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Abstract. We study the combination of proximal gradient descent with multigrid for solving a class of possibly
nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MG-
Prox, which accelerates the proximal gradient method by multigrid, based on using hierarchical information of the
optimization problem. MGProx applies a newly introduced adaptive restriction operator to simplify the Minkowski
sum of subdifferentials of the nondifferentiable objective function across different levels. We provide a theoretical
characterization of MGProx. First we show that the MGProx update operator exhibits a fixed-point property. Next,
we show that the coarse correction is a descent direction for the fine variable of the original fine level problem in
the general nonsmooth case. Lastly, under some assumptions we provide the convergence rate for the algorithm. In
the numerical tests on the Elastic Obstacle Problem, which is an example of nonsmooth convex optimization prob-
lem where multigrid method can be applied, we show that MGProx has a faster convergence speed than competing
methods.
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1. Introduction. We study the combination of two iterative algorithms: proximal gra-
dient descent and multigrid, to solve the following class of optimization problems

(1.1) argmin
x

F0(x) B f0(x) + g0(x).

(Assumption) We assume f0 : Rn → R is L0-smooth and µ0-strongly convex, and g0 : Rn →

R is proper, possibly nonsmooth, convex, and separable. Regarding the non-smoothness
(nondifferentiability) of g0, we further assume a single point of non-differentiability for g0.
We recall that a function ζ(x) : Rn → R is separable if ζ(x) =

∑
i ζi(xi), and is µ-strongly

convex (and thus coercive) with µ > 0 if ζ(x)− µ
2 ∥x∥

2
2 is convex; and lastly is L-smooth if ζ is

C1,1
L and ∇ζ is L-Lipschitz; i.e., for all x, y in Rn, ∇ζ(x) exists and

(1.2) ζ(y) ≤ ζ(x) +
〈
∇ζ(x), y − x

〉
+

L
2
∥y − x∥22.

Modern models are nonsmooth. Advancements in nonsmooth (i.e., nondifferentiable)
optimization since the 60s [31] enable the use of nonsmooth g0 in (1.1). The standard text-
books are [42, 46, 3, 4]. Then (1.1) captures many models in machine learning [10, 39],
where f0 is a data fitting term and g0 models the constraint(s) and/or regularization(s) of the
application. A popular tool for solving (1.1) is the proximal gradient method [41, 12], to be
reviewed in subsection 1.3.

Classical problems in scientific computing are smooth. Setting g ≡ 0 in (1.1) gives

(1.3) min
x∈Rn

f0(x),
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in which this problem class of smooth strongly convex optimization subsumes many problems
in scientific computing. If problem (1.3) comes from the discretization of certain classes of
partial differential equation (PDE) problems, multigrid methods [11, 6, 18, 19, 32], to be
reviewed in subsection 1.1, are among the fastest known method for solving (1.3).

This work: bridging smoothness and nonsmoothness. Multigrid and nonsmooth opti-
mization are two communities that seldom interact. In this work we link the two fields and
develop a method that can handle nonsmooth problems while enjoying the fast convergence
from multigrid. We propose MGProx that accelerates the proximal-gradient method by multi-
grid to solve Problem (1.1). Below we review multigrid and the proximal gradient method.

1.1. Classical multigrid and notation. Multigrid dates back to the 1960s with works by
Fedorenko [11] on solving the Poisson equation and was then further developed by Brandt [6]
and Hackbusch [18]. There are many multigrid frameworks; in this work we focus on MGOPT:
a full approximation scheme [6] nonlinear multigrid method which was applied and extended
to optimization problems by Nash [32]. MGOPT speeds up the convergence of an iterative
algorithm (called smoothing or relaxation) by using a hierarchy of coarse discretizations of
f0: it first constructs a series of coarse auxiliary problems of the form

(1.4) min
xℓ

fℓ(xℓ) − ⟨τℓ−1→ℓ, xℓ⟩, ℓ ∈ {1, 2, . . . , L},

where τℓ−1→ℓ carries information from level ℓ − 1 to level ℓ, and fℓ, xℓ denote the function f
and the variable x, at the level ℓ, respectively. MGOPT then makes use of the solution of (1.4)
to solve (1.3). The convergence of the overall algorithm is sped up by the correction from the
coarse levels and by the fact that the coarse problems are designed to be “less expensive” to
solve than the given ones.

Notation. The symbol x0 (or x) is called the fine variable. The symbol xℓ in (1.4) with
ℓ ≥ 1 is called coarse variable. The subscript ℓ ∈ {0, 1, . . . , L} denotes the level. A larger ℓ
means a coarser level with lower resolution (fewer variables). For the remainder of the paper,
L without a subscript stands for the number of levels, whereas Lℓ denotes the smoothness
parameter for the level-ℓ problem. At a level ℓ, the coarse version of the vector xℓ ∈ Rnℓ is
xℓ+1 = R(xℓ) B Rxℓ where R ∈ Rnℓ+1×nℓ with nℓ+1 ≤ nℓ is called a restriction matrix. Similarly,
given xℓ+1 ∈ R

nℓ+1 and a prolongation matrix P ∈ Rnℓ×nℓ+1 , we obtain the level-ℓ version of
xℓ+1 as xℓ = P(xℓ+1) B Pxℓ+1. We let P = cR

⊤
given scaling factor c > 0 and R. In multigrid,

choosing (R, P) depends on the application. In this work, for the applications we consider
commonly chosen (R, P), see Section 5.2.1 for our choice of (R, P) used in the experiment
and see [8] for an introduction on how to select (R, P).

1.2. MGOPT. Let xk
ℓ be the level-ℓ variable at iteration k. Algorithm 1.1 shows a 2-

level (ℓ ∈ {0, 1}) MGOPT [32] for solving (1.3), with the steps in the algorithm explained as
follows:

• (i): σ : Rn → Rn denotes an update iteration called pre-smoothing. In this work we
focus on σ being the proximal gradient operator.
• (ii): the restriction step.
• (iii): the vector τk+1

0→1 carries the information at level ℓ = 0 to level ℓ = 1.
• (iv): the coarse problem (1.4) is a “smaller version” of the original fine problem.

The function f1 = R( f0) is the coarsening of f0 and the linear term ⟨τk+1
0→1, ξ⟩ links

the coarse variable with the τ-correction information from the fine variable.
• (v): the updated coarse variable xk+1

1 is used to update the fine variable yk+1
0 .

• (vi): this step is the same as (i).
In the algorithm, α > 0 is a stepsize. The τ-correction is designed in a way that the iteration
has a fixed-point that corresponds to a solution.
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Algorithm 1.1 2-level MGOPT [32] for an approximate solution of (1.3)

Initialize x1
0, R and P

for k = 1, 2, . . . do
(i) yk+1

0 = σ(xk
0) pre-smoothing

(ii) yk+1
1 = Ryk+1

0 coarse variable

(iii) τk+1
0→1 = ∇ f1(yk+1

1 ) − R∇ f0(yk+1
0 ) create the tau vector

(iv) xk+1
1 = argmin

ξ
f1(ξ) − ⟨τk+1

0→1, ξ⟩ solve the coarse problem (exactly)

(v) zk+1
0 = yk+1

0 + αP
(
xk+1

1 − yk+1
1

)
coarse correction

(vi) xk+1
0 = σ(zk+1

0 ) post-smoothing
end for

Remark 1.1 (MGOPT has no theoretical convergence guarantee). The proof of [32, The-
orem 1] on the convergence of MGOPT requires additional assumptions. In short the proof
states the following: on solving (1.3) with an iterative algorithm xk+1 B σ(xk) where the up-
date map σ : Rn → Rn is assumed to be converging from any starting point x1, now suppose
ρ : Rn → Rn is some other operator with the descending property that f0(ρ(x)) ≤ f0(x). Then
[32, Theorem 1] claimed that an algorithm consisting of interlacingσwith ρ repeatedly is also
convergent. This is generally not true without further assumptions. Here is a counterexample
for [32, Theorem 1]. Consider minimizing a scalar function f (x) = x2 exp(−x2).

• This f has a unique global minimum at x = 0, two global maxima at x = ±1.
• We decrease f by ρ being the gradient descent step.
• f is differentiable, and its slope is f ′(x) = 2 exp(−x2)x(1 − x2) with a Lipschitz

constant about 0.58, thus we can pick α = 1 < 1/0.58 for the gradient stepsize.
• If we initialize at x0 = 2, we have x1 = ρ(x0) = 2 + 12e−4.
• Take the operator σ : x 7→ βx with β = 1/(1+6e−4) = x0/x1. For any x, the sequence

x, σ(x), σ(σ(x)), ... converges to x∗ = 0.
Now, if we interlace σ and ρ, then the sequence {xk} does not converge, it alternates between
x0 and x1 indefinitely: x0 = 2

ρ
−→ x1 = 2 + 12e−4 σ

−→ x0 = 2
ρ
−→ x1 = 2 + 12e−4.

Thus, the convergence analysis of MGOPT is incomplete, and as a side product, the method we
propose establishes the convergence of MGOPT as a special case (if gradient descent is used as
the update step and our other assumptions hold), to be discussed in the contribution section.
We remark that the issue of non-convergence of MGOPT has also been addressed using both
line-search [50] and trust region methods [17].

1.3. Proximal gradient method. Nowadays subgradient [42] and proximal operator
[31] are standard tools for designing first-order algorithms to solve nonsmooth optimization
problems [10, 39, 4], especially for large-scale optimization where computing higher-order
derivatives (e.g. the Hessian) is not feasible. Here we give a quick review of the proximal
operator and the proximal gradient operator. We review subgradients in subsection 2.2.

Rooted in the concept of Moreau’s envelope [31], the proximal gradient method was first
introduced in the 1980s in [12, Eq. (4)] as a generalization of the proximal point method [43].
Under the abstraction of monotone operators, the proximal gradient method is understood as
a forward-backward algorithm [41], and it was later popularized by [10] as the proximal
forward-backward splitting. Nowadays proximal gradient method is ubiquitous in machine
learning [39].

The proximal gradient method solves problems of the form (1.1) as follows. Starting
from an initial guess x1, the method updates the variable by a gradient descent step (with a
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stepsize α > 0) followed by a proximal step associated with g0:

xk+1 = proxαg0

(
xk − α∇ f0(xk)

)
,(1.5a)

proxαg0
(x) B argmin

u

{
αg0(u) +

1
2
∥u − x∥22

}
= argmin

u

{
g0(u) +

1
2α
∥u − x∥22

}
.(1.5b)

If f0 is L0-smooth (1.2), we can set stepsize α in (1.5a) as α ∈ (0, 2
L0

) because such a stepsize
brings strict functional decrease, and convergence to critical points [4]. The proximal operator
(1.5b) itself is also an optimization problem, and in practice many commonly used g0 are
“proximable” in that (1.5b) has an efficiently computable closed-form solution. The proximal
gradient method has many useful properties. To keep the introduction short, we introduce
these properties later when needed.

1.4. Contributions. In this work, our contributions are:
1. We propose MGProx (multigrid proximal gradient method) to solve (1.1). It general-

izes MGOPT on smooth problems to nonsmooth problems using proximal gradient as
the smoothing method. A key ingredient in MGProx is a newly introduced adaptive
restriction operator in the multigrid process to handle the Minkowski sum of sub-
differentials. The key idea is about collapsing a set-valued vector into a singleton
vector to ease computation, more to be explained in section 2.

2. We provide theoretical results for 2-level MGProx: we show that
• MGProx exhibits a fixed-point property, see Theorem 2.4;
• the coarse correction update (in step (v) of Algorithm 2.1) is a descent direction

for the fine variable of the original fine level problem, see the subdifferential
obtuse angle condition in Theorem 2.5 and Lemma 2.7 for the existence of a
coarse correction stepsize that provides a descent condition;
• the sequence { f (xk

0)}k∈N at the finest level converges to the optimal value with
rate 1/k and

(
1− µ0

L0

)k , see Theorems 2.13 and 2.18; this result also establishes
the convergence of MGOPT (for σ being the gradient update) in the convex case
(see remark 1.1).
• if we combine MGProxwith Nesterov’s acceleration, the sequence { f (xk

0)}k∈N at
the finest level converges to the optimal value with rate 1/k2, see Theorem 3.1.

3. On the elastic obstacle problem, we show that multigrid accelerates the proximal
gradient method; we show that MGProx runs faster than other methods. See section 5.

1.5. Literature review. The idea of multigrid is natural when handling large-scale el-
liptic PDE problems.

1.5.1. Early works. Early multigrid methods for non-smooth problems like (1.1) per-
tain to the case of constrained optimization problems where g0 is an indicator function on the
feasible set. For example, [7] and [30] develop multigrid methods for a symmetric positive
definite (SPD) quadratic optimization problem with a bound constraint, which is equivalent
to a linear complementarity problem. This applies, for example, to linear Elastic Obstacle
Problems where g0 is a box indicator function that models non-penetration constraints. In
[20] this is extended to more general constrained nonlinear variational problems with SPD
Fréchet derivatives, and to their associated nonlinear variational inequalities. Later [14] de-
veloped a Newton-MG (see below) method for an SPD quadratic optimization problem with
more general but separable nonsmooth g0. This is extended in [15] to a nonlinear objective
function with nonsmooth g0.

1.5.2. Two families of multigrid. We emphasize that there are at least two different
approaches to perform multigrid in optimization. The 2-level MGOPT algorithm (Algorithm
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1.1) is an example of a full approximation scheme (FAS) multigrid method for nonlinear
problems. The FAS approach, which was first described in [6], adds a τ-correction term to
the coarse nonlinear problem to ensure that the multigrid cycle satisfies a fixed-point property.
And because of the τ, FAS is also called tau-correction method.

There is an alternative multigrid approach for solving nonlinear problems, which is the
so-called Newton-multigrid method (Newton-MG, [8, Ch. 6]), where the fine-level problem
is first linearized using Newton’s method and the linear systems in each Newton iteration are
solved approximately using a linear multigrid method. In other words, Newton-MG applies
multigrid on solving the linear system ∇2 f (x)d = ∇ f (x). Newton-MG includes the works
[26, 14, 16, 25, 15].

In the context of optimization problems, nonlinear multigrid methods can be devised
to either work directly on the optimization problem and coarse versions of the optimization
problem (as MGOPT does), or they can be designed to work on the fine-level optimality condi-
tions and coarse versions of them.

1.5.3. How our approach differs. Our method is a FAS approach like [7, 20, 30] but
our approach applies to general g0 functions that go beyond indicator functions and include
nonsmooth regularizations. While [7, 30] deal with linear problems, our approach applies to
general nonlinear f0. In contrast to [7, 20], we don’t use injection for the restriction operation,
which often leads to slow multigrid convergence, but instead we use an adaptive restriction
and interpolation mechanism that precludes coarse-grid updates to active points.

Our adaptive restriction and interpolation mechanism is similar to the truncation process
used in [14, 15], but our approach uses a FAS framework while [14, 15] use Newton-MG, and,
most important we provide a convergence proof with convergence rates 1/k, (1− µ0/L0)k and
1/k2, while [15] has no result on convergence rate. Furthermore, Newton-MG requires the
computation of 2nd-order information (the Hessian), while MGProx is a 1st-order method.

To sum up, our approach is a first-order method that avoids computing second deriva-
tive, and the method is a FAS that does not require solving the equations ∇2 f (x)d = ∇ f (x).
While existing multigrid methods in optimization are problem specific, our approach is gen-
eral for a class of non-smooth functions.

1.5.4. Multigrid outside PDEs.
Multigrid in image processing. Besides PDEs, multigrid was used in the 1990s in image

processing for solving problems with a nondifferentiable total variation semi-norm in image
recovery (e.g., [49, 9]). Note that these works bypassed the non-smoothness by smoothing
the total variation term, making them technically only solving (1.3) but not (1.1).

Multigrid in machine learning. In the 2010s multigrid started to appear in machine learn-
ing, e.g., ℓ1-regularized least squares [48] and Nonnegative Matrix Factorization [13]. We
remark that these works are not true multigrid method as there is no τ in the schemes, nor is
the information of the fine variable carried to the coarse variable when solving the problem.

Recent work. Recently [40] proposed a multilevel proximal gradient method with a FAS
structure, however it bypassed the technically challenging part of nonsmoothness by using
smoothing, making it similar to [49, 9] in that they are only solving (1.3) but not (1.1).

The table below summarizes the comparison. In the table, “1st-order” means the method
discussed in the paper is a 1st-order method,
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Work 1st-order FAS convergence theory general nonsmooth g0

[26] no no yes but no rate no, box constraints only
MGOPT [32] yes and no yes no (Remark1.1) no
[14] no no no yes
[16] no no no no, box constraints only
[25] yes yes yes but no rate no, box constraints only
[40] yes yes yes but smoothing yes
[15] no no yes but no rate yes
This work yes yes yes with rates yes

1.6. Organization. In section 2 we present a 2-level MGProx and discuss its theoretical
properties. Then we present an accelerated MGProx in section 3 and a multi-level MGProx
in section 4. In section 5 we demonstrate the performance of MGProx compared with other
methods. We conclude the paper in section 6.

2. A two-level multigrid proximal gradient method. In subsection 2.1-2.4, we review
subgradients for nonsmooth functions, discuss their interaction with restriction (the coarsen-
ing operator), introduce the notion of adaptive restriction, and define the τ vector that carries
the cross-level information. We introduce a 2-level MGProx method in subsection 2.5 and we
provide theoretical results about the algorithm: fixed-point property (Theorem 2.4), descent
property (Theorem 2.5), existence of coarse correction stepsize (Lemma 2.7) and convergence
rates (Theorems 2.13 and 2.18). In subsection 2.5.7 we discuss further details of τ.

2.1. Functions at different levels. Following subsection 1.1, we use fℓ : Rnℓ → R to
denote functions at different coarse levels. In this section we will focus on ℓ ∈ {0, 1} but we
remark that all the notations and definitions are generalized to ℓ ∈ {0, 1, . . . , L} in Section 4.
We denote the restriction of the fine objective function F0 in (1.1) as F1 B R(F0) = R( f0+g0),
where R is defined below.

Definition 2.1 (Restriction). At a level ℓ ∈ N, given a function fℓ : Rnℓ → R, the
restriction R of fℓ, denoted as fℓ+1 B R( fℓ), is defined as fℓ+1(xℓ+1) B fℓ(Rxℓ), where R :
Rnℓ → Rnℓ+1 is a restriction matrix . We also define the associated prolongation matrix
P : Rnℓ+1 → Rnℓ as P = cR⊤ where c > 0 is a predefined constant.

Adaptive restriction and non-adaptive restriction. We recall that a contribution of this
work is the introduction of the adaptive restriction, to be discussed in subsection 2.4 (see
Definition 2.3). To differentiate the classical non-adaptive restriction (and the associated pro-
longation) from the adaptive version, we denote the non-adaptive restriction by R,R,P, P,
and denote the adaptive one by R,R,P, P. We remark that Definition 2.1 can be used for both
versions of restriction and prolongation. We give an example of R, P in section 5.

2.2. Review of subdifferential of nonsmooth functions. The subdifferential [42] is
a standard framework used in convex analysis to deal with nondifferentiable functions. A
convex function g(x) : Rn → R B R ∪ {+∞} is called nonsmooth if it is not differentiable for
some x in Rn. A point q ∈ Rn is called a subgradient of g at x if for all y ∈ Rn the inequality
g(y) ≥ g(x) + ⟨q, y − x⟩ holds. The subdifferential of g at a point x is defined as the set of all
subgradients of g at x, i.e.,

(2.1) ∂g(x) B
{

q ∈ Rn
∣∣∣ g(y) ≥ g(x) + ⟨q, y − x⟩ ∀y ∈ Rn

}
⊂ Rn,

so ∂g(x) is generally set-valued. If g is differentiable at x, then ∇g(x) exists and the set ∂g(x)
reduces to the singleton

{
∇g(x)

}
.
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Subdifferential sum rule (Moreau–Rockafellar theorem). Let ⊕ denote the Minkowski
sum. Since subdifferentials are generally set-valued, hence for two functions f , g, generally
∂( f + g) , ∂ f ⊕ ∂g but ∂( f + g) ⊃ ∂ f ⊕ ∂g. The sum rule ∂( f + g) = ∂ f ⊕ ∂g holds if f , g
satisfy a qualification condition (e.g. [4, Theorem 3.36]): the relative interior of the domain
of f has a non-empty intersection with the relative interior of domain of g, i.e.,

(2.2) ri(dom f ) ∩ ri(dom g) , ∅ =⇒ ∂
(

f (x)+g(x)
)
= ∂ f (x)⊕∂g(x), ∀x ∈ dom f ∩ domg.

The right-hand side (RHS) of (2.2), which is the subdifferential sum rule, is known as the
Moreau–Rockafellar theorem [27]. We now discuss the fact that the functions fℓ, gℓ for all
levels ℓ in this work satisfy the Moreau–Rockafellar theorem.

• At level ℓ = 0, we have the left-hand side (LHS) of (2.2) for f0, g0 by assumption.
• At levels ℓ > 0, by Definition 2.1, the LHS of (2.2) holds for the coarse functions.

To see this, take the coarse function as composition of the fine function with a lin-
ear map, and recognize the fact that the domain of a function is preserved under
composition with a linear map. To be explicit, we have

ri
(
dom f1

)
∩ ri

(
dom g1

)
= ri

(
dom ( f0 ◦ R)︸         ︷︷         ︸

whole Rn1

)
∩ ri

(
dom (g0 ◦ R)

)
, ∅.

To sum up, in this work (2.2) holds for all levels ℓ:

(2.3) ∂Fℓ(xℓ) B ∂
(

fℓ(xℓ) + gℓ(xℓ)
)
= ∂ fℓ(xℓ) ⊕ ∂gℓ(xℓ) = ∇ fℓ(xℓ) + ∂gℓ(xℓ),

where + is used instead of ⊕ in ∇ fℓ(xℓ) + ∂gℓ(xℓ) because ∇ fℓ(xℓ) is a singleton.

2.3. Convexity and subdifferential of coarse function. From Definition 2.1, the coarse
function can be written as Fℓ+1 B Fℓ ◦ R, meaning that we can see the restriction process
as the fine function taking composition with the linear map R. Such composition view point
gives us a series of useful properties for this work. First, we have a closed-form expression
for the subdifferential of the coarse function in terms of the the subdifferential of the fine
function. I.e., by [4, Theorem 3.43], we have that

(2.4) ∂Fℓ+1(x) = ∂(Fℓ ◦ R)(x) = R⊤∂Fℓ(Rx).

Then, by the fact that convexity is preserved under linear map, we have that “restriction
preserves convexity”. In other words, fℓ+1 is convex if fℓ is convex. Furthermore, if R is
full-rank (which is the case in this paper), restriction is submultiplicative on the modulus of
convexity, as illustrated in the following lemma.

Lemma 2.2 (Composition with full-rank matrix preserves convexity). Given a function
F : Rn → R that is µ-strongly convex and a rank-n matrix R ∈ Rm×n, the function F ◦ R is
µσ2

n-strongly convex, where σn is the nth singular value of R.

Proof. F is strongly convex so ∂F is strongly monotone [3]: for all x, y ∈ dom F,

(2.5)
〈
x − y, ∂F(x) − ∂F(y)

〉
≥ µ∥x − y∥22.

Now we show ∂(F ◦ R) is also strongly monotone. For all x, y in dom (F ◦ R), we have

⟨x − y, ∂(F ◦ R)(x) − ∂(F ◦ R)(y)⟩
(2.4)
= ⟨x − y, R⊤∂F(Rx) − R⊤∂F(Ry)⟩
= ⟨Rx − Ry, ∂F(Rx) − ∂F(Ry)⟩

(2.5)
≥ µ∥Rx − Ry∥22 ≥ µσ2

n∥x − y∥22,

where σn > 0 is the nth singular value of the full-rank matrix R. Thus the subdifferential
∂(F ◦ R) is is µσ2

n-strongly monotone, and thus the function F ◦ R is µσ2
n-strongly convex.
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Notation for sets. From now on, when we encounter an expression containing both set-
valued vector(s) and singleton vector(s), we underline the set-valued term(s) for visual clarity.

2.4. Adaptive restriction and the τ vector. Since subdifferentials are set-valued, we
define τ in MGProx as an element of a set. At a level ℓ, we define a set τℓ→ℓ+1 B ∂Fℓ+1(xℓ+1)⊕
(−R)∂Fℓ(xℓ), where ℓ → ℓ + 1 specifies that τ connects level ℓ to level ℓ + 1, and the matrix
R here is an adaptive restriction operator that we will define soon. In MGProx we choose an
element of τℓ→ℓ+1 as the tau vector. That is, at level ℓ = 0,

τ0→1 ∈ τ0→1 B ∂F1(x1) ⊕ (−R)∂F0(x0)(2.6a)
(2.3)
= ∇ f1(x1) − R∇ f0(x0) + ∂g1(x1) ⊕ (−R)∂g0(x0).(2.6b)

Note that τ0→1 is a function of two points at two different levels. In (2.6a) τ0→1 is the Min-
kowski sum of two subdifferentials ∂F1(x1) and −R∂F0(x0) which are generally set-valued.
To obtain a tractable coarse-grid optimization problem (corresponding to line (iv) in Algo-
rithm 1.1) we need to avoid complications coming from the Minkowski sum, and we do this
by modifying the standard restriction (and prolongation) by zeroing out columns in R to form
R such that the second subdifferential R∂g0(x0) in (2.6b) is a singleton vector. Similarly,
we zero out the corresponding rows in P to form P for the coarse correction step, such that
non-differentiable fine points are not corrected by the coarse grid. This zeroing out process
is adapted to the current point x0, so we call this R an adaptive restriction operator. In other
words, the purpose of the adaptive restriction is to reduce a generally set-valued subdifferen-
tial R∂g0(x0) to a singleton. We denote the adaptive operator R corresponding to a point x as
R(x) and thereby the adaptive restriction of x is denoted as R(x)x. Sometimes we just write
Rx if the meaning is clear from the context. Based on the above discussion, we now formally
define adaptive restriction, and we give an example in section 5.

Definition 2.3 (Adaptive restriction operator for separable g). For a possibly nonsmooth
function g : Rn → R that is separable, i.e., with x = [x1, x2, . . . , xn], g(x) =

∑
gi(xi) where

gi is a function only of component xi, given a full restriction operator R and a vector x, the
adaptive restriction operator R with respect to a function g at x is defined by zeroing out the
columns of R corresponding to the elements in ∂g that are set-valued.

The coarse problem is nonsmooth and τ is an element of a set. Now it is clear that
the subdifferential R∂g0(x0) in (2.6b) is a singleton. From the fact that the coarse problem is
nonsmooth (where the function g1 is nonsmooth), there are two consequences:

• it makes the coarse problems difficult to solve as well as the original problem. This
makes our approach differ from works such as [40] where the coarse problems are
replaced by a smooth approximation; and
• the first subdifferential ∂g1(x1) in (2.6b) is possibly set-valued, thus the RHS of

(2.6b) is generally set-valued and so is τ0→1, and we define τ0→1 to be a member of
the set τ0→1. We emphasize that in the algorithm to be discussed below we can pick
any value for τ0→1 in the set. We will explore the choice of τ after we have given a
complete picture of MGProx.

Adaptive restriction differs from Kornhuber’s basis truncation. In the PDE literature
there is a multigrid method called Kornhuber’s basis truncation [26], in which at first glance
looks similar to MGProx. We remark that Kornhuber’s basis truncation is designed only for
box-constrained optimization. The truncation zeros out the basis of the optimization variable,
while adaptive restriction zeros the subdifferential vector (see (2.6b)). Also, the truncation is
only applied to the finest level [25, Section 2.2], while MGProx applies adaptive restriction
applies to all the levels.
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We are now ready to present MGProx. Here we present a 2-level MGProx method for
illustration, and we move to a general multi-level version in section 4. For adaptive R, now
all the Minkowski additions are trivial addition so we use + instead of ⊕.

2.5. A 2-level MGProx algorithm. Similar to the 2-level MGOPT method for solving
Problem (1.3), we propose a 2-level MGProx method (Algorithm 2.1) that solves Problem
(1.1) by utilizing a coarse problem defined as

(2.7) argmin
ξ∈Rn1

{
Fτ

1(ξ) B F1(ξ) − ⟨τk+1
0→1, ξ⟩ = f1(ξ) + g1(ξ) − ⟨τk+1

0→1, ξ⟩
}
.

Algorithm 2.1 2-level MGProx for an approximate solution of (1.1)
Initialize x1

0, R and P
for k = 1, 2, . . . do

(i) yk+1
0 = prox 1

L0
g0

(
xk

0 −
1
L0
∇ f (xk

0)
)

level-0 proximal gradient step

(ii) yk+1
1 = R(yk+1

0 )yk+1
0 construct the level-1 coarse variable

(iii) τk+1
0→1∈ ∂F1(yk+1

1 ) − R(yk+1
0 ) ∂F0(yk+1

0 ) construct the tau vector

(iv) xk+1
1 = argmin

ξ

{
Fτ

1(ξ) B F1(ξ) − ⟨τk+1
0→1, ξ⟩

}
solve the level-1 coarse problem

(v) zk+1
0 = yk+1

0 + αP
(
xk+1

1 − yk+1
1

)
coarse correction

(vi) xk+1
0 = prox 1

L0
g0

(
zk+1

0 − 1
L0
∇ f (zk+1

0 )
)

level-0 proximal gradient step
end for

Here are remarks for the steps in Algorithm 2.1.
• (i): we perform one or more proximal gradient iterations on the fine variable with a

constant stepsize 1/L0, where L0 is the Lipschitz constant of ∇ f0.
• (iii): we pick a value within the set to define τ; as we are now using adaptive R, we

use + instead of ⊕ in the expression of τ.
• (v): α > 0 is a stepsize; for its selection see subsection 2.5.3.
• The restriction for variable yk+1

0 and the restriction for the subdifferential ∂F0(yk+1
0 )

can be slightly different. On yk+1
0 the restriction is the full restriction, on ∂F0(yk+1

0 )
is the adaptive one. The explanation is as follows. For the particular cases of g0
such as ℓ1, max{·, 0} (element-wise maximum) and ι[0,∞) (indicator of nonnegative
orthant), when we zero out column i of R, the corresponding entry of yk+1

0 is already
0. Note that this conclusion does not hold in general for other nonsmooth functions
or when the non-differentiability occur at another point (say at x = 1). Generally
in those cases we will need to specify which restriction matrix (the full R or the
adaptive R) to be used to define P. However, to simplify the presentation we always
assume the non-differentiability occurs at x = 0, by performing a translation to shift
the non-differentiability to occur at x = 0.

2.5.1. Fixed-point property. Algorithm 2.1 exhibits the following fixed-point property.

Theorem 2.4 (Fixed-point). In Algorithm 2.1, if xk
0 solves (1.1), then we have the fixed-

point properties xk+1
0 = yk+1

0 = xk
0 and xk+1

1 = yk+1
1 .

Proof. The fixed-point property of the proximal gradient operator [39, page 150] gives

(2.8) yk+1
0

fixed-point
= xk

0
assumption
= argmin F0(x).
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As a result, the coarse variable satisfies yk+1
1 B Ryk+1

0
(2.8)
= Rxk

0. The 1st-order optimality of

yk+1
0

(2.8)
= argmin F0 gives 0 ∈ ∂F0(yk+1

0 ). Multiplying by −R (which reduces the set ∂F0(xk
0)

to a singleton) gives

(2.9) 0 = −R∂F0(xk
0).

Then adding ∂F1(yk+1
1 ) on both sides of (2.9) gives

∂F1(yk+1
1 ) = ∂F1(yk+1

1 ) − R(xk
0)∂F0(xk

0)(2.10a)

(2.6a)
∋ τk+1

0→1(2.10b)

In (2.9), −R∂F0(xk
0) is the zero vector, so the equality in (2.10a) holds since we are adding zero

to a (non-empty) set. The inclusion (2.10b) follows from (2.6a) as the expression ∂F1(yk+1
1 )−

R(xk
0)∂F0(xk

0) is the set τk+1
0→1 by definition.

Now rearranging (2.10b) gives 0 ∈ ∂F1(yk+1
1 ) − τk+1

0→1, which is exactly the 1st-order

optimality condition for the coarse problem argmin
ξ

F1(ξ)−
〈
τk+1

0→1, ξ
〉
. By strong convexity of

F1(ξ)−
〈
τk+1

0→1, ξ
〉
, the point yk+1

1 is the unique minimizer of the coarse problem, so xk+1
1 = yk+1

1

by step (iv) of the algorithm and xk+1
0 = yk+1

0
(2.8)
= xk

0 by steps (v) and (vi).

Theorem 2.4 shows that at convergence, we have fixed-point xk+1
0 = yk+1

0 at fine level
and also xk+1

1 = yk+1
1 at the coarse level. Next we show that when xk+1

1 , yk+1
1 , the objective

function value sequence is converging.

2.5.2. Coarse correction descent: angle condition. In nonsmooth optimization, de-
scent direction properties are drastically different from smooth optimization [37]. For ex-
ample for the subgradient method, the classical angle condition no longer describes a use-
ful set of search directions for the subgradient. In MGProx the coarse correction direction
P(xk+1

1 − yk+1
1 ) is a nonsmooth descent direction, and we will show that P(xk+1

1 − yk+1
1 ) de-

creases the objective function value, based on the theorem below and Lemma 2.7.

Theorem 2.5 (Angle condition of coarse correction). If P(xk+1
1 − yk+1

1 ) , 0, then

(2.11)
〈
∂F0(yk+1

0 ), P(xk+1
1 − yk+1

1 )
〉
< 0.

Before we prove the theorem we emphasize that (2.11) applies for any subgradient in the set
∂F0(yk+1

0 ). Furthermore,

(2.11) ⇐⇒
〈
P⊤∂F0(yk+1

0 ), xk+1
1 − yk+1

1
〉
< 0

P⊤=cR
⇐⇒ c

〈
R∂F0(yk+1

0 ), xk+1
1 − yk+1

1
〉
< 0.

As c > 0, showing (2.11) is equivalent to showing

(2.12)
〈
R∂F0(yk+1

0 ), xk+1
1 − yk+1

1
〉
< 0,

where R∂F0(yk+1
0 ) is a singleton vector for all subgradients in ∂F0(yk+1

0 ) due to the adaptive R.

Proof. By definition τk+1
0→1

(2.6a)
∈ ∂F1(yk+1

1 ) − R∂F0(yk+1
0 ) and the fact that R∂F0(yk+1

0 ) is a

singleton, we have R∂F0(yk+1
0 ) ∈ ∂F1(yk+1

1 ) − τk+1
0→1

(2.7)
= ∂Fτ

1(yk+1
1 ), showing that R∂F0(yk+1

0 )
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is a subgradient of Fτ
1 at yk+1

1 . For any subgradient in the subdifferential ∂Fτ
1(yk+1

1 ), we have

the following which implies (2.12):
〈
∂Fτ

1(yk+1
1 ), xk+1

1 − yk+1
1

〉
< Fτ

1(xk+1
1 ) − Fτ

1(yk+1
1 ) < 0,

where the first strict inequality is due to Fτ
1 being a strongly convex function (which implies

strict convexity); the second inequality is by xk+1
1 B argmin

ξ
Fτ

1(ξ) and the assumption that

xk+1
1 , yk+1

1 .

Remark 2.6. Theorem 2.5 holds for convex (not strongly convex) f0 by changing < to ≤.

2.5.3. Existence of coarse correction stepsize αk. Based on Theorem 2.5, we now
show that there exists a stepsize αk > 0 such that

(2.13) F0(zk+1
0 ) B F0

(
yk+1

0 + αkP(xk+1
1 − yk+1

1 )
)
< F0(yk+1

0 ).

Lemma 2.7 (Existence of stepsize). There exists αk > 0 such that (2.13) is satisfied for
P(xk+1

1 − yk+1
1 ) , 0.

To prove the lemma, we make use of a fact of the subdifferentials of finite convex func-
tions [21, Def.1.1.4, p.165]: ∂g(x) is a nonempty compact convex set S ⊂ Rn whose support
function sup

s
{⟨s, x⟩ | s ∈ S} is the directional derivative of g at x. By this, the subdifferential

∂F0(yk+1
0 ) is a compact convex set whose support function is the directional derivative of F0

at yk+1
0 . We emphasize that here F0(yk+1

0 ) is finite, so we can make use of the result on di-
rectional derivative in [21, Def. 1.1.4, p.165], which only applies for finite convex functions,
associated with the subdifferential.

Proof. We prove the lemma in 3 steps.
1. (Half-space) The strict inequality in Theorem 2.5 means that ∂F0(yk+1

0 ) is strictly

inside a half-space with normal vector p = P(xk+1
1 − yk+1

1 ).
2. (Strict separation) Being a compact convex set, ∂F0(yk+1

0 0) lying strictly on one side
of the hyperplane must be a positive distance (say αk > 0) from that hyperplane.

3. (Support and directional derivative) Evaluating the support function of ∂F0(yk+1
0 ),

i.e., the directional derivative of F0 at yk+1
0 in the direction p, we have (2.13).

Remark 2.8 (On the compactness of subdifferential). For a function ϕ, the set ∂ϕ is
compact on int dom ϕ. Note that ∂ϕ is not compact for indicator functions at the boundary.
So, for Lemma 2.7 to hold for function g0, we assume dom g0 B R

n with g0 : Rn → R
as in the Assumption in the introduction. Such an assumption is needed for the proof that a
positive α exists satisfying the line-search condition. The impact of this assumption is that we
are not allowing g0 to be an indicator function, and thus reducing the scope of the applicability
of the theory of MGProx. However,

• Empirically, we have observed that MGProx works for g0 being an indicator function
(such as box constraints).
• The convergence proof of MGProx does not require a positive coarse correction

stepsize α (i.e., allowing α < 0), so in principle we can relax the condition of
g0 : Rn → R to g0 : Rn → R.
• It will be an interesting future work to generalize Lemma 2.7 for g0 : Rn → R. There

is a different proof showing that a positive α exists in the case of certain indicator
functions. For example, the following is a theorem. If H is a hyperplane and P is
a polyhedral set (closed but possibly non-compact) lying strictly on one side of H,
then there is a positive distance between H and P.
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Now we see that Theorem 2.5 implies Lemma 2.7 which then implies the descent con-
dition (2.13). Later in Theorem 2.13 and Theorem 2.18, by using (2.13) together with the
sufficient descent property of proximal gradient (Lemma 2.9 below), we prove that the se-
quence

{
F0(xk

0)
}
k∈N produced by Algorithm 2.1 converges to the optimal value F∗ B min F.

Before that, in the next paragraph we first discuss about tuning the coarse correction stepsize.

Lemma 2.9. (Sufficient descent property of proximal gradient [4, Lemma 10.4]) Let L0
be the Lipschitz constant of ∇ f0. For step (i) in Algorithm 2.1, we have

(2.14) F0(yk+1
0 ) ≤ F0(xk

0) − ∥G0(xk
0)∥22/(2L0), G0(xk

0) = L0
[
xk

0 − prox 1
L g0

(
xk

0 − ∇ f0(xk
0)/L0

)]
.

G0(xk
0) is called the proximal gradient map of F0 at xk

0. The inequality also holds for step (vi).

Remark 2.10 (Theorem 2.5 holds for inexact coarse update). Step (iv) in Algorithm 2.1
can be expensive. If we replace (iv) by an iteration of (coarse level) proximal gradient step,
then by (2.14) we have Fτ

1(xk+1
1 ) ≤ Fτ

1(yk+1
1 ) − ∥Gτ

1(yk+1
1 )∥22/(2L1). For xk+1

1 , yk+1
1 we have

Fτ
1(xk+1

1 ) − Fτ
1(yk+1

1 ) < 0. Thus the descent condition holds for an inexact coarse update.

2.5.4. Tuning the coarse correction stepsize αk. First, exact line search is impractical:
finding αk B argmin

α≥0
F0

(
yk+1

0 +αP(xk+1
1 − yk+1

1 )
)

is generally expensive. Next, classical inexact

line searches such as the Wolfe conditions, Armijo rule, Goldstein line search (e.g., see [36,
Chapter 3]) cannot be used here as they were developed for smooth functions. While it is
possible to develop nonsmooth version of these methods, such as a nonsmooth Armijio rule in
tandem with backtracking on functions that satisfy the Kurdyka-Łojasiewicz inequality with
other additional conditions in [37], this is out of the scope of this work. Precisely, consider
the condition F0

(
yk+1

0 + αP(xk+1
1 − yk+1

1 )
)
≤ F0

(
yk+1

0
)
+ c1⟨∂F0(yk+1

0 ), αP(xk+1
1 − yk+1

1 )⟩ where
c1 ∈ (0, 1). Due to the strict inequality (2.11), the value c1 is possibly fluctuating and there is
no simple-and-efficient way to determine its value. Thus, for this paper, we use simple naive
backtracking as shown in Algorithm 2.2, which just enforces (2.13) without any sufficient
descent condition. While we acknowledge that the traditional wisdom in optimization tells
that naive descent conditions such as (2.13) are generally not enough to obtain convergence
to the optimal point, we note that MGProx is not solely using the coarse correction to update
the variable; instead it is a chain of interlaced iterations of proximal gradient descent and
coarse correction, and we will show next that the sufficient descent property of proximal
gradient descent (2.14) alone provides enough descending power for the function value F0 to
convergence to the optimal value.

Algorithm 2.2 Naive line search
Set α > 0 and select a tolerance ϵ > 0 (e.g. 10−15)
while true do

If F0
(
yk+1

0 + αP(xk+1
1 − yk+1

1 )
)
≤ F0(yk+1

0 ) then return zk+1
0 = yk+1

0 + αP(xk+1
1 − yk+1

1 ).
else if α > ϵ then α = α/2.

else return zk+1
0 = yk+1

0 .
end while

Remark 2.11 (Algorithm 2.2 has a fixed complexity). Suppose the algorithm runs N it-
erations, then with a tolerance ϵ = 10−15, the coarse stepsize α = 1/2N > ϵ gives N = 50.
I.e., Algorithm 2.2 will run at most 50 iterations to search for α.

Remark 2.12 (Infinitesimal α may not be computable). Lemma 2.7 on the existence of
α > 0 does not exclude the possibility that α is too close to zero so that zk+1

0 cannot be
distinguished from yk+1

0 . In this case Algorithm 2.2 simply gives α = 0.
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2.5.5. O(1/k) convergence rate. Inequality (2.13) implies that in the worst case the
coarse correction P(xk+1

1 − yk+1
1 ) in the multigrid process is “doing nothing” on yk+1

0 , which
occurs when P(xk+1

1 − yk+1
1 ) = 0 or xk+1

1 = yk+1
1 . We now show that the descent inequality

F0(xk+1
0 ) ≤ F0(zk+1

0 ) ≤ F0(yk+1
0 ) implies that the convergence rate of the sequence

{
F0(xk

0)
}
k∈N

for {xk
0}k∈N generated by MGProx (Algorithm 2.1) follows the convergence rate of the proximal

gradient method, which is O(1/k) [4]. In Theorem 2.13 we show that
{
F0(xk

0)
}
k∈N converges

to F∗0 B inf F0(x) with such a classical rate.

Theorem 2.13. The sequence {xk
0}k∈N generated by MGProx (Algorithm 2.1) for solving

Problem (1.1) satisfies F0(xk+1
0 ) − F∗0 ≤ max

{
8δ2L0, F0(x1

0) − F∗0
}
/k, where F∗0 = F0(x∗) for

x∗ = argmin F0, the point x1
0 ∈ R

n is the initial guess, L0 is the Lipschitz constant of ∇ f0, and
δ is the diameter of the sublevel set L≤F0(x1

0) defined in Lemma 2.16.

Note that we cannot invoke a standard theorem about the convergence of proximal gra-
dient descent such as [4, Theorem 10.21], because we interlace proximal gradient steps with
coarse corrections. Also, we note that all the functions and variables in this subsubsection are
at level ℓ = 0 so we omit the subscript. The constant L should be understood as the Lipschitz
constant of ∇ f (x). The proof is based on standard techniques in first-order methods. To make
the proof more accessible, we divide the proof into four lemmas:

• Lemma 2.14: we derive a sufficient descent inequality for the MGProx iteration.
• Lemma 2.15: we derive a quadratic under-estimator of F.
• Lemma 2.16: we give an upper bound for ∥xk − x∗∥2 and ∥yk+1 − x∗∥2 for all k.
• Lemma 2.17: we recall a convergence rate for a certain a monotonic sequence.

Using these lemmas, we follow the strategy used in [24] to prove Theorem 2.13.

Lemma 2.14 (Sufficient descent of MGProx iteration). For all iterations k, we have

(2.15) F(xk+1) − F∗ ≤ L
(
∥xk − x∗∥22 − ∥y

k+1 − x∗∥22
)
/2.

We put the proof in the appendix. We name the inequality (2.15) sufficient descent because
it resembles the sufficient descent property of the proximal gradient iteration (2.14). Also, by
definition, F(xk+1) ≥ F∗, hence (2.15) implies ∥xk − x∗∥22 ≥ ∥y

k+1 − x∗∥22.
The following lemma is similar to [5, Lemma 2.3] and [24, Lemma 3, Eq.(5.9)].

Lemma 2.15 (A quadratic function). For all x, we have

(2.16) F(x) − F(xk+1) ≥ L⟨xk − yk+1, x − xk⟩ + L∥yk+1 − xk∥22/2.

We put the proof in the appendix.

Lemma 2.16 (Diameter of sublevel set). At initial guess x1 ∈ Rn, define

L≤F(x1) B
{
x ∈ Rn | F(x) ≤ F(x1)

}
, (sublevel set of x1)

δ = diam L≤F(x1) B sup
{
∥x − y∥2 | F(x) ≤ F(x1), F(y) ≤ F(y1)

}
. (diameter of L≤F(x1))

Then for x∗ B argmin F(x), we have ∥xk − x∗∥2 ≤ δ and ∥yk − x∗∥2 ≤ δ for all k.

Proof. By definition F(x∗) ≤ F(x1). By the descent property of the coarse correction
and proximal gradient updates, we have F(xk) ≤ F(x1) and F(yk) ≤ F(x1) for all k. These
results mean that xk, yk+1 and x∗ are inside L≤F(x1), therefore both ∥xk − x∗∥2 and ∥yk+1 − x∗∥2
are bounded above by δ. Lastly, F is strongly convex so L≤F(x1) is bounded and δ < +∞.

Lemma 2.17 (Monotone sequence). For a nonnegative sequence {ωk}k∈N → ω∗ that is
monotonically decreasing with ω1 − ω

∗ ≤ 4µ and ωk − ωk+1 ≥ (ωk+1 − ω
∗)2/µ, it holds that

ωk − ω
∗ ≤ 4µ/k for all k.
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Proof. By induction. See proof in [24, Lemma 4].

Now we are ready to prove Theorem 2.13.

Proof. Rearranging the sufficient descent inequality in Lemma 2.14 gives

F∗ − F(xk+1) ≥ L
(
∥yk+1 − x∗∥22 − ∥x

k − x∗∥22
)
/2

= L
(
∥yk+1 − x∗∥2 − ∥xk − x∗∥2

)(
∥yk+1 − x∗∥2 + ∥xk − x∗∥2

)
/2

≥ −L∥xk − yk+1∥2
(
∥xk − x∗∥2 + ∥yk+1 − x∗∥2

)
/2,

where the last inequality is by the triangle inequality ∥yk+1 − x∗∥2 + ∥xk − yk+1∥2 ≥ ∥x∗ − xk∥2.
Rearranging the inequality gives

(2.17) ∥xk − yk+1∥2 ≥
−2
L

F∗ − F(xk+1)
∥xk − x∗∥2 + ∥yk+1 − x∗∥2

=
2
L

F(xk+1) − F∗

∥xk − x∗∥2 + ∥yk+1 − x∗∥2
.

Applying Lemma 2.16 to (2.17) gives

(2.18) ∥xk − yk+1∥2 ≥
(
F(xk+1) − F∗

)
/(δL).

Note that (2.18) implies that if the fine sequence converges (xk = yk+1), then F(xk+1) = F∗.

Applying Lemma 2.15 with x = xk gives F(xk) − F(xk+1) ≥ L∥yk+1 − xk∥22/2
(2.18)
≥

(F(xk+1) − F∗)2/(2δ2L). This inequality shows that the sequence {ωk}k∈N with ωk B F(xk)
satisfies the condition ωk − ωk+1 ≥ (ωk − ω

∗)2/µ in Lemma 2.17. To complete the proof,
applying Lemma 2.17 to the monotonically decreasing sequence {F(xk)}k∈N with µ = 2δ2L
gives F0(xk+1

0 ) − F∗0 ≤ max
{
8δ2L0, F0(x1

0) − F∗0
}
/k, where we put back the subscript 0.

Theorem 2.13 shows that {F0(xk
0)}k∈N for solving Problem (1.1) satisfies a sublinear con-

vergence bound of O(1/k). Below we show that {F0(xk
0)}k∈N satisfies a linear convergence

bound.

2.5.6. Linear convergence rate. All the functions and variables here are at level 0 so
we omit the subscripts. Now we show that

{
F(xk)

}
k∈N converges to F∗ with a linear rate using

the Proximal Polyak-Łojasiewicz inequality [23, Section 4]. The function F in Problem (1.1)
is called ProxPL, if there exists µ > 0, called the ProxPL constant, such that

(ProxPL) Dg(x, L) ≥ 2µ
(
F(x) − F∗

)
∀x,

(2.19) Dg(x, α) B −2αmin
z

{
α
2 ∥z − x∥22 +

〈
z − x,∇ f (x)

〉
+ g(z) − g(x)

}
.

Intuitively,Dg is defined based on the proximal gradient operator:

prox 1
L g

(
x −
∇ f (x)

L

)
= argmin

z

L
2
∥z − x∥22 +

〈
z − x,∇ f (x)

〉
+ g(z) − g(x).

It has been shown in [23] that if f in (1.1) is µ-strongly convex, then F is µ-ProxPL. Now
we prove the linear convergence rate of Algorithm 2.1. Note that a standard result such as
[4, Theorem 10.29] on convergence of proximal gradient for strongly convex functions is not
directly applicable because, as mentioned above, we interleave proximal gradient steps with
coarse correction steps.

Theorem 2.18. Let x1
0 be the initial guess of the algorithm, x∗0 = argmin F0(x) and F∗0 B

F0(x∗0). The sequence {xk
0}k∈N generated by MGProx (Algorithm 2.1) for solving Problem (1.1)

satisfies F0(xk+1
0 ) − F∗0 ≤

(
1 − µ0

L0

)k(
F0(x1

0) − F∗0
)
.
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Proof. First, by assumption F is strongly convex, so F is µ-ProxPŁ with µ > 0 and

F(xk+1)
(2.14)
≤ F(zk+1)

(2.13)
≤ F(yk+1) = f (yk+1) + g(yk+1) + g(xk) − g(xk)

(1.2)
≤ f (xk) + ⟨∇ f (xk), yk+1 − xk⟩ + L

2 ∥y
k+1 − xk∥22 + g(xk) + g(yk+1) − g(xk)

= F(xk) + ⟨∇ f (xk), yk+1 − xk⟩ + L
2 ∥y

k+1 − xk∥22 + g(yk+1) − g(xk)

= F(xk) − 1
2L (−2L)

(
⟨∇ f (xk), yk+1 − xk⟩ + L

2 ∥y
k+1 − xk∥22 + g(yk+1) − g(xk)

)︸                                                                           ︷︷                                                                           ︸
(2.19)
= Dg(xk ,L), since yk+1B argmin

z

L
2 ∥z−xk∥22+⟨z−xk ,∇ f (xk)⟩+g(z)−g(xk).

(ProxPL)
≤ F(xk) − µ

L
(
F(xk) − F∗

)
.

Adding −F∗ on both sides of the inequality gives F(xk+1) − F∗ ≤
(
1 − µ/L

)(
F(xk) − F∗

)
.

Applying this inequality recursively completes the proof.

Remark 2.19. We now give several remarks about the result.
• Convergence rate: for a µ0-strongly convex and L0-smooth f0, we have 0 < µ0 ≤ L0

and 0 ≤ 1 − µ0/L0 < 1. Depending on the value of µ0, for k not too large, the
sublinear convergence rate 1/k from Theorem 2.13 gives a better bound than the
linear rate (1 − µ0/L0)k from Theorem 2.18. This is the case when µ0 ≪ L0.
• Since x∗ is unique, we also conclude that the sequence {xk

0}k∈N converges to x∗.

Lastly, we emphasize that the bounds in Theorem 2.13 and Theorem 2.18 are loose bounds
for Algorithm 2.1 since we only show that the coarse correction can guarantee the descent
condition F0(zk+1

0 ) ≤ F0(yk+1
0 ) but not a stronger sufficient descent condition.

2.5.7. On the selection of τ. Recall that the tau vector comes from a set:

τk+1
0→1

(2.6b)
∈ τk+1

0→1 B ∇ f1(yk+1
1 ) − R∂F0(yk+1

0 )︸                        ︷︷                        ︸
singleton

+ ∂g1(yk+1
1 )︸    ︷︷    ︸

set-valued

.

We emphasize that for our theoretical results to hold we can choose any value in the set τk+1
0→1

to define τk+1
0→1 in Algorithm 2.1. First, the results of in Theorems 2.4 and 2.5 hold for any τ in

the set. Second, all the convergence bounds (Theorems 2.13 and 2.18) only contain constants
at level ℓ = 0 and are independent of the choice of tau vector.

Optimal tau selection seems difficult. Recall the two steps in the algorithm related to the
coarse correction,

xk+1
1 (τ) = argmin

ξ
F1(ξ) −

〈
∇ f1(yk+1

1 ) − R∂F0(yk+1
0 ) + ∂g1(yk+1

1 )︸                                        ︷︷                                        ︸
∋τ

, ξ
〉
,

xk+1
0 (τ) = yk+1

0 + α(τ)P
(
xk+1

1 (τ) − yk+1
1

)
,

where xk+1
0 , xk+1

1 and α are all a function of τ. Now it seems tempting to “optimally tune”
τk+1

0→1 so that it maximizes the gap F0(yk+1
0 ) − F0(xk+1

0 ):

τk+1
0→1 ∈ argmax

τ ∈ τk+1
0→1

F(yk+1
0 ) − F0

(
xk+1

0 (τ)
)
= argmin

τ
F0

(
xk+1

0 (τ)
)
.

However, this problem generally has no closed-form solution and it is intractable to solve
numerically. In the experiments we verified that the sequence produced by MGProx converges
for different values of τ confirming the theory.
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3. FastMGProx: MGProx with Nesterov’s acceleration. In this section we show that,
by treating the MGProx update as a single iteration, we can embed this update within Nes-
terov’s estimating sequence framework to derive an accelerated method with the optimal
O(1/k2) convergence. In this section we are focusing on level ℓ = 0 and we hide some of
the subscripts 0 for clarity.

Algorithm 3.1 shows the Nesterov’s accelerated MGProx that we call FastMGProx. First
we introduce some compact notation. We denote

(
MGProx◦prox

)
(w) as applying a proximal

gradient update on F0 at the point w and then followed by a MGProx update process (i.e.,
steps (i)-(vi) in Algorithm 2.1). The algorithm introduces two scalar sequences αk, γk and
two auxiliary vector sequences yk, zk. It is important not to confuse these symbols with those
presented in Section 2.

Algorithm 3.1 FastMGProx for an approximate solution of (1.1)
Initialize R and P, z0 = x0 (auxiliary sequence), γ0 > 0 (extrapolation parameter)
for k = 1, 2, . . . do

(i) Solve αk ∈ ]0, 1[ from L0(αk)2 = (1 − αk)γk , γk+1 = (1 − αk)γk parameter
(ii) yk = αkzk + (1 − αk)xk Nesterov’s extrapolation
(iii) xk+1 =

(
MGProx ◦ prox

)(
yk − 1

L0
∇ f0(yk)

)
prox-grad step with MGProx

(iv) zk+1 = zk − αk

γk+1
yk−xk+1

L0
updating the auxiliary sequence

end for

By the sufficient descent lemma of proximal gradient update (Lemma 2.9) and the de-
scent lemma of MGProx update (inequality (2.13)), we can guarantee that for xk, yk in Algo-
rithm 3.1 we have F(xk+1) ≤ F(yk)−∥G(yk)∥22/(2L), where G(yk) is the proximal gradient map
of F at yk, see (2.14). This inequality forms the basis of the FastMGProx: using Nesterov’s
framework of estimating sequence [35], we have the following theorem

Theorem 3.1. For the sequence {xk} produced by Algorithm 3.1, we have the convergence
rate F(xk) − F∗ ≤ O(1/k2). To be exact,

F(xk) − F∗ ≤
4L0

(
F(x0) − F∗ +

γ0

2
∥x0 − x∗∥22

)
(
2
√

L0 −
√
γ0

)2
+ 2γ0

(
2
√

L0 − 1
)
k + γ0k2

.

We present the proof of Theorem 3.1 in Appendix 7. Below we give some key points
about Algorithm 3.1. First, the convergence rate F(xk) − F∗ ≤ O(1/k2) is optimal in the
function-gradient model of [35]. Next, the work [40] also achieved the same optimal rate.
However, inspecting the algorithm of [40], it relies on two things:

• It bypassed all the technical challenges caused by the non-smoothness of the coarse
problem by using a smooth approximation. In contrast, MGProx and FastMGProx
do not use smoothing.
• There is a safe-guarding IF statement in the algorithm. It means that when the com-

bined effect of Nesterov’s extrapolation and multigrid process produces a bad iterate,
that whole iteration will be discarded and replaced by a simple proximal gradient
iteration. This gives a sign of possible bad interaction between Nesterov’s accelera-
tion and multigrid. In contrast, MGProx and FastMGProx have no such IF statement.

4. A multi-level MGProx. Now we generalize the 2-level MGProx to multiple levels.
The 2-level MGProxmethod constructs a coarse problem at level (ℓ = 1), and uses the solution
of such problem to help solve the original fine-level problem (ℓ = 0). If the fine problem has
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a large problem size, solving the coarse problem exactly is generally expensive. Hence it is
natural to consider applying multigrid recursively until the coarse problem on the coarsest
level is no longer expensive to solve. An L-level MGProx cycle with a V-cycle structure is
shown in Algorithm 4.1. We clarify the naming of the variables in the algorithm as follows:
at each iteration k, we have xk

ℓ : variable before pre-smoothing on level ℓ; yk+1
ℓ : variable after

pre-smoothing on level ℓ; zk+1
ℓ : variable after coarse-grid correction on level ℓ; and wk+1

ℓ :
variable after post-smoothing on level ℓ. Note that, to obtain a well-defined recursion in
Algorithm 4.1, we choose the superscript for the x variables equal to k on all levels. In the
2-level algorithm we chose a different convention, writing the x variable on level 1 as xk+1

1 .

Algorithm 4.1 L-level MGProx with V-cycle structure for an approximate solution of (1.1)
Initialize x1

0 and the full version of Rℓ→ℓ+1, Pℓ+1→ℓ for ℓ ∈ {0, 1, . . . , L − 1}
for k = 1, 2, . . . do

Set τk+1
−1→0 = 0

for ℓ = 0, 1, . . . , L − 1 do

yk+1
ℓ = prox 1

Lℓ
gℓ

(
xk
ℓ −
∇ fℓ(xk

ℓ) − τ
k+1
ℓ−1→ℓ

Lℓ

)
pre-smoothing

xk
ℓ+1 = Rℓ→ℓ+1(yk+1

ℓ ) yk+1
ℓ restriction to next level

τk+1
ℓ→ℓ+1 ∈ ∂Fℓ+1(xk

ℓ+1) − Rℓ→ℓ+1(yk+1
ℓ ) ∂Fℓ(yk+1

ℓ ) create tau vector
end for
wk+1

L = argmin
ξ

{
Fτ

L(ξ) B FL(ξ) − ⟨τk+1
L−1→L, ξ⟩

}
solve the level-L coarse problem

for ℓ = L − 1, L − 2, . . . , 0 do
zk+1
ℓ = yk+1

ℓ + αPℓ+1→ℓ
(
wk+1
ℓ+1 − xk

ℓ+1
)

coarse correction

wk+1
ℓ = prox 1

Lℓ
gℓ

(
zk+1
ℓ −

∇ fℓ(zk+1
ℓ ) − τk+1

ℓ−1→ℓ

Lℓ

)
post-smoothing

end for
xk+1

0 = wk+1
0 update the fine variable

end for

Here are remarks about Algorithm 4.1. First, Lℓ is the Lipschitz constant of ∇ fℓ. Then,
• At level ℓ , L, we are essentially performing two proximal gradient iterations (pre-

smoothing + post-smoothing) and a coarse correction. At the coarsest level ℓ = L,
we perform an exact update by solving the coarse problem exactly.
• From the traditional wisdom of classical multigrid, more than one pre-smoothing

and post-smoothing steps can be beneficial to accelerate the overall convergence.
We implemented such multiple smoothing steps in the numerical tests.

Remark 4.1 (Convergence of Algorithm 4.1). Regarding the finest level function value
{F0(xk

0)}k∈N, Theorem 2.13 and Theorems 2.18 and 2.18 all hold for the multilevel Algo-
rithm 4.1, since the angle condition of the coarse correction (Theorem 2.5) also holds for
multilevel MGProx when the coarse problem is solved inexactly. To be specific, the last in-
equality Fτ

1(xk+1
1 ) − Fτ

1(yk+1
1 ) < 0 in the proof of Theorem 2.5 holds when the coarse problem

on xk+1
1 is solved inexactly by a combination of proximal gradient iterations and a coarse-grid

correction with line search.

Approximate per-iteration computational complexity. The cost of one prox-grad update
on the finest level scales with n0. The cost of all prox-grad operations in one iteration of
a L-level MGProx is 2(1 + r + · · · + rL−1)n0 = 2 1−rL

1−r n0, where r is a reduction factor. In
the experiment r = 1

4 , and all the prox-grad steps per V-cycle iteration amount to at most
8
3 (1 − 1

4L ) ≤ 2.67 times the cost of performing one fine prox-grad update.
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Multi-level FastMGProx. Similar to the L-level MGProx, we can also propose a L-level
FastMGProx, which is not shown here.

5. Numerical results. We test MGProx on an Elastic Obstacle Problem (EOP), to be
reviewed below, then we present the test results in subsection 5.3.

5.1. Elastic Obstacle Problem (EOP). The EOP [7, 30] was motivated by physics [44],
see [47, Section 4] for related problems. Here we solely focus on solving EOP as a nonsmooth
optimization problem in the form of (1.1) and use it to demonstrate the capability of MGProx.

As elastic potential energy is proportional to the surface area, we have the problem

(continuum EOP) min
u

"
Ω

√
1 + ∥ ∇u ∥2L2 dxdy+λ

"
Ω

∥ (ϕ−u)+ ∥L1 dxdy s.t. u = 0 on ∂Ω,

where ∇u : Ω → R2 is the gradient field of u, the norms ∥ · ∥L2 and ∥ · ∥L1 are the L2 and L1

norm for functions, resp.. We take ϕ ≤ 0 on ∂Ω, so the boundary condition u = 0 on ∂Ω
makes sense. Here the non-penetration constraint is represented by the penalty term, where
(·)+ B max{·, 0} is taken element-wise, and λ > 0 is a penalty parameter.

Most multigrid algorithms solve an approximated version of EOP. Many methods have
been proposed to solve EOP: adaptive finite element methods [22], penalty methods [45, 47]
and level set methods [29]. For the multigrid methods mentioned in the introduction, many
of them do not solve (continuum EOP) efficiently.

• They only solve an approximate version of EOP: near x = 0 the function
√

1 + x2

has a Taylor series 1 + x2/2 + o(x3), ignoring the 1 and higher order terms, such
linearization replace the integral of (continuum EOP) by 1

2

∫
Ω
∥∇u∥2L2 dx.

• They only solve the box-constrained version of EOP, i.e., they are not designed to
handle the nonsmooth L1 penalty. In fact [25] pointed out it is general hard to extend
multigrid from dealing with box constraint to general nonsmooth functions.
• They are not FAS but Newton-MG (see subsection 1.5).

5.2. The optimization problem. We now discuss how to derive the optimization prob-
lem by discretizing the integral in (continuum EOP) to obtain a problem in the form of (1.1).
On a grid of N × N internal points with ∆x = ∆y = h = 1

N+1 on Ω, we let U ∈ RN×N with
U(i, j) = u(ih, jh) with i, j ranging from 1 to N. Here small italic symbol u(x, y) denotes the
continuum variable in the infinite dimensional space, and the capital bold symbol U denotes
a N-by-N matrix obtained by finite discretization of u. Let vec denotes vectorization, then
u B vec(U) ∈ RN2

is the optimization variable. Discretizing the integral in (continuum EOP)
gives

(EOP-0) argmin
u∈RN2

h2
N∑

i=1

N∑
j=1

√
1 +

(
D(i, j),:u

)2
+

(
E(i, j),:u

)2
+ h2λ∥(ϕ − u)+∥1

where the two matrices D ∈ RN2×N2
,E ∈ RN2×N2

are the first-order forward difference opera-
tors that approximate ∂/∂x and ∂/∂y respectively, defined using the coordinate index (i, j) of
D and the coordinate index (k, l) of U as

D(i, j),(k,l) =


1/h i = k and j = l + 1,
−1/h i = k and j = l,
0 else,

E(i, j),(k,l) =


1/h i = k + 1 and j = l,
−1/h i = k and j = l,
0 else.

The notation D(i, j),: refers to the (i, j)-th row of D. The vector ϕ ∈ RN2
is the discretization of

ϕ in (continuum EOP), and ∥ · ∥1 is the ℓ1-norm.
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Define F ∈ R2N2×N2
by stacking rows of D and E together as in (5.1). Ignoring the

constant factor h2 in (EOP-1) yields the problem

(EOP-1) argmin
u∈RN2

f0(u) + g0(u) B
N∑

i=1

N∑
j=1

ψ
(
F(i, j),:u

)
+ λ∥(ϕ − u)+∥1,

where

(5.1) ψ : R2 → R : (s, t) 7→
√

1 + s2 + t2, F(i, j),: B

[
D(i, j),:
E(i, j),:

]
.

To avoid confusing the notion of gradient in the finite dimensional Euclidean space with
the gradient operator ∇ in (continuum EOP), from now on we denote grad f0 the gradient of
f0 in (EOP-1). We denote Hess f0 the Hessian of f0. By chain rule and the fact that

(5.2) gradψ(s, t) =


∂

∂x
ψ(x, y)

∂

∂y
ψ(x, y)


∣∣∣∣∣∣∣∣∣∣
x=s,y=t

=


s

√
1 + s2 + t2

t
√

1 + s2 + t2

 ∈ R2,

so grad f0(u) =
∑
i, j

F⊤(i, j),:︸︷︷︸
N2-by-2

gradψ
(
F(i, j),:u

)︸             ︷︷             ︸
2-by-1

=
∑
i, j

[
D(i, j),:

E(i, j),:

]⊤
gradψ

(
D(i, j),:u, E(i, j),:u

)
∈ RN2

is

(5.3) grad f0(u)
(5.1)
=

N∑
i=1

N∑
j=1

ψ̃D
i jD
⊤
(i, j),: + ψ̃

E
i jE
⊤
(i, j),: = D⊤ψ̄D + E⊤ψ̄E

where ψ̃D
i j B

[Du]i j√
1 +

(
[Du]i j

)2
+

(
[Eu]i j

)2
and ψ̃E

i j B
[Eu]i j√

1 +
(
[Du]i j

)2
+

(
[Eu]i j

)2
.

By proposition 5.1, grad f0 is Lipschitz and problem (EOP-1) is strongly convex and
thus: 1. it has a unique minimizer, and 2. it is within the framework of Problem (1.1) so
MGProx can be used.

Proposition 5.1. For u on a bounded domain, the function f0 in (EOP-1) is L0-smooth
(i.e., the gradient grad f0 is L0-Lipschitz) and strongly convex, with L0 provided below.

Proof. Consider ψ(s, t) defined by (5.1), gradψ(t) is given by (5.2) and the Hessian is

Hessψ(s, t) =
1

(1 + s2 + t2)3/2

(
1 + t2 −st
−st 1 + s2

)
.

This shows that ψ is 1-smooth and strongly convex on any bounded domain.
Now recall the function f0(u) can be written as f0(u) =

∑
i, j ψ

(
F(i, j),:u

)
as in (EOP-1)

with F(i, j),: defined by (5.1). Since a composition of a convex function and linear function is
convex, and the sum of convex functions is convex, this shows f0 is convex. Furthermore,

Hess f0(u) =
n∑

i, j=1

Hessψ
(
F(i, j),:u

)
· F⊤(i, j),:F(i, j),:.

Then we compute that the Lipschitz constant L0 of grad f0 is at most
∑
i, j

∥F⊤(i, j),:F(i, j),:∥2. Since

∥F(i, j),:∥2 =
√

3/h, we can take L0 =
√

3N2/h.
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For strong convexity, we see that the Hessian is a weighted sum of rank-2 matrices with
positive weights. Suppose z lies in the null space of all the rank-2 matrices. In this case,
z must be identically 0 as the following argument shows. If for some (i, j) it holds that
D(i, j),:z = 0, then zi+1, j = zi, j. So, if z is in the null space of all the D(i, j),:’s, then z is constant
in the x-direction. Similarly, if z is in the null space of all the E(i, j),:’s, then z is constant in
the y-direction. The operators D,E applied at the boundaries yield that z is identically zero.

Thus, Hess f0(u) is positive definite for all u. Since the Hessian is continuous, this means
that its smallest eigenvalue has a positive lower bound over any bounded domain, i.e., f0 is
strongly convex on any bounded domain.

Remark 5.2. It is expensive to evaluate f0 and grad f0 for (EOP-1), since they are sum of
N2 nonlinear terms involving vectors in RN2

. Furthermore, based on Proposition 5.1,
• a tight closed-form expression of the global Lipschitz constant of grad f0 is unknown

to us,
• f0 is µ0-strongly convex but the strong convexity parameter µ0 is unknown to us.

5.2.1. MGProx on EOP. The subdifferential and proximal operator of λ∥(c − v)+∥1 are

(5.4)
[
∂∥(c − v)+∥1

]
i
=


−1 vi < ci

[−1, 0] vi = ci

0 vi > ci

,
[
proxλ∥(c− · )+∥1 (v)

]
i
=


vi + λ vi + λ < ci

ci vi ≤ ci ≤ vi + λ

vi vi > ci

.

For a matrix U at a resolution level ℓ, the (full) restriction of U, denoted as Û B R(U), can
be defined by a full weighting operator with the kernel defined by 1

8 [1 2 1]⊤ ⊗ [1 2 1] where
⊗ is tensor product. Using a block-tridiagonal matrix R and vectorization vec, the expression
Û B R(U) can be written as û B vec(Û) = Ru B Rvec(U). For the adaptive version of R,
we follow Definition 2.3. For the prolongation matrix P B cR⊤, we take c = 2.

5.3. Test results. We now present the test results.
Experimental setup. We take ϕ(x, y) = max{0, sin(x)}max{0, sin(y)} where x, y ∈ [0, 3π].

We initialize x1
0 as a random nonnegative vector and compute the initial function value F0(x1

0)
and the initial norm of the proximal gradient map ∥G0(xini

0 )∥2. We stop the algorithm using the
proximal first-order optimality condition: we stop the algorithm if ∥G0(xk

0)∥2/∥G0(xini
0 )∥2 ≤

10−16. The experiments are conducted in MATLAB R2023a on a MacBook Pro (M2 2022)
running macOS 14.0 with 16GB memory1. We report the value (F0(xk

0) − Fmin
0 )/F0(xini

0 ),
where Fmin

0 is the lowest objective function value achieved among all the tested methods.
MGProx setup. We run a multilevel MGProx with Ns number of pre-smoothing and post-

smoothing steps on all levels. We take enough levels to make the coarsest problem sufficiently
small. At the coarsest level, we do not solve the subproblem exactly, instead we simply just
run Ns iterations of proximal gradient update. In the test we take Ns iterations of (accelerated)
proximal gradient update for all the pre-smoothing and post-smoothing step. On the τ vector,
we do no tuning, on all the levels we simply just take 0 for the subdifferential in (5.4). For
the line search of the coarse stepsize, we simply run naive line search (Algorithm 2.2, see
Section 2.5.4 for the discussion) up to machine accuracy 10−16.

Benchmark methods. We compare MGProx with the followings.
ProxGrad : the standard proximal gradient update xk+1

0 = proxL̂−1g0

(
xk

0− L̂−1∇ f0(xk
0)
)
, where

L̂ (initialized as
√

3n2/h based on Proposition 5.1) is an estimate of the true Lipschitz param-
eter L0 of ∇ f0 (i.e., grad f0) at xk, obtained by backtracking line search [4, page 283]. The
convergence rates of ProxGrad is F(xk) − F∗ ≤ O

(
min

{
1/k, exp

(
−

µ0
L0

k
)})

.

1The code is available at https://angms.science/research.html

https://angms.science/research.html
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FISTA [34]: it is ProxGrad with Nesterov’s acceleration. With an additional auxiliary
sequence {yk

0}, the update iteration is xk+1
0 = proxL̂−1g0

(
yk

0 − L̂−1∇ f0(yk
0)
)

together with ex-
trapolation yk+1

0 = xk+1
0 + βk

(
xk+1

0 − xk
0
)
. The stepsize αk is selected using backtracking

line search [4, page 291] and the extrapolation parameter βk follows the standard FISTA
setup. It is proved [5] that FISTA has the the optimal first-order convergence rate [34]

F(xk) − F∗ ≤ O
(

min
{
1/k2, exp

(
−

√
µ0
L0

k
)})

.

FISTA-r Restarts can improve the convergence of FISTA [38]. There are various restarting
schemes: Necoara’s restart [33], adaptive restart [28], and parameter-free restart [1]. See [2]
for a survey. We note that by Remark (5.2), both L0 and µ0 of f0 in (EOP-1) are unknown,
hence schemes [33] and [2] do not work. While there are parameter-free (without knowing L0
and µ0) methods [28], [1]. However these methods potentially requires several evaluations of
F0 and ∂F, with a cost of O(N2) for (EOP-1). In the test, we implemented a simple function
value restarting FISTA [38] that only requires one evaluation of F0 at every iteration, and thus
is inexpensive to implement. The convergence of FISTA-r sheds the light on the convergence
of other restarting FISTA since these methods have a similar convergence rates [2, Table 1].

Furthermore, there is another reason that parameter-free restarting FISTA such as [28]
and [1] are not applicable for EOP. The improvement in convergence rate from knowledge of
µ0 is insubstantial if µ0 is close to 0. And indeed this is true for (EOP-1): we have µ0 tends to
0 as the number of elements in the mesh increases.
Kocvara3 [25, Algorithm 3]: a multigrid method with convergence guarantee but no con-

vergence rate. It is a FAS version of Kornhuber’s truncation [26], which is originally a
Newton-MG (see subsection 1.5). We pick the “non-truncated version” as it is shown to have
a better convergence. We remark that the method is designed for box-constrained quadratic
program, and does not apply directly to (EOP-1). Thus, in our implementation, we adapt the
structure of the algorithm (which is similar to that of MGProx), but with a small change: in-
stead of projection step we perform a proximal step, since the proximal operator generalizes
the projection operator. Also, we remark that such implementation of Kocvara3 is a special
case of MGProx that the tau vector τ is defined as (2.6b) with the set-valued subdifferentials
∂g0, ∂g1 all set to zero.

The results. Table 1 shows the results on three problems with different number of vari-
ables, and Fig.1 shows the typical convergence curves of the algorithms. The x-axis in the
plot is in terms of time and not the number of iterations, since each method has a different
per-iteration cost due to the uncertainty in the number of iterations taken in the backtracking
line search.

• In the three tests, MGProx has the fastest convergence. We remark that the test prob-
lem is strongly convex but the parameter µ0 is unknown and not used in any tuning in
the MGProx algorithm. This shows case that MGProx empirically works for convex
but not strongly convex problem.
• In general MGProx has a higher per-iteration cost than other methods, see the discus-

sion in Section 4. However, note that the per-iteration cost of ProxGrad and FISTA
is possibly expensive due to the backtracking line search.
• We remark that we have a similar conclusion about the convergence (i.e., MGProx

has the best convergence performance in the test) if we use a larger penalty parameter
in the experiment, or we if change the problem from the ℓ1-penalized form (EOP-1)
to the box-constrained form and/or the surface tension cost function is replaced by
its Taylor’s approximation.
• How the multi-level process enhances convergence speed remains an open problem.

– We remark that the convergence rate of MGProx is a loose bound since we only
showed a descent condition but not a stronger sufficient descent condition.
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– An educated guess is that the multigrid process acts as a variable metric method
or pre-conditioner that reduces the number of iterations needed. For the EOP
test problem, the evaluation of function and gradients is expensive, hence the
effect of reducing number of iterations by the multi-grid process out-weights
the heavier per-iteration cost of the multi-grid process.

• As MGProx already has the best performance among the algorithms, we do not im-
plement FastMGProx.

Table 1
Convergence results for (EOP-1). The regularization parameter is 10−7 for N2 = 225 and 10−6 for N2 = 65025.

N2 Method iterations k time (sec.)
(
F0(xk

0) − Fmin
0

)
/F0(xini

0 )

(2
4
−

1)
2
=

22
5 ProxGrad > 107 232 8.14 × 10−6

FISTA 9.67 × 106 228 1.26 × 10−16

FISTA-r 7.77 × 105 210 1.48 × 10−12

Kocvara3 Ns = 3000 71 24 3.30 × 10−13

MGProx Ns = 3000 50 25 6.31 × 10−16

(2
8
−

1)
2
=

65
02

5 ProxGrad > 105 335.9 8.33 × 10−8

FISTA > 105 332.62 6.64 × 10−8

FISTA-r > 105 364.89 6.64 × 10−8

Kocvara3 Ns = 100 > 103 986.53 8.07 × 10−8

MGProx Ns = 100 50 48.37 1.32 × 10−10

Figure 1. The convergence pattern of the algorithms for the case N2 = 225. Left: x-axis in log scale. Right:
x-axis in linear scale. FISTAr has the fastest convergence in the first 10 seconds, then MGProx has the fastest
convergence over all.

6. Conclusion. In this work we study the combination of proximal gradient descent
and multigrid method for solving a class of possibly non-smooth strongly convex optimiza-
tion problems. We propose the MGProx method, introduce the adaptive restriction operator
and provide theoretical convergence results. We also combine MGProx with Nesterov’s accel-
eration, together with the optimal convergence rate with respect to the first-order methods in
the function-gradient model. Numerical results confirm the efficiency of MGProx compared
with other methods for solving Elastic Obstacle Problems.

Future works. There are several problems remaining open.
• The convergence rate of MGProx is probably not tight; we conjectture that there is a

tighter bound.



MGPROX: A NONSMOOTH MULTIGRID PROXIMAL GRADIENT METHOD 23

• How the multi-level process enhances the convergence speed remains open.
• The assumption of strong convexity of MGProx may be relaxed.
• On the compactness of subdifferential, it is interesting to generalize Lemma 2.7 for

g0 : Rn → R. See Remark 2.8.
• Efficient tuning strategy for the τ selection in the subdifferential could be developed.

Acknowledgments. We thank the three referees for their helpful comments.

7. Appendix.

7.1. Convergence of MGProx. We present the proofs of the convergence of MGProx.

7.1.1. The proof of Lemma 2.14.
Proof. By convexity and L-smoothness of f , for all yk+1, xk, ξ we have

f (yk+1) ≤ f (xk) + ⟨∇ f (xk), yk+1 − xk⟩ + L
2 ∥y

k+1 − xk∥22 f is L-smooth . . . (i)
f (xk) ≤ f (ξ) − ⟨∇ f (xk), ξ − xk⟩ f is convex . . . (ii)

f (yk+1) ≤ f (ξ) − ⟨∇ f (xk), ξ − yk+1⟩ + L
2 ∥y

k+1 − xk∥22 (i) + (ii)
= f (ξ) −

〈
∇ f (xk), ξ − xk + 1

LG(xk)
〉
+ 1

2L ∥G(xk)∥22 yk+1 = xk − 1
LG(xk)

where G(xk) is the proximal gradient map of F at xk, see (2.14).
Next, adding g(yk+1) = g

(
xk − 1

LG(xk)
)

on the both sides of the last inequality gives

(7.1) F(yk+1) ≤ f (ξ) −
〈
∇ f (xk), ξ − xk +

1
L

G(xk)
〉
+

1
2L
∥G(xk)∥22 + g

(
xk −

1
L

G(xk)
)
.

Based on the properties of the coarse correction (Theorem 2.5 and Lemma 2.7) and the suffi-
cient descent property of the proximal gradient update (2.14), we have

F(xk+1)
(2.14)
≤ F(zk+1)

Theorem 2.5, Lemma 2.7
≤ F(yk+1),

so we can replace F(yk+1) in (7.1) by F(xk+1) and obtain

(7.2) F(xk+1) ≤ f (ξ) −
〈
∇ f (xk), ξ − xk +

1
L

G(xk)
〉
+

1
2L
∥G(xk)∥22 + g

(
xk −

1
L

G(xk)
)
.

In the following we deal with the term g
(
xk − 1

LG(xk)
)

in (7.2). First, by the convexity of g,
for all ξ we have

g(ξ) ≥ g
(
xk −

1
L

G(xk)
)
+

〈
∂g

(
xk −

1
L

G(xk)
)
, ξ −

(
xk −

1
L

G(xk)
) 〉

⇐⇒ g
(
xk − 1

LG(xk)
)
≤ g(ξ) −

〈
∂g

(
xk −

1
L

G(xk)
)
, ξ −

(
xk −

1
L

G(xk)
) 〉
.

By the subgradient optimality of the proximal subproblem associated with g, we can show
that G(xk) − ∇ f (xk) ∈ ∂g

(
xk − 1

LG(xk)
)
, hence

(7.3) g
(
xk −

1
L

G(xk)
)
≤ g(ξ) −

〈
G(xk) − ∇ f (xk), ξ −

(
xk −

1
L

G(xk)
)〉
.

Combining (7.2) and (7.3) with ξ = x∗ B argmin F gives

F(xk+1) ≤ F∗ −
〈
G(xk), x∗ − xk +

1
L

G(xk)
〉
+

1
2L
∥G(xk)∥22

= F∗ −
〈
G(xk), x∗ − xk

〉
−

1
2L
∥G(xk)∥22

= F∗ +
L
2

(
∥xk − x∗∥22 − ∥x

k − x∗ −
1
L

G(xk)∥22
) xk− 1

L G(xk)C yk+1

⇐⇒ (2.15)

where completing the squares is used in the second equal sign.
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7.2. The proof of Lemma 2.15.

Proof. By the convexity of f and g,

f (x) ≥ f (xk) + ⟨∇ f (xk), x − xk⟩ f is convex . . . (i)

g(x) ≥ g(yk+1) + ⟨∂g(yk+1), x − yk+1⟩ g is convex . . . (ii)

F(x) ≥ f (xk) + ⟨∇ f (xk), x − xk⟩ + g(yk+1) + ⟨∂g(yk+1), x − yk+1⟩ (i) + (ii)(7.4)

By definitions (1.5a), (1.5b), the proximal gradient iteration is a majorization-minimization
process that updates xk based on minimizing a local quadratic overestimator Q of xk, i.e.,
yk+1 = prox 1

L g
(
xk − 1

L∇ f (xk)
)

is equivalent to

(7.5) yk+1 = argmin
ξ

{
Q(ξ; xk) B f (xk) +

〈
∇ f (xk), ξ − xk〉 + L

2
∥ξ − xk∥22 + g(ξ)

}
.

Being an overestimator (which comes from the majorization-minimization interpretation [39,
Section 4.2.1]), we have F(x) ≤ Q(x; xk), which implies for all x

(7.6)

F(x) − F(yk+1)
≥ F(x) − Q(yk+1; xk)

(7.5)
= F(x) − f (xk) −

〈
∇ f (xk), yk+1 − xk〉 − L

2
∥yk+1 − xk∥22 − g(yk+1)

(7.4)
≥ ⟨∇ f (xk), x − xk⟩ + ⟨∂g(yk+1), x − yk+1⟩ −

〈
∇ f (xk), yk+1 − xk〉 − L

2
∥yk+1 − xk∥22

= ⟨∇ f (xk) + ∂g(yk+1), x − yk+1⟩ −
L
2
∥xk − yk+1∥22.

Applying the subgradient optimality condition to (7.5) at yk+1 gives

0 ∈ ∇ f (xk) + L(yk+1 − xk) + ∂g(yk+1) ⇐⇒ L(xk − yk+1) ∈ ∇ f (xk) + ∂g(yk+1),

so L(xk − yk+1) can be substituted in the first term of the last line of (7.6) and we have

F(x) − F(yk+1) ≥ L⟨xk − yk+1, x − yk+1⟩ −
L
2
∥xk − yk+1∥22

= L⟨xk − yk+1, x − xk + xk − yk+1⟩ −
L
2
∥xk − yk+1∥22 ⇐⇒ (2.16).

7.3. Convergence of FastMGProx. We make use of Nesterov’s estimate sequence to
prove the convergence rate on the minimization problem

(7.7) argmin
x

{
F(x) B f (x) + g(x)

}
,

where f = f0 and g = g0 as defined in (1.1). Since this subsection is long, to ease notation
we dropped all the subscript. Everything in this subsection refers to the fine problem.

Some terminology and Nesterov’s estimate sequence.
• A quadratic over-estimator model of f at yk

(7.8) mk(x; yk) B f (yk) +
〈
∇ f (yk), x − yk〉 + 1

2L
∥x − yk∥22.

• A nonsmooth over-estimator model of F at yk

(7.9) Mk(x; yk) B f (yk) +
〈
∇ f (yk), x − yk〉 + 1

2L
∥x − yk∥22 + g(x).
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• Minimizer of Mk at yk

(7.10) x∗k(yk) B argmin
x

Mk(x; yk)

with the subgradient 1st-order optimality condition as

0 ∈ ∂Mk(x∗k(yk); yk) = ∇ f (yk) +
x∗k(yk) − yk

L
+ ∂g(x∗k(yk)),

which implies a “gradient” from x∗k(yk) and yk can be defined as

(7.11) gk B
yk − x∗k(yk)

L
∈ ∇ f (yk) + ∂g(x∗k(yk))

• Definition (Nesterov’s estimate sequence) [35, Def. 2.2.1] A pair of sequences
{ϕk(x), λk} is an estimate sequence of an function f if for all k ∈ N we have

(Def 0) λk ≥ 0,

(Def 1) λk → 0,

(Def 2) ϕk(x) ≤ (1 − λk) f (x) + λkϕ0(x),

where ϕ0 is free and λk denotes λ at the kth iteration, not λ to the kth power.
How to construct an estimate sequence. The following lemma is analogous to [35,

Lemma 2.2.2], summarizing how to construct an estimate sequence for F in (7.7). Com-
pared with [35, Lemma 2.2.2] which was proposed for smooth convex optimization, the new
thing here is the introduction of (A0) and the modification in (A7).

Lemma 7.1. Assuming

(A0) F(x∗k(yk)) ≤ Mk
(
x∗k(yk); yk).

(A1) f is L-smooth and convex (possibly not strongly convex).

(A2) ϕ0(x) is a convex function.

(A3)
{
yk} is an arbitrary sequence.

(A4a)
{
αk} is a sequence that αk ∈ ] 0, 1 [.

(A4b)
{
αk} is a sequence that

∞∑
k=0

αk = ∞.

(A5) λ0 B 1.

(A6) λk+1 B (1 − αk)λk.

(A7) ϕk+1(x) B (1 − αk)ϕk(x) + αk
[
F
(
x∗k(yk)

)
+

〈
gk, x − yk〉 + 1

2L
∥gk∥22

]
.

Then the sequences {ϕk(x), λk} generated as in (A6), (A7) is an estimate sequence of F.

Proof. The proof has 3 parts: showing {λk}k∈N satisfies (Def 0) and (Def 1), and showing
{ϕk(x)}k∈N satisfies (Def 2).
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(Showing λk > 0). We have λk+1 (A6)
=

∞∏
k=0

(1−αk)λ0 (A5)
=

∞∏
k=0

(1−αk)
(A4a)
> 0 and we showed

the sequence {λk}k∈N is lower bounded.

(Showing λk → 0). By λk+1 (A6)
= (1 − αk)λk we have

λk+1

λk = 1 − αk (A4a)
< 1, so {λk}k∈N is

a monotonic decreasing sequence. By the monotone convergence theorem, we have {λk}k∈N

converges to inf{λk}k∈N = 0. I.e., λk → 0.
(Showing {ϕk(x)}k∈N satisfies (Def 2)). We prove by induction. The base case is true by

definition and (A5). Assume the induction hypothesis ϕk(x) ≤ (1 − λk)F(x) + λkϕ0(x). Now
for the case k + 1:

ϕk+1(x) B (1 − αk)ϕk(x) + αk
[
F
(
x∗k(yk)

)
+

〈
gk, x − yk〉 + 1

2L
∥gk∥22

]
by (A7)

≤ (1 − αk)ϕk(x) + αkF(x) (∗)

= (1 − αk)
(
ϕk(x) + (1 − λk)F(x) − (1 − λk)F(x)

)
+ αkF(x)

= (1 − αk)
(
ϕk(x) − (1 − λk)F(x)

)
+

(
(1 − αk)(1 − λk) + αk

)
F(x)

≤ (1 − αk)
(
λkϕ0(x)

)
+

(
1 − (1 − αk)λk

)
F(x) by induction

= (1 − αk)λkϕ0(x) + (1 − λk+1)F(x) by (A6)
< λkϕ0(x) + (1 − λk+1)F(x) by (A4a)

where (∗) is true because we have

F(x) ≥ F
(
x∗y(yk)

)
+ L

〈
yk − x∗k(yk), x − y∗

〉
+

L
2
∥yk − x∗k(yk)∥22

which is basically (7.2) in Lemma 2.14.

As Nesterov stated in [35], up to here we are free to select the function ϕ0(x). The next
lemma is about canonical closed-form expression of ϕk+1(x), which resembles [24, Lemma
6] that generalized [35, Lemma 2.2.3].

Lemma 7.2. Let ϕ0(x) B F(x0) +
γ0

2
∥x − z0∥22. Then ϕk+1 generated recursively as (A7)

in Lemma 7.1 has a closed-form expression

(7.14) ϕk+1(x) = ϕ
k+1
+
γk+1

2
∥x − zk+1∥22,

where

(7.15a) γk+1 = (1 − αk)γk,

(7.15b) zk+1 = zk −
αk

γk+1 gk,

(7.15c) ϕ
k+1
= (1 − αk)ϕ

k
+ αkF

(
x∗k(yk)

)
+
αk

2

( 1
L
−

αk

γk+1

)
∥gk∥22 + α

k〈gk, zk − yk〉.
Proof. A 4-part proof.
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Part 1. Proving the sequence {ϕk(x)} satisfies (7.14). We first prove ∇2ϕk(x) = γkI
for all k by induction. The base case at k = 0 holds by taking the Hessian of ϕ0(x) B
F(x0) + γ0

2 ∥x − z0∥22 from the assumption. Assuming the induction hypothesis ∇2ϕk(x) = γkI,
now for the case k + 1, taking the Hessian of ϕk+1 in (A7) gives

(7.16) ∇2ϕk+1(x)
(A7)
B (1 − αk)∇2ϕk(x)

induction hypothesis
= (1 − αk)γkI

(7.15a)
= γk+1I.

Eq.(7.16) implies that for all k the function ϕk is a quadratic function in the form of (7.14),
for some constants ϕ

k
, γk, zk.

Part 2. Proving the sequence {γk} satisfies (7.15a). This is proved by the last equality in
(7.16).

Part 3. Proving the sequence {zk} satisfies (7.15b). First we consider the gradient and
Hessian of ϕk+1(x).

(7.17a) ϕk+1(x)
(A7),(7.14)
B (1−αk)

[
ϕ

k
+
γk

2
∥x− zk∥22

]
+αk

[
F
(
x∗k(yk)

)
+

〈
gk, x−yk〉+ 1

2L
∥gk∥22

]
,

(7.17b) ∇ϕk+1(x)
(7.17a)
= (1 − αk)γk(x − zk) + αkgk.

Setting ∇ϕk+1(x) = 0 in (7.17b) gives an expression of zk

(7.18) ∇ϕk+1(x)
(7.17b)
= (1 − αk)γk(x − zk) + αkgk = 0.

Now we take the gradient of ϕk+1 using (7.14) gives

(7.19) ∇ϕk+1(x) = γk+1(x − zk+1) = 0.

Combine (7.18), (7.19) and use (7.15a) gives (7.15b).
Part 4. Proving the sequence {ϕ

k+1
} satisfies (7.15c). Equating (7.14) and (7.17a) at

x = yk gives
(7.20)

ϕ
k+1
+
γk+1

2
∥yk−zk+1∥22

(7.14)
= ϕk+1(yk)

(7.17a)
= (1−αk)

[
ϕ

k
+
γk

2
∥yk−zk∥22

]
+αk

[
F
(
x∗k(yk)

)
+

1
2L
∥gk∥22

]
.

Note that

(7.21)
γk+1

2
∥zk+1 − yk∥22

(7.15b)
=

γk+1

2
∥zk − yk∥22 − γ

k+1〈zk − yk,
αk

γk+1 gk〉 + γk+1

2
∥
αkgk

γk+1 ∥
2
2.

Combine (7.20), (7.21) and using (7.15a) gives (7.15c).

At this stage we recall that by (A3) in Lemma 7.1, the sequence {yk}k∈N is “free”. In view of
Lemma 7.2, we would like to construct yk such that ϕ

k+1
≥ F(x∗k(yk)) C F(xk+1), which holds

for k = 0 that ϕ
0
= F(x0). That is, we define xk+1 = x∗k(yk)

(7.10)
B argmin Mk(x; yk)

The following lemma resembles [24, Theorem 3] that reveals the importance of estimate
sequence and also the condition ϕ

k+1
≥ F(x∗k(yk)) C F(xk+1). The lemma differs from [35,

Lemma 2.2.1] on smooth convex optimization.

Lemma 7.3. For minimization problem (7.7), assume x∗ ∈ X∗ B argmin F(x) exists and
denote F∗ B F(x∗). Suppose F(xk) ≤ ϕ

k
B min

x
ϕk(x) holds for a sequence {xk}k∈N, where
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{ϕk, λk}k∈N is an estimate sequence of F, and we define ϕ0 B F(x0) +
γ0

2
∥x0 − x∗∥22, then we

have for all k ∈ N that

F(xk) − F∗ ≤ λk
[
F(x0) +

γ0

2
∥x0 − x∗∥22 − F∗

]
.

Proof. Starting from the assumption F(xk) ≤ ϕ
k
B min

x
ϕk(x),

F(xk) ≤ ϕ
k
C min

x
ϕk (Def 2)
≤ min

x
(1 − λk)F(x) + λkϕ0(x) ≤ (1 − λk)F∗ + λkϕ0(x∗),

=⇒ F(xk) − F∗ ≤ λk
[
ϕ0(x∗) − F∗

]
= λk

[
F(x0) +

γ0

2
∥x0 − x∗∥22 − F∗

]
.

Lemma 7.3 tells that the convergence rate of
{
F(xk) − F∗

}
k∈N follows the convergence rate

of
{
λk}

k∈N with
{
λk}

k∈N
(Def 0)
> 0 and

{
λk}

k∈N
(Def 1)
→ 0, and thus finding the convergence rate of{

λk}
k∈N gives the convergence rate of

{
F(xk) − F∗

}
k∈N.

The following lemma resembles [35, Lemma 2.2.1].

Theorem 7.4. Suppose F(xk) ≤ ϕ
k
B min

x
ϕk(x) holds for a sequence {xk}k∈N, where

{ϕk, λk}k∈N is an estimate sequence of F. Define ϕ0 B F(x0)+
γ0

2
∥x0 − x∗∥22. Assuming all the

conditions in Lemma 7.1, Lemma 7.2 and Lemma 7.3. Then we have

0 < λk <
4L

(2
√

L −
√
γ0)2 + 2

(
2
√

L
√
γ0 −

√
γ0

) √
γ0k + (

√
γ0k)2

.

Proof. A long, highly-involved tedious mechanical proof. We start with γk+1 in (7.15a):

(7.22) γk+1 (7.15a)
= (1 − αk)γk (7.15a)

= · · ·
(7.15a)
=

k∏
i=0

(1 − αi)γ0 (A5),(A6)
= λk+1γ0.

Next, by the first step in Algorithm FMGProx that L(αk)2 = (1−αk)γk (7.15a)
C γk+1, solving for

the root αk gives

(7.23) αk = ±

√
γk+1

L
(7.22)
= ±

√
λk+1γ0

L
.

Now consider λk in (A6):

(7.24) 1 −
λk+1

λk
(A6)
= αk (7.23)

= ±

√
γk+1

L
(7.22)
= ±

√
λk+1γ0

L
.

Now by (A4a),(A6) and (A7) we have for all k that {λk}k∈N is a strictly nonnegative sequence
and a strictly monotonic decreasing sequence, i.e.:

(7.25a) λk (A4a),(A6)
=

k∏
i=0

(1 − αk)
(A4a)
> 0,
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(7.25b) λk+1 (A4a),(A6)
< λk (7.25a)

⇐⇒
1
√
λk

<
1
√
λk+1

.

Hence we can divide (7.24) by λk+1 (7.25a)
> 0:

(7.26)
1
λk+1 −

1
λk = ±

1
√
λk+1

√
γ0

L
.

On the left hand side of (7.26), by the fact that λk (7.25a)
> 0 for all k, we have

(7.27)
1
λk+1 −

1
λk =

( 1
√
λk+1

+
1
√
λk

)( 1
√
λk+1

−
1
√
λk

) (7.25b)
<

2
√
λk+1

( 1
√
λk+1

−
1
√
λk

)
.

Now combine (7.26) and (7.27) with γ0 > 0 and L > 0 gives

±
1
√
λk+1

√
γ0

L
<

2
√
λk+1

( 1
√
λk+1

−
1
√
λk

)
=⇒ −

1
2

√
γ0

L
<

1
2

√
γ0

L
<

1
√
λk+1

−
1
√
λk
.

Let θk B
1
√
λk

be an increasing sequence (since λk is decreasing), we have

θk+1 > θk +
1
2

√
γ0

L
> θk−1 +

1
2

√
γ0

L
+

1
2

√
γ0

L
> · · ·

λ0=1
> 1 +

k
2

√
γ0

L
.

Thus
1
√
λk+1

= θk+1 > 1 +
k
2

√
γ0

L
gives 0

(Def 0)
<

√
λk+1 <

1

1 +
k
2

√
γ0

L

and hence

0 < λk+1 <
1

1 + k

√
γ0

L
+

k2

4
γ0

L

=⇒ 0 < λk <
1

1 + (k − 1)

√
γ0

L
+

(k − 1)2

4
γ0

L

=⇒ 0 < λk <
4L

(2
√

L −
√
γ0)2 + 2

(
2
√

L
√
γ0 −

√
γ0

) √
γ0k + (

√
γ0k)2

.

Lastly, the following corollary gives the proof of Theorem 3.1 in the main text.

Corollary 7.5. For the sequence {xk} produced by Algorithm FMGProx, we have

F(xk) − F∗ ≤
4L

(
F(x0) +

γ0

2
∥x0 − x∗∥22 − F∗

)
(2
√

L −
√
γ0)2 + 2γ0

(
2
√

L − 1
)
k + (

√
γ0k)2

.

Proof. Combine Lemma 7.3 and Theorem 7.4.
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