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In large scale applications, deterministic and stochastic variants of Cauchy’s
steepest descent method are widely used for the minimization of objectives
that are only piecewise smooth. In this paper we analyse a deterministic
descent method based on the generalization of rescaled conjugate gradients
proposed by Philip Wolfe in 1975 for objectives that are convex. Without
this assumption the new method exploits semismoothness to obtain pairs of
directionally active generalized gradients such that it can only converge to
Clarke stationary points. Numerical results illustrate the theoretical findings.
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1 Introduction and motivation
For the task of unconstrained minimization of a continuous nonsmooth function
f : Rn → R, there are only few algorithmic options, when one explicitly wants to exploit
the nonsmoothness. The two main classes consist of methods based on subgradients [1]
in the convex case and bundle methods [27] in the general Lipschitzian case, respectively.
All these methods rely on the so-called oracle paradigm [13], namely the assumption that
at any x ∈ Rn the user can provide the algorithm with at least one generalized gradient
g ∈ ∂Cf(x). This holds also true for the approach very close to the current proposal that
was suggested and analyzed in the seminal paper [37] by Phil Wolfe for the convex case.
While the oracle paradigm is usually described as a natural and reasonable requirement,
we have argued in [16] that it is only realistic when the objective is given and analyzed
as a piecewise differentiable function defined by an abs-smooth straight-line program and
in that case this structure can be exploited much more effectively. Therefore, the new
approach proposed in this paper exploits more structural information in that it is based
on directionally active gradients. Furthermore, the subgradient and bundle methods
depend on a significant number of hyper parameters, which need to be selected to reach
at least stationary points at a reasonable rate. Probably for this reason, neither type of
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method has been included in software packages or is used widely in machine learning.
For an introduction and an up to date survey of the field see [3] and [4].

Some authors [23] have advocated the use of quasi-Newton methods like BFGS with an
adapted line-search for the nonsmooth case. There, the matrix approximating curvature
necessarily tends to infinity in cross-kink directions and correspondingly its inverse
becomes singular. Eventually, one encounters insurmountable numerical problems and
the convergence theory for this approach is very limited, even in combination with
gradient sampling [5]. Moreover, on large scale problems, also a limited memory version
of this approach will have to deal with matrices of significant size. Again the size of the
memory and other hyper parameters are crucial and not easy to choose.

Finally, there is a strand of articles based on the so-called proximal point method,
which is in general more a theoretical construction than a practical algorithm. Only
for special classes [24] the local proximal model problems can be solved efficiently. In
general, they are computationally almost as hard to minimize as the original nonsmooth
objective. A theoretical advantage is that the resulting iterates can be shown to cluster
at critical or first order minimal rather than just Clarke stationary points.

The same is true for the methodology of successive abs-linearization (SALMIN) pro-
posed and analyzed in [18] and [17]. Here, the local model problems are nonconvex
piecewise linear problems, which can be solved exactly by an active signature method
generalizing active set strategies for quadratic optimization [26]. We continue work on an
efficient implementation of SALMIN, where active kink Jacobians are accumulated and
factorized explicitly. In this approach no nonsmoothness, i.e., kink, is simply stepped
over, which makes sense if there are not too many of them. Hence, the SALMIN approach
is suitable for small to medium size problems.

To overcome this limitation, the approach proposed here avoids to stop at any kink.
Furthermore, the main emphasis is on limiting the number of hyper parameters to
an absolute minimum, so that the algorithm can be cast in autonomous software and
numerical results can be recorded and replicated unambiguously by anyone using it. That
should also simplify the task of software maintenance and the training and consultation
of users. Our method has the classical structure of a successive descent iteration

xk+1 = xk + ηkdk with ηk = argmin
η∈R

f(xk + ηdk),

where the directions dk are updated based on convex combinations of generalized gradients.
The step multipliers ηk are determined by a bracketing line-search that is much more
accurate than usually recommended in nonsmooth optimization.

The paper is organized as follows. In the following Section 2 we review the basic
concepts of nonsmooth analysis for directionally differentiable and semismooth functions,
respectively. In Section 3 we describe our method from a mathematical point of view
without regard for its numerical implementation. In Section 4 we derive some basic
properties and prove that the method can only converge to Clarke stationary points.
Section 5 reports preliminary numerical results before the article ends with a summary
and outlook in Section 6.
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To derive the presented results, we use the following notation. For 0 < ρ ∈ R, n ∈ N
and x ∈ Rn the open ball around x of radius ρ is denoted by Bρ(x) and for any M ⊆ Rn

we write M for the topological closure of M . For a function f : Rn → R the set of
Fréchet-differentiable points is written as Df ⊆ Rn and the level set with respect to x as
Lf (x) := {y ∈ Rn : f(y) ≤ f(x)}.

2 Required constructs of nonsmooth analysis
Throughout it is assumed that the objective f : Rn → R is locally Lipschitz continuous,
i.e., for every x ∈ Rn there is some ρ ∈ (0,∞) and L ∈ [0,∞) such that for all y, z ∈ Bρ(x)

|f(y)− f(z)| ≤ L‖y − z‖.

The class of all locally Lipschitz continuous functions is denoted by C0,1loc (R
n).

Generalized differentials and directional derivatives Under the above assumption
of local Lipschitz continuity the set of Fréchet-differentiable points Df of f is a dense
subset of Rn by Rademacher [9, Theorem 2, p. 81]. Thus, for all x ∈ Rn the Bouligand
differential

∂Bf(x) := {g ∈ Rn : there is (xk)k∈N ⊂ Df with x = lim
k→∞

xk and g = lim
k→∞

∇f(xk)}

is nonempty and the Clarke differential can be characterized by

∂Cf(x) := conv(∂Bf(x)) (1)

as shown in [7, Theorem 2.5.1]. The norm of the generalized gradients g ∈ ∂Cf(x) is
bounded by the Lipschitz constant L corresponding to x [7, Proposition 2.1.2].

Another consequence of the assumed local Lipschitz continuity of f on a finite di-
mensional Euclidean space is that virtually all definitions of directional derivatives are
identical [33], except for the disoriented construction of Clarke [7] which yields for x 7→ |x|
and x 7→ −|x| identical values at x = 0. In the same book it was shown that for x, d ∈ Rn

the generalized directional derivative

f ′(x; d) := lim
τ↘0

f(x+ τd)− f(x)

τ
(2)

is continuous with respect to its second argument d. In the piecewise smooth case, f ′(x; d)
is moreover piecewise linear with respect to d, see [32, Proposition 2.2.6.]. If f ′(x; d)
exists for all x, d ∈ Rn the function f is said to be directionally differentiable. This is
denoted by f ∈ C1dir(Rn).

Directional differentiation is a linear operator with respect to function addition and scal-
ing and it satisfies strict differentiation rules for products and nonlinear composition [34].
Directional derivatives can therefore be computed by the usual rules for composite func-
tions from their constituents by way of automatic or algorithmic differentiation. As shown
in [19] and cited in [20] that remains true even when the discontinuous sign function is
allowed as elemental function. However, we will not pursue this generalization here.
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Semismooth functions One classical analysis example function, see, e.g., [7, Exam-
ple 2.2.3], is given by

f(x) =

{
x2 sin

(
x−1

)
if x 6= 0

0 else
. (3)

This kind of function should not really appear in any practical computational model, if
only because its numerical evaluation and especially its sign is dubious for reasonably
small x. The function f given above is directionally differentiable but not in a strict
sense, which leads to

∂Bf(0) = ∂Cf(0) = [−1, 1] but f ′(0; 1) = f ′(0;−1) = 0 .

In other words, at the origin the Bouligand and Clarke differentials are not determined
by the directional derivatives and thus not computable by chain rule based procedures.
Hence, we make the following stronger assumption of semismoothness based on the
definition given in [25].

Definition 1 (Semismoothness). The locally Lipschitz continuous function f : Rn → R
is called semismooth if for any x, d ∈ Rn and any sequences (τk)k∈N ⊂ R, (θk)k∈N ⊂ Rn

and (gk)k∈N ⊂ Rn with

τk ↘ 0, θk/τk → 0 and gk ∈ ∂Cf(x+ τkd+ θk) ,

the sequence (〈gk, d〉)k∈N converges to the directional derivative f ′(x; d).

Loosely speaking the definition requires that the directional derivatives do not only
exist, but that they vary continuously if the reference point x varies in a cusp like
neighborhood. It is shown in [32, Proposition 3.1.2.] that the continuity of the directional
derivative with respect to general variations of x in an open neighborhood already implies
Fréchet differentiability and can thus not be required in the nonsmooth scanario.

The above example (3) is indeed not semismooth albeit differentiable. A standard
example for a semismooth function is the Fischer-Burmeister complementarity function
fFB : R2 → R defined by

fFB(x1, x2) :=
√

x21 + x22 − x1 − x2 = ‖(x1, x2)‖ − x1 − x2 ,

as shown in [35]. In [25], Mifflin proved that semismoothness is maintained by linear
combination, multiplication and composition. Hence, the semismooth functions form
a linear space which we will denote by C1sem(Rn). Therefore, the semismoothness of
fFB is equivalent to the semismoothness of the Euclidean norm euc(x1, x2) :=

√
x21 + x22

and thus all functions that are compositions of euc and smooth elemental functions.
The latter class will be denoted by C1euc(Rn) and the subset of functions that uses only
abs(x) := euc(x, 0) = |x| in their composition is denoted by C1abs(Rn). A formal definition
for the latter can be found in [36, Definition 2.2]. For f ∈ C1abs(Rn), one may naturally
calculate directional derivatives and generalized gradients by the forward and reverse
application of the chain rule, respectively, see, e.g., [11]. This turns out to be still true
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when f ∈ C1euc(Rn) as shown in [16]. In summary, we deal with the following hierarchy of
assumptions:

C1abs(Rn) ( C1euc(Rn) ( C1sem(Rn) ( C1dir(Rn)

The property of semismoothness is used extensively in nonsmooth equation solving,
where it guarantees superlinear convergence under the additional assumption of uniform
invertibility of the generalized Jacobians at the solution point itself.

Directionally active gradients and first order minimality For the proposed method, it
is important that one can pick gradients that are active in the following sense.

Lemma 1 (Directionally active gradients). For f ∈ C1sem(Rn) and any x, d ∈ Rn the set
of directionally active gradients

∂f(x; d) := {g ∈ ∂Bf(x) : 〈g, d〉 = f ′(x; d)}

is nonempty.

Proof. For any two real sequences (τk)k∈N, (εk)k∈N with τk ↘ 0 and εk/τk ↘ 0 there is,
by Rademacher’s theorem, xk ∈ Bεk(x + τkd) ∩ Df . Let θk := xk − (x + τkd) ∈ Bεk(0)
such that

lim
k→∞
‖θk/τk‖ ≤ lim

k→∞
εk/τk = 0 ,

and hence, θk/τk → 0. Due to the local Lipschitz continuity of f the sequence of gradients
(gk)k∈N, gk := ∇f(xk), must be bounded, and hence, it exhibits a converging subsequence
(gk`)`∈N whose limit g consequently satisfies g ∈ ∂Bf(x). Finally, the semismoothness of
f implies that

〈g, d〉 = lim
`→∞
〈gk` , d〉 = f ′(x; d).

A similar existence result for the smaller class of piecewise smooth functions is given
in [22, Lemma 2.11]. Furthermore, a result for the infinite dimensional case can be found
in [6, Lemma 4.5]. For the analysis of the algorithm proposed in this paper, we will use
the following result.

Lemma 2. For f ∈ C1sem(Rn) and any x, d ∈ Rn f ′(x; d) = − limτ↘0 f
′(x+ τd;−d).

Proof. For any monotonically declining zero sequence (τk)k∈N there exist directionally
active gradients gk ∈ ∂f(x+ τkd;−d) such that

lim
k→∞

f ′(x+ τkd;−d) = − lim
k→∞
〈gk, d〉 = −f ′(x; d) ,

where convergence follows from the semismoothness of f .

The univariate restriction φ(η) := f(x + ηd) of f in direction d ∈ Rn is semismooth
due to the semismoothness of f . This allows for an explicit representation of its Clarke
generalized derivative ∂Cφ in terms of its directional derivatives

φ′
+(η) := φ′(η; 1) = f ′(x+ ηd; d) and φ′

−(η) := −φ′(η;−1) = −f ′(x+ ηd;−d) (4)

as proven next.
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Lemma 3. For f ∈ C1sem(Rn) and x, d ∈ Rn, define φ ∈ C1sem(R), φ(η) := f(x + ηd).
Then, for all η ∈ R

∂Bφ(η) = {φ′
+(η), φ

′
−(η)} (5)

and thus
∂Cφ(η) = [min(φ′

−(η), φ
′
+(η)),max(φ′

−(η), φ
′
+(η))] , (6)

which further reduces at almost all η ∈ R to the singleton

∂Cφ(η) = {φ′
−(η)} = {∇φ(η)} = {φ′

+(η)} . (7)

Proof. Let g ∈ ∂Bφ(η). Then there is a sequence (ηk)k∈N ⊂ Dφ of Frèchet-differentiable
points for φ that converges to η with ∇φ(ηk) → g. The sequence (ηk)k∈N contains a
monotone subsequence (ηk`)`∈N whose distance to the limit is denoted by τk` := |ηk` − η|.
If (ηk`)`∈N is decreasing, the fact that ηk` ∈ Dφ and Lemma 2 show that

g = lim
ηk`↘η

∇φ(ηk`) = lim
ηk`↘η

−φ′(ηk` ;−1) = lim
τk`↘0

−φ′(η + τk` ;−1) = φ′(η; 1) = φ′
+(η) .

If otherwise (ηk`)`∈N is increasing the same arguments show g = φ′
−(η). Thus,

∂Bφ(η) ⊆ {φ′
+(η), φ

′
−(η)} .

Rademacher’s theorem implies the existence of a sequence (ηk)k∈N ⊂ Dφ with ηk ↘ η.
Let τk := ηk − η > 0 and gk := ∇φ(η + τk). Then the semismoothness of φ implies that
gk → φ′(η, 1) = φ′

+(η) and hence φ′
+(η) ∈ ∂B(η). If instead a sequence (ηk)k∈N ⊂ Dφ

with ηk ↗ η is chosen the same argument leads to φ′
−(η) ∈ ∂Bφ(η) which completes the

proof of Equation (5).
The other two statements (6) and (7) follow from the definition of the Clarke differential

given in (1) and again Rademacher’s theorem.

Clearly, η can only be a local minimizer of φ if the first order condition

φ′
−(η) ≤ 0 ≤ φ′

+(η) (8)

is satisfied. Therefore, a step size satisfying (8) will be called first order minimal. Note
that in the smooth case, also a local maximizer satisfies this stationarity condition. From
Equation (6), it follows that first order minimality is equivalent to

0 ∈ ∂Cφ(η) = [φ′
−(η), φ

′
+(η)] .

In our conceptual algorithm, we will assume that the line search algorithm satisfies this
condition exactly and in an actual implementation still approximately as will be discussed
in more detail in a companion paper.

6



3 The method in a nutshell
The proposed conjugate gradient method for semismooth objectives in Algorithm 1
consists of the following four main steps:

First, as typical for conjugate gradient methods, each iteration starts by computing a
first order optimal point along a previously determined direction d by means of finding a
suitable step size η ∈ R. If d is a descent direction this can be achieved by the conceptual
line search in Algorithm 3. If d happens to be no descent direction at x, but −d is
one, a line search will be performed in the opposite direction instead. This is encoded
in the algorithm by possibly negative step sizes η. If neither d nor −d give descent in
the objective, Algorithm 1 performs a null-step, i.e., η = 0. All this is implemented in
Algorithm 2 (fomin) and is assumed to produce exact first order minimal points along
the line η 7→ x+ ηd.

After the update of the iterate x, a generalized gradient g ∈ ∂Cf(x), orthogonal to
d, is determined by means of the function ortho(g+, g−; d) from a pair of directionally
active gradients g+ ∈ ∂f(x; d) and g− ∈ ∂f(x;−d).

Lastly, the search direction d ∈ Rn is updated by choosing the norm minimal element
in the convex combination of −g and the previous direction d. This is encoded in the
short(−g, d) function.

The algorithm uses the theoretical stopping criterion d = 0, which will only hold in
the limit, except in very special circumstances or due to round off errors.

Algorithm 1 Semismooth Conjugate Gradient Method (sscg)
Require: f ∈ C1sem(Rn), x0 ∈ Rn, Lf (x0) bounded, d0 ∈ Rn \ {0}

1: for k = 1, 2, . . . do
2: φ← f(xk−1 + • dk−1)
3: ηk = fomin(φ)
4: xk = xk−1 + ηkdk−1 . (11)
5: (g+, g−) ∈ ∂f(xk; dk−1)× ∂f(xk;−dk−1) . (13)
6: gk = ortho(g+, g−; dk−1) . (15)
7: dk = short(−gk, dk−1) . (16)
8: if dk = 0 then return xk

No guaranteed descent In general, we cannot guarantee the condition that all direc-
tions dk are down-hill in that φ′

+(0) = f ′(xk; dk) as defined in Equations (2) and (4),
respectively, is negative. Let alone do we require a so-called significant decrease as
enforced by gradient related methods in the smooth case. When f happens to be convex
or differentiable near xk, Equation (16) implies that

f ′(xk; dk) ≤ cos(θk)2f ′(xk;−gk) + sin(θk)2f ′(xk; dk−1) .

In the differentiable case this relation holds as an equality with the first term on the right
becoming simply −cos(θk)2‖gk‖2 and the second term vanishing due to the exact line
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search. In the convex case the inequality holds due to the sublinearity of the directional
derivative f ′(x; d) with respect to d. However, even given convexity the negative of a
generalized gradient does not need to be a descent direction, so that the first term may
be nonnegative. Moreover, the second term will then definitely be positive at nonsmooth
iterations since otherwise the exact line search along −dk−1 would not have stopped
at xk = xk−1 − ηkdk−1. Thus, we see that the chances for dk to be a descent direction
at xk are somewhat doubtful, even in the convex case. Therefore, in the conceptual
Algorithm 1, we allow for null-steps if f ′(xk;−dk) ≥ 0.

If xk happens to be a Clarke stationary point it may happen that Alogorithm 1 performs
infinitely many null-steps.

A semismooth bracketing line search procedure In the kth outer iteration of the sscg
algorithm, the inner algorithm fomin finds a, possibly negative, step size ηk that satisfies
the first order minimality conditions in (8) for φ(η) := f(xk−1+ ηdk−1) and φ(ηk) ≤ φ(0).
This is achieved by performing the line search in Algorithm 3 either in direction dk−1,
−dk−1 or a null-step, i.e., ηk = 0 as summarized in Corollary 1 at the end of this section.

The line search itself then considers a semismooth function l ∈ C1sem(R+) and assumes
that l′+(0) < 0. In case of descent in dk−1 for f , i.e, f ′(xk−1; dk−1) = φ′

+(0) < 0, the
functions l and φ coincide. Otherwise, when f ′(xk−1;−dk−1) = −φ−(0) < 0, the sign is
flipped via l(τ) := φ(−τ). Algorithm 3 searches for a τk > 0 that satisfies

l(τk) < l(0) and l′−(τk) ≤ 0 ≤ l′+(τk) , (9)

by generating a nested sequence of intervals containing at least one suitable candidate.

Algorithm 2 First order minimal step size (fomin)
Require: φ ∈ C1sem(R), Lφ(0) bounded

1: if φ′
+(0) < 0 then

2: l← φ
3: τ = line_search(l)
4: η = τ
5: else if φ′

−(0) > 0 then
6: l← φ(− • )
7: τ = line_search(l)
8: η = −τ
9: else

10: η = 0

11: return η

Lemma 4. Let l ∈ C1sem(R+), 0 < q < 1/2 and 1 < Q. Assume that l′+(0) < 0 and that
the level set Ll(0) is bounded. Then, Algorithm 3 stops at some τ∗ > 0 that satisfies (9)
or it produces a converging sequence of nested intervals (τ̌i, τ̂i)i∈N with

l′+(τ̌i) < 0 and l(τ̌i) ≤ l(0) and 0 < l′−(τ̂i) or l(τ̌i) ≤ l(τ̂i) (10)
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Algorithm 3 Line search
Require: l ∈ C1sem(R+), l′+(0) < 0, 0 < q < 1/2, 1 < Q, Ll(0) bounded

1: (τ̌0, τ0, τ̂0) = (0, 1,∞)
2: for i = 1, 2, . . . do
3: if l(τi−1) < l(τ̌i−1) and l′−(τi−1) ≤ 0 ≤ l′+(τi−1) then . (9)
4: return τi−1

5: if l′+(τi−1) < 0 and l(τi−1) < l(τ̌i−1) then
6: (τ̌i, τ̂i) = (τi−1, τ̂i−1)
7: else . 0 < l′−(τi−1) or l(τ̌i−1) ≤ l(τi−1)
8: (τ̌i, τ̂i) = (τ̌i−1, τi−1)

9: if τ̂i <∞ then
10: τi ∈ [τ̌i + q(τ̂i − τ̌i), τ̂i − q(τ̂i − τ̌i)]
11: else
12: τi ∈ (Qτ̌i,∞)

that all contain some τ∗ > 0 satisfying (9).

Proof. In the first part of the proof, we skip the interation index for better readability.
Note that any new trial value τ is strictly between the lower bound τ̌ and the upper
bound τ̂ and thus the relation τ̌ < τ < τ̂ is maintained during the iteration. Due to the
boundedness of the level set Ll(0) and since Q > 1 the condition τ̂ <∞ will be satisfied
after finitely many iterations and henceforth the length of the interval [τ̌ , τ̂ ] is reduced in
every iteration by the factor 1/2 < 1− q < 1. Moreover, the intervals are nested such
that their infinite intersection is nonempty.

As long as the algorithm did not terminate the conditions in line 5 ensure on the one
hand that the lower bounds τ̌ retain the invariant l′+(τ̌) < 0 and on the other hand
the strict monotonic decline of the values l(τ̌). The latter implies the second asserted
invariant l(τ̌) ≤ l(0) where equality only holds for the initial τ̌ = 0. On the other hand,
the upper bound τ̂ is only updated if the termination condition in line 3 did not hold
but 0 ≤ l′+(τ) or l(τ̌) ≤ l(τ), i.e., τ satisfies 0 < l′−(τ) or l(τ̌) ≤ l(τ). In summary,
Equation (10) holds in every iteration.

Hence, the iteration generates a sequence of nested intervals (τ̌i, τ̂i)i∈N such that there
exists some τ∗,i ∈ (τ̌i, τ̂i) with l(τ∗,i) < l(τ̌i) ≤ l(τ̌0) due to l′+(τ̌i) < 0. Since (τ̌i, τ̂i)
converge so does the sequence (τ∗,i)i∈N. Denoting the limit with τ∗, it follows that

l(τ∗) = lim
i→∞

l(τ∗,i) ≤ l(τ̌1) ≤ l(0) .

It remains to show that τ∗ satisfies the second part of Equation (9), i.e., the first order
optimality conditions. Since the sequence of lower bounds (τ̌i)i∈N converges to τ∗ it
follows from Lemma 2 and the invariant for the lower bounds that

l′−(τ∗) = lim
i→∞

l′(τ̌i; 1) = lim
i→∞

l′+(τ̌i) ≤ 0 ,

where the sequence τ∗ − τ̌i converges to 0 from above.
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To apply the same argument for the other inequality in the first order optimality
conditions, the sequence (τ̂i)i∈N cannot be used directly since l′−(τ̂i) ≥ 0 does not hold
necessarily for all i ∈ N. For any i, where l′−(τ̂i) < 0, the already proven relations in
Equation (10) yield l(τ̂i) ≥ l(τ̌i) ≥ l(τ∗) as the values at the lower bounds converge to
l(τ∗) from above. Thus, there must be an τ̃i ∈ (τ∗, τ̂i) with l′−(τ̃i) ≥ 0. Choosing a
monotone subsequence of

ˆ̂τ i :=

{
τ̂i if l′−(τ̂i) ≥ 0

τ̃i else

now allows to apply the same argument as before leading to l′+(τ∗) ≥ 0 which concludes
the proof.

Corollary 1. For f ∈ C1sem(Rn) and xk−1, dk−1 ∈ Rn, define φ ∈ C1sem(R), φ(η) :=
f(xk−1+ηdk−1). Assume that the level set Lφ(0) is bounded. Then Algorithm 2 computes
ηk ∈ R with

φ(ηk) ≤ φ(0) and φ′
−(ηk) ≤ 0 ≤ φ′

+(ηk) .

Here equality of the function values only holds in the case of a null-step, i.e., ηk = 0.

Proof. If φ′
+(0) < 0, Algorithm 2 uses l = φ, ηk = τk and the assertion follows directly

from Equation (9) ensured by Lemma 4. If φ′
−(0) > 0, l(τ) = φ(−τ) which implies that

l′+(τ) = −φ′
−(−τ) and l′−(τ) = −φ′

+(−τ)

and ηk = −τk such that Equation (9) yields

−φ′
+(ηk) = −φ′

+(−τk) = l′−(τk) ≤ 0 ≤ l′+(τk) = −φ′
−(−τk) = −φ′

−(ηk)

and also φ(ηk) = l(τk) < l(0) = φ(0). Lastly, if φ′
−(0) ≤ 0 ≤ φ′

+(0), Algorithm 2 chooses
ηk = 0 and thus φ(ηk) = φ(0).

Introducing a momentum term Even in the twice continuously differentiable and
strongly convex case, the exact discrete steepest descent method is known to approach
the unique minimizer in a zig-zaging fashion that pushes the linear convergence rate
arbitrarily close to 1, depending on the conditioning of the Hessian. To overcome this
problem one introduces some inertia in the search direction by setting

xk = xk−1+ηkdk−1 with dk = −αkgk+βkdk−1 and gk ∈ ∂Cf(xk)∩{dk−1}⊥ (11)

for positive scalar parameters αk and βk.
In the classical conjugate gradient method for the smooth case, Fletcher and

Reeves [12] recommended

αFR
k = 1, βFR

k = ‖gk‖2/‖gk−1‖2 with gk = ∇f(xk) (12)

while computing ηk by a fairly exact line search so that 〈gk, dk−1〉 is nearly zero. If f
is convex quadratic, βFR

k ensures that the successive search directions dk−1 and dk are
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conjugate with respect to the Hessian A = ∇2f ∈ Rn×n in that 〈dk, Adk−1〉 = 0. This
algebraic conjugacy property then follows by induction for all pairs in the sequence of
search directions until termination in at most n steps.

That concept of conjugacy still makes some sense for twice continuously differentiable
objectives. For f ∈ C1(Rn), according to [37], two directions dk and dk−1 are said to be
conjugate with respect to f at xk−1 if

0 = 〈dk,∇f(xk−1 + ηkdk−1)−∇f(xk−1)〉 .

There is no meaningful generalization to the semismooth case considered here, as far
as we are aware. Nevertheless, even for the nonsmooth scenario that name makes some
intuitive sense since the proposed method is just a rescaled version of the Fletcher Reeves
conjugate gradient method in the smooth case as we will see below.

The orthogonal gradient selection In order to determine the next search direction we
will use a pair of directionally active gradients

g+ ∈ ∂f(x; d), g− ∈ ∂f(x;−d) (13)

at the updated iterate x and with respect to the direction d that was just used for the
previous invocation of the algorithm fomin. With the resulting η of said invocation,
Corollary 1 then guarantees that

〈g−, d〉 = −f ′(x;−d) = φ′
−(η) ≤ 0 ≤ φ′

+(η) = f ′(x; d) = 〈g+, d〉 . (14)

We define

g := ortho(g+, g−; d) :=


〈g+, d〉g− − 〈g−, d〉g+
〈g+, d〉 − 〈g−, d〉

if 〈g+, d〉 6= 〈g−, d〉

g+ + g−
2

else .

(15)

In the first case of definition (15), i.e., 〈g−, d〉 6= 〈g+, d〉, it is easy to see that 〈g, d〉 = 0
while (14) ensures that the coefficients 〈g+, d〉 and −〈g−, d〉 are both nonnegative and thus
g ∈ conv{g−, g+}. In the second case of the definition the latter is clear while now (14)
ensures 〈g−, d〉 = 0 = 〈g+, d〉, and g−, g+ as well as their convex combination g are
orthogonal to d. Due to the definition of the Clarke differential as the convex hull of the
Bouligand differential, we have thus obtained a generalized gradient g ∈ ∂Cf(x) ∩ {d}⊥
that can replace the proper gradient in the direction update formulate of the classical
smooth conjugate gradient method. Notice that Wolfe in [37] proposed to only use the
generalized gradient g+ on the far side of a kink.

When φ is differentiable at η the minimality condition (8) reduces to φ′
−(η) = φ′

+(η) = 0
in which case we can set g to any convex combination of g+ and g−. Moreover, it is then
usually the case that f itself is differentiable at x+ ηd so that the pair (g+, g−) reduces
to the singleton g+ = g− = g.

11



The shortest convex direction update There are very many different approaches for
defining the momentum term, see, e.g., [28] for an early reference, some of which are
derived by discretizations of second order ordinary differential equations or inclusions.
We choose the coefficients in Equation (11) such that the resulting new search direction
dk has minimal Euclidean norm subject to αk ≥ 0 ≤ βk and αk + βk = 1. This definition
has been called in [30] and [8] the smallest residual method, but that label is not all
that descriptive and furthermore invites confusion with the much better known minimal
residual method in numerical linear algebra [10].

Under the orthogonality assumption 〈gk, dk−1〉 = 0 enforced by the line search, the
new search direction dk is defined by the simple relation

dk := short(−gk, dk−1) :=
−‖dk−1‖2gk + ‖gk‖2dk−1

‖gk‖2 + ‖dk−1‖2
= −αkgk + βkdk−1 , (16)

where the coefficients αk and βk are given by

αk :=
‖dk−1‖2

‖gk‖2 + ‖dk−1‖2
=

‖dk−1‖2

‖gk + dk−1‖2
=

(
〈dk−1, gk + dk−1〉
‖dk−1‖‖gk + dk−1‖

)2

= cos(θk)2 ,

βk :=
‖gk‖2

‖gk‖2 + ‖dk−1‖2
= 1− αk = sin(θk)2 ,

and θk ∈ [0, π/2) is the angle between the vectors dk−1 and (gk+dk−1) as well as between
dk and −gk as depicted in Figure 1. In other words dk will be the shortest convex
combination of −gk and dk−1. This is similar to the minimal set Gk considered by
Wolfe for his method in [37]. Furthermore, it follows for gk = 0 that dk = 0 and hence
Algorithm 1 stops.

dk−1

dk

−gk

θk

θk

Figure 1: The shortest convex
direction update.

The length of dk is monotonially reduced according to

‖dk‖ = cos(θk)‖gk‖ = sin(θk)‖dk−1‖ ≤ ‖dk−1‖. (17)

As already observed by Wolfe in [37], it then follows by
induction from 0 6= d0 = −g0 ∈ ∂Cf(x0) that

dk ∈ − conv{g0, g1, . . . , gk} for k = 0, 1 . . . (18)

so that we have in fact an extremely limited memory
version of a bundle method.

4 Basic convergence properties
Relation to the Fletcher-Reeves conjugate gradients
method When applied to positive definite quadratic
objectives the proposed method represents of course a Krylov subspace iteration, and
we found experimentally that it produces exactly the same iterates as the classical
conjugate gradient method. Actually, Wolfe already made this observation almost 50
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years ago [37] and he noted that the proposed method is just a rescaled version of
the classical conjugate gradient method that was already discussed by Hestenes and
Stiefel in [21]. More specifically, we have the following result for the general scenario
f ∈ C1dir(Rn).

Lemma 5 (Rescaled Fletcher Reeves). Let f ∈ C1sem(Rn), x0 ∈ Rn, and the level set
Lf (x0) be bounded. For −g0 := dFR

0 := d0 ∈ Rn \ {0}, assume that the iteration of
Algorithm 1 did not stop up to some K ∈ N, i.e., dk 6= 0 for all k ≤ K. Then, the vectors
dFR
k := ‖gk‖2‖dk‖−2dk satisfy the recurrence

dFR
k = −gk + βFR

k dFR
k−1 = −‖gk‖2

k∑
j=0

gj
‖gj‖2

, (19)

for 1 ≤ k ≤ K, which means that they are identical to the directions generated by the
Fletcher-Reeves method in Equation (12).

Proof. Note that dk 6= 0 implies gk 6= 0 and thus from the definition of dFR
k and the

update formula of the dk in Equation (16) it follows

dFR
k =

‖gk‖2dk
‖dk‖2

=
‖gk‖2‖dk−1‖2

(
−gk + ‖dk−1‖−2‖gk‖2dk−1

)
‖dk‖2(‖gk‖2 + ‖dk−1‖2)

.

Using the definition of sin(θk)2 and the squared form of (17) we see that

‖gk‖2‖dk−1‖2

‖gk‖2 + ‖dk−1‖2
= ‖dk−1‖2sin(θk)2 = ‖dk‖2

such that

dFR
k = −gk +

‖gk‖2

‖dk−1‖2
dk−1 = −gk +

‖gk‖2

‖gk−1‖2
dFR
k−1 = −gk + βFR

k dFR
k−1

as asserted. The second part follows from induction.

This is exactly the nonlinear conjugate gradient version of Fletcher and Reeves [12]
given in Equation (12) with the gradients gk being identical for both formulations in the
smooth case. Notice that we have not exploited the particular properties of the conjugate
gradient method in the quadratic or even just smooth case. The ratio ‖gk‖/‖dk‖ is likely
to be bounded in the smooth case but will blow up in the nonsmooth case, where the
generalized gradients ‖gk‖ are typically bounded away from zero but dk = O(1/

√
k) tends

to zero according to the bound (23) derived in the following section. Thus, the length
of the Fletcher-Reeves direction ‖dFR

k ‖ = ‖gk‖2/‖dk‖ will grow towards infinity, which
does not seem a good idea for the actual line search procedure. The first observation in
the following section also suggests that the re-scaling is more natural in the nonsmooth
context. For the Fletcher-Reeves method, one has in the smooth case under suitable
assumptions the global convergence result that

lim inf
k→∞

‖∇f(xk)‖ = 0 ,
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see, e.g., [29] for a result with an exact line search or [2], [26, Theorem 5.7] for the case of
a strong Wolfe line search. However, there is no convergence result regarding the function
values or the iterates themself. Hence, we can not expect to get stronger results in the
nonsmooth case.

As in the proof of Lemma 5 we obtain from the squared version of Equation (17)

1

‖dk‖2
=
‖gk‖2 + ‖dk−1‖2

‖gk‖2‖dk−1‖2
=

1

‖dk−1‖2
+

1

‖gk‖2
=

k∑
j=0

1

‖gj‖2
, (20)

which has been used widely in the literature in one form or another, see e.g., [29, 2].
From Equation (19) multiplied by ‖gk‖−2‖dk‖2, one obtains

dk = −‖dk‖2
k∑

j=0

gj
‖gj‖2

. (21)

This together with the reciprocal of (20) shows that indeed dk is in the negative convex
hull of all previous generalized gradients as already noted in Equation (18). In the
nonsmooth case considered here, we likely have

0 < γ0 := inf
k
‖gk‖ ≤ sup

k
‖gk‖ =: γ1 <∞ , (22)

where the uniform upper bound is ensured by our assumption of local Lipschitz continuity
for f if the iteration is started at x0 within a compact level set Lf (x0). That means
the averaging of the generalized gradients in Equation (21) is more or less uniform. We
obtain from Equation (20) that

γ20
k + 1

≤ ‖dk‖2 ≤
γ21

k + 1
, (23)

and further with Equations (16), (22) and the condition number κ := γ1/γ0 ≥ 1 that
1

1 + kκ2
≤ cos(θk)2 ≤

1

1 + k/κ2
.

Thus, we see that the so-called Zoutendijk conditon [38] is exactly satisfied. More
specifically, the search directions −dk and the negative gradients −gk do not become
orthogonal too fast in that the squared cosines of the angles between them are just not
summable. When f is Lipschitz continuously differentiable, one can guarantee by one
of several so-called efficient line searches that when started from any x0 ∈ Lf (x0) the
gradients gk cannot be bounded away from zero so that the sequence (xk)k∈N must have
at least one stationary cluster point. In the nonsmooth scenario considered in this paper
we obtain the following weaker result.

Theorem 1 (Selective convergence). Let f ∈ C1sem(Rn), x0 ∈ Rn, d0 ∈ Rn \ {0} and
assume that the level set Lf (x0) is bounded. If the iteration of Algorithm 1 stops at some
index K ∈ N, then xK is a Clarke stationary point of f , i.e., 0 ∈ ∂Cf(xK). Otherwise,
if the iteration sequence (xk)k∈N has a limit x∗ it must be a Clarke stationary point.
Furthermore, the number of consecutive null-steps at any non-limit point is finite.
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Proof. If the iteration of Algorithm 1 stopped at xK then dK = 0 and dK−1 6= 0. This
however can only be due to 0 = gK ∈ ∂Cf(xK) in the short update rule in Equation (16).

For the second case, let some ε > 0 be given. Because of the upper semicontinuity of
the Clarke differential [7, Proposition 2.1.5] and the assumed convergence of xk there is a
δ > 0 and a k̃ ∈ N such that xk ∈ Bδ(x∗) for all k > k̃ and

∂Cf(xk) ⊂ ∂Cf(x∗) +Bε(0) .

Note that the latter set is a sum of convex and compact sets, hence itself is convex and
compact. For any choices of gk ∈ ∂Cf(xk) define the convex combination

g̃k :=
‖dk̃‖

2‖dk‖2

‖dk̃‖2 − ‖dk‖2
k∑

j=k̃+1

gj
‖gj‖2

,

where the factor in front of the sum ensures that the coefficients of g̃k with respect to the
gj really sum to 1 because of (20). Using (21) twice, first for k̃ and then for k it follows

‖dk‖2
k∑

j=k̃+1

gj
‖gj‖2

= ‖dk‖2
 k∑

j=0

gj
‖gj‖2

+
dk̃
‖dk̃‖2

 = −dk +
‖dk‖2

‖dk̃‖2
dk̃,

and hence,

g̃k =

(
−dk +

‖dk‖2

‖dk̃‖2
dk̃

) ‖dk̃‖
2

‖dk̃‖2 − ‖dk‖2
.

Since we know from (23) that dk → 0 it follows also that g̃k → 0 ∈ ∂Cf(x∗) +Bε(0) and
thus finally that 0 ∈ ∂Cf(x∗) as we may choose ε arbitrarily small.

As we have noted before the iteration can only become finite if for some dK = 0 = gK
for some K in which case xK = x∗ is clearly Clarke stationary. If infinitely many
null-steps happen at some xk in a row this point is the limit and thus must be Clarke
stationary as was proven before.

While the iteration cannot get stuck at a single nonstationary point, however it is
theoretically possible that the search path descents gradually along a downward spiral to
some sort of limiting orbit. We have yet to observe this behavior in practice.

One might assume that in actual computations it would be very unlikely that the
iterates are attracted to a set that does not even contain a stationary point. In our limited
numerical experience, for example on piecewise linear convex or nonconvex problems,
that never happened, possibly also due to perturbations by round-off errors. Therefore,
we have so far refrained from adding additional safeguards, which might improve the
global convergence theory, but would make the method more complicated and thus less
elegant.

From a theoretical point of view, we obtain the following fairly strong but not entirely
satisfactory convergence result for the general nonconvex case:
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Theorem 2. Let f ∈ C1sem(Rn), x0 ∈ Rn, d0 ∈ Rn \ {0} and assume that the level
set Lf (x0) is bounded. Then, if the iteration in Algorithm 1 does not stop, there is a
nonempty set of cluster points X∗ and a value f∗ ∈ R such that

0 ∈ conv

{ ⋃
x∗∈X∗

∂Cf(x∗)

}
and X∗ ⊆ f−1(f∗) . (24)

When X∗ = {x∗} is a singleton the point x∗ is Clarke stationary and if furthermore f is
convex near x∗ we must have a local minimizer.

Proof. Due to the nonascent condition, f(xk) ≤ f(xk−1) for all k ∈ N, ensured by the
linesearch, the iterates must belong to the compact level set Lf (x0). Thus, the set of
cluster points X∗ is nonempty and closed.

If for some k ∈ N one has that the generalized gradient gk = 0 it follows that dk = 0
by the short update rule in Equation (16) in contradiction to the assumption that the
iteration did not stop. Thus, gk 6= 0 for all k ∈ N.

If (gk)k∈N exhibit a subsequence that converges to 0 the corresponding subsequence of
iterates xk must have a cluster point x∗. That x∗ is a Clarke stationary point due to
the outer semicontinuity of ∂Cf . Then the assertion holds as zero is contained in the set
∂Cf(x∗) and thus its union with other generalized differentials.

Thus, the only case left is 0 < γ0 < γ1 <∞ such that Equation (23) holds. Now let,
for k ∈ N,

δk := sup
j≥k

min
x∗∈X∗

‖xj − x∗‖ ,

where the existence of the minimum is justified by the closedness of X∗. Assume that
(δk)k∈N would not converge to 0. That is, there is a constant c > 0 such that for all k ∈ N
there is jk ∈ N with jk ≥ k and

min
x∗∈X∗

‖xjk − x∗‖ > c .

However, the bounded sequence (xjk)k∈N itself must have a cluster point x̃∗ ∈ X∗
contradicting the existence of such a c and thereby proving that δk → 0 as k →∞. That
means, for all δ ∈ (0,∞) there is an index k ∈ N such that for all j ∈ N with j ≥ k

‖xj − x∗j‖ < δ ,

where x∗j ∈ argminx∗∈X∗‖xj − x∗‖. The upper semicontinuity of ∂Cf then translates the
difference in the input space to a difference in the gradients, i.e., for all ε ∈ (0,∞) there
is an index k ∈ N such that for all j ≥ k

sup
gj∈∂Cf(xj)

inf
g∗j∈∂Cf(x∗j )

‖gj − g∗j‖ < ε .

Taking a specific choice for the gj in the supremum, namely those generated by the
algorithm in iteration j and enlarging the set of the infimum to G∗ :=

⋃
x∗∈X∗

∂Cf(x∗) ⊃
∂Cf(x∗j ), for all j, then leads to

inf
g∗∈G∗

‖gj − g∗‖ < ε .
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Taking the supremum over j ≥ k it follows that for each ε > 0 there is a kε ∈ N with

sup
k≥kε

inf
g∗G∗
‖gk − g∗‖ ≤ ε ,

i.e., dist(gk, G∗) := infg∗∈G∗‖gk−g∗‖ ≤ ε for all k ≥ kε. It now follows from Equation (21)
that

dk =
‖dk‖2

‖dkε−1‖2
dkε−1 − ‖dk‖2

k∑
j=kε

gj
‖gj‖2

and from Equation (17), by induction, that

‖dk‖ = ‖d0‖
k∏

j=1

sin(θj) and βkε,k :=

k∏
j=kε

βj =

k∏
j=kε

sin(θj)2 =
‖dk‖2

‖dkε−1‖2
.

Combining the above then yields

dk ∈ (1− βkε,k) conv{−gkε , . . . ,−gk}+ βkε,kdkε−1 ,

where Equation (23) implies that βkε,k converge to zero as k tends to infinity for any
fixed kε. Hence, we conclude that

0 = lim
k

dist(dk, conv{−gkε , . . . ,−gk})

≥ lim
k

dist(dk,− convG∗)− ε

= dist(0,− convG∗)− ε ,

which proves the assertion (24) since ε can be chosen arbitrarily small. The final statement
follows immediately.

Hence, we could at least classify the cluster points of the generated iterates to some
extend. If X∗ has a reasonably small diameter one might interpret its elements as
ε-stationary points in the sense of [14], but there is no guarantee for that. Furthermore,
one might assume that in practice it would be very unlikely that the iterates are attracted
to a level set f−1(f∗) that does not even contain a stationary point.

The theoretical properties derived in this section can be illustrated on the simple
Euclidean norm example f : Rn → R with n > 1 defined by

f(x) = ‖x‖ with ∇f(x) = g(x) = x/‖x‖ if x 6= 0. (25)

It is directionally but not piecewise differentiable or as we introduced in the first section
in C1euc(Rn) rather than abs-smooth. It can also be viewed as the limit of piecewise linear
rotationally symmetric inverted pyramids with a number of faces tending to infinity. The
corresponding optimization trajectories will then also converge to those of the limiting
function ‖x‖, which is everywhere differentiable except at the minimizer x∗. Hence, our
method becomes standard conjugate gradient with an exact line search, except that we
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assume d0 to be chosen arbitrarily. That can happen when f is defined differently outside
a certain ball and the iteration reaches its inside at x1 along an arbitrary direction d0
from some fictitious point x0, where we renumber the direction to exploit the identities
derived in the Sections 3 and 4. Then, on the one hand, we obtain from ‖gk‖ = 1 for
k > 0 by induction from the recurrences (20) and (17)

‖dk‖2 =
‖d0‖2

1 + k‖d0‖2
and sin(θk)2 =

1 + (k − 1)‖d0‖2

1 + k‖d0‖2
,

while, on the other hand, with ‖dk−1‖ = cos(θk−1) it follows that

〈xk, dk−1〉 = ‖xk‖〈gk, dk−1〉 = 0 and 〈xk−1, dk−1〉 = −‖xk−1‖cos(θk−1)
2,

and thus,

‖xk−1‖ =
−〈xk−1, dk−1〉

cos(θk−1)
2 =

−〈xk−1 + ηkdk−1, dk−1〉+ ηk‖dk−1
2‖

cos(θk−1)
2 = ηk.

Moreover, it then follows geometrically that

f(xk)
2 = ‖xk‖2 = ‖xk−1‖2sin(θk−1)

2 = ‖x1‖2/k.

Hence, ‖dk‖, cos(θk), f(xk)− f(x∗) = f(xk), and ‖xk − x∗‖ all decline indeed like 1/
√
k

on this example such that we have indeed convergence also of the function values and
the iterates. It is interesting that the speed of convergence of the function values and
iterates actually increases with the length ‖d0‖ of the original search direction. If it were
infinity we would get d1 = g1 and one step of steepest descent would get us to the exact
solution x2 = x∗ = 0. The smaller d0 is the more reluctant the search trajectory adjusts
to the local gradient gk and the slower is the convergence.

5 Preliminary numerical results
To turn the conceptual ideas presented in the previous sections into an implementable
algorithm we made to following changes. For the lines search termination criterion we
used τ̂− τ̌ < 10−13 and determined the directionally active gradients at the corresponding
bounds η̌, η̂ of the last iteration instead of at the theoretical minimizer ηk, i.e.,

g+,k ∈ ∂f(xk−1 + η̂kdk−1; d) and g−,k ∈ ∂f(xk−1 + η̌kdk−1;−d) .

We used Q = 2 and q = 8/9 in Algorithm 3 and choose the new trial value τi by bisection
of the interval [τ̌i, τ̂i]. For the stopping of the sscg algorithm itself we simply fix the
number of iterations to K = 200.

A preliminary implementation of the Algorithm 1 using MATLAB is tested for two
examples showcasing different features. First we consider the large scale nonconvex and
piecewise smooth test problem chained crescent II to demonstrate the performance for
this adversarial class of problems.

As a second example we consider an optimization problem motivated by an application
in image denoising and compare to the state of the art split Bregman algorithm, see [15].
In contrast to the first example this is a convex problem.
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Chained crescent II This standard test problem from nonsmooth optimization, see,
e.g., [3], has the form

f(x) :=

n−1∑
i=1

max
{
x2i + (xi+1 − 1)2 + xi+1 − 1,−x2i − (xi+1 − 1)2 + xi+1 + 1

}
,

x0,i :=

{
−1.5 if i mod 2 = 1

2 else .

and is therefor nonconvex. The optimal function value f(x∗) = 0 is obtained in x∗ =
(0, . . . , 0). In Figure 2a we report the observed function values over the iterations for
three different choices of n, namely n = 50, n = 500 and n = 5000. We observe that
for higher dimension we get longer spans of iterations in which the algorithm has to do
nullsteps in order to find a new search direction, however we have no reason to believe
that the overall reduction in the function values would break for longer computations.

Figure 2b shows the norm of the search direction ‖dk‖ that in all three cases converge
roughly like the k−1/2 as predicted by (23). We see however certain iterations in which
‖dk‖ is not reduced. This may be due to the not quite exact line search resulting in a
small violation of the orthogonality of gk and dk−1. The problem also seems to arise
more often if n increases.
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iteration k

f(xk), n = 50

f(xk), n = 500

f(xk), n = 5000

(a) Function values at the iterates.
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iteration k

‖dk‖ ‖dk‖ ‖dk‖ k−1/2

(b) Norm of search directions.

Figure 2: Convergence history plots for the chained crescent II example.

Image denoising As a second example we consider a classical application in image
denoising using the popular ROF model, see [31], for the well known cameraman test
image. For this the pixel values of an image are represented in vectors x ∈ Rn, n = 2562,
and D : Rn → Rj is an operator that yields the j = 2 · 256 · 255 differences in neighboring
pixels. The objective reads

f(x) = 1
2‖x− xd‖22 + ρ‖Dx‖1
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for a positive parameter ρ ∈ R and a given noisy image xd. Minimization of this objective
aims to find an image x that is close to the given one while reducing the `1-norm of the
jumps. For the target xd the original image x∗ is perturbed by adding normally distributed
noise uniformly to all pixels of the original image, i.e., xd,j = x∗,j + max(x∗)N (0, 1)/20
for j = 1, . . . , n.

In contrast to the nonconvex example we observe here no nullsteps and the norm of the
search directions ‖dk‖ reduces monotonically and with the expected rate as depicted in
Figure 3b. Moreover, the actual step length ‖xk − xk−1‖ reduce linearly with the number
of iterations k.

Most importantly, the sscg algorithm outperforms the split Bregman algorithm when
compared over the number of iterations as can be seen in Figure 3a.
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(a) Function values at the iterates.
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Figure 3: Convergence history plots for the image denoising example.

6 Summary and outlook
We propose and implement a conjugate gradient based descent method that is well defined
for semismooth problems and does not make any convexity assumption. The convergence
analysis in Section 4 is rather simple and elegant but quite powerful, though certainly
far from complete. We show in Theorem 1 that the method can only converge to Clarke
stationary points within a compact level set.

The method relies on a fairly accurate bracketing line-search, which typically requires
a handful of function and directional derivative evaluations. Per outer iteration one
needs two directionally active gradient, which can be obtained in the reverse mode of
algorithmic differentiation, a.k.a. back propagation, see, e.g., [11].

The method properties are a significant advance on the state of the art, especially
since it automatically selects the step sizes and requires only the setting of tolerances
for the stopping criteria of the outer iteration and the line-search, respectively. Except
in the pseudo-smooth case where a sub-sequence of quasi-limiting gradients converge
to zero, the length of the search direction as well as its cosine with some generalized
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gradient decline monotonically like O(1/
√
k). One might suspect that this is only a good

idea in the catchment of a local minimizer, but that a reset of d might be needed when
the iteration escapes from a saddle point and should start moving down a steep slope.
Without reset on the Euclidean norm example (25) the convergence rate of function
values and solution errors is exactly O(1/

√
k), which we expect to be typical for sharp

minimizers in general.
As mentioned in the introduction, the main thrust of this investigation is the develop-

ment of an algorithmic framework that allows the provision of a software package for
the solution of general semismooth optimization problems. It should avoid much of the
trail and error aspect of the currently used methodology and still achieve a similar if
not superior computational efficiency. Naturally, much remains to be done to this end.
Most importantly, one should envision a careful implementation that utilizes abs-smooth
and euc-smooth structure. Furthermore, the repeated occurence of null steps can be
efficently exploited to compute a descent direction within a finite number of iterations.
However, resetting the direction d, stopping criteria and a posteriori solution analysis
remain significant challenges.
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