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Abstract

Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer program-
ming (MIP) for decomposing and convexifying constraints to obtain potentially strong dual
bounds. We investigate cutting planes that can be derived using the DW decomposition algo-
rithm and show that these cuts can provide the same dual bounds as DW decomposition. More
precisely, we generate one cut for each DW block, and when combined with the constraints in
the original formulation, these cuts imply the objective function cut one can simply write using
the DW bound. This approach typically leads to a formulation with lower dual degeneracy that
consequently has a better computational performance when solved by standard MIP solvers in
the original space. We also discuss how to strengthen these cuts to improve the computational
performance further. We test our approach on the Multiple Knapsack Assignment Problem and
the Temporal Knapsack Problem, and show that the proposed cuts are helpful in accelerating
the solution time without the need to implement branch and price.

1 Introduction

In this paper, we present a computationally effective approach for generating cutting planes from
Dantzig-Wolfe (DW) decomposition [1] to enhance branch and cut in the space of original variables.
We focus on mixed-integer (linear) programs (MIPs) with the following structure:

z∗ := min c⊤x

s.t. xI(j) ∈ P j , j ∈ J := {1, . . . , q},
Ax ≥ b, x ∈ X,

(1)

where the index set I(j) ⊆ {1, . . . , n} contains the indices of the variables in “block” j ∈ J , and
we use the notation xI to denote the subvector of x with indices in I. The set P j = {y ∈ R|I(j)| :
Gjy ≥ gj} is a polyhedral set for j ∈ J ; and X ⊆ Rn represents integrality constraints on some of
the variables. We do not assume the index sets I(j) for j ∈ J to be disjoint, see Figure 1.

DW decomposition was originally developed for solving large-scale linear programs with loosely
coupled blocks and later extended to MIPs with similar block structures to obtain strong dual
bounds. Typically, these so-called DW bounds are stronger than the linear programming (LP)
relaxation bounds as they exploit the block structure to partially convexify the solution space using
integrality information. DW decomposition has been found to be effective in various applications,
such as transportation [2], traffic scheduling [3], energy [4], and multi-stage stochastic planning [5].

Computing the DW bound requires reformulating the MIP using the extreme points and ex-
treme rays of the mixed-integer hulls of the block problems. Consequently, while the DW refor-
mulation approach often leads to good dual bounds, using this to solve the MIP exactly requires
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Figure 1: Constraint Matrices of MIPs With Different Types of Block Structures (Left: Loosely
Coupled, Middle: Two-Stage, Right: Overlapping)
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specialized techniques that are not readily present in off-the-shelf solvers. In other words, to ex-
ploit DW decomposition one needs to solve the continuous relaxation of the reformulated MIP by
column generation followed by an ad-hoc branching step [6], after which one has to again resort
to column generation, leading to an algorithmic framework called branch and price [7]. While this
approach has been successfully implemented in some special cases, most notably for vehicle routing
problems [8], generic branch-and-price solvers, including ABACUS [9], G12 [10], GCG [11], DIP
[12], BaPCod [13], to name a few, are still in their infancy with respect to solving general MIPs
with block structure. However, the most up-to-date (and always improving) MIP solvers are based
on the branch-and-cut (or cut-and-branch) scheme [14].

In this paper, we aim to make a step towards bridging this gap by developing a new scheme
to incorporate the dual bounds produced by DW reformulations into the standard branch-and-
cut framework. More precisely, we first compute the DW reformulation bound zD of the MIP
(1) at the root node and then generate cutting planes to incorporate this bound into the original
formulation to solve the problem to optimality in the space of the original variables using standard
MIP technology. Our approach, therefore, requires column generation only at the root node and
not throughout the enumeration tree. Apart from our proposed approach, one trivial method to
enforce the DW bound zD in the original MIP is to augment the formulation by adding the objective
function cut, c⊤x ≥ zD, which is known (folklore) to be not only computationally ineffective but
also numerically unstable. To the best of our knowledge, however, no detailed theoretical or
computational investigation has been conducted on the objective function cut. Earlier cutting
plane approaches include [15, 16, 17], where valid inequalities are added iteratively to separate
candidate solutions from the DW relaxation polytope. Since we only add one round of valid
inequalities, our approach tends to be less computational intensive and leads to a less complex
MIP formulation in the end.

Paper Contributions. Our first contribution is to confirm the instability of using the objective
cut by mostly attributing it to dual degeneracy. We then show how to overcome this issue by using
a family of cutting planes that essentially decompose the objective function cut. This leads to
a formulation with lower dual degeneracy, and consequently a better computational performance
when solved by standard MIP solvers in the original space. Moreover, we propose two distinct
ways to strengthen these cuts to improve their computational performance further. As a case
study, we test our approach on the Multiple Knapsack Assignment Problem and the Temporal
Knapsack Problem to show that the proposed cuts are helpful in accelerating the solution time
without the need to implement branch and price. Finally, we consider a standard multi-thread
computational environment and present a simple machine learning approach to identify problem
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instances when our cutting plane approach has the potential to improve computation time. This
framework is simple and general, holding the promise of being implementable in a relatively easy
way in general-purpose MIP solvers.

Paper Organization. The remainder of the paper is organized as follows. In Section 2, we
provide some preliminaries on DW decomposition and introduce what we call DW Block cuts. In
Section 3, we propose our new approach for recovering the DW bound in the original space using
these cuts and discuss how they relate to the objective function cut. In Section 4, we discuss
Lagrangian relaxation as an alternative approach for computing the DW bound and generating
cutting planes. Some techniques for strengthening the proposed cuts are presented in Section 5.
Section 6 reports our computational investigation while Section 7 proposes and tests the multi-
thread hybrid algorithm. Finally, some short conclusions are drawn in Section 8.

2 Preliminaries

We assume MIP (1) is feasible. Throughout the paper, we call formulation (1) the original for-
mulation of the MIP and call constraints Ax ≥ b (potentially empty) linking constraints. In the
context of Dantzig-Wolfe decomposition, (1) is sometimes called the compact formulation. MIPs
of this form with disjoint index sets I(j) are called loosely coupled MIPs [18]. Note that we do
not assume the original MIP (1) is loosely coupled and as such the supports of different blocks
can have overlaps (e.g., in MIPs with two-stage [19] or overlapping [20] block structures). We call
the LP relaxation of (1), obtained by dropping the integrality constraints x ∈ X, the natural LP
relaxation, and denote its optimal objective value by zL. Throughout, we assume that all data is
rational.

2.1 Dantzig-Wolfe Decomposition

We next consider replacing the constraints xI(j) ∈ P j in (1) by xI(j) ∈ conv(Qj), where

Qj = {y ∈ R|I(j)| : Gjy ≥ gj , y ∈ Xj},

and Xj has the integrality constraints inherited from X for the variables xI(j). Then, one obtains
the DW reformulation of problem (1). Relaxing the integrality constraints x ∈ X in this formulation
leads to the DW relaxation of (1):

zD := min c⊤x

s.t. xI(j) ∈ conv(Qj), j ∈ J,

Ax ≥ b.

(2)

The DW bound zD is potentially stronger than the natural LP relaxation bound zL as conv(Qj) ⊆
P j for all j ∈ {1, . . . , q}. Consequently, we have z∗ ≥ zD ≥ zL. In practice, computing zD is not a
straightforward task as polyhedra

(
conv(Qj)

)q
j=1

are not given explicitly. For j ∈ J , let V j and Rj

denote the set of extreme points and the set of extreme rays of conv(Qj), respectively. The DW
relaxation (2) can be reformulated using (V j)j∈J and (Rj)j∈J , leading to the following extended
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formulation:

zD = min c⊤x (3a)

s.t. xI(j) =
∑
v∈V j

λvv +
∑
r∈Rj

µrr, j ∈ J, (3b)

∑
v∈V j

λv = 1, j ∈ J, (3c)

λ ≥ 0, µ ≥ 0, (3d)

Ax ≥ b. (3e)

This formulation can now be solved iteratively via column generation. Specifically, at each
iteration, a restricted LP is solved by replacing V j and Rj with a small collection of extreme points
V̂ j ⊆ V j and extreme rays R̂j ⊆ Rj . In each iteration, a new extreme point or a new extreme ray
is generated by solving a pricing subproblem

Dj(π
j) := min

{
(πj)⊤v : v ∈ conv(Qj)

}
= min

{
(πj)⊤v : v ∈ Qj

}
(4)

for each block j ∈ J , where πj above is the dual solution associated with constraints (3b) in the
restricted LP relaxation of (3). By convention, we define Dj(π

j) = −∞ if the pricing subproblem
(4) is unbounded, and when this happens one can obtain an extreme ray r ∈ Rj by finding an
unbounded ray of min{(πj)⊤v : v ∈ P j}, which is added to R̂j . If, on the other hand, Dj(π

j) is
finite, one obtains a solution of (4) as an extreme point v ∈ V j . This point is added to V̂ j provided
that it has a negative reduced cost that is computed by subtracting the dual variable associated
with the j-th constraint of (3c) from Dj(π

j). The restricted LP, with augmented vertices and rays,
is then solved again and this process is repeated until no such points or rays are generated.

The restricted LP at each iteration gives an upper bound for zD, and these upper bounds
converge to zD in a finite number of iterations as |V j | and |Rj | are finite for all j ∈ J . When the
algorithm terminates, in addition to the lower bound zD, an optimal solution to (2) is obtained.
If this solution does not satisfy the integrality constraints x ∈ X, branching is necessary to obtain
an optimal solution of the original problem. The subproblems in the branch-and-bound tree can
again be solved using column generation, leading to a branch-and-price procedure.

2.2 Dantzig-Wolfe Block Cuts

Note that while solving the DW relaxation, the pricing subproblems (4) can also be used to derive
valid inequalities for (2). Specifically, for each j ∈ {1, . . . , q} any inequality of the form π⊤y ≥ Dj(π)
is valid for conv(Qj) for π ∈ RI(j). In this paper, we call these inequalities DW Block cuts.

Definition 1. An inequality is called a Dantzig-Wolfe Block (DWB) cut for (1) if it is of the form

π⊤xI(j) ≥ Dj(π) (5)

for some j ∈ {1, . . . , q} and π ∈ RI(j), where Dj(·) is defined in (4).

As DWB cuts are essentially valid inequalities for the block polyhedra
(
conv(Qj)

)q
j=1

, they can

be viewed as special cases of a broader class of cutting planes called Fenchel cuts [21].
Adding some of these DWB cuts to the natural LP relaxation of (1) can lead to a stronger

formulation and therefore a better dual bound than zL. Let S denote the feasible region of the
original problem (1). We next present a relationship between the dimension of a DWB cut in
conv(S) and its restriction in conv(Qj).
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Definition 2. We say that MIP (1) has block relative feasibility if, for each j ∈ {1, . . . , q} and
y ∈ Qj, there exists x ∈ S such that xI(j) = y, i.e., projxI(j)

(S) = Qj for j ∈ J .

The block relative feasibility assumption holds for a broad class of MIP problems with de-
composable structures, including two-stage stochastic integer programs with relatively complete
recourse [22].

Proposition 1. Assume problem (1) has block relative feasibility. If (πj)⊤y ≥ Dj(π
j) defines

a d-dimensional face of conv(Qj) for some j ∈ {1, . . . , q}, then (5) defines a face of conv(S) of
dimension at least d.

Proof. Since (πj)⊤y ≥ Dj(π
j) defines a d-dimensional face of conv(Qj), there exists d+ 1 affinely

independent points {yk}d+1
k=1 ⊆ Qj . By the block relative feasibility assumption, there exist points

{xk}d+1
k=1 ⊆ S such that xkI(j) = yk. Points {xk}d+1

k=1 are affinely independent from each other by

affine independence of {yk}d+1
k=1. The conclusion then follows from the fact that {xk}d+1

k=1 are all on
the face associated with (5) in conv(S).

Proposition 1 indicates that DWB cuts whose restrictions in the space of xI(j) correspond to
high-dimensional faces of conv(Qj) are likely to define high-dimensional faces in conv(S). This
motivates the idea of strengthening some DWB cuts to obtain higher-dimensional DWB cuts,
which will be discussed in Section 5. We next investigate how to generate critical DWB cuts for
obtaining strong dual bounds.

3 Incorporating the DW Bound Into the Formulation

In a number of applications, it has been shown that the DW bound can be significantly stronger
than the natural LP relaxation bound of (1) [23, 24, 25]. However, even if this bound can be
effectively computed, enforcing the integrality constraints x ∈ X requires a specialized branch-
and-price algorithm. A straightforward approach to recover the DW bound zD in the original
space is to add a single cut c⊤x ≥ zD, to the LP relaxation of (1) which we call the objective
function cut. However, it is well known that adding such an objective function cut often slows
down MIP solvers in practice.

We next observe a basic property of the optimal face of the LP relaxation after adding the
objective function cut.

Proposition 2. Let P be a polyhedron in Rn. If neither c⊤x ≤ v nor c⊤x ≥ v is valid for P , then
dim(P ∩ {x : c⊤x = v}) = dim(P )− 1.

Proof. Define P+ := P ∩ {x : c⊤x ≤ v}. Note that c⊤x ≤ v is an irredundant inequality for P+

because c⊤x ≤ v is not valid for P . By [26, Lemma 3.26], dim(P ∩ {x : c⊤x = v}) = dim(P+)− 1.
We next show that the affine hull of P+ is equal to the affine hull of P , and thus dim(P+) = dim(P ).
By [26, Theorem 3.17], we only need to show the following two statements:

1. Equality c⊤x = v is not valid for P+;

2. If a⊤x ≤ a0 is valid for P but a⊤x = a0 is not valid for P , then a⊤x = a0 is not valid for P+.

Note that c⊤x ≥ v is not valid for P . Therefore, there exists x̂ ∈ P such that c⊤x̂ < v. The
first statement then follows from the fact that x̂ ∈ P+. Similarly, there exists x̄ ∈ P such that
a⊤x̄ < a0. For λ ∈ (0, 1), define xλ := (1 − λ)x̂ + λx̄. Because a⊤x̄ ≤ a0, we have xλ ∈ P+ but
a⊤xλ < a0 for a small enough λ. The second statement then follows.
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Therefore, if zD > zL, adding the objective function cut to the original formulation would
often create an optimal face almost as high-dimensional as the original LP relaxation polyhedron.
This, in turn, can cause not only performance variability [27], but also serious computational issues
especially in early stages of the branch and cut in terms of branching [28], as well as cutting plane
generation.

3.1 An alternative approach

In Section 2.2, we observed that valid inequalities for the DW relaxation can be generated while
solving the pricing subproblems. We next show that using a small number of such cuts can readily
recover zD. Assume that at iteration t of DW decomposition, the restricted LP is of the form

ztD = min c⊤x

s.t. xI(j) =
∑
v∈V̂ j

vλj
v +

∑
r∈R̂j

rµj
r, j ∈ J, (πj,t)

Ax ≥ b, (βt)∑
v∈V̂ j

λj
v = 1, j ∈ J, (θtj)

λj ≥ 0, µj ≥ 0, j ∈ J,

(6)

and let (π1,t, . . . , πq,t, βt, θt1, . . . , θ
t
q) be the optimal dual solution associated with this restricted LP.

We then have the following result for DWB cuts derived from the optimal dual solution of the last
iteration of DW decomposition.

Theorem 3. Assume DW decomposition terminates in t̄ iterations. Then,

zD = min c⊤x (7a)

s.t. (πj,t̄)⊤xI(j) ≥ Dj(π
j,t̄), j ∈ J, (7b)

Ax ≥ b. (7c)

Proof. The “≥” direction of (7a) is implied by the definition of zD in (2) as inequality (7b) is valid
for conv(Qj) for j ∈ J . We next show the “≤” direction. Based on LP duality of (6) at iteration
t̄ and the termination condition of DW decomposition, the following equalities hold:

1. zD = b⊤β t̄ +
∑q

j=1 θ
t̄
j ;

2. ci = A⊤i β
t̄ +

∑
j:i∈I(j) π

j,t̄
i , i = 1, . . . , n.

Note that at the last iteration t̄, the DW pricing subproblems are bounded. Let (vj,t̄)qj=1 denote
the solutions of the DW pricing subproblems at iteration t̄. Note that the reduced costs associated
with points (vj,t̄)qj=1 are nonnegative at iteration t̄ of DW decomposition, i.e., (πj,t̄)⊤vj,t̄ − θt̄j =

Dj(π
j,t̄) − θt̄j ≥ 0 for j ∈ J . Therefore, for each solution x satisfying (7b) and (7c), we have the

following inequality:

c⊤x =

n∑
i=1

cixi =

n∑
i=1

[
xiA

⊤
i β

t̄ +
∑

j:i∈I(j)

xiπ
j,t̄
i

]
= (β t̄)︸︷︷︸
≥0

⊤
Ax︸︷︷︸
≥b

+

q∑
j=1

(πj,t̄)⊤xI(j)︸ ︷︷ ︸
≥Dj(πj,t̄)

≥ b⊤β t̄ +

q∑
j=1

Dj(π
j,t̄) ≥ b⊤β t̄ +

q∑
j=1

θt̄j = zD. (8)
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We call inequalities (7b) last-iteration DWB cuts. Theorem 3 shows that q last-iteration DWB
cuts together with linking constraints recover the DW bound zD. We remark that the last-iteration
DWB cuts are not necessarily all nontrivial. It is possible that πj,t̄ = 0 for some j ∈ J , which
implies that the convexification of the j-th block has no impact on improving the dual bound.

It is also worth emphasizing that (7) is not a valid formulation for the MIP (1) even if we
add integrality constraints x ∈ X to it. One should use last-iteration DWB cuts as cutting planes
and add them to the original formulation (1) to obtain a valid formulation whose LP relaxation
bound is precisely zD. Also note that Theorem 3 does not imply that last-iteration DWB cuts
dominate other DWB cuts that can be generated at intermediate iterations τ < t̄, in the sense that
intermediate-iteration DW cuts may still cut off fractional points that do not violate any of the
last-iteration DWB cuts.

3.2 Dual Degeneracy and LP Optimal Face

When comparing the strength of different collections of cutting planes or different formulations,
very often the LP relaxation bound is used as the sole criterion. However, the effectiveness of two
formulations in branch and cut may differ significantly even when they have very similar (or, the
same) LP relaxation bounds. An additional property that should also be taken into account is the
dual degeneracy of the LP relaxation of the formulation [28]. A dual basic solution of an LP is
called dual degenerate if at least one of the dual basic variables is set to 0 in that solution. Next,
we formally define the degeneracy level of a dual basic solution of an LP (given in inequality form).

Definition 3. Consider an LP with n variables and m inequality constraints, and let w be a basic
feasible dual solution. We define the degeneracy level of w to be n− ∥w∥0.

A highly dual degenerate LP relaxation is associated with many alternative LP basic primal
optimal solutions, which usually corresponds to a large optimal face. The following result shows
how the size of the optimal face (more precisely, its dimension) is related to the degeneracy level
of a dual basic optimal solution.

Proposition 4. Assume w∗ ∈ Rm
+ is a dual basic optimal solution of an LP with n variables and

m inequality constraints. Then, the optimal face of the LP has dimension at most n−∥w∗∥0. Fur-
thermore, if w∗ is the unique dual optimal solution, then the optimal face of the LP has dimension
exactly n− ∥w∗∥0.

Proof. Assume the LP is of the form min{c⊤x : Gx ≥ h}. Let F denote the optimal face of the
LP, i.e.,

F = {x : Gx ≥ h, c⊤x ≤ h⊤w∗}. (9)

Let (gk)⊤ denote the k-th row of G. By complementary slackness of LP, (gk)⊤x = hk for all x ∈ F
for all k with w∗k > 0. Since w∗ is a dual basic optimal solution, {(gk, hk)}k:w∗

k>0 are linearly
independent. Otherwise, there exists β ∈ Rm \ {0} such that βk = 0 for all k with w∗k = 0 and∑

k:w∗
k>0 βk(g

k, hk) = 0. Then, note that w∗+ϵβ and w∗−ϵβ are both dual optimal solutions of the

LP for small enough positive ϵ, which contradicts the fact that w∗ is a dual basic optimal solution.
Therefore, dim(F ) ≤ n − rank({gk}k:w∗

k>0) = n − rank({(gk, hk)}k:w∗
k>0) = n − ∥w∗∥0. Here, the

first inequality follows from [26, Theorem 3.17], the second equality follows from the consistency
of the linear system {(gk)⊤x = hk}k:w∗

k>0, and the third equality follows from linear independence

of {(gk, hk)}k:w∗
k>0.
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If w∗ is the unique dual optimal solution, by strict complementary slackness of LP [29], there
exists an optimal solution x∗ ∈ F of the LP, such that (gk)⊤x∗ > hk for all k with w∗k = 0. It implies
that {(gk)⊤x = hk}k:w∗

k>0 and c⊤x = h⊤w∗ are exactly all the implicit equalities that hold in the

inequality description (9) of F . By LP duality, c⊤x = h⊤w∗ is implied by {(gk)⊤x = hk}k:w∗
k>0.

Therefore, by [26, Theorem 3.17], dim(F ) = n− rank({gk}k:w∗
k>0) = n− ∥w∗∥0.

We remark that Proposition 4 does not extend to dual nonbasic optimal solutions, moreover,
the ℓ0-norm of dual nonbasic optimal solutions can be greater than n. Note that the dual optimal
solution is unique when the primal solution is nondegenerate. For the primal degenerate case,
even if there exists a unique dual basic optimal solution, it is possible that the dimension of the
optimal face of the LP is strictly less than the degeneracy level of that dual basic optimal solution.
See Example 2 in Appendix C for an example where the unique dual basic optimal solution has a
strictly positive dual degeneracy level but the primal optimal solution is still unique.

Under some mild assumptions, Proposition 4 implies the following.

Proposition 5. Assume the LP (7) has a unique dual optimal solution. Then, the optimal face
of (7) has dimension n− q − ∥β t̄∥0.

Proof. Note that the proof of Theorem 3 implies that (1, . . . , 1, β t̄) is a dual optimal solution of
(7). The result then follows from Proposition 4.

Proposition 5 also implies that if the dual optimal solution is unique, then none of the last-
iteration DWB cuts can be redundant. If this is not the case, the dimension of the optimal face
after adding the last iteration cuts depends on the number of cuts that are active. Note that when
applying the last-iteration DWB cuts in practice, we would add them to the original formulation
(1), resulting in an LP optimal face whose size can be even smaller due to constraints xI(j) ∈ P j ,
j ∈ J .

4 Bound Computation and Cut Generation via Lagrangian Re-
laxation

We next discuss an alternative approach to generate cutting planes to recover the DW bound
that uses Lagrangian relaxation [30]. As we discuss later, this approach has better computational
performance in practice due to stabilization.

In Lagrangian relaxation, separate auxiliary variables are created for each block and these
auxiliary variables are related to the original variables using additional (copying) constraints. The
copying constraints together with the linking constraints Ax ≥ b are then dualized into the objective
to obtain a Lagrangian relaxation of (2). More precisely, one writes

zD = min c⊤x (10a)

s.t. yj ∈ conv(Qj), j ∈ J, (10b)

yj = xI(j), j ∈ J, (πj) (10c)

Ax ≥ b. (β) (10d)

After dualizing constraints (10c) and (10d) using multipliers π and β ≥ 0, one obtains the following
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Lagrangian relaxation:

z(π, β) = min c⊤x+

q∑
j=1

(πj)⊤(yj − xI(j)) + β⊤(b−Ax),

s.t. yj ∈ Qj , j ∈ J.

(11)

Note that when the index sets {I(j)}qj=1 are nonoverlapping, (10) and (11) can be simplified by
properly removing the copying constraints and the associated dual variables π.

In general, it follows from Lagrangian duality [31] that the largest Lagrangian relaxation bound
matches zD, i.e.,

zD = max
β≥0,π

z(π, β). (12)

Note that x is unconstrained in (11) and therefore z(π, β) = −∞ unless the coefficients of the x
variables in the objective function are zero, i.e.,

ci −
∑

j:i∈I(j)

πj
i − β⊤Ai = 0 for all i ∈ {1, . . . , n},

where Ai denotes the i-th column of A. Consequently, the Lagrangian dual problem (12) can be
equivalently written as the following Wolfe dual problem:

zD = max z(π, β) (13a)

s.t.
∑

j:i∈I(j)

πj
i + β⊤Ai = ci, i = 1, . . . , n, (13b)

β ≥ 0. (13c)

For (π, β) satisfying (13b) and (13c), it holds that

z(π, β) =

q∑
j=1

Dj(π
j) + b⊤β,

where Dj : R|I(j)| → R ∪ {−∞} is a piecewise linear concave function of the form

Dj(π
j) = min{(πj)⊤v : v ∈ Qj}. (14)

Therefore, (13) is a nonsmooth convex optimization problem with a separable objective function.
It is worth emphasizing that the pricing problem (4) in DW decomposition has exactly the same
form as (14). The function values and supergradients of the concave function Dj(·) can be eval-
uated by solving (14) [30] (an optimal solution of (14) is a supergradient of Dj(·) at πj). This
alternative way of viewing DW bound zD as the optimal value of (13) allows us to use various
convex optimization methods for computing DW bound zD. For example, DW decomposition is
equivalent to applying the classical cutting plane method [32] to solve (13). Since the description
of Qj involves integer variables in general, functions Dj(·) are often piecewise linear concave with
exponentially many pieces. In that case, convex optimization methods with some stabilization tech-
niques (e.g., the level method [33]) often outperform the cutting plane method, and the difference
can be significant. Figure 2 is a representative example of the difference in performance between
the cutting plane method and the level method for computing the DW bound zD (averaged over a
set of multiple knapsack assignment problem instances that are used in Section 6). Details about
our implementation of the level method are presented in Appendix B.
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Figure 2: Comparison of the Cutting Plane Method (Left) and the Level Method (Right)
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4.1 Cut Generation From the Dual

As discussed earlier, solving the dual problem can be computationally more efficient than the
standard DW decomposition. During the solution of the dual problem (13), DWB cuts similar
to (5) can also be generated every time we evaluate the function values of Dj(·). The following
result demonstrates the strength of DWB cuts generated from the evaluation of the Lagrangian
dual function at any point (π, β) with z(π, β) > −∞.

Proposition 6. Let (π, β) be dual multipliers for (11) satisfying constraints (13b) and (13c).
Then,

z(π, β) ≤ min c⊤x

s.t. (πj)⊤xI(j) ≥ Dj(π
j), j ∈ J,

Ax ≥ b.

(15)

Proof. Consider any x ∈ Rn feasible to the right-hand side LP of (15). Since ci =
∑

j:i∈I(j) π
j
i +

β⊤Ai for i = 1, . . . , n by (13b), we have

c⊤x =
n∑

i=1

∑
j:i∈I(j)

πj
i xi + β⊤Ax =

q∑
j=1

(πj)⊤xI(j)︸ ︷︷ ︸
≥Dj

(
πj
) + β︸︷︷︸

≥0

⊤ Ax︸︷︷︸
≥b

≥
p∑

j=1

Dj(π
j) + b⊤β(τ) = z(π, β).

Note that, unlike Theorem 3, Proposition 6 does not depend on how the dual multiplier is
obtained. If one can solve the dual problem (13) to optimality, then Proposition 6 implies that one
can recover DW bound using DWB cuts associated with that optimal solution of (13). The single
block case (q = 1) of Proposition 6 simplifies to the idea of Lagrangian cuts [34].

Corollary 7. Let (π̄, β̄) be an optimal solution of (13). Then,

zD = min c⊤x (16a)

s.t. (π̄j)⊤xI(j) ≥ Dj(π̄
j), j ∈ J, (16b)

Ax ≥ b. (16c)
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Figure 3: Disjunctive Coefficient Strengthening for Three Cases (Dashed: Original Cut, Solid:
Strengthened Cut)
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Results similiar to Propostion 5 can be derived for the optimal face of the LP (16) that utilizes
DWB cuts associated with an optimal Lagrangian dual solution. We also call inequalities (16b)
last-iteration DWB cuts as they recover the same dual bound zD and are often generated in the
last iteration of the Lagrangian dual algorithm. Even if the Lagrangian dual problem is not solved
to optimality, Proposition 6 still guarantees that a dual bound that is at least as strong as the
best Lagrangian dual bound can be obtained by generating DWB cuts associated with the dual
solution that provides the strongest bound so far. Besides, there may be values for adding DWB
cuts obtained at different dual multipliers. See Example 1 in Appendix C showing that DWB cuts
can potentially provide stronger dual bounds than the best Lagrangian dual bound.

5 Generating a Stronger Relaxation

In this section we describe how to strengthen DWB cuts to obtain a stronger relaxation. The
strengthened cutting planes are still DWB cuts and therefore do not lead to bounds stronger than
zD. However, these strengthened cutting planes may potentially make more constraints active in
the LP relaxation, and therefore can help reduce the dual degeneracy level of the formulation and
improve MIP solver performance. Moreover, the strengthened cutting planes are more likely to
define high-dimensional faces of the original problem, as they define higher-dimensional faces of
the block polyhedra conv(Qj).

5.1 Disjunctive Coefficient Strengthening

We first describe a disjunctive coefficient strengthening technique for binary variables [35] that
strengthens the coefficients of a valid inequality one at a time. Given a valid inequality a⊤x ≥ f
for a mixed integer linear set Q, let Q= := {x ∈ Q : a⊤x = f}. For a binary variable xi, its
coefficient ai in the cut can be strengthened if one of the following two cases hold: (i) xi = 0 for
all x ∈ Q=, or, (ii) xi = 1 for all x ∈ Q=. If there are points x0, x1 ∈ Q= such that x0i = 0 and
x1i = 1, then this approach does not improve (i.e., decrease) the coefficient of the variable. Figure
3 shows two-dimensional examples of all three cases.

Note that if we solve
f̄ = min{a⊤x : x ∈ Q, xi = 1} (17)

and observe that f̄ > f , then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥
f + (f̄ − f)xi using the disjunction

Q = {x ∈ Q : xi = 0} ∪ {x ∈ Q : xi = 1}.

11



Similarly, if we solve
f̄ = min{a⊤x : x ∈ Q, xi = 0}, (18)

and observe that f̄ > f , then we can strengthen the original inequality a⊤x ≥ f to be a⊤x ≥
f + (f̄ − f)(1− xi). If either problem (17) or (18) is infeasible, then one can simply fix variable xi
to 0 or 1, respectively. It is easy to verify that the original inequality is implied by the strengthened
inequality together with the bound constraint xi ≥ 0 or xi ≤ 1. Therefore, if the original inequality
is active in the LP relaxation, then one round of coefficient strengthening (if applicable) would
potentially make a bound constraint active in the LP relaxation and reduce the dual degeneracy
level. Note that this approach does not increase the size of the formulation.

For strengthening a DWB cut obtained from a block j, we set Q = Qj and apply coefficient
strengthening sequentially to all coefficients of binary variables. Note that using a different ordering
of the binary variables may lead to different strengthened cutting planes in the end. For simplicity,
we use the ordering of the variables in the original formulation to strengthen DWB cuts in our
numerical experiments. We also keep a set L of points that are known to be elements of Q=,
generated from previous solutions of (14), (17) and (18). If there are x0, x1 ∈ L such that x0i = 0
and x1i = 1, then without solving (17) or (18) we conclude that disjunctive strengthening cannot
be applied to the i-th coefficient.

5.2 Strengthening via Tilting

We next describe a tilting technique introduced by [36, 37] that starts with a valid inequality and
iteratively tilts it to obtain a facet-defining inequality. Let a⊤x ≥ f be a valid inequality for Q
and assume that it is not facet-defining. Also assume that conv(Q) is full dimensional and there
is a set Q′ ⊆ Q such that all points x ∈ Q′ satisfy a⊤x = f . The algorithm first generates a point
x̄ ∈ Q \Q′ that satisfies a⊤x̄ > f , and a vector (v, w) such that v⊤x = w for all x ∈ Q′ ∪ {x̄}. The
algorithm then does the following:

1. If v⊤x ≥ w is valid for Q, then the algorithm outputs x̄. Otherwise the algorithm computes
the largest λ+ ∈ R+ such that (a + λ+v)⊤x ≥ f + λ+w is valid for Q and outputs this
inequality together with a point x̄+ ∈ Q \Q′ satisfying (a+ λ+v)⊤x̄+ = f + λ+w;

2. If v⊤x ≤ w is valid for Q, then the algorithm outputs x̄. Otherwise the algorithm computes
the largest λ− ∈ R+ such that (a − λ−v)⊤x ≥ f − λ−w is valid for Q and outputs this
inequality together with a point x̄− ∈ Q \Q′ satisfying (a− λ−v)⊤x̄− ≥ f − λ−w.

Note that when conv(Q) is full dimensional, both v⊤x ≥ w and v⊤x ≤ w cannot be valid and
consequently we obtain two (possibly identical) valid inequalities whose conic combination implies
the original inequality a⊤x ≥ f (depicted in Figure 4). Moreover, each one of the these inequalities
has one more known feasible point on its associated face than a⊤x ≥ f . [37] show that recursively
tilting one of the two obtained valid inequalities leads to a facet-defining inequality for conv(Q).

In our context, we apply the tilting idea with the following modifications. For a DWB cut
associated with block j, we set Q to be Qj , and instead of picking one of the two tilted inequalities
for the subsequent tilting iteration, we apply tilting to both. By doing so, we create a binary tree
where the root node corresponds to the original DWB cut and the remaining nodes correspond to
inequalities obtained by tilting the inequalities associated with their parent nodes. For any such
tree, cuts associated with the leaf nodes imply the original DWB cut associated with the root node.
We call the collection of inequalities associated with the leaf nodes of a depth-d tree depth-d tilted
DWB cuts. Using a depth-d tree means replacing one DWB cut with up to 2d DWB cuts, which
can be computationally expensive if d is large. Therefore, it is often beneficial to choose a relatively
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Figure 4: Tilting One Valid Inequality Into Two Stronger Valid Inequalities

small value for d. Note that this process does not improve the DW bound but can potentially help
reduce the dimension of the LP optimal face as more constraints are likely to become active at the
optimal face.

To improve computational performance, we collect the feasible points for block j ∈ J that
we encounter during the overall algorithm and store them in a set Q̂j ⊆ Qj . Using this set of
points can reduce the number of oracle calls needed as follows. First, we can check if any point in
Q̂j satisfies the condition for x̄ and use it for choosing (v, w), thus avoiding an extra call to the
optimization oracle. In addition, when computing λ+, we use Q̂j to obtain the following upper
bound on it:

λ+ := min
x∈Qj :v⊤x<w

a⊤x− f

w − v⊤x
≤ min

x∈Q̂j :v⊤x<w

a⊤x− f

w − v⊤x
.

This upper bound can be very close to the final λ+ value and, in practice, we have observed a
reduction in the number of oracle calls needed to compute λ+. This in turn reduces the time spent
on tilting significantly. We use the same idea when computing λ− ∈ R+. Finally, we would like
to remark that the overall procedure can be sensitive to the optimality gap tolerances in modern
MIP solvers. One has to be cautious about the validity of the generated cuts in practice.

6 Computational Experiments

We test our approaches on the Multiple Knapsack Assignment Problem (MKAP) introduced by
[38] and the Temporal Knapsack Problem (TKP) as coined by [20]. Detailed descriptions of MKAP
and TKP, their DW reformulations as well as the test instances are presented in Appendices D and
E, respectively.

We compare the performance of the following formulations:

1. MIP : The original formulation (1);

2. OBJ : Objective function cut c⊤x ≥ zD added into the original formulation;

3. DWB : Last-iteration DWB cuts (16b) added into the original formulation;

4. STR: Last-iteration DWB cuts (16b) with disjunctive coefficient strengthening added into
the original formulation;

5. DdT : Last-iteration DWB cuts (16b) with disjunctive coefficient strengthening and depth-d
tilting added into the original formulation.
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All experiments are run on a computer with a Intel(R) Xeon(R) Gold 6258R processor running
at 2.7GHz, with up to 4 threads used. All optimization problems are solved using the optimization
solver Gurobi with version 9.5.0 for MKAP and version 10.0.2 for TKP.

In MKAP, the parameters |K|, |M |, and |N | define the size of the instances. In all the tables
presented in this section, statistics presented in a row correspond to averages over 30 instances and
10 instances for MKAP and TKP, respectively. To avoid repetition, detailed statistics are reported
only on MKAP test instances in Sections 6.1-6.3. For TKP, we concentrate on a smaller set of
hard instances in Section 6.4.

6.1 Comparing Relaxations for MKAP

We first present some results regarding lower bounds for MKAP. We compare the DW bound zD
with the LP relaxation bound zL and the Gurobi root node bound (denoted by zR) obtained by
adding solver cuts. With some abuse of notation, we use zD to denote the best dual bound obtained
by the level method. In theory, zD should be equal to the DW bound. However, numerical issues
happen occasionally when solving the quadratic program in the level method, especially when the
DW bound is close to the LP relaxation bound, in which case zD can be strictly less than zL.

In Table 1, we present for MKAP the relative gaps rL := (zD−zL)/|zD| and rR := (zD−zR)/|zD|
between zD and natural LP relaxation bound zL as well as the Gurobi root bound zR, respectively.
The running time tR spent at the root node and running time tD spent on solving the Lagrangian
dual problem by the level method are also reported.

Depending on the instance size, the relative difference between the DW bound and the natural
LP relaxation bound varies. When the gap is small, Gurobi can often generate a root node bound
that is almost as strong as or even slightly stronger than the DW bound. When the gap is large,
Gurobi can close some gap at the root node but the bound is often significantly weaker than the
DW bound.

In our preliminary experiments, we observe that DWB cuts are more likely to be effective when
DW bound is significantly stronger than the natural LP relaxation bound. Therefore, we focus
on instance classes (defined by the size parameters |K|, |M | and |N |) whose average natural LP
relaxation bound is more than 1% weaker than average DW bound, especially the ones with Gurobi
root bound more than 1% worse than DW bound. We denote these two sets of MKAP instances
by I1 and I2(⊆ I1), respectively. In Table 1, I1 instances correspond to rows with bold rL and
I2 instances correspond to rows with bold rR. Set I1 consists of 870 instances and set I2 consists
of 270 instances. Over the I1 instances, we observe that zD is very close to the DW bound with
relative gaps always less than 0.01% except on 3 instances (whose relative gaps are 0.03%, 0.16%
and 0.34%, respectively).

We also observe that formulations with stronger strengthening tend to have less degenerate dual
solutions. We report results regarding the dual degeneracy of optimal dual solutions associated
with LP relaxations of different formulations in Appendix F. Time spent on generating these
different formulations for MKAP is presented in Appendix G.

6.2 Objective Function Cut for MKAP

We next emprically investigate how the objective function cut (formulation OBJ ) may increase the
computing time on solving MKAP compared with simply using the original formulation MIP .

We consider MKAP instances with (|K|, |M |, |N |) = (25, 20, 300), for which DW bound is
much stronger than the natural LP relaxation bound (with average gap 10.18%). Out of these
30 instances, Gurobi can solve 22 using MIP and 2 using OBJ . We plot in Figure 5 the average
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Table 1: Comparison of Different Bounds and Their Computing Time for MKAP

|K| |M | |N | rL (%) rR (%) tR (s) tD (s)

2 10 50 0.16 -0.04 0.1 0.8
100 0.00 -0.03 0.3 2.0
200 0.00 -0.01 0.5 9.9
300 0.00 -0.01 0.5 22.0

20 50 1.98 0.08 0.4 0.7
100 0.02 0.00 0.3 2.8
200 0.00 0.00 0.6 12.7
300 -0.01 -0.01 0.8 37.0

30 50 12.05 -0.06 0.1 0.6
100 0.18 0.10 0.4 2.8
200 0.00 0.00 0.8 15.4
300 -0.05 -0.05 1.1 49.7

40 50 39.11 0.00 0.0 0.7
100 0.68 0.18 1.9 2.7
200 0.00 0.00 0.9 17.3
300 -0.34 -0.34 1.4 55.3

5 10 50 1.27 0.44 0.3 0.6
100 0.11 0.07 0.2 2.4
200 0.01 0.00 0.4 12.6
300 0.00 0.00 0.6 43.0

20 50 2.97 0.00 0.3 0.8
100 0.10 0.06 0.3 3.0
200 -0.44 -0.44 0.5 12.9
300 -0.02 -0.02 0.8 50.5

30 50 12.27 0.08 0.1 1.0
100 0.41 0.15 1.5 3.3
200 0.01 0.00 0.8 17.7
300 0.00 0.00 1.2 55.8

40 50 39.11 0.00 0.0 1.2
100 1.00 0.14 1.5 3.4
200 0.01 0.00 1.1 23.1
300 -0.05 -0.05 1.5 47.0

|K| |M | |N | rL (%) rR (%) tR (s) tD (s)

10 10 50 7.03 0.86 0.2 0.5
100 5.65 4.13 0.2 1.2
200 3.53 2.64 0.3 4.5
300 3.64 2.79 0.5 14.0

20 50 4.76 -0.08 0.2 1.1
100 0.74 0.37 1.4 2.7
200 0.02 0.02 0.6 17.5
300 0.00 0.00 0.9 45.5

30 50 12.82 0.01 0.1 1.4
100 0.88 0.15 1.2 3.5
200 0.02 0.01 0.9 22.8
300 0.00 0.00 1.3 26.1

40 50 39.11 0.00 0.0 1.8
100 1.51 0.12 1.0 4.0
200 0.04 0.02 1.2 26.6
300 0.00 0.00 1.8 25.8

25 10 50 43.05 0.21 0.1 0.9
100 54.17 1.76 0.3 1.2
200 58.14 13.64 0.8 1.6
300 66.02 16.63 1.5 2.1

20 50 11.08 -0.01 0.1 2.0
100 9.40 0.45 0.7 2.7
200 8.74 6.83 0.9 5.1
300 10.18 8.78 0.9 9.4

30 50 14.35 0.00 0.0 2.8
100 3.80 0.13 1.0 4.2
200 1.79 0.85 7.0 12.6
300 1.30 1.29 1.4 28.3

40 50 39.21 0.01 0.0 3.5
100 3.13 0.00 1.1 5.5
200 0.75 0.25 11.5 22.7
300 0.25 0.24 2.0 24.8

Figure 5: Relative Gaps Between Bounds and Optimal Value by MIP (Left) and OBJ (Right) for
MKAP
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relative upper and lower bound gaps (with respect to the optimal value) obtained by Gurobi using
formulations MIP and OBJ on (25, 20, 300) instances as the number of branching nodes explored
increases. We observe that although DW bound is almost equal to the optimal value for these
instances (with a 0.01% average relative gap), Gurobi can hardly produce good feasible solutions
to improve the primal bound when using the OBJ formulation. Instead, Gurobi can find better
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feasible solutions much more efficiently when using MIP , where all optimal solutions are found
after exploring a bit more than 20,000 nodes, leaving a few instances unsolved because Gurobi
cannot prove optimality within the timelimit. This shows that a single objective function cut can
already significantly influence the performance of Gurobi’s primal heuristics, which is plausibly due
to worse branching decisions and cut generation for OBJ . A table reporting the average number of
different cutting planes generated when using different formulations is presented in Appendix H.

6.3 MIP Experiments on MKAP

Table 2: Comparison of Gurobi Performance on MKAP I2 Instances

(|K|, |M |, |N |) Number of Instances Solved Average Solution Time (s)

MIP OBJ DWB STR D3T D6T MIP OBJ DWB STR D3T D6T

(10,10,100) 28/30 18/30 30/30 30/30 30/30 30/30 ≥ 65 ≥298 2 0 0 0
(10,10,200) 11/30 10/30 30/30 30/30 30/30 30/30 ≥424 ≥457 6 1 2 2
(10,10,300) 7/30 11/30 30/30 30/30 30/30 30/30 ≥489 ≥454 41 2 12 7
(25,10,100) 30/30 30/30 30/30 30/30 30/30 30/30 0 1 0 0 0 0
(25,10,200) 30/30 30/30 30/30 30/30 30/30 30/30 2 25 0 0 0 0
(25,10,300) 30/30 29/30 30/30 30/30 30/30 30/30 6 ≥ 40 0 0 1 3
(25,20,200) 29/30 9/30 30/30 30/30 30/30 30/30 ≥ 44 ≥499 3 2 1 1
(25,20,300) 22/30 2/30 29/30 30/30 30/30 30/30 ≥224 ≥590 ≥ 48 5 3 7
(25,30,300) 1/30 0/30 0/30 2/30 1/30 3/30 ≥595 ≥600 ≥600 ≥590 ≥591 ≥575

Table 3: Comparison of Gurobi Performance on MKAP I2 Instances (Cont’d)

(|K|, |M |, |N |) Average Optimality Gap (%) Average Number of Nodes

MIP OBJ DWB STR D3T D6T MIP OBJ DWB STR D3T D6T

(10,10,100) 0.04 0.03 0.00 0.00 0.00 0.00 ≥ 22761 ≥1698156 4481 220 2 1
(10,10,200) 0.27 0.09 0.00 0.00 0.00 0.00 ≥2778880 ≥3898948 6828 407 33 3
(10,10,300) 0.21 0.09 0.00 0.00 0.00 0.00 ≥2616971 ≥2781174 131139 1208 631 6
(25,10,100) 0.00 0.00 0.00 0.00 0.00 0.00 93 1123 1 1 1 1
(25,10,200) 0.00 0.00 0.00 0.00 0.00 0.00 3853 20272 1 1 1 1
(25,10,300) 0.00 0.00 0.00 0.00 0.00 0.00 8488 ≥ 25864 1 1 1 1
(25,20,200) 0.02 0.08 0.00 0.00 0.00 0.00 ≥ 27987 ≥ 438310 2255 426 3 2
(25,20,300) 0.24 0.17 0.00 0.00 0.00 0.00 ≥ 113353 ≥ 410728 ≥ 13861 929 1 1
(25,30,300) 0.84 0.53 0.40 0.33 0.29 0.22 ≥ 81545 ≥ 379999 ≥105115 ≥35197 ≥20036 ≥6568

We then conduct experiments on MKAP instances to compare Gurobi’s performance on formu-
lations MIP , OBJ , STR, D3T and D6T . We set a 10-minute timelimit for each formulation. For
I2 instances, we summarize in Tables 2 and 3 some statistics regarding the number of instances
solved by different formulations, average solution time (excluding time for the Lagrangian dual
problem and cut generation/strengthening), average ending optimality gap and average number
of branching nodes needed to solve the instances. We observe that fewer instances are solved
to optimality when using formulation OBJ than formulation MIP , which is consistent with the
folklore that simply adding an objective function cut to improve dual bound is mostly ineffective.
The ending optimality gap of OBJ might be better than that of MIP because OBJ has a much
stronger lower bound, whereas finding good feasible solutions can be hard for OBJ . Without any
strengthening, formulation DWB already significantly outperforms both MIP and OBJ . For most
instances, D6T requires the smallest number of branching nodes to solve the problem, while STR
has the best solution time. This can be explained by the fact that D6T has the strongest LP
relaxation while STR has a more compact formulation. Compared to D3T or D6T , the processing
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of each branching node takes less time for STR. For the hardest (25, 30, 300) instances, a stronger
polyhedral relaxation becomes more important for closing the optimality gap, where D6T has the
best performance. In Figure 6 we plot gap closed as time or number of nodes explored increases for
different methods on the hardest (25, 30, 300) instances where the relative gap is computed by com-
paring with the best feasible solution found by all methods. We observe that although all methods
except MIP start from the same root bound (DW bound zD), with coefficient strengthening and
tilting the solver can find good primal solutions more efficiently. We also note that each branching
node takes longer time to explore when coefficient strengthening and tilting are applied. Additional
tables comparing MIP solver performance on I1 \ I2 instances are presented in Appendix I.

Figure 6: Gap Closed as Time (Left) and Number of Nodes Explored (Right) Increases on a set of
MKAP instances
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6.4 MIP Experiments on TKP

Finally, in this section we report some experiments conducted on hard TKP instances. In prelim-
inary experiments, we observe that the tilting techniques introduced in Section 5.2 are not very
effective for TKP. This is mainly due to the fact that the DWB cuts after disjunctive coefficient
strengthening are already defining high-dimensional faces (sometimes facets) of the block polyhedra
for TKP. Therefore, we only present results regarding the performance of formulations MIP , OBJ -
B, DWB -B and STR-B (defined at the beginning of Section 6) for B ∈ {32, 64}, where B indicates
the number constraints used in each block to define the particular DW reformulation. Note that,
unlike MKAP that has a loosely coupled block structure, the blocks in TKP’s DW reformulations
are overlapping, and in principle the DW relaxation associated with B = 64 is stronger than the
DW relaxation associated with B = 32. It is also worth mentioning that we solve subproblems
(14), (17) and (18) to exact optimality rather than the default 0.01% optimality gap tolerance to
avoid numerical issues.

Table 4: Comparison of Gurobi Performance on TKP Instances

Subclass Number of Instances Solved Average Solution Time (s)

MIP OBJ DWB STR OBJ DWB STR MIP OBJ DWB STR OBJ DWB STR
-32 -32 -32 -64 -64 -64 -32 -32 -32 -64 -64 -64

XVIII 5/10 0/10 2/10 5/10 0/10 1/10 8/10 ≥ 360 ≥ 600 ≥ 520 ≥ 381 ≥ 600 ≥ 567 ≥ 264
XIX 8/10 0/10 4/10 7/10 0/10 5/10 8/10 ≥ 232 ≥ 600 ≥ 412 ≥ 266 ≥ 600 ≥ 457 ≥ 160
XX 6/10 0/10 2/10 8/10 0/10 2/10 7/10 ≥ 296 ≥ 600 ≥ 516 ≥ 287 ≥ 600 ≥ 557 ≥ 212
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Table 5: Comparison of Gurobi Performance on TKP Instances (Cont’d)

Subclass Average Optimality Gap (%) Average Number of Nodes

MIP OBJ DWB STR OBJ DWB STR MIP OBJ-32 DWB-32 STR-32 OBJ-64 DWB-64 STR-64
-32 -32 -32 -64 -64 -64

XVIII 0.04 0.17 0.07 0.05 0.06 0.06 0.02 ≥425495 ≥2922669 ≥1282107 ≥ 913574 ≥2649095 ≥1865134 ≥949243
XIX 0.02 0.17 0.06 0.04 0.08 0.03 0.02 ≥273020 ≥2739441 ≥ 927412 ≥1036383 ≥2677712 ≥1223015 ≥574392
XX 0.04 0.17 0.08 0.04 0.10 0.07 0.03 ≥315943 ≥2449477 ≥1054214 ≥ 849443 ≥2469405 ≥1839669 ≥807173

In Tables 4 and 5, we compare Gurobi performance of different formulations on TKP test
instances, from the hard subclasses XVIII-XX in [25], with a 10-minute timelimit for running each
formulation (excluding the time spent on generating the formulation). We want to emphasize
here that, unlike for MKAP, time spent on generating some formulations for TKP is not negligible.
Time spent on generating these different formulations is presented in Appendix J. We observe that,
although formulation DWB -B is not as effective as MIP for B ∈ {32, 64}, STR-32 is comparable
with MIP and STR-64 outperforms MIP in terms of number of instances solved and average final
optimality gap. We also note that the performance of formulations OBJ -B, DWB -B and STR-B
relatively increases as B increases, illustrating the benefit of using DWB cuts generated from a
tighter DW relaxation. Comparing DWB -B and STR-B, we observe a significant improvement
in performance when coefficient strengthening is applied. This can be attributed to the fact that
the TKP instances have relatively few blocks (32 blocks for B = 32 and 16 blocks for B = 64), in
which case the last-iteration DWB cuts without strengthening would likely lead to a formulation
with relatively high dual degeneracy.

7 Hybrid Implementation in a Multi-Thread Context

Computationally, using the last iteration DWB cuts (and their strengthened versions) does not
always lead to a performance improvement as it (i) requires additional computational effort to
generate the cuts and (ii) increases the size of the formulation. Similar to other MIP techniques,
one needs to decide whether or not to use this approach for a given problem instance. Machine
learning (ML) techniques have been widely investigated to make algorithmic decisions inside MIP
solvers [39, 40].

In the remainder of this section, we present some preliminary experimental results with a simple
ML model to predict whether or not one may benefit from DWB cuts on MKAP I1 instances. We
consider a computational environment with 4 threads where one starts with running the MIP solver
on MIP (using 3 threads) and solves the Lagrangian dual problem (using 1 thread) in parallel until
the Lagrangian dual problem is solved. After this first phase, one decides to either allocate all 4
threads to the original formulation MIP or to the strengthened formulation STR.

To collect labels for the training phase, we use 20% of MKAP I1 instances as the training set.
We first solve the original formulation (using 3 threads) and Lagrangian dual (using 1 thread) in
parallel until the Lagrangian dual computation is completed, and collect some simple features for
each instance. We then separately try allocating all 4 threads to (i) solving the original formulation
MIP , and (ii) solving the strengthened formulation STR. We label an instance as promising if one
of the following holds when both methods are run for 10 minutes:

1. The instance can be solved with STR but not with MIP , or,

2. Neither method can solve the instance, and STR has a smaller optimality gap (at least 0.01%
smaller), or,
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Table 6: Comparing MIP , STR and HYB on MKAP Test Instances

MIP STR HYB

Number of Instances Solved 167/242 206/242 208/242
Average Optimality Gap (%) 0.18% 0.05% 0.05%
Average Solution Time (s) ≥ 223 ≥ 117 ≥ 110

3. Both methods can solve the instance and STR reduces the solution time by 10% or more.

Using this labeled data, we train a simple decision stump (depth-1 decision tree) to determine
whether or not we should restart the MIP using the formulation STR. The features we use are
composites of zL, zD, zR, zLB and zUB, where zLB and zUB denote the lower and upper bounds
obtained by the solver from solving the original formulation until the Lagrangian dual problem is
solved. In our experiments, zUB is always finite as the solver can easily find out that the all-zero
solution is feasible for MKAP. The resulting decision stump obtained after training is as follows:

“If (zD − zLB)/zUB > 0.05%, then switch to the strengthened formulation STR.”

Instances that can be solved using the original MIP formulation before we finish computing zD
are dropped from the training set and the test set as there is no algorithmic decision of interest to
make in that situation. This leaves us 62 training instances and 242 test instances.

Next, we compare a hybrid implementation with default Gurobi. To further simplify the im-
plementation, we replace the parallelization of the solution of the original formulation and of the
Lagrangian dual by a simulated parallelization. Such a simulated hybrid implementation is de-
scribed below:

Step 1. (a) With 1 thread, solve problem (13) with level method. Store solution time tD.

(b) With 3 threads, run a MIP solver using original MIP formulation with timelimit tD.

Step 2. If the MIP is solved to optimality in Step 1, then stop.

Else if (zD − zLB)/zUB > 0.05%, then restart the MIP solver with all 4 threads solving
formulation STR and using the best primal solution (bound) obtained in 1(b).

Else, allocate all 4 threads to the MIP solver and continue with the original formulation.

In Table 6 we summarize results obtained on MKAP by directly solving the original formulation
(‘MIP ’), directly generating and solving the strengthened formulation (‘STR’), and applying our
simulated hybrid implementation (‘HYB ’). For each method, we report the number of instances
solved within the timelimit of 10 minutes, the ending optimality gap and average time spent on
solving the problem including cut generating time for STR and HYB in seconds. Note that STR
is likely to outperform MIP on the test instances because the DW bound is already significantly
stronger than the LP relaxation bound on those instances. We observe that both STR and HYB
outperform MIP on the test instances while HYB slightly outperforms MIP in terms of solution
time. This is because HYB avoids solving the more expensive STR formulation in some cases when
the bound provided by STR is not significantly stronger than MIP . Another interesting observation
is that HYB solves exactly all instances that can be solved by either MIP or STR, including two
instances that cannot be solved by STR but can be solved by MIP , demonstrating the value of
having the flexibility of switching between different formulations. We believe this hybrid version
would be relatively easy to implement by modern MIP solvers.
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8 Conclusions

In this paper, we develop practical methods to generate and strengthen cutting planes that one
can derive from DW relaxation of MIPs with block structures. Numerical experiments show that
adding these cutting planes is effective in cases when the DW bound is strong. We also describe
how to incorporate our methodology into a MIP solver when multiple threads are available.

Empirically, we observe that adding too many cuts to the formulation can slow down LPs
significantly. A potential fix is to consider cut selection within our cut generation approach. One
may also consider adaptive tilting schemes rather than tilting each inequality to the same depth.
We also observe that the Lagrangian dual problem often has nonunique optimal solutions. It is
therefore interesting to investigate whether using alternative dual solutions can lead to stronger
cuts.
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A Dantzig-Wolfe Decomposition

Algorithm 1 Standard Dantzig-Wolfe Decomposition
1: Initialize:

V̂ j ← a subset of extreme points of conv(Qj), j = 1, 2, . . . , q

R̂j ← a subset of extreme rays of conv(Qj), j = 1, 2, . . . , q
t← 0

2: t← t+ 1, solve

ztD = min c⊤x

s.t. xI(j) =
∑

v∈V̂ j

vλj
v +

∑
r∈R̂j

rµj
r, j ∈ J, (πj)

Ax ≥ b, (β)∑
v∈V̂ j

λj
v = 1, j ∈ J, (θj)

λj ≥ 0, µj ≥ 0, j ∈ J

(19)

(assume {V̂ j}qj=1 and {R̂j}qj=1 are initialized such that (19) is always feasible)

3: let (π1, . . . , πq , θ1, . . . , θq) denote the values of optimal dual variables for (19)
4: for j = 1, 2, . . . , q do
5: solve the following pricing problem:

Dj(π
j) := min{(πj)⊤v : v ∈ conv(Qj)} = min{(πj)⊤v : v ∈ Qj}. (20)

6: if the pricing problem (20) is bounded then
7: let vj denote an optimal solution
8: ζj ← (πj)⊤vj − θj
9: if ζj < 0 then
10: V̂ j ← V̂ j ∪ {vj}
11: end if
12: else
13: ζj ← −∞
14: let rj denote an extreme ray of conv(Qj) with (πj)⊤rj < 0

15: R̂j ← R̂j ∪ {rj}
16: end if
17: if ζj ≥ 0 for all j ∈ J then
18: return zD = ztD
19: else
20: go to step 2
21: end if
22: end for

B The Level Method for the Dual Problem

The level method adds on top of the cutting plane method a regularization step that requires
solving a convex quadratic program to find a promising candidate multiplier (π, β) = (π̄, β̄) to
explore while staying close to the previous multiplier that is already explored. A pseudocode of
(the multi-cut version of) the level method is given in Algorithm 2. For generating the upper bound
z̄, we give the original formulation to the solver. We pick the second feasible solution x̄ found by
the solver (often much better than the first feasible solution) and set z̄ = c⊤x̄. Constraint (21d) is
important in early iterations of the algorithm to ensure that problem (13) is bounded, but becomes
redundant when UB< z̄ in later iterations of the algorithm. Within the level method, LB and UB
store the best lower and upper bounds of zD found by the algorithm. If we set the termination
condition to be UB-LB=0, then the algorithm returns the exact DW bound zD. To avoid some
numerical issues, when implementing the level method we terminate the algorithm if difference
between LB and UB is within 10−6 relative tolerance, or if the solver fails to solve the quadratic
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Algorithm 2 The Level Method for Solving (13)
1: Initialize:

V̂ j ← ∅, R̂j ← ∅, j = 1, 2, . . . , p
z̄ ← an upper bound of zD
LB ← −∞, UB ←∞, t← 0

2: Main Loop: t← t+ 1, solve:

UB← max

q∑
j=1

θj + b⊤β (21a)

s.t. θj ≤ v⊤πj , v ∈ V̂ j , j ∈ J, (21b)

r⊤πj ≥ 0, r ∈ R̂j , j ∈ J, (21c)

q∑
j=1

θj + b⊤β ≤ z̄, (21d)

∑
j:i∈I(j)

πj
i + β⊤Ai = ci, i = 1, . . . , n, (21e)

β ≥ 0. (21f)

3: if LB = −∞ then
4: (π̄, β̄)← optimal value of (π, β) in (21)
5: else
6: solve:

min
∥∥(π − π̄, β − β̄

)∥∥2
2

s.t.

q∑
j=1

θj + b⊤β ≥ 0.7 ·UB+ 0.3 · LB

(21b)− (21f)

(22)

7: (π̄, β̄)← optimal value of (π, β) in (22)
8: end if
9: for j = 1, 2, . . . , q do
10: solve (14) for πj = π̄j

11: if (14) is bounded then
12: let vj denote an optimal solution
13: V̂ j ← V̂ j ∪ {vj}
14: else
15: let rj denote an extreme ray of conv(Qj) with (πj)⊤rj < 0

16: R̂j ← R̂j ∪ {rj}
17: end if
18: end for
19: LB ← max

{
LB,

∑q
j=1 Dj(π̄

j) + b⊤β̄
}

20: if UB-LB is small enough then
21: return LB
22: else
23: go to step 2
24: end if

master problem (22). We observe that the second case rarely happens but can sometimes lead to
a Lagrangian dual bound weaker than the natural LP relaxation bound since we do not solve the
Lagrangian dual problem to optimality.
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C Examples

Example 1. Consider the following MIP:

z∗ = min x1 + x2 + 2x3 + 2x4

s.t. x2 + x4 ≥ 3,

3x1 + x2 + 3x3 + x4 ≥ −12,

0.5 ≤ xi ≤ 2.5, xi ∈ Z, i = 1, 2, 3, 4.

Define I1 = {1, 2}, I2 = {3, 4}, Qj = {y ∈ Z2 : 0.5 ≤ y1 ≤ 2.5, 0.5 ≤ y2 ≤ 2.5} for j ∈ {1, 2} and
the linking constraints Ax ≥ b to be[

0 1
3 1

] [
x1
x2

]
+

[
0 1
3 1

] [
x3
x4

]
≥

[
3
12

]
.

In this example, the MIP has symmetric blocks but asymmetric objective coefficients. The LP relax-
ation of the problem gives the lower bound 7. Let π(1) = (1, 1/4, 2, 5/4)⊤, β(1) = (3/4, 0)⊤, π(2) =
(2/11, 8/11, 13/11, 19/11)⊤, β(2) = (0, 3/11)⊤. Note that the dual multipliers

(
π(τ), β(τ)

)
τ∈{1,2}

satisfy the assumptions in Proposition 6. The best dual bound is given by

max
τ∈{1,2}

z
(
π(τ), β(τ)

)
= max{27/4, 78/11} = 78/11.

Adding DWB cuts associated with π(1) and adding DWB cuts associated with π(2) into the LP
relaxation of the original formulation yield bounds 125/16 and 149/19, respectively. These bounds
are stronger than the corresponding Lagrangian relaxation bounds 27/4 and 78/11. On the other
hand, the LP

min c⊤x

s.t.
(
πj(τ)

)⊤
xI(j) ≥ Dj

(
πj(τ)

)
, j ∈ J, τ = 1, 2,

Ax ≥ b

has the optimal objective value equal to 8, which happens to be z∗ in this example.

Example 2. Consider the following primal and dual LP pair:

(Primal) : min x1 − x2

s.t. x1 + x2 ≥ 1,

x2 ≥ 1,

−x2 ≥ −1;

(Dual) : max w1 + w2 − w3

s.t. w1 = 1,

w1 + w2 − w3 = −1,

w ≥ 0.

In this example, the primal LP has a unique optimal solution x = (0, 1)⊤. Therefore, the dimension
of the optimal face is 0. Also, the problem has a unique dual basic solution w = (1, 0, 2)⊤, whose
0-norm is 2, which is strictly less than n minus the dimension of the optimal face. However, note
that all dual solutions of the form w = (1, λ, 2 + λ)⊤ with λ ≥ 0 are optimal for the dual LP, i.e.,
the problem has nonunique dual optimal solutions.
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D MKAP and Test Instances

In MKAP, there are a finite number of items, knapsacks and item classes. Each item belongs to
exactly one item class. The decision maker has to pack a subset of items into knapsacks, subject to
the constraints that only items belonging to the same item class with a total weight no larger than
the capacity of the knapsack can be packed into the same knapsack, with the aim of maximizing
the total profit of the packed items. Specifically, let N , M and K denote the index sets of items,
knapsacks and item classes, respectively. For j ∈ N , let pj denote the profit of item j and wj

denote the weight of item j. For i ∈ M , let Ci denote the capacity of knapsack i. For k ∈ K,
let Sk denote the set of items that belong to item class k, i.e., {Sk}k∈K is a partition of N . We
use variables x ∈ {0, 1}M×N to represent the packing decisions, where xij = 1 if and only if item
j is packed into knapsack i. Variables y ∈ {0, 1}M×K represent the assignment decisions, where
yik = 1 if and only if knapsack i is used to pack items from item class k. MKAP can then be
formulated as the following integer program (we flip the sign of the objective function to formulate
it as a minimization problem):

min −
∑
i∈M

∑
j∈N

pjxij (23a)

s.t.
∑
j∈Sk

wjxij ≤ Ciyik, i ∈ M, k ∈ K, (23b)

∑
i∈M

xij ≤ 1, j ∈ N, (23c)∑
k∈K

yik ≤ 1, i ∈ M, (23d)

x ∈ {0, 1}M×N , y ∈ {0, 1}M×K . (23e)

It has been observed in [41] that applying Lagrangian relaxation to (23) with constraints (23c)
and (23d) dualized can lead to a dual bound potentially much stronger than the LP relaxation
bound. By equivalence between DW decomposition and Lagrangian relaxation, this observation
also applies to DW decomposition. Specifically, we define |M | × |K| blocks in our DW decom-
position, where for each i ∈ M and k ∈ K block Qi,k is defined by a knapsack constraint∑

j∈Sk
wjxij ≤ Ciyik together with constraints forcing (xij)j∈Sk

and yik to be binary.
We generate the instances following the scheme of [38] but using different instance sizes. We

consider instances with |K| ∈ {2, 5, 10, 25}, |M | ∈ {10, 20, 30, 40} and |N | ∈ {50, 100, 200, 300}.
For each combination (|K|, |M |, |N |) of the parameters, we generate three types (uncorrelated,
weakly correlated, strongly correlated) of MKAP instances with 10 instances generated using 10
different random seeds for each type. We refer readers to [38] for a more detailed description of
the instance generation procedure. It is worth mentioning that the item classes {Sk}k∈K all have
equal sizes |N |/|K| for our test instances.

E TKP and Test Instances

TKP is defined by a set of items N := {1, 2, . . . , n}. Each item i ∈ N is associated with a profit
pi, a weight wi, and a time period [si, ti) during which the item would be active. The decision
maker decides to pack a subset of the items into the knapsack, so that at any time point, the
total weight of the active items selected is at most C. We use variables x ∈ {0, 1}N to represent
the packing decision, where xi = 1 if and only if item i ∈ N is packed into the knapsack. Let
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Sj := {i : si ≤ sj , ti > sj} be the set of items that are active at time sj for j ∈ N . Then TKP
can be formulated as the following integer program (we flip the sign of the objective function to
formulate it as a minimization problem):

min −
∑
i∈N

pixi (24a)

s.t.
∑
i∈Sj

wixi ≤ C, j ∈ N, (24b)

x ∈ {0, 1}N . (24c)

[25] suggest nonstandard DW reformulations of (24) by partitioning the constraints (24b) into
different blocks, leading to the following DW reformulation:

min −
∑
i∈N

pixi (25a)

s.t. xI(k) ∈ conv(Qk), k ∈ K, (25b)

x ∈ {0, 1}N . (25c)

where Qk is defined by B consecutive constraints in the original problem and I(k) contains the
indices of the variables that appear in these constraints. Specifically, for k ∈ K := {1, . . . , ⌈n/B⌉},
we have I(k) =

⋃
j∈Nk

Sj where Nk =
{
(k − 1)B + 1, (k − 1)B + 2, . . . ,min{kB, n}

}
, and Qk =

{xI(k) ∈ {0, 1}I(k) :
∑

i∈Sj
wixi ≤ C, j ∈ Nk}.

As anticipated, according to empirical results in [25], the strength of the associated DW bound
tends to increase as B grows. In our numerical experiments, we consider two DW reformulations
with group sizes B = 32 and B = 64, respectively. Since current commercial solvers (Gurobi in
particular) can easily solve the original formulation for most test instances in [25], we consider only
the 30 relatively hard instances from groups XVIII-XX in [25].

F Dual Degeneracy of Different Formulations for MKAP

In Table 7, we report the relative normalized degeneracy level of the optimal dual solution computed
by Gurobi for LP relaxations of different formulations for MKAP. The relative degeneracy level
is calculated as the degeneracy level n − ∥w∗∥0 divided by the dimension n, i.e., 1 − ∥w∗∥0/n.
Bold rows correspond to I2 instances. Due to numerical tolerances, the optimal values w∗k of some
dual variables can sometimes be very close to but not equal to zero, especially the ones associated
with bound constraints. We treat w∗k as 0 if |w∗k| ≤ 10−8 for all entries w∗k of w∗ when computing
∥w∗∥0. Although the strengthening techniques in Section 5 do not guarantee a monotonic decrease
in degeneracy level, it is clear from Table 7 that formulations with stronger strengthening tend
to have less degenerate optimal dual solutions. We observe that the degeneracy level of DWB is
already comparable to MIP on I2 instances but is higher than MIP on I1 \ I2 instances. With
coefficient strengthening, STR has lower average dual degeneracy than MIP in almost all cases
except on the instance class (5,40,50). The dual degeneracy continues to decrease with further
tilting. Finally, it is worth noting that, as expected, the relative degeneracy level of OBJ is
extremely high, close to 100%.
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Table 7: Relative Degeneracy Levels of LP Optimal Dual Solutions for Different MKAP Formula-
tions

(|K|, |M |, |N |) (1− ∥w∗∥0/n)× 100%

MIP OBJ DWB STR D1T D2T D3T D4T D5T D6T

( 2,20, 50) 56.27% 99.90% 78.30% 41.85% 36.37% 30.94% 25.77% 23.87% 21.86% 21.88%
( 2,30, 50) 57.75% 99.94% 70.21% 52.25% 46.32% 41.81% 39.24% 39.52% 39.89% 39.26%
( 2,40, 50) 58.06% 99.95% 71.04% 55.17% 51.67% 52.29% 51.82% 50.46% 50.46% 50.46%
( 5,10, 50) 50.84% 99.82% 77.44% 42.29% 32.33% 22.32% 14.84% 11.09% 11.25% 11.04%
( 5,20, 50) 53.20% 99.91% 68.12% 36.42% 28.41% 22.50% 20.10% 19.95% 19.04% 19.42%
( 5,30, 50) 54.60% 99.94% 65.54% 45.31% 34.81% 34.89% 35.45% 36.05% 36.11% 36.11%
( 5,40, 50) 54.90% 99.95% 70.72% 55.61% 51.21% 50.62% 50.61% 50.61% 50.61% 50.61%
(10,10, 50) 46.60% 99.83% 57.63% 26.99% 11.24% 3.01% 3.35% 3.46% 3.46% 3.46%

(10,10,100) 50.65% 99.91% 56.98% 35.05% 22.84% 7.77% 1.36% 1.14% 1.49% 1.54%
(10,10,200) 53.30% 99.95% 53.77% 38.02% 26.06% 17.45% 7.19% 1.05% 0.26% 0.28%
(10,10,300) 54.23% 99.97% 53.50% 39.77% 26.75% 20.75% 17.99% 7.47% 1.43% 0.61%
(10,20, 50) 48.77% 99.92% 57.55% 24.16% 16.96% 11.23% 11.46% 11.36% 11.36% 11.36%
(10,30, 50) 50.05% 99.94% 57.02% 38.97% 33.06% 31.63% 31.42% 31.42% 31.42% 31.42%
(10,40, 50) 50.32% 99.96% 62.98% 45.03% 44.05% 43.36% 43.36% 43.36% 43.36% 43.36%
(10,40,100) 54.98% 99.98% 80.55% 45.61% 35.69% 27.61% 25.77% 24.92% 25.41% 25.50%
(25,10, 50) 37.28% 99.87% 26.68% 11.18% 5.86% 5.86% 5.86% 5.86% 5.86% 5.86%

(25,10,100) 44.57% 99.92% 40.47% 30.85% 14.51% 4.40% 3.70% 3.70% 3.70% 3.70%
(25,10,200) 49.75% 99.96% 47.23% 37.99% 29.72% 13.19% 3.71% 1.59% 1.36% 1.68%
(25,10,300) 51.73% 99.97% 56.84% 48.89% 34.16% 24.02% 8.05% 1.77% 1.03% 1.17%
(25,20, 50) 39.01% 99.93% 34.14% 11.26% 6.44% 6.44% 6.44% 6.44% 6.44% 6.44%
(25,20,100) 47.02% 99.96% 52.18% 26.21% 10.38% 3.34% 3.57% 3.57% 3.57% 3.57%

(25,20,200) 52.44% 99.98% 62.38% 38.30% 24.36% 7.41% 0.93% 0.91% 1.06% 1.25%
(25,20,300) 54.69% 99.98% 62.72% 42.19% 30.72% 22.26% 4.78% 0.56% 0.53% 0.62%
(25,30, 50) 40.04% 99.96% 41.02% 23.72% 22.94% 22.94% 22.94% 22.94% 22.94% 22.94%
(25,30,100) 47.84% 99.97% 64.22% 32.04% 16.22% 7.41% 7.57% 7.57% 7.57% 7.57%
(25,30,200) 53.39% 99.99% 73.83% 43.35% 30.70% 15.59% 6.42% 5.51% 5.67% 5.89%

(25,30,300) 55.68% 99.99% 78.99% 48.56% 41.44% 26.72% 8.59% 4.23% 3.58% 3.27%
(25,40, 50) 40.26% 99.97% 50.78% 39.69% 39.52% 39.52% 39.52% 39.52% 39.52% 39.52%
(25,40,100) 48.39% 99.98% 61.63% 29.76% 20.09% 17.55% 17.17% 17.17% 17.17% 17.17%

G Time Spent on Obtaining Different MKAP Formulations

Since both OBJ and DWB can be obtained directly after solving the Lagrangian dual problem,
we only report in Table 8 the total time spent on applying strengthening and different levels of
tilting for STR and DdT with d ∈ {1, . . . , 6}. Bold rows correspond to I2 instances and other
rows correspond to I1 \ I2 MKAP instances. We note that, given a dual optimal solution, it is
extremely efficient to generate the STR formulation for MKAP while the time spent on generating
DdT grows exponentially as d increases.

H Number of Cutting Planes Generated Using Different Formu-
lations

In Table 9, we report the number of cutting planes generated by Gurobi within 10 minutes for
formulations MIP , OBJ , DWB , STR, D3T and D6T averaged over the (25, 20, 300) MKAP
instances.
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Table 8: Comparison of Time Spent on Obtaining Different Formulations for MKAP

(|K|, |M |, |N |) Generation Time Excluding Lagr. Dual Time (s)

STR D1T D2T D3T D4T D5T D6T

( 2,20, 50) 0.1 0.3 0.5 1.1 2.1 3.7 6.0
( 2,30, 50) 0.1 0.2 0.3 0.6 0.9 1.0 1.2
( 2,40, 50) 0.1 0.2 0.1 0.2 0.2 0.2 0.2
( 5,10, 50) 0.0 0.1 0.4 0.8 1.6 2.6 3.6
( 5,20, 50) 0.1 0.2 0.5 0.9 1.3 1.5 1.6
( 5,30, 50) 0.1 0.2 0.3 0.5 0.5 0.5 0.5
( 5,40, 50) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(10,10, 50) 0.0 0.2 0.4 0.8 1.1 1.2 1.2
(10,10,100) 0.1 0.3 1.0 2.2 4.5 8.7 15.7
(10,10,200) 0.3 0.9 2.2 5.0 10.3 20.9 42.4
(10,10,300) 0.9 2.9 7.0 15.2 30.5 60.0 118.7
(10,20, 50) 0.1 0.2 0.4 0.6 0.7 0.7 0.7
(10,30, 50) 0.1 0.2 0.3 0.3 0.3 0.3 0.3
(10,40, 50) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
(10,40,100) 0.3 0.9 2.0 3.8 5.5 6.6 6.9
(25,10, 50) 0.0 0.2 0.3 0.3 0.3 0.3 0.3
(25,10,100) 0.0 0.4 1.1 2.1 2.8 2.8 2.8
(25,10,200) 0.1 0.7 2.1 4.9 10.3 20.2 38.7
(25,10,300) 0.1 0.9 3.0 7.2 15.5 31.7 63.5
(25,20, 50) 0.1 0.2 0.2 0.2 0.2 0.2 0.2
(25,20,100) 0.1 0.6 1.6 2.6 3.1 3.1 3.1
(25,20,200) 0.2 1.3 4.0 9.0 17.7 32.1 53.9
(25,20,300) 0.4 2.0 5.8 13.5 28.1 56.1 109.5
(25,30, 50) 0.1 0.2 0.2 0.2 0.2 0.2 0.2
(25,30,100) 0.2 0.8 1.7 2.4 2.5 2.5 2.5
(25,30,200) 0.4 1.9 5.4 11.8 21.9 36.1 51.1
(25,30,300) 0.8 3.1 8.3 19.3 39.7 77.9 148.1
(25,40, 50) 0.1 0.1 0.0 0.0 0.0 0.0 0.0
(25,40,100) 0.2 0.8 1.5 1.9 2.0 2.0 2.0

Table 9: Average Number of Cutting Planes Generated by Gurobi

MIP OBJ DWB STR D3T D6T

Gomory 132.1 41.5 10.4 17.9 0.4 0.0
Lift-and-project 5.3 1.7 0.6 0.6 0.0 0.0

Cover 616.1 176.5 121.5 173.3 16.3 0.0
Clique 362.3 248.5 148.3 266.4 108.3 0.0
MIR 90.2 24.6 9.7 13.2 3.1 0.0

StrongCG 94.3 49.8 12.7 21.9 2.4 0.0
Flow cover 228.8 61.6 18.5 3.1 0.0 0.0
Zero half 34.9 13.9 2.0 0.4 0.0 0.0

RLT 19.7 0.8 1.4 0.7 0.0 0.0
Relax-and-lift 10.0 0.0 0.1 0.0 0.0 0.0

I Results for I1 \ I2 MKAP instances

In Tables 10 and 11, we report computational results for I1 \ I2 MKAP instances. We observe that
the original MIP formulation is very competitive on these instances, whose performance is often
better than DWB and even STR. This can be explained by the fact that although the natural LP
relaxation is weak (rL is large), Gurobi can close much of the gap by presolve and cutting planes
at the root node (rR is small).

29



Table 10: Comparison of Gurobi Performance on I1 \ I2 MKAP Instances

(|K|, |M |, |N |) Number of Solved Average Solution Time (s)

MIP OBJ DWB STR D3T D6T MIP OBJ DWB STR D3T D6T

( 2,20, 50) 30/30 23/30 30/30 30/30 30/30 30/30 2 ≥202 7 5 4 4
( 2,30, 50) 30/30 29/30 30/30 30/30 30/30 30/30 0 ≥ 25 0 0 0 0
( 2,40, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
( 5,10, 50) 30/30 30/30 30/30 30/30 30/30 30/30 4 62 7 4 2 1
( 5,20, 50) 30/30 30/30 30/30 30/30 30/30 30/30 1 42 4 2 1 0
( 5,30, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 19 0 0 0 0
( 5,40, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(10,10, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 1 0 0 0 0
(10,20, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 16 0 0 0 0
(10,30, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 1 0 0 0 0
(10,40, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(10,40,100) 30/30 1/30 29/30 30/30 30/30 30/30 40 ≥600 ≥103 72 15 12
(25,10, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(25,20, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(25,20,100) 30/30 20/30 30/30 30/30 30/30 30/30 1 ≥204 0 0 0 0
(25,30, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(25,30,100) 30/30 10/30 30/30 30/30 30/30 30/30 5 ≥432 1 1 0 0
(25,30,200) 16/30 1/30 10/30 15/30 23/30 26/30 ≥377 ≥600 ≥475 ≥402 ≥255 ≥143
(25,40, 50) 30/30 30/30 30/30 30/30 30/30 30/30 0 0 0 0 0 0
(25,40,100) 30/30 9/30 30/30 30/30 30/30 30/30 2 ≥464 1 1 0 0

At each row, the averages of 30 instances are reported.

Table 11: Comparison of Gurobi Performance on I1 \ I2 MKAP Instances (Cont’d)

(|K|, |M |, |N |) Average Optimality Gap (%) Average Number of Nodes

MIP OBJ DWB STR D3T D6T MIP OBJ DWB STR D3T D6T

( 2,20, 50) 0.00 0.06 0.00 0.00 0.00 0.00 3439 ≥755510 28880 16808 16826 7963
( 2,30, 50) 0.00 0.00 0.00 0.00 0.00 0.00 89 ≥177782 341 796 188 131
( 2,40, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 1 1 1 1 1
( 5,10, 50) 0.00 0.00 0.00 0.00 0.00 0.00 12677 669382 62160 23721 5498 1509
( 5,20, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1865 334795 20703 9992 929 614
( 5,30, 50) 0.00 0.00 0.00 0.00 0.00 0.00 275 151202 161 61 17 18
( 5,40, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 1 1 1 1 1
(10,10, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1077 3227 39 51 1 1
(10,20, 50) 0.00 0.00 0.00 0.00 0.00 0.00 344 46614 803 379 14 14
(10,30, 50) 0.00 0.00 0.00 0.00 0.00 0.00 131 3045 372 129 1 1
(10,40, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 1 1 1 1 1
(10,40,100) 0.00 0.14 0.01 0.01 0.00 0.00 23261 ≥302450 ≥137206 82878 11574 9120
(25,10, 50) 0.00 0.00 0.00 0.00 0.00 0.00 2 229 1 1 1 1
(25,20, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 212 1 1 1 1
(25,20,100) 0.00 0.03 0.00 0.00 0.00 0.00 279 ≥202331 1 1 1 1
(25,30, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 2 1 1 1 1
(25,30,100) 0.00 0.15 0.00 0.00 0.00 0.00 9866 ≥185765 1903 1121 1 1
(25,30,200) 0.12 0.44 0.22 0.15 0.07 0.04 ≥45681 ≥341784 ≥ 67369 ≥48540 ≥20550 ≥14553
(25,40, 50) 0.00 0.00 0.00 0.00 0.00 0.00 1 28 1 1 1 1
(25,40,100) 0.00 0.08 0.00 0.00 0.00 0.00 450 ≥257189 1520 2483 47 47

At each row, the averages of 30 instances are reported.

J Time Spent on Obtaining Different TKP Formulations

In Table 12, we report time spent on generating formulations OBJ/DWB -B and STR-B for B ∈
{32, 64}. Unlike Table 8 for MKAP, time reported in Table 12 includes time spent on solving the
Lagrangian dual problem.
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Table 12: Comparison of Time Spent on Obtaining Different Formulations for TKP

Subclass Generation Time (s)

OBJ/DWB-32 STR-32 OBJ/DWB-64 STR-64

XVIII 78 204 83 772
XIX 80 218 82 643
XX 106 267 101 793
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