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Abstract. This is Part II of a study on mixed-integer programming
(MIP) relaxation techniques for the solution of non-convex mixed-integer
quadratically constrained quadratic programs (MIQCQPs). We set the
focus on MIP relaxation methods for non-convex continuous variable
products and extend the well-known MIP relaxation normalized multi-
parametric disaggregation technique (NMDT), applying a sophisticated
discretization to both variables. We refer to this approach as doubly dis-
cretized normalized multiparametric disaggregation technique (D-NMDT).
In a comprehensive theoretical analysis, we underline the theoretical ad-
vantages of the enhanced method D-NMDT compared to NMDT. Fur-
thermore, we perform a broad computational study to demonstrate its
effectiveness in terms of producing tight dual bounds for MIQCQPs. Fi-
nally, we compare D-NMDT to the separable MIP relaxations from Part
I and a state-of-the-art MIQCQP solver.
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1 Introduction

In this work, we study relaxations of general mixed-integer quadratically con-
strained quadratic programs (MIQCQPs). More precisely, we consider discretiza-
tion techniques for non-convex MIQCQPs that allow for relaxations of the set
of feasible solutions based on mixed-integer programming (MIP) formulations.
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We enhance the normalized multiparametric disaggregation technique (NMDT)
introduced in [7]. NMDT is a McCormick relazation based MIP relaxation ap-
proach, which is applied to form relaxations of the quadratic equations z = z2
and z = zy. The McCormick relaxation is a set of four inequalities that describe
the convex hull of the feasible points of the equation z = zy in the satisfying
finite lower and upper bounds on x and y, see [16]. We extend NMDT by apply-
ing a discretization to both variables. We refer to the latter as doubly discretized
NMDT (D-NMDT). Both MIP formulations, NMDT and D-NMDT, can be ap-
plied to MIQCQPs to form an MIP relaxation by introducing auxiliary variables
and one such quadratic equation for each quadratic term in the MIQCQP. Such
an MIP relaxation can then be solved with a standard MIP solver. We analyze
these MIP relaxation approaches theoretically and computationally with respect
to the quality of the dual bound they deliver for MIQCQPs.

For a thorough discussion of background on discretization and piecewise lin-
ear techniques in MIQCQPs, please refer to Part I [3].

Contribution We extend NMDT by a discretization of both variables, called
D-NMDT. We analyze both MIP relaxations in terms of the dual bound they im-
pose for non-convex MIQCQPs. In a theoretical analysis, we show that D-NMDT
requires fewer binary variables and yields better linear programming (LP) relax-
ations at identical relaxation errors compared to NMDT. Finally, we perform
an extensive numerical study where we use NMDT and D-NMDT to generate
MIP relaxations of non-convex MIQCQPs. We show that D-NMDT has clear
advantages, such as tighter dual bounds, shorter runtimes, and it finds more fea-
sible solutions to the original MIQCQPs when combined with a callback function
that uses the non-linear programming (NLP) solver IPOPT [19]. These effects
become even more apparent in dense instances with many variable products.
Moreover, we combine NMDT and D-NMDT with the tighten sawtooth epigraph
relaxation from Part I [3] to obtain even tighter relaxations for z = x? terms
in MIQCQPs. This tightening leads to improved results in the computational
study.

Outline In Section 2 and Section 3 we review several useful concepts, notations,
and core formulations from Part I [3]. In Section 4, we recall the NMDT MIP
relaxation and introduce the new MIP relaxation D-NMDT. In Section 5, we
prove various properties about the strengths of the MIP relaxations focusing on
volume, sharpness, and optimal choice of breakpoints. In Section 6, we present
our computational study.

2 MIP Formulations

We follow Part I [3] for notation used in this work. We provide this section here
for completeness of this article.
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We study relaxations of general mixed-integer quadratically constrained
quadratic programs (MIQCQPs), which are defined as

min #'Qox + cyx + djyy,
st. Qi+ cir+djy+b; <0 jel,....m,
x; € [z, Ti] 1el,...,n,

y € {0,1}*,

(1)

for Qo, Qj € R"*", cp,cj € R", dy,d;j € R¥ and bj € R, j = 1,...m. Throughout
this article, we use the following convenient notation: for any two integers i < 7,
we define [i,j] = {i,i+1,...,7}, and for an integer i > 1 we define [i] := [1, ¢].
We will denote sets using capital letters, variables using lower case letters and
vectors of variables using bold face. For a vector w = (u1, ..., u,) and some index
set I < [n], we write us := (u;)ier. Thus, e.g. upy = (u1,. .., u;). Furthermore,
we introduce the following notation: for a function F': X — R and a subset
B c X, let grag(F), epig(F) and hypg(F') denote the graph and the epigraph
of the function F over the set B, respectively. That is,

grag(F) = {(u,2) e BxR:z = F(u)},
epig(F) ={(u,2) e BxR:z > F(u)}.

In the following, we introduce MIP formulations as we will use them to represent
these sets as well as the different notions of the strength of an MIP formulation
explored in this work.

We will study mixed-integer linear sets, so-called mixed-integer programming
(MIP) formulations, of the form

P = {(u,v,2) e R4 x [0,1]P x {0,1}7 : A(u,v,2z) < b}

for some matrix A and vector b of suitable dimensions. The linear programming
(LP) relazation or continuous relazation PYF of P is given by

PP = {(u,v,2z) e R¥ x [0,1]7 x [0,1]? : A(u,v,2) <b}.
We will often focus on the projections of these sets onto the variables u, i.e.
proj, (P™) = {u e R*™"' : 3(v,2) € [0,1]" x {0,1}¢ s.t. (u,v,2)e PT}. (2)

The corresponding projected linear relazation proj, (P™F) onto the wu-space is
defined accordingly.

In order to assess the quality of an MIP formulation, we will work with
several possible measures of formulation strength. First, we define notions of
sharpness, as in [5,14]. These relate to the tightness of the LP relaxation of an
MIP formulation. Whereas properties such as total unimodularity guarantee an
LP relaxation to be a complete description for the mixed-integer points in the
full space, we are interested here in LP relaxations that are tight description of
the mixed-integer points in the projected space.
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Definition 1. We say that the MIP formulation P is sharp if
proj, (P*") = conv(proj,, (P™")).

holds. Further, we call it hereditarily sharp if, for all I < [L] and 2 € {0,1}1],
we have
proju(PLplzfzﬁ) = conv (proju(PIP|21:ﬁ)) .

Sharpness expresses a tightness at the root node of a branch-and-bound tree.
Hereditarily sharp means that fixing any subset of binary variables to 0 or 1
preserves sharpness, and therefore this means sharpness is preserved throughout
a branch-and-bound tree.

In this article, we study certain non-polyhedral sets U < R%*! and will
develop MIP formulations P to form relaxations of U in the projected space,
as defined in the following.

Definition 2. For a set U € R*! we say that an MIP formulation P is an
MIP relaxation of U if
U < proj, (P™).

Given a function F': [0,1]? — R, we will mostly consider
U = grag7¢(F) < R4
In particular, we will focus on either
U={(z,2)€[0,1]*:2=2*} or U={(v,y,2)e[0,1]*: 2 = zy}.
We now define several quantities to measure the error of an MIP relaxation.

Definition 3. For an MIP relaxation P of a set U < R*!, let w € proj,, (P™).
We then define the pointwise error of w as

5(11, U) = min{|ud+1 — ﬁd+1| ue U, U = ﬁ[d]]}.
This enables us to define the following two error measures for P'¥ w.r.t. U:

1. The maximum error of P'¥ w.r.t. U is defined as

EMaX (PP U):=  max  E(u,U).

ueproj,, (P1P)
2. The average error of P w.r.t. U is defined as
E™I(PY U) := vol(PP\U).

Via integral calculus, the second, volume-based error measure can be interpreted
as the average pointwise error of all points u € proj,, (P™T). Note that whenever
the volume of U is zero (i.e. it is a lower-dimensional set), the average error just
reduces to the volume of P'F.

Both of the defined error quantities for an MIP relaxation P'Y can also be
used to measure the tightness of the corresponding LP relaxation P"F. In Sec-
tion 5, we use these to compare formulations when PP is not sharp.
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3 Core Relaxations

In the definition of the MIP relaxations studied in this work, we will frequently
consider equations of the form z = xy for continuous or integer variables  and y
within certain bounds D, = [z,Z] and D, := [y,y], respectively. To this end,
we will often use the function F': D — R, F(z,y) = zy, D := D, x D,;, and refer
to the set of feasible solutions to the equation z = xy via the graph of F', i.e.
grap(F) = {(z,y,2) € D x R : z = zy}. In order to simplify the exposition, we
will, for example, often write grap(zy) or refer to a relaxation of the equation
z = zy instead of grap, (F). We will do this similarly for the univariate function
f: D, — R, f(z) = 22 and equations of the form z = z2, for example. For
inequalities, like z > xy or z = 22, we can use the epigraph.

Furthermore, we repeatedly make use of several “core” formulations for spe-
cific sets of feasible points. They are introduced in the following.

3.1 McCormick Envelopes

The convex hull of the equation z = zy for (x,y) € D is given by a set of linear
equations known as the McCormick envelope, see [16]:

M(z,y) = {(z,y,2) € [z,7] x [y, 7] x R: (4)}. (3)
zy+try—-z-y< z <T-yt+z-y—=T-y, (4)
rTy+tr-y—x-y< z <r-ytx-y—x-y.

In case one of the variables, here 3, is binary, the McCormick envelope of
z = x3 simplifies to

M(z, 8) = {(z,B,2) € [z,7] x [0,1] x R : (6)}. (5)
z-B<2<%-0,
zr—z-(1-p)<z<z—z -(1-7) ©)

For univariate continuous quadratic equations z = 22, it simplifies to

Mz, z) = {(x,2) € [z,Z] xR : (8)}. (7)
z =2 :c—:_cQ,
2> 2% x — I, (8)
z<x(T+zx)-T -z
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3.2 Sawtooth-Based MIP Formulations

Next, we state an MIP relaxation for equations of the form z > 2 that requires
only logarithmically-many auxiliary variables and constraints in the number of
linear segments. It makes use of an elegant pwl. formulation for gray q) (x?) from
[20] using the recursively defined sawtooth function presented in [18] to formulate
the approximation of gray, ;;(#?), as described in [5]. We will use this formulation
to further strengthen the relaxation of z = 22 by NMDT or D-NMDT. To this
end, we define a formulation parameterized by the depth L € IN:

St = {(z,g,@) € [0,1] x [0, 1] x {0, 1}" : (10)} )
Jgo =<
2(gj—1 —ay) < g5 < 291 J=1...,L, (10)
2(aj —gj-1) <gj<2(l—gj—1) j=1,....L

Note that, by construction in [20,5], S* is defined such that when c € {0, 1}%,
the relationship between g; and g;—1 is g; = min{2g;_1,2(1 — g;—1)} for j =
1,..., L, which means that it is given by the “tooth” function G: [0,1] —
[0,1], G(z) = min{2z,2(1 — z)}. Therefore, each g; represents the output of
a “sawtooth” function of x, as described in [20,18], i.e. when a € {0, 1}V, we
have

g; =G (x) for GY:=GoGo...0G. (11)
j

Now, we define the function F*: [0,1] — [0,1],

Fi(z) =2 — Z 27U (), (12)

Jj=1

which is a close approximation to 2.
Using the relationships (11) and (12) between = and g, any constraint of the
form z = 22 can be approximated via the function

0,1 x [0, 175+ — [0, 1],

L
iz, g) =2 — Z 27%g;, for an integer L > 0. (13)

Now, we consider the LP relaxation of S”, where each variable o is relaxed
to the interval [0, 1]. Then, via the constraints (10), we see that the weakest lower
bounds on each g; w.r.t. gj—1 can be attained via setting o; = g;—1, yielding a
lower bound of 0. Thus, after projecting out c, the LP relaxation of S* in terms
of just x and g can be stated as
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Tt = {(z,9) € [0,1] x [0,1]** - (14)},

go =2
95 <2(1-gj—1) j=1,...,L (14)
gj<2.gj*1 j=1,...,L.

\ J

The LP relaxation T is sharp by [3, Theorem 1]. Thus, T* yields the same
lower bound on z as the MIP formulation S¥ due to sharpness and the convexity
of FI'. This allows us to define an LP outer approximation for inequalities of the
form z > 22

Definition 4 (Sawtooth Epigraph Relaxation, SER). Given some L € N,
the depth-L sawtooth epigraph relaxation for z > x2 on the interval x € [0,1]

s given by
QY ={(z,2) e [0,1] x R:3g e [0,1]" : (16)}, (15)
2> fi(x,g) —27%72 j=0,...,L
220, zz2r—1 (16)
(v,g) e T*.

In [3] it is shown that that the maximum error for the sawtooth epigraph
relaxation is 272074,

4 MIP Relaxations for Non-Convex MIQCQPs

In this section, we present MIP relaxations for bivariate equations of the form z =
xy and univariate equations of the form z = z2. For convenience, we define a
completely dense MIQCQP as an MIQCQP for which all terms of the form 2
and x;x; appear in either the objective or in some constraint.

We proceed as follows. First, we recall the well-known MIP relaxation tech-
nique NMDT. Then, we introduce an enhanced version of it, called D-NMDT,
which is designed to reduce the number of binary variables required to reach
the same level of approximation accuracy compared to NMDT for completely
dense MIQCQPs. Finally, we define the two tightened variants of NMDT and
D-NMDT, for which we also incorporate the sawtooth epigrpaph relaxation (15)
for all z = 27 terms. We call these methods T-NMDT and T-D-NMDT, respec-
tively. We will mention the corresponding maximum errors of the presented MIP
relaxations and derive them in detail in Section 5.1.

4.1 Base-2 NMDT

The Normalized Multiparametric Disaggregation Technique (NMDT) was intro-
duced by Castro [7]. Later it was used in [5,4]. along with its univariate form
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B SER with L = 1
I F07272
Fl_ o4
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— 2x—1
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3/8 — F?-27°
2/8 — 0
s | — 21
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Fig. 1. The sawtooth epigraph relaxations Q¥ for L = 1 and L = 2. By increas-
ing L , we tighten the lower bound by creating more inequalities. This is done by only
adding linearly-many variables and inequalities in the extended formulation to gain
exponentially-many equally spaced cuts in the projection.
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(see [5, Appendix A]). While in [7] a base of 10 was chosen for the discretization,
in [5,4] NMDT is described with a base of 2. We use the latter here and provide
both the bivariate and univariate definition of base-2 NMDT according to [5]
here.

In NMDT, the key idea for relaxing z = xy is to discretize one variable, e.g.
r, using binary variables 8 € {0,1}L and a residual term AL and then relaxing
the resulting products 8;y and ALy using McCormick envelopes. The following
derivation of NMDT can be transferred one-to-one to bases different to 2. We
start with the base-2 discretization of the variable x:

L
xr = 22_jﬁj+A£.

Jj=1

Then we multiply by y to obtain the exact representation

L L
= E —ig. L, _ E —ig. L
T j_12 Bj + Ay, z 27985y + Azy (17)

J=1

AL e [0,275], Be {0,1}E.

Next, we use McCormick envelopes to model all remaining product terms, 3;y
and AL -y, to obtain the final formulation.

Definition 5 (NMDT, [7]). The MIP relazation NMDT of z = zy with €
[0,1], y € [0,1] and a depth of L € N is defined as follows:

4 3

L
xr = ZZ*jﬁj+A£

J=1

j=1,...,L

1 yelo,1], Be {01}k

Since McCormick envelopes are exact reformulations of the variable products
if at least one of the variables is required to be binary, the maximum error of
NMDT with respect to z = xy is purely due to the McCormick relaxation of
AL = AL .y with a value of 2772,

An advantage of the NMDT approach compared to the separable formula-
tions from Part I is that it requires fewer binary variables to reach the desired
level of accuracy for bipartite MIQCQPs, for which the quadratic part in each
constraint is of the form 7 Qy. This is due to the fact that one has only to dis-
cretize either € R™ or y € R™. Thus, to reach a maximum error of 2-2~2 for
each bilinear term, NMDT requires only 2L min{m, n} binary variables instead
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of the L(m+ n) variables required by the approaches D-NMDT (see Section 4.2)
or HybS (from Part I)g. In contrast, NMDT requires twice the number of binary
variables to reach the same level of accuracy if all quadratic terms z;x; and azl2
with k =1,...,nand ] =1,...,m must be modelled, for example if ) is dense,
see Table 1.

Next, we show how to model univariate quadratic equations z = z2 with the
NMDT technique:

Definition 6 (Univariate NMDT ([7])). The MIP relaxation NMDT of
z =22 with v € [0,1] and a depth of L € N is defined as follows:

L
T = Z 27j6j + Aglc’
j=1
L
z = Z 2_juj + AL (19)
j=1
(x,ﬁj,u])EM(x,ﬁj) .7:17 aL
(A%, 2,AL) e M(Ay, 2)
Abefo,271], =zel0,1], Be{0,1}~

Note that for any depth L, the univariate formulation NMDT yields a maximum
error of slightly less than 272 instead of the 27212 in the sawtooth relaxation
from [3]. Further, the formulation NMDT is not sharp. For example at x = %,
its LP relaxation admits the solution 8; = 3 for all j € [L], AZ = 27171 wu; =0
for all j € [L], AL = 0 and 2 = 0, which is not in the convex hull of grag 1 (2?).

However, we can tighten the lower bound on z in (19) by adding the sawtooth
epigraph relaxation (15) of depth L; (with Ly > L), i.e. (z,2) € Q¥*. We refer
to NMDT with this lower-bound tightening for univariate quadratic terms as
T-NMDT.

Definition 7 (Univariate T-NMDT). The MIP relaxation T-NMDT of z =
22 with x € [0,1] and a depth of L, L1 € N with Ly > L is defined as follows:

(z,2) € QFr. (20)

4.2 Doubly Discretized NMDT

The key idea behind the novel MIP relaxation Doubly Discretized NMDT (D-
NMDT) for z = zy is to further increase the accuracy of NMDT by discretiz-
ing the second variable y as well, which leads to a double NMDT substitution,
namely in the AZy-term. In this way, for problems where NMDT would require
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discretizing all z;-variables, e.g. if we have some dense constraint, we can dou-
ble the accuracy of the relaxation for the equations z;; = x;x; without adding
additional binary variables by taking advantage of the fact that both variables
are discretized anyway. In NMDT, we could choose to discretize either x or y
for each equation of the form z = zy. For D-NMDT, we consider both options
of discretization, and then, by introducing a parameter A € [0, 1], we can model
a hybrid version of the two resulting MIP relaxations. Namely, we write

xy = xy + (1 — Nzy,

then discretize y first in the relaxation of Azy and x first in the relaxation of
(1—X)zy. Finally, the complete MIP relaxation D-NMDT is obtained by relaxing
the resulting products via McCormick envelopes (see Appendix A for the detailed
derivation).

Definition 8 (D-NMDT). The MIP relazation D-NMDT of z = zy with
x,y € [0,1], a depth of L € N and the parameter X\ € [0,1] is defined as fol-
lows:

L L
x = 22_jﬂf—|—A§, Y= 22_jﬂg+ﬂj

Jj=1

Z—ZZ (uj +v;) + AL

(AA5+(1—A)y,ﬁf,uJ)eM(AAL (1= Ny, 5) j=1...1
((1—)\)AL+)\x5y, ;) e M ((1— )AL+)\x5y) j=1,...,L
(Aﬁ,Aj,Aé) e M (AL, AL)
Ay, Ayel0,27F], wyel0,1], B*.BYe{0.1}"

(21)

As McCormick envelopes are exact reformulations of bilinear products if one of
the variables is binary, we only make an error in the relaxation of the continuous
variable product AéAﬁ. This yields a maximum error of 2722 for D-NMDT.

For bounds on the terms (1 — X\) AL + Az and AA] + (1 — \)y, see Appendix B.

Remark 1. For our implementation of the D-NMDT technique used in Section 6,
we set \ = % for the sake of formulation symmetry in x and y.

To model the univariate quadratic terms with this method, we set y = x in
z = zy and get an MIP relaxation for z = 22, The resulting MIP relaxation is
stronger than the univariate NMDT approach from Definition 6, which we will
prove later.

Definition 9 (Univariate D-NMDT). The MIP relaxation D-NMDT of z =
22 with x € [0,1] and a depth of L € N is defined as follows:
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L
T = 22_j5j+A£

j=1
(AL + 2, B;,u;) € M(AL + 2, 3;) j=1,...,L
(AL, AL) e M(AL, AL)
ALef0,27F], ze(0,1], Be{0,1}"
(22)

Again, as McCormick envelopes are exact reformulations of bilinear products
if one of the variables is required to be binary, we only make an error in the
relaxation of the continuous variable product ALXAL. This yields a maximum
error of 2728=2 for univariate D-NMDT. Note that the upper bound of this
formulation is formed by exactly the same pwl. approximation for z = x? as the
sawtooth formulations. Unfortunately, the univariate D-NMDT is not sharp; for
example, at x = %, its LP relaxation admits the solution §; = % for all j € [L],
AL = 9771 AL = 0, u; = 0 for all j € [L] and 2z = 0, which is not in the
convex hull of grag, ;;(z?).

To formulate a tightened version of D-NMDT, we tighten the lower bound
on z in (22), by removing all McCormick lower bounds and adding the sawtooth
epigraph relaxation (15) of depth Ly (with Ly > L).

Definition 10 (Univariate T-D-NMDT). The MIP relazation T-D-NMDT
of z = 2% with x € [0,1] and depths L, L1 € N with L1 > L is defined as follows:

(z,2) € QFr. (23)

In Table 1 in Section 5, we give a summary of the number of binary variables
and constraints as well as the accuracy of each MIP relaxation when applied to
a dense MIQCQP of the form (1).

Remark 2 (Binary Variables and Dense MIQCQPs). When modelling Prob-
lem (1) using the MIP relaxations NMDT and D-NMDT, for each variable x;,
we will need a discretization of the form z; = Zle 2798;+ AL with 8 € {0,1}F.
Thus, both of these formulations use nL binary variables in the case of a dense
MIQCQP. However, the improved binarizations in D-NMDT reduces the errors
exponentially compared to NMDT.

Note that it is possible that some preprocessing or reformulation, such as
via a convex quadratic reformulation (QCR) may improve the number of binary
variables needed. We do not use such reformulations in this work, but just focus
on applying our MIP relaxations as is.
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5 Theoretical Analysis

In this section, we give a theoretical analysis of the presented MIP relaxations for
the equation z = xy over z,y € [0, 1] as well as the equation z = 22 over x € [0, 1],
respectively, in order to allow for a comparison of structural properties between
them. In particular, we analyze their maximum error, average error widths |,
formulation strengths, i.e. (hereditary) sharpness and LP relaxation volumes, as
well as the optimal placement of breakpoints to minimize average error widths
. Our results are summarized in Table 1, which also includes the results for the
separable methods HybS, Bin2, and Bin3 from Part I [3].

MIP relax. # Bin. variables # Constraints Max. err. Avg. err. width
NMDT nL n(3(5n+7)+2(n+1)L) 2—Lb—2 197k
D-NMDT nL n(3(5n + 5) + 4nL) 27 2L—2 1972k
HybS nL n(:(5n —3) +2n(L + Ly)) 27272 1272k
Bin2 1P+ 1L n(EBn-1)+(n+1)(L+ L)) 27251 1972k
Bin3 1P+ 1)L n(EBn—-1)+ (n+1)(L+ L)) 272571 1972k

Table 1. A summary of characteristics of the different MIP relaxations for z = xy.
Binary variables and constraints are given in the worst-case, in which every possible
quadratic term is modelled, for example if some matrix @Q; is dense. The average error
widths for HybS, Bin2 and Bin3 with respect to grap, 112 (zy) are calculated for L1 — o0
and without the McCormick envelopes added. Finally, the average error widths for Bin2
and Bin3 apply only to L > 1; the corresponding volumes are 1—72 for L = 0. Finite Ly
leads to slightly increased error bounds for the methods Bin2, Bin3 and HybS.

5.1 Maximum Error

We start by discussing the maximum errors. We will derive the maximum errors
of the NMDT-based formulations by reducing the error calculations to the error
of a single McCormick relaxation per grid piece. In general, for the equation

z = xy over a grid piece [z, Z] x [y, 7], the maximum under- and overestimation

is $(z —z)(y — y), attained at (z,y) = (3(z + Z), 3(y + 7)), see e.g. [15, page

23].

For NMDT, to show that the maximum error can be computed from a single
McCormick relaxation, we fix 3 € {0,1}* in (18) and observe two facts: (1) we
get ¥ = k27F + AL for some integer k and therefore x varies only with AL €
[0,27L], and (2) the McCormick relaxation (y, B;,u;) € M(y, ;) is exact for
eacht =1,..., L, i.e., the relaxation equals u; = yf;. These two facts imply that
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the only error incurred on this small interval stems from the single McCormick
relaxation (AL, y, AL) e M(AZL, y) over regions of the form (AL, y) € [0,27£] x
[0, 1]. This yields a maximum error of £(27%-1) = 27272, Similarly, for D-NMDT
and univariate NMDT and D-NMDT, one can also show that all errors come from
the McCormick relaxations of the continuous error terms. The maximum errors
of the different MIP relaxations are listed in the following propositions.

Proposition 1. The mazimum error in the NMDT MIP relaxation for z = xy
with ,y € [0,1] s $(27F - 1) = 27572,

Likewise, for D-NMDT, the maximum error in z = zy is purely in the Mc-
Cormick relaxation of the term (AL, AL AL) e M (AL, AL) over the region

(AL, ALY € [0,271] x [0,27%], yielding a maximum error of (271 - 271) =
272L72'

Proposition 2. The mazimum error in the D-NMDT MIP relaxation for z =
xy with x,y € [0,1] is %(Q—L . 2—L) — 9—2L—2

For univariate D-NMDT, the maximum error in z = 22 arises from the

McCormick relaxation (AL, AL) e M(AL, AL) over the interval AL e [0,27L],
yielding a maximum error of 2726=2,

Proposition 3. The mazimum error in the univariate D-NMDT MIP relaz-
ation for z = xy with v,y € [0,1] is 27202,

Finally, for univariate NMDT, the error is incurred by the McCormick re-
laxation (AL x, AL) € M(AL x) over the box (AL z) e [0,27L] x [0,1] with
x = k271 + AL for some k € {0, ...,27L'—1}. Over this box, the error-maximizing
point (z, AL) = (3,27571) derived in [15] is not feasible, as # = % implies
AL = 0. In fact, we can show that the maximum error is slightly less than the
expected 27172, To prove this, we focus on the maximum error of the under-
estimating part of the McCormick envelope with respect to xAL and skip the
overestimating part as it works analogously. By (4), the McCormick relaxation
underestimator over the box (AL x) e [0,27] x [0, 1] is given as

max  {0,AL — 271 —g)|x = k271 4+ AL},
Agefo,274],
ke{0,...,2F —1}

The underestimator is zero at points in the domain where
A< o7l ol =971 — 27l — AL) (24)

holds and AL —27L(1 — 27k — AL) at the rest of the domain. The maximum
error of the McCormick underestimation is

max  {zAL —max{0, AL — 275 (1 — x)}|x = k27F + AL}
Aeo,27,
ke{0,...,2F —1}
=  max {27FkAL + (AL)? —max{0, AL — 275 (1 — AL — k271
Aeo27,
ke{0,...,2F —1}
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First, we determine the maximum error on the piece where the McCormick

underestimator is the zero function. In the (AL, k) space the region described
2l —k

2L14L "
in this region, then we can increase the error function 2=1kAL + (AL)2 — 0
by increasing either k or AL. Consequently, the maximum error is attained if

L _ 2V—k
Ay = 3oz
function in k:

oL _ oL _
AL 0= 27tk + AWAL = [ 27 L .
T @77k +A:)A, Torgar ) Ty ar

by the inequality (24) equals AL < Now suppose we are at some point

The error at these points can be purely expressed as a quadratic

It is maximized and symmetric at k* = $(2L — 1) = 2571 — 1. Since k* ¢ N
for any L > 1, the maximum error is attained at k; = 2¢71 — 1 and ky = 2871
It has a value of 27£72 — 2735=2(1 4+ 27L)=2, We can use the same reasoning
for the region AL > ;fﬁ and the increase in the error function by decreasing
either k or AL and obtaining the same maximum error at the same points. The

values k1 and ko correspond to

L
(Az,z) = (2(2L1+1)7 3 2(2L1+1)) :

The maximum overestimation error with the McCormick envelope, where the
proof works very similarly, is obtained at (AL, z) = (1, 1) and (AL, z) = (1, 3)
with a value of 274 if L = 1. However, for L > 2 the value is somewhat lower,
namely 27172 — 273L=2(1 — 27L)=2 attained at

L 1 1 1 :
(Ax ) I) = (2(21,_1)7 b i 2(2L_1)) lf L 2 2
The maximum error is therefore set by the underestimation. We summarize these
findings in the following proposition.

Proposition 4. The mazimum error in the univariate NMDT relazation for
2 = ay with x,y € [0,1] is 27172 — 273L=2(1 4 271)=2,

A summary of the maximum error analysis results can be found in Table 1.
It should be noted that for a fixed depth L, HybS and D-NMDT provide the
smallest maximum errors among the considered MIP relaxations in our study.

5.2 Average Error Width and Minimizing the Average Error Width

In this section, we will study the average error width of the considered MIP
relaxation. In Definition 3 the average error width is defined as the volume
enclosed by the projected MIP relaxation. We consider it to be an additional
measure of the quality of a MIP relaxation besides the maximum error.

For equations of the form z = 22, univariate D-NMDT gives piecewise Mc-
Cormick relaxations. In [5, Proposition 5], it is shown that uniform discretization
is optimal for fixed numbers of breakpoints. However, for univariate NMDT the
calculation of the volume is much more complicated, so we omit it here.



16 B. Beach, R. Burlacu, A. Biarmann, L. Hager, R. Hildebrand

Next, we compute the average error widths of NMDT and D-NMDT for the
equation z = xy. Then we prove that the uniform discretizations, which are
used in the definition of NMDT and D-NMDT, are indeed optimal in terms of
the minimizing the volume of the projected MIP relaxation if the number of
discretization points is fixed (i.e. if L and L; are fixed).

Proposition 5. Let P\ pr and Py yupr be the MIP relazations of NMDT
and D-NMDT for z = xy for some L = 0 as defined in (18) and (21), respec-

tively. Their respective average error widths are

E™I( PRy grap 1) (y)) = lo=L-2
and
gavg(P]IDF_)NMDT7 gra[OJ]Q (;[;y)) — é2—2L—2'

Proof. Note that the discretization in NMDT and D-NMDT yields piecewise
McCormick relaxations over a uniformly spaced grid, where each grid piece cor-
responds to some fixed integer solution 3%, 3Y € {0, 1}, AL, Aﬁ € [0,27]. The
volume of of the McCormick envelope over a single grid piece is %lgli, where [ is
its z-length and ,, is its y-length (see e.g. [15, page 22]). The average error width
is then the sum over all grid piece volumes. Now, for NMDT we have 2% grid
pieces with [, = 1 and I, = 2~L yielding a volume per grid piece of %2_% and
thus a total volume of %2_L . Similarly, for D-NMDT we have 22% grid pieces
with I, = I, = 271, which yields a volume per grid piece of %2_“ and thus a
total volume of $272%. O

When applied to gra[o)lP(:vy), NMDT and D-NMDT are both piecewise Mc-
Cormick relaxations, defined as

M([@r—1,2k], [Yi—1, w1]),

ke[n],le[m]

where we use the notation M([zx_1,2k], [¥i—1,¥:1]) to mean the McCormick
envelope M(z,y) with = € [xg_1,zr] and y € [yi—1,y1], for 0 = 2o <21 < ... <
Tpn=landO0=yo<y1 <...<Ym = 1.

We now prove that a uniform placement of breakpoints minimizes the average
error width in a piecewise McCormick relaxation. For n = 2F and m = 1,
this yields precisely the NMDT relaxation of depth L, and if n = m = 2L,
then this yields precisely the D-NMDT relaxation of depth L. Hence, they are
optimal discretizations. The average error width in NMDT is ln = %2_L , and

6
L= %2_% in D-NMDT. This follows from the proof below.

6n2

Theorem 1. Let0=zp <21 <...<zp=1and 0=y <y1 <...<yYm =1
be sets of breakpoints. Then a uniform spacing of these breakpoints minimizes the
average error width over all piecewise McCormick relaxations of grajg 132 (zy).

Proof. Let 1, = [zr—1,zx] and I, = [y;—1, ] with k € [n] and I, € [m] be
the lengths of the grid pieces [zx—1, k] X [yi—1, ¥1]. The volume of the McCormick
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envelope M([zx—1,2x], [yi—1,31]) over a single grid piece is $12 12 , see [15, page
22]. Therefore, the problem of minimizing the average error width of a piecewise
McCormick relaxation can be formulated as

—HllIl Zz 12_] llgklil
s.t. 2%21 lg, =1
leﬂﬁlzl (25)
Iz =0 k=1,...,n
lz, 20 l=1,...,m.

The objective function in (25) sums the average error widths over the single grid
pieces while the constraints ensure that all single grid lengths sum up to 1 and
are greater than or equal to 0. Rewriting it to

%min (Zz 1 :E ) (Z] 1 yj)
sty e, =1
ZJ Ly, =1 (26)
l; =0 1=1,...,n
ly;, 20 j=1....m
lets (26) decompose into the two independent convex subproblems
—mln S 12
s.t. Zz:l 2 =1 (27)
lz; =20 1=1,...,n,
—mln ZJ 1 y]
s.t. Z]:l Yj =1 (28)
ly; 20 j=1....m

Applying the KKT conditions to (27) and (28), which are sufficient for global
optimality here, directly shows that a uniform placement of the breakpoints

with I, = & and [, = - is optimal for (25). The total average error width is
then Gan.
Corollary 1. Let 0 = 29 < 21 < ... < xp, = 1 and 0 = yo < y1 = 1 be

sets of breakpoints with n = 2 and P a depth-L NMDT MIP relazation of

grajg 1)2(zy) from (18). Then Pp is an optimal piecewise McCormick relazation

with an average error width of E*I(PLF, gra 1)2(2y)) = 197k,

Corollary 2. Let 0 = 29 < 21 < ... < Zp =1 and 0 = yg < y1 < ... <
= 1 be sets of breakpoints with n = m = 2% and P{* a depth-L D-NMDT

MIP relazation of gray 1j2(xy) from (21). Then Pr” is an optimal piecewise

McCormick relazation with an average error width of £%9(P[’, gray 132(vy)) =
19—2L

=274,

6

We summarize the key results of Section 5.2 in the remark below and in
Table 1.



18 B. Beach, R. Burlacu, A. Biarmann, L. Hager, R. Hildebrand

Remark 3 (Tightness of MIP Relazations). For an equation z = z? and a fixed
depth L, the tightened sawtooth relaxation [3, Definition 7], and the separa-
ble formulations from Part I that employ it, have the smallest volume in the
projected MIP relaxation among all studied formulations: they are equivalent
in upper bound, with a tightened lower bound, compared to univariate NMDT
and D-NMDT. For z = zy, D-NMDT is the tightest formulation, as it yields
the convex hull of grap(xy) on each grid piece D = [k*27L, (k* + 1)271] x
[kv2=L (kv +1)27 L], k*, kY € [0,2L — 1]. Combining these facts, T-D-NMDT is
the tightest relaxation presented for the full MIQCQP. o

5.3 Formulation Strength: LP relaxations

In the previous section, we discussed maximum error and average error widths
incurred from using certain discretizations. We will now consider the strength
of the resulting MIP relaxations by analyzing their LP relaxation. First, we will
check for sharpness and later compare them via the volume of the projected LP
relaxation. Sharpness means that the projected LP relaxation equals the convex
hull of the set to be formulated, here gra(zy) or gra(z?). If we now consider
the volume of a projected LP relaxation, it can minimally be the volume of the
convex hull, which precisely holds if the formulation is sharp. If a formulation is
not sharp, the volume of the projected LP relaxation yields a measure of how
much the formulation is “not sharp”. The volume of LP relaxation as a measure
of a MIP relaxation strength was previously used in [2].

We start with the core formulations from Section 3. It is well known that the
McCormick relaxation yields the convex hull of the feasible set of z = zy over
box domains D = [z, Z] x [y, y]. Therefore, it is obviously sharp. The volume is
1/6(Z —z)(y —y). In [3] it is further shown that the sawtooth epigraph relaxation
is also sharp. Since the epigraph of f is an unbounded set, we do not discuss
volume here. Next, we look at the formulations from Section 4. As shown in
Sections 4.1 and 4.2, the univariate verisions of NMDT and D-NMDT are not
sharp. As shown in [5], univariate NMDT and therefore also univariate D-NMDT
have an LP relaxation volume of iQ*QL. The LP relaxations of NMDT and D-
NMDT for z = zy yield the McCormick envelope over D, and thus they are
sharp. The LP relaxation volumes of NMDT and D-NMDT for z = zxy is thus
1/6(Z — z)(y — y) and independent of the choice of L.

6 Computational Results

In order to test the MIP relaxations from Section 4 with respect to their ability
to determine dual bounds, we now perform an indicative computational study.
More precisely, we will derive MIP relaxations of non-convex MIQCQP instances.
The MIP relaxations are then solved using Gurobi [13] as an MIP solver to deter-
mine dual bounds and a callback function that uses the non-linear programming
(NLP) solver IPOPT [19] to find a feasible solution for the MIQCQP. The MIP
relaxation methods are tested for several discretization depths. To compare the
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considered methods to state-of-the-art spatial branching based solvers, we also
run Gurobi as an MIQCQP solver.
All instances were solved in Python 3.8.3, via Gurobi 9.5.1 and IPOPT 3.12.13
on the ‘Woody’ cluster, using the “Kaby Lake” nodes with two Xeon E3-1240 v6
chips (4 cores, HT disabled), running at 3.7 GHZ with 32 GB of RAM. For more
information, see the Woody Cluster Website of Friedrich-Alexander-Universitét Erlangen-Niirnberg.
The global relative optimality tolerance in Gurobi was set to the default value
of 0.01%, for all MIPs and MIQCQPs.

6.1 Study Design

In the following, we explain the design of our study and go into detail regarding
the instance set as well as the various parameter configurations.

Instances. We consider a three-part benchmark set of 60 instances: 20 non-
convex boxQP instances from [11,5,8] and earlier works, 20 AC optimal power
flow (ACOPF) instances from the NESTA benchmark set (v0.7.0) (see [9]), pre-
viously used in [1], and 20 MIQCQP instancess from the QPLIB [12]. In ap-
pendix C you will find links that contain download options and detailed descrip-
tions of the instances. For an overview of the IDs of all instances, see Table 7.
The benchmark set is equally divided into 30 sparse and 30 dense instances.
We refer to dense instances if either the objective function and/or at least one
quadratic function in the constraint set is of the form =" Qx, where x € R™ are
all variables of the problem and ) € R™" is a matrix with at least 25% of its
entries being nonzero.

Parameters. For each instance, we solve the resulting MIP relaxation of each
method from Section 4 using various approximation depths of L € {1,2,4,6} and
a time limit of 8 hours. All MIP relaxations are solved twice. Once in the standard
versions from Section 4 and once with a tightened underestimator version for
univariate quadratic terms where L; = max{2,1.5L}. Note that the tightened
MIP relaxations T-NMDT and T-D-NMDT are equivalent to the non-tightened
MIP relaxations NMDT and D-NMDT when applied to bilinear terms of the form
z = xy. However, they differ from them in that all lower bounding McCormick
constraints in the univariate quadratic terms of the form z = 22 are replaced by
a tighter sawtooth epigraph relaxation (15) as described in Sections 4.1 and 4.2.
Furthermore, we include HybS, the most performant separable MIP relaxation
from Part I, in the study. However, we do not apply tightening to HybS, as it
was shown in Part I that this does not result in computational improvements.
In Table 2, one can see an overview of the different parameters in our study.
In total, we have 24 parameter configurations for 60 original problems. However,
as we do not apply tightening to HybS we end up with 1200 MIP instances. For
the comparison with Gurobi as a state-of-the-art MIQCQP solver, we solve an
additional 480 MIP instances and 120 MIQCQP instances. These additional MIP
instances arise from disabling the cuts in Gurobi for the winner of the NMDT-
based methods and HybS. The 120 MIQCQP instances are built by solving all
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60 benchmark problems once with cuts enabled and once with cuts disabled. See

Table 2. In the study, we consider the parameters cuts, depth, and formulation to
create MIP relaxations for 60 MIQCQP instances.

Depth Formulation Instances
L=1,246 HybS boxQP (20 instances)
Li=1L NMDT ACOPF (20 instances)
Tightened: D-NMDT QPLIB (20 instances)
L=1246

L, = max{2,1.5L}

Subsection 6.2.2 for more details on the latter.

Callback function. Solving all MIP relaxations, we use a callback function with
the local NLP solver IPOPT that works as follows: given any MIP-feasible solu-
tion, the callback function fixes any integer variables from the original problem
(before applying any of the discretization techniques from this work) accord-
ing to this solution and then solves the resulting NLP locally via IPOPT in an
attempt to find a feasible solution for the original MIQCQP problem.

6.2 Results

In the following, we present the results of our study. In particular, we aim to
answer the following questions regarding dual bounds:

— Is our enhanced method D-NMDT computationally superior to its predeces-
sors NMDT?

— Is it beneficial to use tightened versions of the NMDT and D-NMDT, i.e.,
to choose L1 > L?

— How do the studied methods compare to the state-of-the-art MIQCQP solver
Gurobi?

We provide performance profile plots as proposed by Dolan and More [10] to
illustrate the results of the computational study regarding the dual bounds, see
Figure 2 - Figure 7. The performance profiles work as follows: Let d, s be the
best dual bound obtained by MIP relaxation or MIQCQP solver s for instance p
after a certain time limit. With the performance ratio r, s := d,, s/ mins dp 5, the
performance profile function value P(7) is the percentage of problems solved by
approach s such that the ratios r, s are within a factor 7 € R of the best possible
ratios. All performance profiles are generated with the help of Perprof-py by
Siqueira et al. [17]. The plots are divided into two blocks, one for NMDT-based
methods and one for the comparison against HybS and Gurobi as an MIQCQP
solver. In addition to the performance profiles across all instances, we also show
performance profiles for the dense and sparse subsets of the instance set.
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Although the main criterion of the study is the dual bound, we also discuss
run times. Here, we use the shifted geometric mean, which is a common measure
for comparing two different MIP-based solution approaches. The shifted geomet-

ric mean of n numbers t1,...,t, with shift s is defined as (H?:l (t; + s)) Yn _ s.
It has the advantage that it is neither affected by very large outliers (in contrast
to the arithmetic mean) nor by very small outliers (in contrast to the geometric
mean). We use a typical shift s = 10. Moreover, we only include those instances
in the computation of the shifted geometric mean, where at least one solution
method delivered an optimal solution within the run time limit of 8 hours.

Finally, we will highlight some important results regarding primal bounds in
the comparison of our methods with Gurobi [13] as an MIQCQP solver.

6.2.1 NMDT-based MIP relaxations We start our analysis of the results
by looking at the NMDT-based MIP relaxations. In Figure 2 we show perfor-
mance profiles for the dual bounds that are obtained by the different NMDT-
based MIP relaxations. The plot is based on all 60 instances of the benchmark
set. Starting from L = 2, we can see that both D-NMDT and T-D-NMDT de-
liver notably tighter bounds within the run time limit of 8 hours. The largest
difference is at L = 4, where D-NMDT and T-D-NMDT are able to find dual
bounds that are within a factor 1.05 of the overall best bounds for nearly all
instances. In contrast, NMDT and T-NMDT require a corresponding factor of
more than 1.1. In addition, the tightened versions perform somewhat better than
the corresponding counterparts, especially for L = 4.

To gain a deeper insight into the benefits of D-NMDT and the tightening of
NMDT-based relaxations, we divide the benchmark set into sparse and dense
instances. For sparse instances, the advantage of the new methods is rather small;
see Figure 3. Here, T-D-NMDT provides marginally better bounds than the other
methods in case of L = 4 and L = 6. For L = 1 and L = 2, however, T-NMDT
dominates all other approaches. Moreover, the tightened versions outperform
their counterparts for all depths L.

For dense instances, D-NMDT and T-D-NMDT are clearly superior to NMDT
and T-NMDT; see Figure 4. Regardless of the relaxation depth, the new meth-
ods yield the tightest dual bounds, with T-D-NMDT being superior to D-NMDT
only in case of L = 2, where the tightened version T-D-NMDT is able to find the
best dual bound for roughly 10% more instances than D-NMDT. Tightening the
NMDT method does not deliver better bounds, in fact, T-NMDT is surpassed
by NMDT for L = 1.

Regarding the run times of the various NMDT-based approaches, Table 3
shows significantly lower run times for D-NMDT and T-D-NMDT. Again, T-D-
NMDT is slightly ahead of D-NMDT.

In Table 4, we can see that the QP heuristic (IPOPT) we mentioned at the
beginning of this section delivers high-quality feasible solutions for the original
(MIQC-)QP instances. With increasing L values, IPOPT is able to find more
feasible solutions with all NMDT-based methods quite similarly. For L = 6,
T-D-NMDT combined with TPOPT yields feasible solutions for 50 out of 60
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Fig. 2. Performance profiles to dual bounds of NMDT-based methods on all instances.

benchmark instances, 47 of which have a relative optimality gap below 1% and
46 of which are even globally optimal, i.e., which have a gap below 0.01%.

In summary, both T-D-NMDT and D-NMDT are clearly superior to the pre-
viously known NMDT approach. The double discretization and the associated
reduction in the number of binary variables while maintaining the same relax-
ation error are most likely the reason for this. Surprisingly, the tightening of
the lower bounds in the univariate quadratic terms and the resulting introduc-
tion of new constraints does not lead to higher run times. Thus, the latter is
recommended. Moreover, T-D-NMDT is slightly ahead of the other methods in
computing good solutions for the MIP relaxations that are used by the NLP
solver IPOPT to find feasible solutions for the original MIQCQP instances. Al-
together, we consider T-D-NMDT to be the winner among the NMDT-based
methods.

6.2.2 Comparison with state-of-the-art MIQCQP Solver Gurobi Fi-
nally, we compare the two winners T-D-NMDT and HybS of the NMDT-based
and separable Methods (Part I) with the state-of-the-art MIQCQP solver Gurobi
9.5.1. We perform the comparison in two ways. Firstly, with Gurobi’s default set-
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Fig. 3. Performance profiles to dual bounds of NMDT-based methods on sparse in-

stances.

Fig. 4. Performance profiles to dual bounds of NMDT-based methods on dense in-

stances.
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Table 3. Shifted geometric mean for run times on all 60 instances in NMDT-based
MIP relaxations.

NMDT T-NMDT D-NMDT T-D-NMDT

L1 82.09 83.42 68.91 51.13
L2 234.73 231.66 87.3 78.75
L4 450.63 395.93 196.4 192.97
L6 851.91 713.73 443.49 429.23

Table 4. Number of instances with feasible solutions found with different relative
optimality gaps. The first number corresponds to a gap of less than 0.01%, the second
to a gap of less than 1% and the third number indicates finding a feasible solution.

NMDT T-NMDT D-NMDT T-D-NMDT

L1 32/34/40  31/35/41 29/33/42 29/33/40
L2 32/37/45 34/37/43 34/38/42 34/37/42
L4 42/44/48 39/44/48 37/42/49 45/47/51
L6  43/45/48 42/43/47  44/47/50 46/47/50

tings, and secondly, with cuts disabled, i.e., we set the parameter ”Cuts = 0”.
The reason for running Gurobi again with cuts turned off is that cuts are one of
the most important components of MIQCQP /MIP solvers that rely on the struc-
ture of the problem. While constructing the MIP relaxations with T-D-NMDT
and HybS, the original problem is transformed in such a way that Gurobi can no
longer recognize the original quadratic structure of the problem. However, many
cuts would still be valid and applicable in the MIP relaxations, for instance, RLT
and PSD cuts.

We start our comparison with showing performance profiles for Gurobi, T-
D-NMDT, HybS, and their variants without cuts ("-NC”) on all instances in
Figure 5. As expected, Gurobi performs best for all L values, followed by its
variant without cuts in second place. However, as the depth L increases, the MIP
relaxations provide gradually tighter dual bounds. For L = 6, T-D-NMDT and
HybS are able to find the best dual bounds for more than 50% of the cases, while
Gurobi delivers the best bounds for roughly 90% and its variant without cuts
for about 70% of the cases. Surprisingly, in contrast to T-D-NMDT, disabling
cuts in case of HybS has little effect on the quality of the dual bounds.

As before, we divide the benchmark set into sparse and dense instances. For
sparse instances, the dual bounds computed by T-D-NMDT and HybS become
progressively tighter with increasing L; see Figure 6. For L = 4 and L = 6, T-
D-NMDT and HybS are able to find the best dual bounds in about 60% of the
instances, while Gurobi delivers the best bounds for roughly 80%. Compared to
Gurobi-NC, our new methods T-D-NMDT, HybS, and most notably HybS-NC
perform almost equally well.

In the case of dense instances, a different picture emerges, see Figure 7.
Again, Gurobi and also Gurobi-NC are dominant for all approximation depths.
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However, for L = 1, T-D-NMDT delivers dual bounds that are within a factor
1.1 of the dual bounds provided by the variant of Gurobi without cuts. With
higher L values, T-D-NMDT, HybS, and HybS-NC compute in about 40% of
the cases the best bounds, while Gurobi yields the best bounds in all cases and
Gurobi-NC for roughly 70% of the instances.

In Table 5 we show the shifted geometric mean values of the run times for
solving all instances with Gurobi and the corresponding MIP relaxations con-
structed with T-D-NMDT and HybS. The variants of Gurobi, T-D-NMDT, and
HybS without cuts are also contained. Gurobi has significantly shorter run times
than all other approaches. However, with L = 1 and L = 2, T-D-NMDT, HybS,
T-D-NMDT-NC and HybS-NC are somewhat faster than Gurobi-NC.

Remark 4. Note, that for calculating the shifted geometric mean only those in-
stances are used for which at least one method computed the optimal solution
within the run time limit of 8 hours. Since with higher L values the complex-
ity of the MIP relaxations increases, fewer instances are solved to optimality
by T-D-NMDT and HybS. Therefore, the shifted geometric mean decreases for
Gurobi and Gurobi-NC with higher L values. This inherent nature of the shifted
geometric mean is also the reason why we see different values in Tables 3 and 5
for the same methods. o

In combination with IPOPT as a QP heuristic, T-D-NMDT, HybS, and their
variants without cuts are competitive with Gurobi for high L values when it
comes to finding feasible solutions, as Table 6 shows. HybS-NC with IPOPT
is able to find feasible with a relative optimality gap below 1% for 48 out of
60 benchmark instances, while Gurobi finds 50 feasible solutions with a gap
below 1%. T-D-NMDT computes 46 solutions that are globally optimal, whereas
Gurobi achieves this for 50 instances. Surprisingly, the variant without cuts of
HybS delivers more feasible solutions than its variant with cuts enabled. Finally,
we note that some MIQCQP instances have been solved to global optimality
by the MIP relaxation methods, while Gurobi reached the run time limit of
8 hours. For instance, T-D-NMDT with IPOPT is able to solve the QPLIB
instance “QPLIB_0698” to global optimality for L € {2,4,6} with a run time
below 5 minutes, while Gurobi has a relative optimality gap of more than 5%
after a run time of 8 hours.

Overall, the comparison with Gurobi as a state-of-the-art MIQCQP solver
has shown that the new methods T-D-NMDT and HybS can be relevant for
practical applications. For sparse instances, the dual bounds provided by T-D-
NMDT and HybS are of similar quality to those provided by Gurobi. In terms
of MIQCQP-feasible solutions, for most instances the two methods are able to
find very high quality solutions in combination with IPOPT as NLP solver.

Moreover, there is still plenty of room for improvement. First, numerical stud-
ies have shown before that an adaptive refinement of nonlinearities drastically
decreases run times for solving MINLPs by piecewise linear MIP relaxations; see
[6] for example. Hence, an approach with an adaptive refinement of the approx-
imation depth L is even more promising. Second, HybS and its variant without
cuts HybS-NC have performed very similarly in our computational study. In
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addition, HybS-NC was relatively close to Gurobi-NC in both solution quality
and dual bounds for the MIQCQPs. Since most MIQCQP-specific cuts can still
be integrated into the HybS approach, we believe that HybS can be further im-
proved by embedding it in a branch-and-cut solution framework that is able to
add MIQCQP-specific cuts, such as BQP and PSD cuts, to the MIP relaxations.
In this way, we obtain both tighter dual bounds and MIP relaxation solutions
that are more likely to yield feasible solutions for the MIQCQP in combination
with TPOPT.

T Ll

E;’ L Gurobi-NC Gurobi-NC
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Fig. 5. Performance profiles on dual bounds of best MIP relaxation compared to Gurobi

as MIQCQP solver, with and without cuts, on all 60 instances.
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Fig. 6. Performance profiles on dual bounds of best MIP relaxation compared to Gurobi
as MIQCQP solver, with and without cuts, on sparse instances.
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Fig. 7. Performance profiles on dual bounds of the best MIP relaxation compared to
Gurobi as MIQCQP solver, with and without cuts, on dense instances.
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Table 5. Shifted geometric mean for run times on all instances for best MIP relaxation
compared to Gurobi as MIQCQP solver with cuts and without cuts (-NC).

HybS HybS-NC T-D-NMDT T-D-NMDT-NC Gurobi Gurobi-NC

L1 188.23 225.0 163.52 244.73 77.32 388.74
L2 342.32 279.0 266.37 340.8 54.0 307.03
L4 1008.09 964.63 950.73 1012.11 25.16 193.75
L6 2548.31 2315.29 1665.28 1618.91 20.75 174.54

Table 6. Number of feasible solutions found with different relative optimality gaps.
The first number corresponds to a gap of less than 0.01%, the second to a gap of less
than 1% and the third number indicates the number of feasible solutions.

HybS HybS-NC T-D-NMDT T-D-NMDT-NC  Gurobi Gurobi-NC

L1 31/33/40 28/31/40  29/33/40 31/34/42  50/50/57 46/49/56
L2 32/37/44 31/36/41  34/37/42 35/41/44  50/50/57 46/49/56
L4 41/44/50 40/45/53  45/47/51 40/45/50  50/50/57 46/49/56
L6 40/43/51 43/48/50  46/47/50 40/46/49  50/50/57 46/49/56

7 Conclusion

We introduced an enhanced mized-integer programming (MIP) relaxation tech-
nique for non-convex mized-integer quadratically constrained quadratic programs
(MIQCQP), called doubly discretized normalized multiparametric disaggregation
technique (D-NMDT). We showed that it has clear theoretical advantages over
its predecessor NMDT, i.e. it requires a significantly lower number of binary vari-
ables to achieve the same accuracy. In addition, we combined both, D-NMDT
and NMDT, with the sawtooth epigraph relazation from Part I [3] to further
strengthen the relaxations for univariate quadratic terms.

In a two-part computational study, we first compared D-NMDT to NMDT.
We showed that D-NMDT determines far better dual bounds than NMDT and
also has shorter run times. Furthermore, we were able to show that our tighten-
ing in both methods led to better dual bounds while simultaneously shortening
the computation time. In the second part of the computational study, we com-
pared the tightened D-NMDT (T-D-NMDT) against Hybrid Separable (HybS),
the best-performing MIP relaxation from Part I. We showed that HybS does
perform slightly better in terms of dual bounds. However, both new methods
were able to find high-quality solutions to the original quadratic problems when
used in conjunction with a primal solution callback function and a local non-
linear programming solver. Furthermore, we showed that they both method can
partially compete with the state-of-the-art MIQCQP solver Gurobi.

Finally, we gave some indications on how to further improve the new ap-
proaches. Two of the most promising directions in this context are employing
adaptivity and adding MIQCQP-specific cuts that are valid but not recognized
by the MIP solvers. This is the subject of future work.



Enhancements of Discretization Approaches for Non-Convex MIQCQPs 29

Data availability statement

The boxQP instances are publicly available at https://github.com/joehuchette/quadratic-relaxation-experimen
The ACOPF instances are publicly available at https://github.com/robburlacu/acopflib.
The QPLIB instances are publicly available at https://qplib.zib.de/.

Conflict of interest

The authors declare that they have no confict of interest.

References

1. Kevin-Martin Aigner, Robert Burlacu, Frauke Liers, and Alexander Martin. Solv-
ing AC optimal power flow with discrete decisions to global optimality. To appear
in INFORMS Journal on Computing, 2023.

2. Andreas Barmann, Robert Burlacu, Lukas Hager, and Thomas Kleinert. On piece-
wise linear approximations of bilinear terms: structural comparison of univariate
and bivariate mixed-integer programming formulations. Journal of Global Opti-
mazation, pages 1-31, 2022.

3. Benjamin Beach, Robert Burlacu, Andreas Barmann, Lukas Hager, and Robert
Hildebrand. Enhancements of discretization approaches for non-convex mixed-
integer quadratically constraint quadratic programming: Part 1. arXiv preprint
arXi:2211.00876, 2022.

4. Benjamin Beach, Robert Hildebrand, Kimberly Ellis, and Baptiste Lebreton.
An approximate method for the optimization of long-horizon tank blending and
scheduling operations. Computers € Chemical Engineering, 141:106839, 2020.

5. Benjamin Beach, Robert Hildebrand, and Joey Huchette. Compact mixed-integer
programming formulations in quadratic optimization. Journal of Global Optimiza-
tion, 2022.

6. Robert Burlacu, Bjorn Geifller, and Lars Schewe. Solving mixed-integer nonlinear
programmes using adaptively refined mixed-integer linear programmes. Optimiza-
tion Methods and Software, 35(1):37-64, 2020.

7. Pedro M. Castro. Normalized multiparametric disaggregation: an efficient re-
laxation for mixed-integer bilinear problems. Journal of Global Optimization,
64(4):765-784, 2015.

8. Jieqiu Chen and Samuel Burer. Globally solving nonconvex quadratic program-
ming problems via completely positive programming. Mathematical Programming
Computation, 4(1):33-52, 2012.

9. Carleton Coffrin, Dan Gordon, and Paul Scott. NESTA, the NICTA energy system
test case archive. arXiv preprint arXiv:1411.0359, 2014.

10. Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201-213, 2002.

11. Hongbo Dong and Yunqi Luo. Compact disjunctive approximations to nonconvex
quadratically constrained programs, 2018.

12. Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros
Gleixner, Nick Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann,
et al. Qplib: a library of quadratic programming instances. Mathematical Pro-
grammaing Computation, 11(2):237-265, 2019.


https://github.com/joehuchette/quadratic-relaxation-experiments
https://github.com/robburlacu/acopflib
https://qplib.zib.de/

30 B. Beach, R. Burlacu, A. Biarmann, L. Hager, R. Hildebrand

13. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

14. Joseph A. Huchette. Advanced mized-integer programming formulations: method-
ology, computation, and application. PhD thesis, Massachusetts Institute of Tech-
nology, 2018.

15. Jeff Linderoth. A simplicial branch-and-bound algorithm for solving quadrati-
cally constrained quadratic programs. Mathematical Programming, 103(2):251-282,
2005.

16. Garth P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I — convex underestimating problems. Mathematical Programming,
10(1):147-175, 1976.

17. Abel Soares Siqueira, Raniere Costa da Silva, and Luiz-Rafael Santos. Perprof-py:
A python package for performance profile of mathematical optimization software.
Journal of Open Research Software, 4(1), 2016.

18. Matus Telgarsky. Representation benefits of deep feedforward networks.
https://arxiv.org/abs/1509.08101, 2015.

19. Andreas Wachter. An interior point algorithm for large-scale nonlinear optimiza-
tion with applications in process engineering. PhD thesis, Carnegie Mellon Univer-
sity, 2002.

20. Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103-114, 2017.

A Detailed Derivation of the MIP Relaxation D-NMDT

For the derivation of the MIP relaxation D-NMDT for grap, j2(zy), we first
define

_ JpRx L _ IRY L
T = 22 B+ AL, y= 22 BY + AL, (29)
AL e [O2L] Aée[ ]ﬁme{Ol}L BY e {0,1}L.
Then we use the NMDT representation (17), expand the ALy-term and obtain
L .
z=xy=1y (Z 277657 +A£>
j=1
L .
= Z 27787y + yAL

JﬁmerAL <22 ]ﬂy+AL>

Jj=1

’j(ﬁfy +BYAL) + ALAL.

'Mh [ M“ i

<
Il
it

Alternatively, if we discretize y first, then expand the term Aﬁx, we obtain

L
Z I(BYx + By AL) + ALAL.
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Finally, to balance between the two formulations, we observe for any A € [0, 1]
that

z=ay=Axy + (1 — Ny
L
=\ (Z 277 (Y + BT AL) + A§A§>
j=1

L
+(1=X) (Z 277(Bfy + BYAL) + AﬁAj)

Jj=1

L
Z — NAL +X2) + BENAL + (1 - Ny)] + ALAL

holds. This yields

~

L
£C=22 ]Bm—l—Aﬁ, y=22_j6§-’+A5

Jj=1 Jj=1

z= Z 277[BY((1 = NAL + Xz) + BF(AAY + (1 — Ny)] + AL AL

SAN

AL Al e [,2 B, a,yel0,1], B%BYe{0, 1}~

Finally, we obtain the complete MIP relaxation D-NMDT stated in (21) by ap-
plying McCormick envelopes to the product terms 55 ((1 —NAL 4 \z), By ()\AYS +
(1= X)y) and AZAL. For bounds on the terms ((1 — A)AL + Az) and (AAL +
(1 = XN)y), see Appendix B.

B MIP Relaxations on General Intervals

In this section, we generalize the MIP relaxations for gray, 112 (xy) and gra%oyl] (z?)

discussed in this article to general box domains (z,y) € [z,Z]x € [y,y] and
x € [z,z], where 2 < Z, y < y and z,Z,y,y € R. by giving explicit formulations
for general bounds on x and y.

B.1 MIP Relaxations for Bivariate Quadratic Equations

First, we consider MIP relaxations for z = zy and give explicit models of NMDT
and D-NMDT for general box domains.

Next, we consider the MIP relaxation NMDT. To derive the general formu-
lation, we first introduce & € [0, 1] and define £ = #y, then use the definitions
=1,z + z and

z=ay=(Li+z)y=Ii+z -y
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to obtain

L
x=1x22fjﬁj+A£+$

j=1
L .

=1, 2,278y + ALyt -y
j=1

AL (0,275 —a)], yelypgl, Be (01}~

In this way, we are able to formulate the MIP relaxation NMDT on a general
box domain as follows:

L
x=ZIZ2ﬂﬂj+Aﬁ+$

Jj=1
L
Z=ZIZ2_jUj+AZL+.L"y (32)
j=1
(l',aj,UJ)EM((E,Bj) j61,. 7L
(A7,y, AL) e M(AL,y)
AL ef0,275,]), yely,yl, Be{0,1}F

Finally, we present the modelling of D-NMDT on general box domains. Anal-
ogously as for NMDT, we apply McCormick envelopes to model all remaining
product terms ajy and AL . y. Further, we introduce the variables & € [0, 1]
and £ € [0,1] to map the domain to [0, 1] intervals by using the transformations
x =2+ x and y := ly,Z + y as well as

As in the derivation of (21), we then obtain the formulation D-NMDT by apply-
ing McCormick envelopes to the product terms £3;((1—A) AL +A%), a; (AAL +(1—
N)2) and ALAL. As in (21), we incorporate the following bounds to construct
McCormick envelopes:

(1—=XNAL + X2 €[0,(1—N)27L + )]
ML+ (1 =Nze0,227F+ (1-N)].
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Altogether, we are now ready to state the MIP relaxation D-NMDT on general
box domains:

j=1
(AAL + (1= N2, 87,u;) € M(AAL + (1= N2, o) jel,...,L
(1= XN)AL + A2, 5Y,v) € M((1 = N)AL + A2, 53;) jel,...,L
(A, AL, ALy e M(AE, AL)
AL AL efo0,27L], 2,2€0,1], B% BYe{0,1}F

(33)

B.2 MIP Relaxations for Univariate Quadratic Equations

For NMDT and D-NMDT, we derive the general formulations by using the
derivations in Appendix A with & = y. In the case of NMDT, where the original
model is (19), this leads to

L
x=1m22ﬂﬂi+Ag+a_3

=1
L
z=lm22’iui+A5+3_c~x (34)
=1
(x, Bi,ui) € M(z, o) iel,...,L
(A7 @, AZ) e M(AL, x)
Abeo,2701,], welx,7], Be{0,1}L.
For D-NMDT, we obtain (22) for general domains as follows:
T=1 ) 27 B+ 1AL + 2
i=1 |
2=1lp Y 27 + BAL + x(x + 1,AL) (35)
i=1
(lwAé—’—xaﬁuuz)eM( wAé—i_:EuBZ) 2617 7L
(A7, AZ) e M(AY)
Abe0,27L], zelz,z], Be{0,1}F,

with I, AL + 2 e [2,1,27F + 2
C Instance set

In Table 7 we show a listing of all instances of the computational study from Sec-
tion 6. The boxQP instances are publicly available at https://github.com /joehuchette/quadratic-relaxation-exj
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The ACOPF instances are also publicly available at https://github.com/robburlacu/acopflib.
The QPLIB instances are available at https://qplib.zib.de/. In total, we have 60
instances, of which 30 are dense and 30 are sparse.

Table 7. IDs of all 60 instances used in the computational study. In bold are the IDs
of the instances that are dense.

boxQP instances: spar

020-100-1 020-100-2 030-060-1 030-060-3 040-030-1
040-030-2 050-030-1 050-030-2 060-020-1 060-020-2
070-025-2 070-050-1 080-025-1 080-050-2 090-025-1
090-050-2 100-025-1 100-050-2 125-025-1 125-050-1

ACOPF instances: miqcqp_ac_opf_nesta_case

3_lmbd_api 4_gs_api 4_gs_sad 5_pjm_api 5_pjm_sad

6_c_api 6_csad 6_ww_sad 6_ww 9_wscc_api

9_wsccsad 14_ieee_api 14_ieee_sad 24_ieee_rts_api 24_ieee_rts_sad

29_edin_api 29_edin_sad 30_fsr_api 30_ieee_sad 9_epri-api
QPLIB instances: QPLIB_

0031 0032 0343 0681 0682

0684 0698 0911 0975 1055

1143 1157 1423 1922 2882

2894 2935 2958 3358 3814
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