper bound of the left-hand side, where the value

2|Jr| su�ces. To linearize the absolute operator, we can replace it with a variable ȳr
ii0 = |yr

i �yr
i0 |. In

this case, we have ȳr
ii0 � |yr

i � yr
i0 | and ȳr

ii0  |yr
i � yr

i0 |. We can replace ȳr
ii0 � |yr

i � yr
i0 | by introducing

additional constraints:

ȳr
ii0 � yr

i � yr
i0 , ȳ

r
ii0 � yr

i0 � yr
i , ȳ

r
ii0 � 0, 8r 2R. (7a)

Then, we introduce an additional binary variable ur
ii0 2 {0,1} to linearize ȳr

ii0  |yr
i � yr

i0 | with

constraints:

ȳr
ii0  yr

i � yr
i0 +2ur

ii0 , ȳ
r
ii0  yr

i0 � yr
i +2(1�ur

ii0), 8r 2R. (7b)

Since both variables yr
i , y

r
i0 are binary, we can further relax the binary variable ur

ii0 to be continuous

by adding the following constraints:

1�ur
ii0 � yr

i � yr
i0 , u

r
ii0 � yr

i0 � yr
i , u

r
ii0 2 [0,1], 8r 2R. (7c)

Finally, we arrive at the following symmetry-breaking inequalities for route assignment. For any two

identical aircraft i, i0 2 I`, i0 � i+1, ` 2L such that mi =mi0 , qri = qri0 , c
r
ij = cri0j,↵

r
ij = ↵r

i0j,�
r
ij = �r

i0j,

we have

X

j2Jr

2j�ri0j �
X

j2Jr

2j�rij  ȳr
ii0Mr, 8r 2R, (8)

(7a)� (7c).
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Data Pre-processing Inequalities Since the auxiliary variables B(⇠) relate the aircraft location

with bottleneck visiting time, their values can be one only between the earliest arrival time and lat-

est arrival time for each bottleneck point. That is, we have the following pre-processing inequalities

Bk
it(⇠) = 0, 8t <

¯
⌧ik, t2 T , i2 I`, `2L, k 2K, (9a)

Bk
it(⇠) = 0, 8t > L̄+ ⌧̄ik, t2 T ,8i2 I`, `2L, k 2K, (9b)

where
¯
⌧ik := minr2R,j2Jr ⌧

r
ijk denotes the minimum time needed for aircraft i 2 I` from service

provider ` 2 L to arrive at bottleneck point k 2 K in the free-condition airspace while ⌧̄ik :=

maxr2R,j2Jr ⌧
r
ijk denotes the maximum arrival time allowed. That is, before the minimum time

needed for aircraft i 2 I` from service provider ` 2 L to arrive at bottleneck point k 2 K in the

free-condition airspace, we must have Bk
it(⇠) = 0; and after the maximum arrival time allowed at

bottleneck point k 2K, we also have Bk
it(⇠) = 0.

Bottleneck Point Arrival Time Inequalities Similarly, the bottleneck arrival time for an aircraft

is also related to its assignment. By definition, if
P

r2R yr
i = 1, we must have

¯
⌧ik 

P
t2T tBk

it(⇠)�
L̄+ ⌧̄ik

�
. Therefore, we can also bound the bottleneck arrival time based on OD pair assignment

X

t2T

tBk
it(⇠)

�
L̄+ ⌧̄ik

�X

r2R

yr
i , 8i2 I`, `2L, k 2K, (10a)

X

t2T

tBk
it(⇠)�¯

⌧ik
X

r2R

yr
i , 8i2 I`, `2L, k 2K. (10b)

Total Arrival Time Inequalities We can upper bound the total arrival time of all aircraft at a

specific bottleneck point based on its airspace capacity, which is

|T |max
t2T

Ck
t �

X

`2L

X

i2N`

X

r2R

X

j2Jr

0

BB@⌧
r
ijk�

r
ij + grij(⇠)+

X

id(k)� id(k0)
k0 2K

ar
ijk0(⇠)

1

CCA , 8k 2K. (11)

Accumulated Delay Inequalities When OD pair and route assignments (i.e., the first-stage deci-

sion variables) are given, an aircraft travels according to the predetermined bottleneck sequence. In

other words, the bottleneck sequence depends on the first-stage assignment. Figure 2 is a demon-

stration, where we consider one OD pair with two alternative routes. In the first route, an aircraft

visits bottleneck point k1 2 K before bottleneck point k2 2 K, while it visits bottleneck point k2

before bottleneck point k1 in the second route.

In this case, there is no clear delay arrival time relationship between these two bottleneck points.

Instead, we derive the relationship between the accumulated delays before visiting two bottleneck

points. According to constraints (2g), the accumulated delay before visiting bottleneck point k 2K



Sun, Deng, Wei, Xie: Fair and Risk-averse Urban Air Mobility Resource Allocation Under Uncertainties
18

Figure 2 An illustration of one OD pair and two routes with di↵erent bottleneck visiting sequences

can be represented by the di↵erence between the bottleneck actual arrival time
P

t2T tBk
it(⇠) and the

travel time needed in the free-condition airspace ⌧ rijk�
r
ij for any aircraft i2 I` from service provider

` 2 L on route j 2 Jr and OD pair r 2R. Therefore, for any given route assignment with �rij = 1,

when idj(k1)< idj(k2) on route j 2 Jr and OD pair r 2R, we must have
P

t2T tBk1
it (⇠)� ⌧ rijk1 P

t2T tBk2
i,t(⇠)� ⌧ rijk2 ; on the other hand, we also note that

P
t2T tBk1

it (⇠)
P

t2T tBk2
i,t(⇠) +L for

any mixed-integer feasible solution. Thus, we obtain the following valid inequalities:

X

t2T

tBk1
it (⇠)� ⌧ rijk1�

r
ij 

X

t2T

tBk2
i,t(⇠)� ⌧ rijk2�

r
ij +(1� �rij)L̄, 8i2 I`, `2L. (12)

We remark that inequalities (12) are very useful when we are given and want to evaluate a

first-stage decision. Meanwhile, these inequalities can also strengthen the model formulation.

The e↵ectiveness of inequalities (5) - (12) is demonstrated in Section 5.1 which further accelerates

the algorithm proposed in the next section.

4.2 A Decomposition Algorithm

In this subsection, we present an exact decomposition algorithm to solve the FairUAM (1) together

with valid inequalities. Our decomposition algorithm follows from Benders decomposition (Benders

1962). Note that in a conventional Benders decomposition, the original problem is partitioned

into a master problem and a group of linear subproblems, which are much easier to solve for a

given master solution. Following the same spirit, we partition FairUAM (1) into a master problem

associated with OD pair and route assignment and a subproblem for ground and airborne delay

assignment by relaxing the variables B(⇠) to be continuous. At each iteration, the upper bound can

be obtained by plugging in the feasible delay assignment subproblem to the original formulation

(1) and the lower bound can be computed by solving the master problem. It is known that the

Benders cut is insu�cient to recover the optimal value of FairUAM (1). To improve it, we adopt the

L-shaped cut (Laporte and Louveaux 1993) which ensures the decomposition algorithm generates

the exact optimal solution when terminated. Note that the L-shaped cut is generated by evaluating

the subproblem with a given feasible first-stage solution.



Sun, Deng, Wei, Xie: Fair and Risk-averse Urban Air Mobility Resource Allocation Under Uncertainties
19

Specifically, we let X = {(�,y) : (1b) � (1d)} denote the feasible region of first-stage decision

variables. By introducing an additional variable ✓ for the overall operation cost, we can formulate

the OD pair/route assignment master problem (MP) as follows:

zmp =min
✓,�,y

n
v+ "�1EP[h(e⇠)] : h(e⇠)� ✓(⇠)� v, (y,�)2X , (3c), (6)� (8)

o
(13)

For any fixed (ȳ, �̄)2X and a realization of random parameter ⇠, the delay assignment subproblem

(SP) is

zsp(⇠) = min
g(⇠),a(⇠),s(⇠),B(⇠)

Q(ȳ, �̄,⇠,g(⇠),a(⇠),s(⇠),B(⇠)) (14a)

s.t. Bk
it(⇠)2 [0,1], 8i2 I`, `2L, k 2K, t2 T , (14b)

grij(⇠), a
r
ijk(⇠), s

r
`(⇠)� 0, 8j 2Jr, r 2R, i2 I`, `2L, k 2K, (14c)

(2b)� (2i), (4b)� (4c).

Let ⇡ = (⇡1, . . . ,⇡8) be the dual variables associated with constraints (4c), (2b)-(2h) respectively.

The dual subproblem (DSP) can be presented as follows:

max
⇡

X

`2L

"
⇡2`

X

r2R

X

i2I`

 
qri ȳ

r
i +

X

j2Jr

crij �̄
r
ij

!
+⇡3`

 
Dr

` �
X

i2I`

miȳ
r
i

!
�
X

r2R

X

i2I`

X

j2Jr

�̄rij
�
⇡4rijL̄+⇡5rijR̄

r
ij

�

+
X

i2I`

X

k2K

 
�⇡6ik +⇡7ik

X

r2R

X

j2Jr

⌧ rijk�̄
r
ij

!#
�
X

k2K

X

t2T

⇡8ktC
k
t , (15a)

s.t.
X

`2L

⇡1`|I`| 1��, (15b)

⇡2` �⇡1` 
�

|I`|
, 8`2L, (15c)

⇡3r` � pr`⇡2`  0, 8r 2R, `2L, (15d)

�↵r
ij⇡2` �⇡4rij �⇡7ik  0, 8j 2Jr, r 2R, i2 I`, `2L, (15e)

��r
ij⇡2` �⇡4rij �⇡5ijr �⇡7ik  0, 8j 2Jr, r 2R, i2 I`, `2L, k 2K (15f)

�⇡6ik + t⇡yik �⇡8kt  0, 8i2 I`, `2L, k 2K, t2 T , (15g)

⇡1`,⇡3r`,⇡4rij,⇡5ijr,⇡6ik,⇡8kt � 0, 8j 2Jr, r 2R, i2 I`, `2L, k 2K. (15h)

If formulation (14) is feasible, we can obtain the optimal solution ⇡̄ of DSP (15) and the correspond-

ing objective value z̄sp. Following the standard Benders decomposition procedure (Rahmaniani

et al. 2017), the Benders cut for MP (13) can be generated as follows:

✓(⇠)�z̄sp(⇠)+
X

`2L

"
⇡̄2`

X

r2R

X

i2I`

 
qri (y

r
i � ȳr

i )+
X

j2Jr

crij)(�
r
ij � �̄rij)

!
� ⇡̄3`

X

i2I`

mi(y
r
i � ȳr

i )

�
X

r2R

X

i2I`

X

j2Jr

(�rij � �̄rij)
�
⇡4rijL+⇡5rijR

r
ij

�
+
X

i2I`

X

k2K

 
⇡7ik

X

r2R

X

j2Jr

⌧ rijk(�
r
ij � �̄rij)

!#
.

(16)
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If formulation (14) or second-stage problem (2) is infeasible, we cut o↵ the corresponding solution

from MP (13) by adding the no-good cut (Codato and Fischetti 2006, Ahmed 2013) for given �̄

(we do not need to include ȳ according to constraints (1c)) as well as adding the feasibility cut

X

r2R

X

`2L

X

i2I`

X

j2Jr

�
�rij(1� �̄rij)+ (1� �rij)�̄

r
ij
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where ⇡̄ is an extreme direction of the dual problem. Note that even though no-good cut (17a)

is commonly used in binary MP, feasibility cut (17b) is at least equally good. Thus, during our

implementation, we use feasibility cut for the warm start and no-good cut and feasibility cuts for

the branch and cut procedure.

Suppose that the MP solution (ȳ, �̄) is also feasible to the second-stage problem (2). Then we

can evaluate its corresponding objective value by plugging into the second-stage problem (2) with

valid inequalities:

ze(⇠) = min
g(⇠),a(⇠),s(⇠),B(⇠)

Q(ȳ, �̄,⇠,g(⇠),a(⇠),s(⇠),B(⇠)) (18)

s.t. (2b)� (2k), (4b)� (4c), (5a)� (5b), (9), (10), (12).

We can obtain the optimal objective value z̄e(⇠) for formulation (18), then the L-shaped cut for

MP (13) can be generated as follows:

✓(⇠)� ze(⇠)+ (ze(⇠)� lb(⇠))
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where lb(⇠) is a valid lower bound of ✓(⇠).

The detailed implementation can be found in Algorithm 1.

We can further warm-start Algorithm 1 by relaxing the integrality of y and � in MP (13)

to generate optimality and feasibility cuts at the root node. The e↵ectiveness of Algorithm 1 is

demonstrated in Section 5.1.

The proposed inequalities (5) - (12) in Section 4 accelerate each iteration in Algorithm 1, improv-

ing the lower bound much faster compared to the original formulation. The convergence of the

decomposition algorithm also improves a lot if we use both.
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Algorithm 1: Decomposition Algorithm

1 Initialization: Set feasible region X = {(y,�) : (1b)� (1d)},LB = 0,UB =1, ✏> 0;

2 while UB�LB > ✏ do
3 Solve the OD pair/route assignment master problem (MP) (13), record the optimal

solution (ȳ, �̄) and optimal value z⇤sp;

4 LB =max{LB,z⇤mp};

5 for each realization of random parameter ⇠ do
6 Solve the delay assignment subproblem (SP) (14);

7 if formulation (14) is feasible then
8 Record the optimal value z⇤sp(⇠) and add Benders cut (16) to MP (13);

9 if formulation (18) is feasible then
10 Record the optimal value z⇤e (⇠) and add L-shaped cut (19) to MP (13)

11 else
12 Add no-good cut (17a) and feasibility cut (17b) to MP (13) and go to line 3;
13 UB =min{UB,minv2R {v+ "�1E[z⇤e (⇠)� v]+}}

5 Numerical Study

In this section, we present a group of numerical results to demonstrate the strengths of di↵erent

model formulations and show the e↵ectiveness of our solution method using random instances as

well as a real-world network in Seattle. We report the results on random instances and conduct

sensitivity analysis in Section 5.1. We then apply our solution method to a real-world network

in Seattle in Section 5.2 for more aircraft fleet management insights. In reality, the UAM service

providers operating on-demand services usually file their flight plan a day or hours before the

actual departure time. We are allowed to obtain the allocation plan for the whole planning horizon

o✏ine. In this case, A time limit of 3,600 seconds was set for solving each random instance and

the real-world case study. All the instances were coded in Python 3.7.0 with calls to Gurobi 9.0.3

on a personal laptop with a 1.9 GHz Intel Core i7 processor and 16 GB memory.

5.1 Results on Random Instances

Experimental Design and Setup We consider a small network and a larger network with di↵erent

numbers of nodes and test 12 random instances for the small network and 8 random instances for

the larger network. The small network has 5 vertiports, |K|= 5 bottleneck points and |R|= 4 OD

pairs, while the larger network has 10 vertiports, |K|= 8 bottleneck points and |R|= 6 OD pairs.

Each OD pair has 3 candidate routes. We consider |L|= 3 service providers with di↵erent numbers

of aircraft and each bears an aircraft capacity of m= 4. The time horizon is |T |= 50 and the travel

time between 2 nodes in the free-condition airspace is set to either 2 or 3 time units. We let the
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weighted scalar �= 0.5. The aircraft relocation cost q is randomly selected from {0,1} to ensure

that at most one origin vertiport among all OD pairs incurs a relocation cost of 0 if relocation is

not needed. The assignment cost c is set equal to the travel time in a free condition. The ground

delay cost ↵ is set to 1 and the airborne delay cost � is set to 3 per unit of time. The penalty

cost s is set to 20 per unsatisfied passenger. The total travel delay limit is set to L̄= 10 and the

airborne delay limit is set R̄= 2. The airspace capacities of each bottleneck point per time unit are

randomly generated with equal probability from two sets of di↵erent levels of airspace capacity:

{1,2} for low level, {2,3} for high level. The passenger demand of each OD pair during the whole

time horizon is generated from three di↵erent discrete uniform distributions to represent di↵erent

levels of passenger demand: U(2,6) for low level, U(6,10) for medium level, U(10,20) for high level.

In the small network, the numbers of aircraft for service providers are set to 3 for the low-level

passenger demand instances, 5 for the medium-level passenger demand instances and 10 for the

high-level passenger demand instances. In the larger network, the numbers of aircraft for service

providers are 6 for the low-level passenger demand instances, 10 for the medium-level passenger

demand instances, 15 for the high-level passenger demand instances. We let the risk parameter

" = 0.1 in CVaR to minimize the worst case outcomes. The number of scenarios is chosen to be

5, 10, and 20 for the following reasons: i) the capacity uncertainty is due to inaccurate weather

forecasting. However, there is a limited number of weather conditions. Hence, the scenarios that we

consider are representative and can be of small size; ii) As mentioned in the previous section, the

CVaR has distributional robustness interpretation, which is known to achieve better out-of-sample

performance guarantees. We also illustrate the stability of the CVaR in Figure 4; and iii) Our

FairUAM model is extremely di�cult to solve. As shown in Table 1, using ten scenarios already

takes a much longer time to solve to optimality.

Numerical Results We summarize the instances and report the results in Table 1 where a-b

in the “Instance” column means the size network a and random instance b; “MILP” represents

FairUAM (1) and “MILP.VI” represents FairUAM (1) with valid inequalities (5) - (12). We see that

the computational time increases as the instance size (e.g., network size, number of aircraft, etc.)

increases. When the number of scenarios increases, both objective value and computational time

increases. MILP is only able to solve the first 5 instances to optimality. MILP.VI improves MILP’s

performance and can solve 80% more instances (i.e., the first 9 instances) to optimality. However,

no instance in the larger network can be solved to optimality by either MILP or MILP.VI. On the

contrary, Algorithm 1 can improve MILP.VI and solve 14 instances to optimality, which is 56% more

instances solvable compared to MILP.VI and 180% more instances solvable compared to MILP.

This is probably because using decomposition and exploring formulation structures take advantage

of solving smaller and easier subproblems. Besides, we have found that the most e↵ective cuts in



Sun, Deng, Wei, Xie: Fair and Risk-averse Urban Air Mobility Resource Allocation Under Uncertainties
23

Algorithm 1 are L-shape and feasibility cuts. We also notice that, with the same passenger demand

and the same number of aircraft, smaller airspace capacity instances are often more di�cult to

solve since the more restrictions in the airspace are, the harder aircraft assignment can be. When

the airspace capacity increases, the objective value decreases since larger airspace capacity allows

more aircraft to stay in the same airspace at the same time, which leads to short delays and smaller

unsatisfied passenger demand. With the same airspace capacity, higher passenger demand results

in longer computational time, since either more aircraft should be assigned to OD pairs or some

UAM service providers may have unsatisfied passenger demand. Higher passenger demand also

leads to a higher objective value, which is intuitive since the total operation cost of UAM service

providers increases.

Table 1 Random Instance Setting and Results of Di↵erent Formulations and Algorithm 1

Instance
Num. of

Scenarios

Airspace

Capacity

Passenger

Demand

MILP MILP.VI Algorithm 1

Time(s) Gap(%) Obj.Val Time(s) Gap(%) Obj.Val Time(s) Gap(%) Obj.Val

S-1

5

low
low 23 0 133.8 12 0 133.8 6 0.0 133.8

S-2 medium 67 0 285.8 33 0 285.8 12 0.0 285.8

S-3
high

medium 37 0 184.3 20 0 184.3 9 0.0 184.3

S-4 high 85 0 252.3 49 0 252.3 15 0.0 252.3

S-5

10

low
low 869 0 145.3 150 0 145.3 67 0.0 145.3

S-6 medium 3600 0.5 306.3 535 0 304.7 181 0.0 304.7

S-7
high

medium 3600 2.4 232.3 364 0 226.7 115 0.0 226.7

S-8 high 3600 2.7 352.7 1801 0 343.3 337 0.0 343.3

S-9

20

low
low 3600 2.2 189.8 2736 0 185.6 869 0.0 185.6

S-10 medium 3600 5.4 379.3 3600 0.3 359.8 2497 0.0 358.8

S-11
high

medium 3600 5.3 285.2 3600 0.8 272.3 1684 0.0 270.0

S-12 high 3600 6.8 430.0 3600 1.0 406.7 3600 0.2 403.5

L-13

10

low
low 3600 13.4 292.2 3600 3.9 264.6 666 0.0 254.3

L-14 medium 3600 17.3 340.1 3600 5.4 299.1 1631 0.0 282.9

L-15
high

medium 3600 15.6 353.3 3600 5.2 313.3 1055 0.0 296.7

L-16 high 3600 25.1 714.5 3600 8.6 603.4 3600 0.4 549.9

L-17

20

low
low 3600 38.9 441.9 3600 11.3 324.4 3600 1.3 294.9

L-18 medium 3600 46.1 717.4 3600 14.9 489.1 3600 4.4 435.4

L-19
high

medium 3600 46.9 609.6 3600 15.3 396.6 3600 7.3 362.2

L-20 high 3600 57.3 904.7 3600 21.4 681.0 3600 10.2 596.0

To better demonstrate the e↵ectiveness of valid inequalities, besides comparing computational

time and optimality gap of MILP and MILP.VI in Table 1, we solved instance S-4 using Algorithm

1 with and without valid inequalities (5) - (12) respectively, which are illustrated in Figure 3.

Note that, the results for other instances are similar and Figure 3 is for demonstration. The

computational time of instance S-4 significantly decreases from 438 seconds to 15 seconds if we

apply valid inequalities. The improvement mainly comes from the symmetry-breaking ones that

prevent exploring unnecessary equivalent solutions.

To demonstrate the robustness of the solutions from our model, we consider an additional risk-

neutral FairUAM (1) where "= 1 and ⇢(Z) = EP[Z] to compare with our risk-averse one. We first
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Figure 3 Comparison of Lower Bound and Optimality Gap with and without the Valid Inequalities

obtained the solutions by solving two formulations with instance S-8. Then, we generated 10 new

scenarios following the same procedure mentioned before for evaluation. We assumed that weather

conditions or passenger demand are changing rapidly over time. Thus, we applied a truncated

Gaussian noise to generate airspace capacity and passenger demand per scenario to make sure

that they are nonnegative. More specifically, we let the random perturbation of airspace capacity

follow a Gaussian distribution N (0,0.1) truncated to be non-positive and rounded to the nearest

nonnegative integer. For the random perturbation applied to passenger demand, we let it follow

a Gaussian distribution N (0,0.2) truncated to a nonnegative number and rounded to the nearest

integer. We repeated the process 15 times to generate asymptotic 95% confidence intervals. The

results are illustrated in Figure 4. It shows that, when the demand increases or the airspace

capacity decreases, the objective value increases and the risk-averse one is more robust. It is worth

mentioning that, when the airspace capacity is small (e.g., a part of bottleneck points having 0

capacity), no aircraft can depart; otherwise, it will violate the airspace capacity. In this case, both

risk-neutral and risk-averse models end up with a trivial solution.

We conducted a sensitivity analysis of weighted scalar � on instance S-8 to demonstrate the

trade-o↵ between e�ciency and fairness. We let � 2 {0,0.25,0.5,0.75,1}. For better comparison,

we illustrate the change in percentage for total cost and unfairness, where for the total cost change,

we let the base case be the lowest possible cost, and for the unfairness change, we let the base case

be the smallest value of the largest average company cost. We evaluate unfairness as the absolute

di↵erence between the highest and lowest average company operation costs. The result is illustrated

in Figure 5. We see that, when the weighted scalar �= 1, the total operation cost is the smallest;

however, the solution is extremely unfair among di↵erent UAM service providers. Some service

providers su↵er much higher average aircraft operation cost due to delays. As the weighted scalar

increases, we can reduce the unfairness dramatically with a small increase in the total operation
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Figure 4 Evaluation of the Objective Value when Airspace Capacity Decreases or Demand Increases

cost. When the weighted scalar � = 0, we make the fairest assignment for each service provider;

however, as expected, the total operation cost is the highest. In summary, we recommend using an

appropriate parameter � which can help achieve a good balance between fairness and e�ciency.

Figure 5 Trade-o↵ between Fairness and E�ciency

To illustrate that a small number of scenarios are su�cient to generate e↵ective decisions, we

conducted a numerical study on four small networks with a time horizon |T | = 20 to evaluate

the out-of-sample performance of solutions obtained from 20 and 100 scenarios. In this numerical

study, each network consists of |L|= 3 service providers and |R|= 3 OD pairs, and each service

provider operates three routes. Networks 1 and 2 have |K| = 3 bottleneck points, with each OD

pair having 3 candidate routes. The airspace capacity follows a discrete uniform distribution of

U(1,2), and the passenger demand follows a discrete uniform distribution of U(2,6). Networks 3

and 4 have |K|= 5 bottleneck points, with each OD pair having 5 candidate routes. The airspace

capacity follows a discrete uniform distribution of U(3,4), and the passenger demand follows a
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Figure 6 Out-of-Sample Performances of the Decisions obtained from 20 and 100 Scenarios

Table 2 A Summary of Out-of-Sample Performance Results from 20 and 100 Scenarios

Network
Num. of
Scenarios

Time(s) Gap(%) Obj. Val
95% Confidence

Interval

1 20 31.2 0.0 58.0 [63.3, 65.2]

1 100 1590.7 0.0 60.3 [63.1, 64.9]

2 20 14.2 0.0 198.3 [215.2, 217.7]

2 100 32.7 0.0 212.3 [213.6, 216.1]

3 20 9.9 0.0 169.5 [181.1, 183.8]

3 100 57.0 0.0 183.4 [181.4, 184.7]

4 20 2.1 0.0 427.8 [437.6, 441.1]

4 100 10.7 0.0 440.7 [433.6, 437.5]

discrete uniform distribution of U(10,20). First, for each network, we obtained first-stage decisions

by solving the problem with 20 and 100 scenarios. Next, we generated 100 new samples following the

distribution of airspace capacity and passenger demand of the corresponding network to evaluate

these decisions. This procedure was repeated 100 times for each network and scenario size to

compute asymptotic 95% confidence intervals, as depicted in Figure 6 and Table 2. It is seen

that the decisions obtained from 20 and 100 scenarios are of similar out-of-sample performances.

Moreover, solving the problem for 100 scenarios requires a significantly longer computational time.

This confirms that a small number of scenarios are adequate to solve the proposed model. This

also validates the e�cacy of the risk measure- CVaR.

To further justify the selection of CVaR as the risk measure, we compare it with Value-at-Risk

(VaR) (see, e.g., Rockafellar et al. 2000), another popular risk measure. Specifically, we solved

network 3 using 20 scenarios to obtain first-stage decisions for both risk measures with ✏= 0.1. Then,

we generated 100 samples 20 times and applied random perturbations to the airspace capacity and

passenger demand following the same procedure as previously described to generate 95% confidence

intervals for our analysis. The results are illustrated in Figure 7. The comparison reveals that
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Figure 7 Comparison of CVaR and VaR models

VaR and CVaR demonstrate similar robustness, while CVaR results in a lower average out-of-

sample cost. We also compared the computational time of CVaR and VaR as risk measures by

solving networks 1-4 using 20 scenarios. The results are presented in Table 3. Notably, due to the

nonconvexity of VaR, it often requires a significantly longer time to solve.

Table 3 A Comparison of CVaR and VaR

Network
Num. of
Scenarios

Risk Measure Time(s) Gap(%) Obj.Val

1

5
CVaR 7.4 0.0 54.7

VaR 8.9 0.0 54.7

10
CVaR 9.4 0.0 61.2

VaR 18.8 0.0 57.8

20
CVaR 31.2 0.0 58.0

VaR 327.3 0.0 51.8

2

5
CVaR 0.8 0.0 202.3

VaR 4.7 0.0 202.3

10
CVaR 8.7 0.0 209.3

VaR 7.8 0.0 202.7

20
CVaR 14.1 0.0 198.3

VaR 504.4 0.0 195.2

3

5
CVaR 7.7 0.0 160.0

VaR 30.2 0.0 160.0

10
CVaR 14.5 0.0 165.2

VaR 48.9 0.0 159.0

20
CVaR 10 0.0 169.5

VaR 157 0.0 156.2

4

5
CVaR 0.8 0.0 423.0

VaR 5.2 0.0 423.0

10
CVaR 1.1 0.0 423.0

VaR 14.1 0.0 422.7

20
CVaR 2.1 0.0 427.8

VaR 22.4 0.0 416.3
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5.2 Case Study on a Real-World Network

Experimental Design and Setup We consider 13 airports within 50 miles from Seattle-Tacoma

International Airport (KSEA), where their airport codes are denoted as the location of vertiports.

The connectivity of vertiports is shown in Figure 8. The airspace above each vertiport is considered

an intersection point of di↵erent routes. For example, two possible routes for OD pair (KSEA,

KSHN) are: (Route 1) KSEA ! 2S1 ! KSHN, (Route 2) KSEA ! KTIW ! KSHN. Aircraft

assigned to these routes will enter the airspace above KSEA, 2S1, KTIW, and KSHN, considered

the bottleneck points on these routes. Note that we use the same name to represent the airspace.

We let the time horizon |T | be 60 and a single unit of time be equal to 2 minutes, that is, the

planning horizon is 2 hours in total. Travel time needed between 2 nodes in the free-condition

airspace is set equal to the Euclidean distance divided by the travel speed 4 miles per time unit

and rounded up to the nearest integer, i.e., travel time between KBFI and KSEA (the Euclidean

distance is 5.6 miles) is 2 units of time. We consider |L|= 3 service providers, each with a di↵erent

number of aircraft and having di↵erent aircraft with capacity varying from m 2 {3,4,5}. Each

service provider corresponds to 10 OD pairs, and all 25 OD pairs are covered by at least one service

provider. If an OD pair is operated by more than one service provider, the demand is assigned

evenly to each service provider. The aircraft relocation cost q is selected from {0,1,2} with equal

probability. The assignment cost c is set to be equal to the travel time in a free condition multiplied

by the unit cost 0.5 per time unit. The ground delay cost ↵ is set to 1, and airborne delay cost

� is set to 3 per unit of time. The penalty cost s is 20 per unsatisfied passenger. We make this

assumption because one commonly used air-ground delay cost ratio in the literature is 3 (Mukherjee

and Hansen 2009). We set the weighted parameter �= 0.5 to balance the fairness and the e�ciency,

and risk parameter "= 0.1 to hedge against the risk. We also use results from the model without

fairness (�= 0,"= 0.1) and the risk-neutral model (�= 0.5,"= 1) for comparison.

Data Input The airspace capacity of each bottleneck point was generated based on the Doppler

radar map on Nov 14th, 2021, from 6 PM to 8 PM. The full capacity is set to 3 aircraft per

time unit when the color is gray on the map for corresponding vertiport locations. The reduced

capacity is set to 2 or 1 aircraft per time unit when the color becomes blue or green, respectively.

To model the uncertain parameters, we shifted the timeline by 5 units for each scenario and applied

a truncated Gaussian distribution N (0,0.5) rounded to the nearest integer to generate the airspace

capacity of each bottleneck point.

The passenger demand was generated based on population and airport operations data. We first

collected the total population data in the corresponding area having the same zipcode for each

vertiport then multiplied them by 0.02%, assuming that 0.02% of the population plan to travel
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Figure 8 Map of 13 airports within 50 miles from KSEA

during the planning horizon. We also collected the average transient general aviation operation data

for each vertiport, and multiplied them by 0.02 to represent the travel needs of people not living

in the corresponding area. We let the sum of these two numbers for each vertiport to represent

the total passenger demand of all the OD pairs that depart from the same vertiports. For a given

origin vertiport, its destination vertiports are the nearest two vertiports at least 30 miles away

and within 50 miles. (An origin vertiport may have only one destination vertiport, i.e., KTIW

has only one destination.) We then assigned the total passenger demand to OD pairs evenly and

rounded them up to the nearest integers. For example, KSEA has two destination vertiports,

KPAE (31.6 miles) and KSHN (41.9 miles). Each OD pair has a passenger demand of 13 since the

total passenger demand at KSEA is 25. To model the future uncertainty, we applied a truncated

Gaussian distribution N (0,2) rounded to the nearest nonnegative integer to the passenger demand

of each OD pair. In our numerical study, we generated 10 scenarios for this problem.

Numerical Results We ran Algorithm 1 to solve all the cases in this subsection and display the

results in Table 4, where “Max” denotes the largest average company cost, “Ave.G” denotes the

average company ground delay among di↵erent scenarios, “Ave.A” denotes the average company

airborne delay, and “Ave.S” denotes the average unsatisfied passenger demand. “Num. of Aircraft”

denotes the number of aircraft of each service provider, which corresponds to the planning horizon.

The computational time of all the cases is less than an hour. It is seen that increasing the number
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of aircraft can decrease the unsatisfied passenger demand and optimal value. And all three models

yield the same unsatisfied passenger demand. This is probably because satisfying the passenger

demand is prioritized in all models. Although the ratio of the cost of airborne delay and ground

delay is not large, airborne delay tends to be close to zero and ground delay is always larger

than zero. This is not surprising, since when the delay cannot be avoided, it is better to hold

aircraft on the ground instead of letting them wait in the air. Compared to the model without

fairness, the model with fairness can decrease the highest company operation cost by about 10%

with a 2% increase in the optimal value. Notice that, in the fair and risk-averse model, due to

fairness enforcement among di↵erent UAM service providers, those service providers with nonzero

unsatisfied passenger demand are assigned to have a smaller ground delay. However, in the model

without fairness, due to lack of the fairness term, a service provider with nonzero unsatisfied

passenger demand may be assigned to a large ground delay, which leads to a larger company

operation cost. Furthermore, the largest ground delay in the fair and risk-averse model is always

higher than that from the model without fairness. Compared to the result from the risk-neutral

model, the risk-averse one yield a small increase of 5% in the total operation cost and the largest

company operation cost since it is optimizing the worst scenario performance instead of average

performance over all the scenarios. To further demonstrate the robustness of solutions from the

two models, following the same procedure in Section 5.1, we generated 5 new scenarios and applied

a truncated Gaussian noise to passenger demand. The result is shown in Figure 9, which shows

that, the total operation cost increases and the risk-averse one tends to be more robust when the

passenger demand increases.

Table 4 Results of Case Study on A Real-World Network

Case
Num. of

Aircraft

Fair and Risk Averse Without Fairness Risk Neutral

Total
Company Cost

Total
Company Cost

Total
Company Cost

Max Ave.G Ave.A Ave.S Max Ave.G Ave.A Ave.S Max Ave.G Ave.A Ave.S

1 (10,10,10) 40.4 14.6 (16,4,5) (0,0,0) (5,6,4) 39.7 15.8 (4,18,2) (0,0,0) (5,6,4) 38.3 14.2 (13,4,4) (0,0,0) (5,6,4)

2 (15,15,15) 17.1 6.7 (15,25,17) (0,0,0) (4,0,0) 16.7 7.3 (27,13,15) (0,0,0) (4,0,0) 16.5 6.4 (15,22,16) (0,0,0) (4,0,0)

3 (18,15,12) 12.5 4.2 (24,23,8) (0,0,0) (0,0,2) 12.2 4.9 (10,25,17) (0,0,0) (0,0,2) 11.9 4.1 (21,20,8) (0,0,0) (0,0,2)

Managerial Insight FairUAM can provide the UAM tra�c manager with an optimal UAM air-

craft resource allocation plan and delay assignment without perfect information, achieving both

company-level fairness and system-level e�ciency. The framework accounts for the existence of

uncertainties in weather information and demand fluctuation. Besides generating an optimal opera-

tion plan, our framework can also provide extra support for the UAM tra�c manager to identify the

busy bottleneck points, which are usually regarded as the system hotspots. With such information,

UAM service providers are capable of better designing their routes in the aircraft path-planning
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Figure 9 Evaluation of Total Operation Cost when Passenger Demand Increases

stage before filing the flight plan to the UAM tra�c manager in the future. UAM service providers

can consider more candidate routes or even take detours to avoid busy bottleneck points and possi-

ble future congestion. In addition, identification of the current system hotspots can also be valuable

when the UAM network is still in the blueprint or can improve the existing UAM network. Instead

of improving the capability of all the bottleneck points, which is quite expensive, focusing on the

busiest bottleneck points is more e↵ective in a mature UAM operating environment with high-

density aircraft. In this case, we would like to evaluate the utilization rate of bottleneck points.

The higher the utilization rate is, the busier the corresponding bottleneck point should be.

Suppose in time horizon T , the time point that the last aircraft landing at its destination

vertiport is

t0 = argmin
t0

8
<

:t0 :
X

t>t0,t2T

tBk
it(⇠) = 0,8k 2K

9
=

; .

We consider the utilization rate of the bottleneck point k 2K between time 0 and t0 as the ratio of

the actual number of aircraft passing the bottleneck point divided by the total number of aircraft

it can handle during this period, which can be represented as

URk =

P
t2T0

P
`2L
P

i2I`
Bk

it(⇠)P
t2T0 C

k
t

where T0 = {0, . . . , t0}. The results are displayed in Table 5. We see that KSEA, KBFI, 2S1, KTIW

are the busiest bottleneck points with the highest utilization rate. This may be because these

bottleneck points are located around the center of the network, and many routes pass those bot-

tleneck points more often compared to others. When we numerically increase the total airspace

capacity
P

t2T0 C
k
t of those bottleneck points by 10% in Case 1, we find that the optimal value

can be reduced by 5%. Note that the results of Cases 2 and 3 are similar. This implies that if the

tra�c manager would like to further reduce total congestion or operation cost, it is a good idea

to focus on these four bottleneck points. Enlarging the capability of these four bottleneck points

can benefit the whole network. Note that the capacity of the system hotspots can be increased
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by introducing promising advanced aircraft separation assurance technologies and aircraft onboard

automation (see, e.g., Kochenderfer et al. 2012, Brittain et al. 2020). We further illustrated how

the total operation cost and the fairness change while increasing the total capacity of these four

bottleneck points, as shown in Figure 10. The fairness score is defined as the ratio of the smallest

average company cost to the largest average company cost such that 1 is completely fair and 0

is completely unfair. It is shown that the total operation cost decreases when the total capacity

increases since the congestion level can be reduced. However, when the total capacity of these four

bottleneck points is increased by over 15%, the objective value tends to stay at a similar value

since the system hotspots transfer to other bottleneck points.

On the other hand, changing the number of bottleneck points on a route when designing the

routes, i.e., taking a detour to avoid visiting busy airspace, can also decrease the delay. We demon-

strate the impact on the total operation cost and the largest company average operation cost when

some routes are redesigned to avoid busy bottleneck points (KSEA, KBFI, 2S1, KTIW) using Case

1, which is shown in Figure 10. We can see that the total operation cost can be reduced, while the

fairness almost stays the same. This suggests that to achieve the best e�ciency, it may not have to

sacrifice fairness between UAM service providers. The overall e�ciency can also be improved with

better network and route design to obtain a win-win situation.

Table 5 Airspace Utilization Rate

Case KSEA KRNT KBFI 2S1 S50 S36 KTIW KPWT KPLU 8W5 KPAE KSHN KOLM

1 0.33 0.14 0.25 0.31 0.17 0.08 0.25 0.11 0.19 0.17 0.11 0.31 0.17

2 0.50 0.20 0.40 0.40 0.25 0.10 0.50 0.15 0.30 0.30 0.15 0.35 0.25

3 0.55 0.25 0.50 0.60 0.30 0.15 0.45 0.15 0.35 0.30 0.20 0.20 0.25

Figure 10 Impact on Total Operation Cost and Fairness while Increasing Total Capacity of Busy Bottleneck

Points (KSEA, KBFI, 2S1, KTIW) or Taking Detours to Avoid Them
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In our FairUAM framework, a better input (e.g., more accurate weather prediction) leads to a

better operation plan and less computational e↵ort. Following the same procedure in applying the

random Gaussian perturbation to airspace capacity, we demonstrate the impact of the accuracy of

airspace capacity on the total operation cost and the largest average company operation cost using

Case 1 as shown in Figure 11. We notice that by increasing the fluctuation in airspace capacity,

the total operation cost increases. This raises the requirement for a better weather forecast or even

an online weather report for each bottleneck point. For the passenger aspect, changes in passenger

demand result in an extra computational e↵ort or sometimes unsatisfied demand. Therefore, instead

of only focusing on launching the service or developing the technology, it is also important for the

service providers to understand their passengers and incentivize the passengers for higher service

satisfaction.

Figure 11 Evaluation of Total Operation Cost and Largest Average Company Cost when Airspace Capacity

Changes

6 Conclusion

In this paper, we study the FairUAM, which is proven to be NP-hard in a deterministic setting

and NP-hard with a given route and OD pair assignment. To simplify FairUAM, we derive mono-

tonicity properties and relax the integrality of some decision variables. To further improve the

MILP formulation, we propose valid inequalities by exploring the model structures. We develop

a decomposition-based algorithm to solve FairUAM. Finally, we generate random instances to

demonstrate the e↵ectiveness of the proposed method to apply it to a real-world network in Seattle.

Compared to the risk-neutral model and the model without fairness consideration, FairUAM is

more robust when the passenger demand or weather forecasting is subject to error and can fairly

assign the aircraft and delay at the company-level. Aircraft-level fairness can also be included in

FairUAM with a simple modification to the fairness term. For the managerial aspect, FairUAM
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not only generates the optimal operation plan but also detects the system hotspots by finding the

busy bottleneck points. This information provides UAM service providers extra support for better

route planning. It also provides some guidance in future UAM network design. This is consistent

with the UAM concept of operations provided by the Federal Aviation Administration (FAA) and

National Aeronautics and Space Administration (NASA) (Fontaine 2023) as

“...The ‘bu↵er’ necessary to account for uncertainty as the operational tempo increases leads to

the eventual need for tactical deconfliction and DCB (demand capacity balancing) capabilities

to optimize e�ciency...”

For our future work, we would like to include network design and rerouting (see, e.g., Yu et al.

2021b, Toth and Vigo 2002) into consideration and theoretically improve the model using stronger

formulations. The FairUAM framework can also be generalized to other resource allocation prob-

lems under demand and capacity uncertainties. For example, we can extend our framework to robot

task allocation with demand and capacity uncertainties in the warehouse. We can also generalize

the framework to fair vehicle allocation in disaster evacuation to minimize travel time.
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Appendix A. Proofs

A.1 Proof Proposition 1

Proof. Let us consider the following NP-complete problem.

Partition Problem: Consider |I1| positive numbers {mi}i2I1 ✓ Z++ having an even sum, is

there a partition S1, S2 such that
P

i2S1
mi =

P
i2S2

mi = D̄,S1 \S2 = ;, S1 [S2 = I1?

We show that finding a feasible solution for a special case of FairUAM (1) can be reduced to the

partition problem. We first let p= 1,q = 0,c= 0, L̄= 0, R̄= 0,C =M1 where M= |I1|. Suppose

that ✏= 1 in the risk measure, i.e., ⇢(·) = E[·], and the passenger demand is D̄ = 1/2
P

i2I1 mi for

both routes. Then FairUAM (1) reduces to

z⇤1 =min
�,y,s

1

|I1|
X

r2[2]

sr, (20a)

s.t.
X

r2[2]

yr
i  1, 8i2 I1, (20b)

sr +
X

i2I1

miy
r
i � D̄, 8r 2 [2], (20c)

yr
i 2 {0,1}, sr � 0,8r 2 [2],8i2 I1, (20d)

where [n] := {1,2, . . . , n}. Thus, we claim that the optimal value of formulation (20) z⇤1  0 if and

only if there exists a feasible solution (s,y) satisfying
P

i2I1 miyr
i � D̄,8r 2 [2]. This is because

when 2D̄ =
P

i2I1 mi, we must have
P

i2I1 miyr
i = D̄,8r 2 [2] and

P
r2[2] y

r
i = 1,8i 2 I1. Thus,

solving formulation (20) is equivalent to solve the following problem

X

r2[2]

yr
i = 1,

X

i2I1

miy
r
i = D̄, yr

i 2 {0,1},8i2 I1, r 2 [2],

which is exactly equivalent to the partition problem. Thus, checking the special case (20) of

FairUAM (1) having the optimal value being equal to 0 or not is equivalent to solving the partition

problem. This proves the NP-hardness of FairUAM (1). ⇤

A.2 Proof of Proposition 2

Proof. Let us consider a special case of the second-stage problem (2). Suppose the given first stage

decision (y,�) is feasible, and we let p= 0,q = 0,c= 0,⌧ = 0, L̄= |T |, R̄= |T |, |R|= 1. Since the

random parameters have one realization, and we let airspace capacity C = 1 and the ground delay

and air delay costs to be all one, the second-stage problem (2) reduces to

min
g,a,s,B

1

|I1|
X

i2I1

 
g1i +

X

k2K

a1
ik

!
, (21a)
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s.t.
X

t2T

Bk
it  1, 8i2 I1, k 2K, (21b)

X

t2T

tBk
it = 1+ g1i +

X

id(k)� id(k0)
k0 2K

a1
ik0 , 8i2 I1, k 2K, (21c)

X

i2I1

Bk
it  1, 8k 2K, t2 T , (21d)

Bk
it 2 {0,1}, 8i2 I1, k 2K, t2 T , (21e)

g1i , a
1
ik 2Z+, 8i2 I1, k 2K. (21f)

We show that job-shop scheduling problem (JSP) (Graham 1966), which is NP-complete even with

unit processing time (see, e.g., theorem 3.5 in Hoogeveen et al. 1994), reduces to formulation (21).

Job-shop scheduling problem (JSP): There are a set K of machines and a set I of jobs. Each

job i 2 I consists of an ordered collection of operations {k1, . . . , k|K|}=K, and each operation

must be completed at a specific machine and requires a unit of processing time on that machine.

Each machine can only process one operation at a time. The goal is to optimize the order

of operations completed on each machine to minimize the overall completion time (i.e., the

overall delay).

In formulation (21), we let each aircraft k 2 K represent a job and each bottleneck point i 2

I1 denote a machine. We also let the visiting sequence of bottleneck points (i.e., the variable

{Bk
it}i2I1,t2T ) of an aircraft k 2K represent the ordered collection of operations of a job. Further-

more, the unit processing time of an operation is associated with the time that an aircraft passes

the bottleneck point. The requirement that no two operations can be performed simultaneously

is equivalent to the unit bottleneck point capacity. Particularly, the objective (21a) minimizes the

overall job completion time. Constraints (21b) implies that at most one completion time for each

job at each machine. Constraints (21c) specify when each job will be completed at each machine.

Constraints (21d) postulate that at a given time and for a given machine, at most one job can be

operated. In this case, the job-shop problem with unit processing time exactly reduces to formula-

tion (21). This proves the NP-hardness of the second-stage problem (2). ⇤
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