
A classification method based on a cloud of spheres ?

Tiago Diasa, Paula Amarala,b

aNova SST—FCT Nova, Campus de Caparica, 2829-516 Caparica, Portugal.
bNovaMath, CMA Nova, Campus de Caparica, 2829-516 Caparica, Portugal.

Abstract

In this article we propose a binary classification model to distinguish a specific
class that corresponds to a characteristic that we intend to identify (fraud,
spam, disease). The classification model is based on a cloud of spheres that
circumscribes the points of the class to be identified. It is intended to build a
model based on a cloud and not on a disjoint set of clouds, establishing this
condition on the connectivity of a graph induced by the spheres. To solve the
problem, designed by a Cloud of Connected Spheres, a quadratic model with
continuous and binary variables (MINLP) is proposed with the minimization
of the number of spheres. The issue of connectivity implies in many models
the imposition of an exponential number of constraints. However, because of
the specific conditions of the problem under study, connectivity is enforced
with linear constraints that scale quadratically with K, which serves as an
upper bound on the number of spheres. This classification model is effective
when the structure of the class to be identified is highly non-linear and non-
convex, also adapting to the case of linear separation. Unlike neural networks,
the classification model is transparent, with the structure perfectly identified.
No kernel functions are used and it is not necessary to use meta-parameters
unless it is intended also to maximize the separation margin as it is done
in SVM. Finding the global optima for large instances is quite challenging,
and to address this, a heuristic is proposed. The heuristic demonstrates
nice results on a set of frequently tested real problems when compared to
state-of-the-art algorithms.

?This work is funded by national funds through the FCT - Fundação para a Ciência e a
Tecnologia, I.P., under the scope of the project UIDB/00297/2020 (Center for Mathematics
and Applications).

Email address: tme.dias@campus.fct.unl.pt (Tiago Dias)

Preprint submitted to EURO Journal on Computational Optimization July 21, 2023

Keywords: Automatic Classification, MINLP, Spherical separation,
Anomaly detection.

1. Introduction

Automatic Classification, in a broad sense, consists in assigning to an
object, represented by a n ∈ N dimensional vector of characteristics or fea-
tures, a K-dimensional vector of class membership, µ(k), for k ∈ K. It is
assumed that each individual class is defined by a certain property, and all
objects having that property to some degree are elements of that class. We
may define the classification as crisp if µ(k) = {0, 1} and

∑
k∈K µ(k) = 1,

meaning that the object belongs strictly to a class, or as soft or fuzzy ([1, 2])
if 0 ≤ µ(k) ≤ 1 and

∑
k∈K µ(k) = 1, meaning that an object may belong to

more than one class with different membership values. As examples of crisp
classification, given an image of a pet we define if it is a cat or a dog, or given
information about a bank transaction we aim to classify it as fraudulent or
not. In fuzzy classification, for instance, a bank transaction can be fraudu-
lent or legal to some extent.

The oracle that makes the classification can be trained based on a set of
objects or points, defined as the training set, to which, besides the vector of
features, the class k ∈ K to which it belongs is known. This type of methods
are known as supervised methods. Alternatively, unsupervised methods are
constructed with the assumption that the class is not known. The architec-
ture of supervised algorithms can be quite different, but generally speaking is
based on a model that depends on some parameters that must be estimated
(training phase) maximizing a fitting function (or minimizing an error func-
tion) that returns a numerical value representing the agreement between the
observed labels and their classification (prediction) using the model. In gen-
eral, the fitting or error function is not globally optimized for the training
data, to avoid over-fitting, preventing poor generalizations for new data for
which the class is, obviously, unknown.

In this article, we propose a binary classification model based on a cloud
of spheres. The arguments in defense of this new model relate to the ability
to reproduce highly non-linear and non-convex separation structures, that
unlike black-box methods are transparent. In addition it is not necessary to

2

use meta-parameters. We propose a quadratic mixed integer formulation for
this problem and report some results for small\medium size problems. Since
finding the global optima is hard for large instances, a heuristic approach is
proposed.

The following section presents contributions within the scope of super-
vised classification models and discusses the weaknesses of black-box meth-
ods. Section 3 introduces the motivation and the Cloud of Connected Spheres
Problem, followed by the section where a MINLP formulation for this prob-
lem is proposed. A heuristic approach is addressed in section 5, and some
numerical experiences are reported in section 6. Finally, section 7 closes this
article with conclusions and future work.

2. State of the art

The list of classification methods is extensive, diverse and plural. In the
specific case of supervised Machine Learning (ML) classification tasks, there
are several well-established methods. We highlight the following:

� Logistic Regression (LR): One of the earliest classification methods
[3, 4], it consists of a linear classifier that, instead of predicting the
association of an instance with a class, predicts the probability of an
instance belonging to a particular class. A threshold on this probability
can be used for binary classification.

� Naive Bayes (NB): This method [5, 6] infers the probability that a
new instance belongs to some class based on the assumption that all
attributes are independent of each other (i.e. applying Bayes’ the-
orem with the strict assumption of conditional independence). It is
worth mention that even if this conditional independence assumption
is not valid (which rarely is in practical learning cases), experiments
on real-world data have shown some competitiveness regarding more
sophisticated induction algorithms.

� K-nearest neighbor (KNN): more traditional but still commonly used in
the scientific community [7, 8, 9]. This method assigns each observation
the most common class of its k nearest neighbors, in accordance with
a selected distance function.

3

� Decision Trees (DT): Non-parametric models, which predict the class
of an instance by following a hierarchical sequence of decision rules,
forming a tree like structure [10]. DT methods respect a top-down
framework: departing from a root node, a data set is broken down
into homogeneous subsets (i.e. recursively partitioning), while at the
same time an associated decision tree is incrementally developed - each
node represents a feature in an instance subject to the classification
process, and each branch represents a value that the node can assume.
The final result is a tree with decision and leaf nodes, which represent
the classification [11], that can be reinforced by ensemble learning (e.g.
random forest) [12]. One of the caveats of DT is over-fitting.

� Random Forests (RF): Also known as random decision forests, it is a
class of methods for classification or regression based on the construc-
tion of a multitude of decision trees [13]. For classification purposes,
the output of the RF is the class selected by most trees. RF generally
outperform DT, avoiding its over-fitting caveat. Still, their accuracy
is lower than gradient boosted trees, being the RF performance more
exposed to the data characteristics than the latter [14].

� Neural network (ANN): An artificial neutral network is a system based
on the biological neural network, such as the human brain. This ar-
chitecture enables the development of complex relationships between
inputs and outputs, through a succession of hidden layers of neu-
rons/nodes [15]. ANNs are comprised of node layers, containing an
input layer, one or more hidden layers, and an output layer. Each
node connects to another and has an associated weight and threshold.
If the output of any individual node is above the specified threshold
value, that node is activated, sending data to the next layer of the
network. Otherwise, no data is passed along to the next layer of the
network. Neural network based algorithms such as deep neural net-
works (DNN), convolutional neural networks (CNN), recurrent neural
networks (RNN), deep belief network (DBN), hierarchical attention
networks (HAN), and combination techniques have gained some popu-
larity in recent years. [16].

Despite all of the enumerated methods have their own merits and re-
search focus, the Support Vector Machine (SVM) method , especially kernel
SVMs, are of particular interest in the Optimization realm [17], not only

4

for the successful applications, sometimes outperforming more sophisticated
methods like ANN [18, 19], but also for its elegant mathematical model,
clear definition of the structure defining the class separation and interesting
generalization.

� Support Vector Machines (SVMs): Firstly introduced by Vapnik in
1995 [20], the classical SVM model separates the instances of a data
set into two distinct classes, by means of a hyperplane. The parame-
ters of the hyperplane are obtained by the maximization of the minimal
distance between the points of the two different classes (i.e. maximiza-
tion of the separation margin), whilst minimizing the occurrence of
misclassification (in the case of soft margins). Since the application
of traditional SVMs entails the separation of data via the use of a
linear surface, the method’s performance is significantly hindered in
non-linearly separable data sets. This handicap has been widely ad-
dressed by leveraging the standard SVM method with the use of kernel
functions, a process which enables the separation using linear surfaces
by mapping the original data set into a higher dimensional space, in
which such separation is possible [21].

Albeit the existence of a comprehensive literature on the application and
suitability of SVM with kernel functions for classification, the use of such
techniques presents drawbacks [22, 23]. First, there is no criterion for select-
ing an appropriate kernel function for a given data set, being the selection
dependent on comparability analysis. Additionally, the performance of SVM
models is highly dependent on the parameters specified in the kernel func-
tion, causing the need for substantial hyperparameter tuning.

In the past two decades, several scholars have also started to develop
research on the nature of the separating surface, specifically on the defini-
tion of nonlinear surfaces, fomenting such separation at the original input
space. These studies have been developed under both supervised and semi-
supervised (i.e. a partition of the observations is unlabeled) realms, con-
sisting in non-smooth optimization problems [24]. Some of the developed
techniques make use of geometrical well-behaved structures intuition, with
the likes of polyhedral, spherical, ellipsoidal and conical surfaces [25]. In
the case of polyhedral separation, this concept was introduced in Megiddo

5

(1988) [26] and applied within the classification framework by Astorino and
colleagues [27, 28, 29]. The basic idea of polyhedral separation is that if
two finite disjoint set of instances A and B are not linearly separable, it is
possible to define a h-polyhedral separation surface, comprised by h > 1 hy-
perplanes, such that A is in the convex polyhedron given by the intersection
of h half-spaces and B lies outside such polyhedron [27]. Focusing on the
particular case of spherical separation, its use was initially proposed in Tax
and Duin in 1999 [30], where the main objective was set to find a minimal
volume hypersphere separating two finite disjoint sets of instances A and B
(i.e. a sphere enclosing all elements of A and no elements of B). Since then,
further extensions of this idea have been developed and refined, highlight-
ing the contributions of Astorino, Fudelli and Gaudioso [31, 32, 33, 34, 35],
introducing techniques that tackle the minimization of error functions (i.e.
penalty for misclassification), since real-life data sets are hardly separable by
means of a specific surface.

2.1. A critical view over black-box machine learning methods

It is known that some ML algorithms, in particular ANN, DNN and
RF have the ability of representing complex nonlinear associations in data.
However, ANN and DNN are black-box algorithms, meaning that we can-
not perceive what is actually learned and how it is learned. [36]. Failure of
ANN and DNN has been more than ever recognized and investigated [37, 38].
The absence of a reflection on these algorithms, and an indiscriminate and
uncritical application in real-world situations, can lead to very undesirable,
unethical, unfair, sensitive and even dangerous results. ML models and algo-
rithms even exhibit a propensity to amplify discrimination based on gender
[39] or race [40].
Several authors have raised the awareness regarding this issue [36, 40, 41,
42, 43, 39, 38, 37]. We strongly recommend their reading, emphasizing two
articles:

� in [41] where the authors “demonstrate how easy it is for modern
machine-learned systems to violate common deontological ethical prin-
ciples and social norms such as “favor the less fortunate, and do not
penalize good attributes””;

� quoting [42] “Today, machine-learning software is used to help make
decisions that affect people’s lives. Some people believe that the ap-

6

plication of such software results in fairer decisions because, unlike hu-
mans, machine-learning software generates models that are not biased.
Think again. Machine-learning software is also biased, sometimes in
similar ways to humans, often in different ways.”

Besides these undesirable issues, ANN and DNN are difficult to train [44].
Parameter optimization is too complex to achieve an optimum. Notwith-
standing, arguments in favor of the sub-optimization of parameters have been
made, alluding to the fact that it is even desirable to avoid over-fitting. In
addition to the parameter’s optimization, the network design itself must be
evaluated. With the complexity of neural network structures, there are too
many components to be evaluated (regularization, learning rate, activation
functions, number of layers, hidden units, intermediate nodes). Given the
impossibility of analyzing all possible combinations of structures and param-
eters, only a part of these combinations is evaluated. The criterion of choice
is often supported by arguments that are not solid and too dependent on the
training and testing data, raising questions concerning their suitability for
new data.

In SVM, kernel functions are introduced to deal with non-linearity. Al-
though Kernel SVM are more transparent than DNN, and have fewer combi-
nations of model aspects to study and evaluate, it still exhibits some effort of
a combinatorial nature in training. The right choice of the Kernel function,
along with parameters and the meta-parameters in case of soft margins, can
be cumbersome. Additionally, the type of linearity that can be described is
limited, with strong difficulties in learning the non-convexities of the class
separation curves.

3. Classification using the Connected Cloud of Spheres Problem
(CCSP)

Criticism over ANN, DNN and SVM kernel methods motivated the search
for more transparent and simple classification methods. Inspired by the posi-
tive aspects of SVM we looked for a model-based method, where the relation
between the model and the solution could be clearly identified, with only a
reasonable number of parameters to estimate, but capable of capturing com-
plex separation structures among data.

If we consider a classification problem with two classes, finding a separa-
tion surface can be difficult, in a high dimensional space such as Rn for large

7

n, depending on the geometry of the objects or points. If the points from
the two classes are linearly separable, most of the classic methods proposed
in the literature will work well, such as SVM. If the points are not linearly
separable, then finding a separation surface can be hard. Usually, some kind
of regular behavior on the spatial distribution of the points in Rn is assumed
(spherical, polyhedral) to justify the application of a method tailored to some
assumption on the geometry of the data. But to speculate about the geom-
etry of data in high dimensional spaces can be misleading.

When we think about the geometry of a hypercube, for instance, a four-
dimensional cube (Tesseract), we intuitively try to project in our mind an
extension of the idea of a square in a three-dimensional space. If we consider
Fig. (1), we understand that our intuition is of little use when dealing with
a nth dimensional space. In classification methods we construct separation

Figure 1: An image from the 3D projection of a Tesseract performing a simple rotation
about a plane in 4-dimensional space.

lines, curves well defined mathematically, that, usually, generalize the con-
cepts that we have for a two or three-dimensional space to higher dimensions.
However, we may admit that better separation frontiers might have a struc-
ture and properties that have no parallel with those generalizations.

In that sense, we believe that the more flexible the separation surface is
the better, allowing the definition of different and complex shapes. If we
consider, for instance, the two-dimensional example in Fig.2, the separation
curve defined in Fig.3 encapsulates a non-linear structure that is complex
and non-convex.

8

Figure 2: Two classes of points, blue and
red.

Figure 3: The same points with a sepa-
ration curve in blue.

In this paper, we propose a new problem, the Connected Cloud of Spheres
Problem (CCSP), to define a set of connected spheres containing only the
points of one class as in Fig.4, with the purpose that the points in the bound-
ary of the reunion of the spheres, as in Fig.5, approximate a geometric domain
(the one in Fig.3) defining a separation between the two classes of points.

Figure 4: Connected cloud of spheres. Figure 5: Boundary of the connected
cloud of spheres.

The boundary that separates the two regions is completely and simply
defined by the set of centers and radii. The rule for classification of a new
point is a query that requires a number of comparisons equal to the size
of the cloud (number of spheres). No massive meta-parameters tuning is re-
quired. As noted by one of the referees, maintaining the classification process
within the original feature space instead of relying on kernel transformations,
greatly enhances the transparency of the results. This plainness, simplicity
and transparency are some of the advantages of this method. As in any
classification problem there are a few premises:

� There is a class of objects that we want to identify in a binary scenario
(e.g. fraud/legitimate, spam/non-spam, sick/healthy).

9

� The region separating the two classes can be highly non-convex but is
connected. It is a unique region and not a collection of separated do-
mains. This condition makes the problem harder but more general and
interesting by the mathematical point of view. However, this require-
ment may be waived if necessary. It can be defined as a feature of the
method that is optional, allowing it to be turned on or off, especially
when there is suspicion of inflated false positives.

� An upper bound on the maximal necessary number of spheres is known.

� The two classes are geometrically separable, at least to a certain degree,
meaning that a large subset of the data from the class to be identified
is not mixed with the points from the other class.

� The classes do not need to be balanced in size, meaning that the method
is suitable for anomaly detection.

In the next section we propose a Mixed Integer Nonlinear Problem (MINLP)
formulation to solve the CCSP.

4. MINLP Formulation of the Connected Cloud of Spheres Prob-
lem

In this section, we consider a set of data points divided into two separable
sets X1 = {x1i, i ∈ C1} and X2 = {x2i, i ∈ C2}. N1 = #C1, the size of C1

and N2 = #C2 are not necessarily the same. The goal is to find a connected
cloud of at most K spheres with center x0k and radius rk, such that all
points x1i for i ∈ C1 lay inside at least one sphere and no point x2i for
i ∈ C2 belongs to any sphere. This condition can be relaxed, conducting
to a soft separation problem. In addition, the set of spheres is connected.
The goal is to minimize the number of spheres. Similarly to SVM, a margin
can be considered, representing a positive separation distance between the
two classes. In this case, we also consider the maximization of the minimal
margin separation between the two classes.

4.1. Variables
We consider the following set of variables:

x0k ∈ Rd − center of the sphere k for k = 1, .., K (1)

rk ≥ 0− radius of sphere k for k = 1, .., K (2)

10

zik ∈ {0, 1} − takes the value 1 if point xi is covered by sphere k,
and 0 otherwise, for i ∈ C1, k = 1, .., K

(3)

wk ∈ {0, 1} − takes the value 1 if sphere k is used, and 0 otherwise,
for k = 1, .., K

(4)

δk ≥ 0− separation margin of sphere k, for k = 1, .., K (5)

δmin ≥ 0− minimal separation margin (6)

ykj ∈ {0, 1} − takes the value 1 if sphere k and j overlap, and 0
otherwise, for k = 1, .., K − 1, j = k + 1, .., K

(7)

4.2. Objective function

The goal is to construct a cloud with as few spheres as possible.

minF =
K∑
i=1

wk (8)

4.3. Constraints defining the set of spheres

First we consider the constraints that ensures that every points x1i for
i ∈ C1 falls inside at least one sphere:

K∑
k=1

zik ≥ 1, for ∀i ∈ C1 (9)

||x0k − x1i||2 ≤ r2
k + (1− zik)M, for i ∈ C1, k = 1, . . . , K (10)

zik ≤ wk, for i ∈ C1, k = 1, . . . , K. (11)

where M is large enough so that if zik = 0 the constraint (10) is redundant.
On the other hand, it is known that too large values for M can interfere
with the performance of the method. A reasonable choice for M could be
the maximum distance between any two points from X1 and X2.
To guarantee that no point xi for i ∈ C2 belongs to any existing (wk = 1)
sphere k we have:

||x0k − x2i||2 ≥ r2
k −M(1− wk), for i ∈ C2, k = 1, . . . , K. (12)

11

4.4. Constraints defining a sequential numbering of the spheres

To ensure that the index of the spheres created respect a lexicographic
order we also consider the constraints,

wk ≥ wk+1, for k = 1, . . . , K − 1. (13)

We can only assign a label k + 1 to a new sphere if there is a sphere with
label k. This constraint prevents the creation, for instance, with K = 4, of
two spheres with labeling 2, 4.

4.5. Constraints defining the connectivity of the graph induced by the cloud
of the spheres

To ensure that the cloud of spheres is connected, we can resort to the
representation of the problem in a graph G = (V,E) where the set of vertices
V is defined by the index of the spheres and an edge between spheres i and
j exists if they intersect, this is if ||x0i− x0j||2 < (ri + rj)

2, case in which the
variable yij (7) assumes the value 1. The connectivity of the cloud of spheres
is equivalent to the connectivity of graph G.

Definition 4.1. A graph G = (V,E), where V and E are respectively the
set of vertices and edges, is connected if there is a path between every pair of
vertices i and j with i, j ∈ V .

In Fig.6 we exemplify a disconnected graph induced by a set of three
spheres.

Figure 6: Graph induced by the spheres.

To ensure that the variables yij represent the intersection of spheres i and j,

12

as expressed in (7), the following constraints must be considered:

M(yij − 1) ≤ (ri + rj)
2 − ||x0i − x0j||2 ≤ yijM, for i = 1, . . . , K − 1,

j = i+ 1, .., K
(14)

yij ≤
wi + wj

2
for i = 1, . . . , K − 1, j = i+ 1, .., K

(15)

Graph connectivity is a well-studied subject with many contributions in
terms of characterization and detection through the application of algo-
rithms. [45, 46]. However, these contributions are of little use here since
we need necessary and sufficient conditions that can be formulated as con-
straints in our model. For instance, the necessary condition expressed by the
inequality

n∑
i=1

ρ(i) ≥ 1

2
(n− 1), (where ρ(i) is the degree of vertex i)

for a connected graph with n vertices, could be easily formulated but it is
only necessary and it is easy to check that the bound is not tight even for
very small graphs. Connectivity constraints are important in many spatial
optimization problems such as forest harvesting [47], network design [48],
pursuit evasion problems [49], sensor networks [50, 51], among others. Some
integer programming formulations to imposing connectivity have been pro-
posed [47], but most are impractical for large scale instances. The classical
constraint, from which other are derived, imposes the existence of at least
one edge linking any subset of nodes to its complement set. This condition
could be easily formulated within the structure of our model.∑

i∈S

∑
j /∈S

yji ≥ 1 ∀S ⊂ {1, 2, . . . K} (16)

The downside of this approach is that it exponentially generates many con-
straints. However, we may use a major and crucial advantage in our model
- the numbering (labeling) of the nodes is not predefined and can be set in
any convenient way.

13

This simple feature of the mathematical formulation will allow writing
connectivity constraints in a much simpler way. First, we have to stress that
the specific way the numbering of spheres is done is irrelevant regarding the
previously defined constraints, allowing complete freedom in that choice. So
far, the only imposition introduced was through constraints (13), with the
sole purpose of avoiding, for instance, having a cloud of three spheres labelled
3, 6, 8 instead of 1, 2 and 3. Still, what is the first, second and third sphere
is irrelevant. For this reasoning, we may number the spheres in the following
way:

� Label 1 is assigned to a sphere (any sphere).

� If sphere 2 exists (w2 = 1) then sphere 2 must be connected to sphere
1, this is, y12 ≥ w2.

� If sphere 3 exists (w3 = 1) then sphere 3 must be connected to sphere
1 or 2, this is, y13 + y23 ≥ w2.

Continuing this reasoning, we have the following set of constraints to ensure
connectivity:∑

i<j

yij ≥ wj ∀j ∈ {1, 2, . . . K} . (17)

If wj = 0, constraints (17) become redundant. The number of constraints
(17) is K − 1 and they are linear. It is easy to prove, by induction on the
number of nodes, that using the constraints (17) the graph induced by the
cloud of spheres is connected.

Theorem 4.1. A graph G = (V,E) with n vertices, such that we may label
the set of nodes i = 1, . . . , n in such a way that for every node i there is at
least a node j < i such that the edge (j, i) ∈ E, is connected.

Proof. Let Gn = (V (n), E(n)) be the sub-graph of G, induced by the set of
vertices 1, . . . , n. If n = 1 the singleton graph is connected. Now suppose
that the graph Gn is connected and such that ∀i ∈ {1, ..., n} there is a
j ∈ {1, ..., i− 1} such that a edge (j, i) ∈ E(n). Considering the graph Gn+1

if an edge (j, n+ 1) ∈ E(n+ 1) exists then Gn+1 is connected.

Example 4.1. Let us consider two examples (Butterfly in Fig. (7) and Sep-
aration in Fig. (8)) where the data of the Class 1 (blue stars) is surrounded

14

by points of the Class 2 (red crosses) and it forms a non-convex structure. In
Butterfly the points of Class 1 are more separated than in Separation. Solving
the CCSP, we obtain the solutions depicted in Fig. (7) and (8) where the
cloud has four and two spheres respectively.

Figure 7: Case Butterfly Figure 8: Case Separation

4.6. CCSP with margins

To encompass the existence of a margin in the separation of classes, as it
is done in SVM, we need to modify the constraints (10) and (12) in order to
incorporate this concept.

||x0k − x1i||2 ≤ (r2
k − δk) + (1− zij)M, for i ∈ C1, k = 1, . . . , K (18)

||x0k − x2i||2 ≥ (r2
k + δk)−M(1− wk), for i ∈ C2, k = 1, . . . , K. (19)

To maximize the minimum margin we have

δk ≥ δmin (20)

maxG = δmin (21)

To avoid considering a multi objective optimization problem we may aggre-
gate objective functions (8) and (21) as:

minG =
K∑
i=1

wk − θδmin. (22)

Example 4.2. To visualize the solution obtained by using the CCSP with
margin we present in (9), (10) and (11) for the data set Separation, the
clouds for different θ values.

15

Figure 9: θ = 0.1 Figure 10: θ = 10

Figure 11: θ = 100 Figure 12: θ = 1000

5. Heuristic approach

Given the difficulty in finding an optimal solution by an exact method,
in this section, we propose an algorithmic approach. The general structure
of the algorithm is defined in Algorithm 1. The objective of the heuristic is
as follows: cover all points of a class (C1) with a connected set of spheres S,
while guaranteeing that no point of the other class (C2) is covered by S. At
any given iteration a new sphere Sk is added to S, updating set of spheres
S and the set of covered C1 points. The algorithm stops when all point of
class C1 are covered, returning set S. To achieve the expected result, each
iteration of the algorithm is two-fold divided: first the iteration’s candidate
sphere Sk is defined (Algorithm 2) and then the connectivity of Sk to the
already defined spheres in S is ensured (Algorithm 3).

16

Algorithm 1 Heuristic: Largest Coverage - General Framework
Data: Set of points of both classes
C1 = {x1i, i = 1, . . . , N1}, C2 = {x2j , j = 1, . . . , N2}
Result: Set of spheres S

1 t← 1 . Iteration count
2 I = C1 . Set of uncovered C1 points by S
3 while I 6= {} do
4 Define the iteration’s candiate sphere Sk

5 Guarantee Connectivity of Sk to the already defined spheres in S
6 Update S and I

7 end

5.1. Define the iteration’s candidate sphere Sk

To find an iteration’s candidate sphere, the following steps are required
(detailed scheme in Algorithm 2):

1. Definition of an initial candidate Sk

(a) P is defined as the pairing set of every uncovered C1 class point
to its closest C2 class point. The pairing of P in which the two
points are furthest from each other (x1k, x2j) is selected.

(b) The center and radius of Sk are derived from (x1k, x2j).

� x0k = x1k is set as the initial center of Sk.

� The Euclidean distance between x0k and x2j becomes the ra-
dius rk.

(c) Zik is defined as the set of uncovered C1 points covered by Sk.

2. Improvement attempts to increase the set of covered C1 points by Sk

(a) Using the notion of centroid, a new sphere Sc is envisioned.

� The sphere has its center at ci, the centroid of Zik.

� Its radius (rc) is defined as the Euclidean distance between ci
and its closest C2 class point (cj).

(b) Cik is defined as the set of uncovered C1 points covered by Sc.
(c) Comparison between the sets Zik and Cik is made

� If Cik ⊂ Zik, the initial candidate Sk is accepted.

� If Cik == Zik, Sc becomes Sk. The updated Sk is accepted.

� Otherwise, the initial candidate Sk is updated:

– ci, rc and Cik become the updated values of x0k, rk and
Zik, respectively.

– New values for ci, rc and Cik are computed.

17

� The comparison process is repeated until Cik == Zik.

Algorithm 2 Largest Coverage - Define iteration’s candidate sphere
Data: I, C2

Result: Sk

1 P ← {(x1i, x2j) | x1i ∈ I, x2j = arg min
(x2j′∈C2)

d(x1i, x2j′)} . Pairing set P

2 (x1k, x2j)← arg max
((x1i,x2j)∈P)

d(x1i, x2j) . Finding the maximum distance pairing

3 x0k = x1k . Center of Sk

4 rk ← d(x1k, x2j) . Radius of Sk

5 Zik ← {x1i | x1i ∈ I ∧ ||x0k − x1i||2 ≤ (rk)2} . Set of points covered by Sk

6 ci ← Centroid(Zik)

7 cj ← arg min
(x2j∈C2)

d(ci, x2j) . Finding the closest C2 point to ci

8 rc ← d(ci, cj) . Radius of Sc

9 Cik ← {x1i | x1i ∈ I ∧ ‖ci − x1i‖2 ≤ (rc)2} . Set of points covered by Sc

10 Sk ← {(x0k, rk)} . Defining the candidate sphere

11 Sc ← {(ci, rc)} . Defining the sphere centred at ci

12 StopF lag ← 0
13 while StopF lag == 0 do
14 if Cik ⊂ Zik then
15 StopF lag = 1 . Sk cannot be improved
16 else
17 if Cik == Zik then
18 StopF lag = 1 . Sk cannot be further improved
19 x0k = ci . Sk center and radius are updated
20 rk = rc
21 else
22 x0k = ci . Sk center and radius are updated
23 rk = rc
24 Zik := Cik . Zik is updated
25 ci := Centroid(Zik) . Centroid of the updated Zik set
26 cj ← arg min

(x2j∈C2)
d(ci, x2j)

27 rc ← d(ci, cj)

28 Cik := {xi | xi ∈ I ∧ ||ci − xi||2 ≤ (rc)2} . Updated Cik set
29 Sc ← {(ci, rc)} . Updated Sc

30 end

31 end

32 end

Example 5.1. Let us consider the example of (Fig. 8). At iteration 1 of
the proposed heuristic, the initially proposed Sk suffers an updated before the
algorithm advances to stage 2 (Algorithm 3), as portrayed in Fig. (13).

18

Figure 13: Generation of Sk at iteration 1 for the Separation data set.

5.2. Guarantee Connectivity of Sk to the already defined spheres in S

Once the iteration’s candidate sphere is defined it is necessary to ensure
its connectivity to S, which is not guaranteed on the previous stage. The first
stage of the heuristic (Algorithm 2) does not take into account the existence
of the previously defined spheres of S. Instead, an attempt to form a sphere
with the largest possible radius based solely on the information about the
original data set is performed, which may yield a sphere that is not connected
to S. Hence, if S ∪ Sk does not form a connected set, before moving to the
next iteration, artificial spheres will be added to S to preserve its connec-
tivity property. These artificial spheres may not include any uncovered point.

The second stage of the heuristic (Algorithm 3) respects the following
structure: if the algorithm is in the first iteration, no connectivity test is
required. Sk is added to S, and the algorithm advances to the next iteration;
Otherwise, it is accessed whether Sk is connected to any sphere of S.

1. To make such assessment, the Euclidean distance between the center
of Sk to the centers of every sphere of S is calculated. This distance is
then compared with the sum of the radius of each pairing of spheres.

� If the distance between centers of any of the pairings is less or
equal to the sum of the radius of the two spheres, then Sk is
connected to at least one sphere of S. Sk is added to S, the set

19

of uncovered points (I) is updated and the algorithm advances to
the next iteration.

� Otherwise, Sk is not connected to S. NSk
is defined as the closest

sphere of S to Sk. This sphere is centered at ni, having a radius
of rn.

2. If Sk is not connected to S, an artificial sphere that connects Sk to
NSk

is envisioned (Sart). This sphere has the smallest radius possible,
being centered at the midpoint of the line segment that represents the
smallest distance between the spheres NSk

and Sk.

� −→s is set as the vector from the center of NSk
to the center of Sk.

� The closest points of NSk
and Sk to the opposite sphere are defined

as mN and mK , respectively. The midpoint between mN and mK

is set as mid.

� The closest C2 class point to mid is defined as nmid.

(a) If d(mid,mN) ≤ d(mid, nmid), then Sart is added to S, connecting
Sk to NSk

. Sk is added to S, Zik and I are updated and the
algorithm advances to the next iteration.

(b) Otherwise, it is not possible to connect Sk to NSk
with a single

artificial sphere of minimum radius.

3. Not being possible to connect Sk to NSk
with a single artificial sphere

of minimum radius, another artificial sphere is envisioned (Sart). This
sphere increases the coverage of S towards Sk.

� To find this sphere, first the relevant points of class C2 (i.e. closest
points to both NSk

and Sk) must be identified. Once identified,
by taking into account the position of these points in relation to
NSk

, a sphere connected to NSk
that achieves the highest possible

coverage will be formed.

� The identification of the relevant C2 points is also made by the
use of spherical forms: a sphere (Sa) with center in the midpoint
between the centers of NSk

and Sk and radius equal to half of the
distance between the two centers is envisioned.

� For every relevant point, a sphere between that point and its clos-
est point on the surface of NSk

is envisioned. Of this group of
spheres, the one which achieves the largest coverage while not
covering any of the relevant points (Sart) is added to S.

20

� S and Zik are updated. The algorithm goes back to step 2.

� The process ends when Sk becomes connected with S.

Algorithm 3 Largest Coverage - Guarantee Connexity & Update S
Data:
Sk, I, C2

Result:
S, I, t

33 StopF lag = 0
34 while StopF lag == 0 do
35 if t == 1 then
36 StopF lag = 1 . No connectivity test is required
37 else
38 (ni, rn)← arg min

({ni,rn}∈S)
[d(x0k, ni)− (rk + rn)] . Finding the closest sphere to Sk

39 NSk
← (ni, rn)

40 if d(x0k, ni) ≤ (rk + rn) then
41 StopF lag = 1 . Sk is connected to at least one sphere of S
42 else
43

−→s ← −−−−→ni x0k . An artificial sphere must be introduced
44 mN ← ni + rn

||−→s || ×
−→s . Closest point on the surface of NSk

to Sk

45 mK ← x0k − rk
||−→s || ×

−→s . Closest point on the surface of Sk to NSk

46 mid← mN+mK
2

. Midpoint between mN and mK

47 nmid ← arg min
(x2j∈C2)

d(mid, x2j) . Closest C2 point to mid

48 if d(mid,mN) ≤ d(mid, nmid) then
49 StopF lag = 1 . The artificial sphere connects Sk to S
50 Sart ← {(mid, d(mid,mN))} . S and Zik are updated
51 S := S ∪ Sart

52 Zik := Zik ∪ {x1i | x1i ∈ I ∧ ||mid− x1i||2 ≤ ||mid− nM ||2}
53 else

54 ca ← (x0k+ni
2

), ra ← d(x0k, ni), Sa ← {ca, ra}

55 A← {x2i | x2i ∈ C2 ∧ ||ca − x2i||2 ≤ (ra)2} . Relevant C2 points

56 N ← {(cs, rs) | cs ∈ ||c− cs||2 = r2 ∧ {c, r} ∈ S, rs = min
(x2j∈A)

d(cs, x2j)}

57 {cart, rart} ← arg max
({c,r}∈N)

r , s.t. ||c− x2j ||2 ≥ r2 , ∀x2j ∈ A

58 Sart ← {cart, rart} . From set N , the sphere with the largest radius
59 S := S ∪ Sart

60 Zik := Zik ∪ {x1i | x1i ∈ I ∧ ||mart − x1i||2 ≤ ||mart − nM ||2}
61 end

62 end

63 end
64 S := S ∪ Sk, I := I\Zik, t := t + 1

65 end

Example 5.2. Returning to the example, at iteration 2 of the proposed
heuristic, the suggested Sk at the end of stage 1 (Algorithm 2) is not con-

21

nected with any sphere of S. The process of adding artificial spheres to S in
order to connect Sk with it is illustrated in Fig. (14).

Figure 14: Generation of artificial spheres at iteration 2 for the Separation data set.

6. Computational Experience

In this section, we present the result of the exact method (for minimiza-
tion of the number of clusters, no margin maximization) and the heuristic,
for bi-dimensional problems so we may understand the complex structure of
the data and observe the exact and heuristic solution. Having confirmed the
expected behavior of the heuristic approach in the bi-dimensional setting,
we also tested this approach on higher dimensional data sets drawn from the
binary classification literature, comparing its performance against some of
the classical Machine Learning classification methods.

22

To solve the CCSP with an exact method, we used Matlab (R2019a) and
the optimization software Baron [52] version 23.1.5 (5-January-2023), on a
machine with 2*CPU: AMD EPYC� 7702 (64 Cores 256MB Cache, 2.0GHz
to 3.35GHz GHz), 512GB RAM @ 3.200GHz. To run the heuristic we used
Python version 3.8.16 (6-December-2022) in a Jupyter Notebook version 6.5.2
(30-October-2022) environment, on a Intel(R) Core(TM) i7− 11800H com-
puter with CPU 2.30GHz.

We generated six bi-dimensional instances, where the elements of the tar-
get class has some complex, non-linear and non-convex structure as depicted
in (Fig. 15).

Figure 15: Example data sets to access the heuristic behavior.

More information about the bi-dimensional data sets and the solution
obtained with the exact method and the heuristic approach is displayed in
Table 1. The columns N1 + N2 contain the total number of points of the
training set from both classes, while column %N1 represents the percent-
age of training points in the target class. Columns under“Heuristic” and
“Baron” refer to information regarding the heuristic and the exact method
implemented in Baron software. Under this designation, the running time,
in seconds, of both methods (“Time (s)”) and the number of spheres in the
cloud (“# Spheres”), as well as the percentage of artificial spheres produced

23

by the heuristic (“% Art. Spheres”), are displayed.

Data set N1 + N2 %N1
Heuristic Baron

Time (s) #Spheres
%Art.

Spheres
Time (s) #Spheres

Elbow 40 50.00 0.01 4 - 57.95 3

Separation 42 50.00 0.01 7 42.86 1.82 2

Infinity 400 39.25 0.60 26 34.62 - -

Flower 200 50.00 0.11 20 20.00 - -

Flower no
Center

200 50.00 0.15 25 40.00 - -

Parallel 200 50.00 0.05 3 - 5.53 1

Table 1: Bi-dimensional data sets information.

Figure 16: Cloud heuristic Figure 17: Cloud Baron

For Baron we made the maximum number of spheres K (Section 4) equal
to the number of spheres obtained from the heuristic. We noticed that the
running time of Baron is highly influenced by this upper bound on the num-
ber of spheres in the cloud. We set a maximum of 15000 iterations and 1000
seconds as the maximum time. With these limitations it was not possible
to obtain a feasible solution (even less optimal) solution, for the “Infinity”,
“Flower” and “Flower no Center” instances. For the other sets, the optimal
solution was clearly better but the running time was worse, as expected. Fig.
16 and 17 show the cloud obtained for the data set “Elbow” with the heuris-
tic and Baron respectively. The same for data set “Separation” (Fig. 18 and
19) and “Parallels” (Fig 20 and 21).

24

Figure 18: Cloud heuristic. Figure 19: Cloud Baron.

Figure 20: Cloud heuristic. Figure 21: Cloud Baron.

Figure 22: Cloud heuristic Figure 23: Cloud heuristic Figure 24: Cloud heuristic

To access the performance of the CCSP on real data sets, 8 commonly
used data sets from the supervised classification literature were selected. All

25

the selected data sets were retrieved from the UCI Machine Learning Repos-
itory [53]. A brief description of these sets is provided in Table 2. For all
8 data sets we were only able to retrieve results for the heuristic approach:
solving the CCSP with an exact method in Baron did not yield any feasible
solution. As performance benchmarks, we compare the heuristic approach re-
sults against the algorithms Logistic Regression (LR), Linear SVM (L-SVM),
Fine Gaussian SVM (FG-SVM) and Random Forest (RF), methods briefly
introduced in section 2. These four methods were implemented via the Mat-
lab (R2019a) Classification Learner.

Data set Dimension N1 + N2 %N1
CCSP Heuristic

Time (sec) #Spheres %Art. Spheres

Banknotes 4 1372 44.46 7.08 12 16.67

BCW Original 9 683 34.99 0.02 27 -

BCW Diagnostic 30 569 37.26 0.70 18 -

Ionosphere 34 351 64.10 0.46 13 -

Mushrooms 22 8124 48.20 138.79 9 -

Pima Diabetes 8 768 34.90 22.90 151 14.57

Sonar 60 208 53.37 0.32 21 -

Voting (US) 31 435 38.62 0.99 31 -

Table 2: Real data sets information.

For all datasets, we have performed a standard 10-fold cross-validation
protocol, implementing one-hot-encoding and normalization on categorical
and quantitative features, respectively (such pre-processing was not imple-
mented when running the RF algorithm). Figures presented in Table 3 con-
sist in the average values observed across the 10 performed validations for
each data set. The performance of the algorithms on each classification task
was accessed with the calculation of the respective classification Accuracy
(i.e. ratio of correct predictions to total predictions made), Precision (i.e.
ratio of correct positive predictions), Recall (i.e. ratio of actual positives
correctly predicted) and F1 score (i.e. harmonic mean of precision and re-
call) - the four metrics are detailed for the CCSP heuristic. The best results
in terms of classification Accuracy have been underlined.

26

Data set
Avg. Accuracy (%) CCSP Heuristic

LR L-SVM
FG-

SVM
RF

CCSP
Heu.

Precision Recall
F1

Score

Banknotes 98.91 98.40 99.93 94.97 94.66 91.87 96.65 94.16

BCW
Original

96.63 96.78 97.07 97.51 93.64 91.64 90.14 90.82

BCW
Diagnostic

95.25 99.65 97.89 95.96 90.18 88.09 85.85 86.69

Ionosphere 86.89 87.18 94.59 93.45 84.27 87.08 88.79 87.83

Mushrooms 100 99.90 100 100 99.12 98.38 99.81 99.09

Pima
Diabetes

77.60 77.21 73.31 76.82 65.31 50.38 42.66 45.62

Sonar 75.96 77.40 83.65 84.62 62.88 68.37 57.96 62.07

Voting
(US)

94.25 95.63 96.09 95.86 87.79 89.02 78.38 82.85

Table 3: Real data sets results.

The numerical results indicate that the CCSP has potential to become a
feasible and interesting method for supervised Machine Learning tasks. Al-
though the proposed heuristic underperformed compared to the established
algorithms in terms of classification Accuracy, it came in general close to the
best results displaying a good trade-off between variance and bias in most of
the data sets.

It is also important to note that the heuristic approach to solve the CCSP
still has room for further improvement.

7. Conclusion

In this paper, we propose a supervised classification method based on a
cloud of spheres. This process allows the identification of non-linear and non-
convex structures of the data. It is transparent, in the sense that the process
of classification is based on a structure whose representation is known, well-
defined and kept within the original feature space. The number of parameters
to estimate is low. The classification process is simple and the method does
not need balanced classes, being suitable for anomaly detection. We assume
a binary classification problem, consisting in identifying elements of a target
class.

27

A MINLP formulation is presented to find a cloud of spheres, defined by
the centers and radii of the spheres. The formulation of connectivity con-
ditions is usual heavy, requiring an exponential number of constraints. In
this case, we were able to formulate the connectivity condition of the cloud
imposing constraints that scale quadratically with the size of the maximal
number of spheres.

We present the application to some small\medium scale examples with
a highly non-linear and non-convex structure using the exact approach with
the optimization software Baron. We also propose a constructive heuristic
to find good feasible solutions, of particular interest for large instances.We
compare the heuristic approach results against the algorithms Logistic Re-
gression (LR), Linear SVM (L-SVM), Fine Gaussian SVM (FG-SVM) and
Random Forest (RF), on 8 commonly used data sets from the supervised
classification literature. The performance of the heuristic was satisfactory.
As future work we intend to explore MINLP exact approaches and meta-
heuristic methods. We also want to explore copositive reformulations and
SDP relaxation to find tight lower bounds. We also intend to investigate the
use of ellipsoids instead of spheres.

We would like to express our sincere appreciation for the invaluable con-
tributions of the referees, which greatly contributed to the improvement of
the paper.

References

[1] W. An, M. Liang, Fuzzy support vector machine based on
within-class scatter for classification problems with outliers or
noises, Neurocomputing 110 (2013) 101–110. URL: https://www.

sciencedirect.com/science/article/pii/S0925231213000106.
doi:https://doi.org/10.1016/j.neucom.2012.11.023.

[2] J. Hang, J. Zhang, M. Cheng, Application of multi-class
fuzzy support vector machine classifier for fault diagnosis of
wind turbine, Fuzzy Sets and Systems 297 (2016) 128–
140. URL: https://www.sciencedirect.com/science/article/pii/
S0165011415003176. doi:https://doi.org/10.1016/j.fss.2015.07.
005, themed Section: Fuzzy Systems.

28

https://www.sciencedirect.com/science/article/pii/S0925231213000106
https://www.sciencedirect.com/science/article/pii/S0925231213000106
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2012.11.023
https://www.sciencedirect.com/science/article/pii/S0165011415003176
https://www.sciencedirect.com/science/article/pii/S0165011415003176
http://dx.doi.org/https://doi.org/10.1016/j.fss.2015.07.005
http://dx.doi.org/https://doi.org/10.1016/j.fss.2015.07.005

[3] D. R. Cox, The regression analysis of binary sequences, Jour-
nal of the Royal Statistical Society: Series B (Methodological) 20
(1958) 215–232. URL: https://rss.onlinelibrary.wiley.com/doi/
abs/10.1111/j.2517-6161.1958.tb00292.x. doi:https://doi.org/
10.1111/j.2517-6161.1958.tb00292.x.

[4] M. P. LaValley, Logistic regression, Circulation 117 (2008) 2395–2399.

[5] H. Zhang, L. Jiang, L. Yu, Attribute and instance weighted naive bayes,
Pattern Recognition 111 (2021) 107674.

[6] D. Soria, J. M. Garibaldi, F. Ambrogi, E. M. Biganzoli, I. O.
Ellis, A ‘non-parametric’ version of the naive bayes classifier,
Knowledge-Based Systems 24 (2011) 775–784. URL: https://www.

sciencedirect.com/science/article/pii/S0950705111000414.
doi:https://doi.org/10.1016/j.knosys.2011.02.014.

[7] E. Fix, J. L. Hodges Jr, Discriminatory analysis-nonparametric discrim-
ination: Small sample performance, Technical Report, California Univ
Berkeley, 1952.

[8] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE trans-
actions on information theory 13 (1967) 21–27.

[9] P. Cunningham, S. J. Delany, K-nearest neighbour classifiers-a tutorial,
ACM Computing Surveys (CSUR) 54 (2021) 1–25.

[10] E. Carrizosa, C. Molero-Rio, D. Romero Morales, Mathematical opti-
mization in classification and regression trees, Top 29 (2021) 5–33.

[11] M. Somvanshi, P. Chavan, S. Tambade, S. Shinde, A review of machine
learning techniques using decision tree and support vector machine, in:
2016 international conference on computing communication control and
automation (ICCUBEA), IEEE, 2016, pp. 1–7.

[12] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.

[13] T. K. Ho, Random decision forests, in: Proceedings of 3rd international
conference on document analysis and recognition, volume 1, IEEE, 1995,
pp. 278–282.

29

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1958.tb00292.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1958.tb00292.x
http://dx.doi.org/https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
http://dx.doi.org/https://doi.org/10.1111/j.2517-6161.1958.tb00292.x
https://www.sciencedirect.com/science/article/pii/S0950705111000414
https://www.sciencedirect.com/science/article/pii/S0950705111000414
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2011.02.014

[14] S. M. Piryonesi, T. E. El-Diraby, Role of data analytics in infrastructure
asset management: Overcoming data size and quality problems, Journal
of Transportation Engineering, Part B: Pavements 146 (2020) 04020022.

[15] M. A. El Mrabet, K. El Makkaoui, A. Faize, Supervised machine learn-
ing: a survey, in: 2021 4th International Conference on Advanced Com-
munication Technologies and Networking (CommNet), IEEE, 2021, pp.
1–10.

[16] L. Deng, D. Yu, et al., Deep learning: methods and applications, Foun-
dations and trends® in signal processing 7 (2014) 197–387.

[17] E. Carrizosa, D. R. Morales, Supervised classification and mathematical
optimization, Computers & Operations Research 40 (2013) 150–165.

[18] D. A. Otchere, T. O. Arbi Ganat, R. Gholami, S. Ridha, Ap-
plication of supervised machine learning paradigms in the predic-
tion of petroleum reservoir properties: Comparative analysis of ann
and svm models, Journal of Petroleum Science and Engineering
200 (2021) 108182. URL: https://www.sciencedirect.com/science/
article/pii/S0920410520312365. doi:https://doi.org/10.1016/j.
petrol.2020.108182.

[19] Y. B. Hamdan, et al., Construction of statistical svm based recognition
model for handwritten character recognition, Journal of Information
Technology 3 (2021) 92–107.

[20] V. Vapnik, The Nature of Statistical Learning Theory, Springer, New
York, 1995.

[21] C. Campbell, Kernel methods: a survey of current techniques, Neuro-
computing 48 (2002) 63–84.

[22] Y. Motai, Kernel association for classification and prediction: A survey,
IEEE transactions on neural networks and learning systems 26 (2014)
208–223.

[23] T. B. Trafalis, R. C. Gilbert, Robust support vector machines for classi-
fication and computational issues, Optimisation Methods and Software
22 (2007) 187–198.

30

https://www.sciencedirect.com/science/article/pii/S0920410520312365
https://www.sciencedirect.com/science/article/pii/S0920410520312365
http://dx.doi.org/https://doi.org/10.1016/j.petrol.2020.108182
http://dx.doi.org/https://doi.org/10.1016/j.petrol.2020.108182

[24] A. Astorino, A. Fuduli, E. Gorgone, Non-smoothness in classification
problems, Optimisation Methods & Software 23 (2008) 675–688.

[25] A. Astorino, A. Fuduli, M. Gaudioso, Nonlinear programming for classi-
fication problems in machine learning, in: AIP conference proceedings,
volume 1776, AIP Publishing LLC, 2016, p. 040004.

[26] N. Megiddo, On the complexity of polyhedral separability, Discrete &
Computational Geometry 3 (1988) 325–337.

[27] A. Astorino, M. Gaudioso, Polyhedral separability through successive
lp, Journal of Optimization theory and applications 112 (2002) 265–293.

[28] A. Astorino, A. Fuduli, Support vector machine polyhedral separabil-
ity in semisupervised learning, Journal of Optimization Theory and
Applications 164 (2015) 1039–1050.

[29] A. Astorino, M. D. Francesco, M. Gaudioso, E. Gorgone, B. Manca,
Polyhedral separation via difference of convex (dc) programming, Soft
Computing 25 (2021) 12605–12613.

[30] D. M. Tax, R. P. Duin, Support vector domain description, Pattern
recognition letters 20 (1999) 1191–1199.

[31] A. Astorino, M. Gaudioso, A fixed-center spherical separation algorithm
with kernel transformations for classification problems, Computational
Management Science 6 (2009) 357–372.

[32] A. Astorino, A. Fuduli, M. Gaudioso, Dc models for spherical separation,
Journal of Global Optimization 48 (2010) 657–669.

[33] A. Astorino, A. Fuduli, M. Gaudioso, Margin maximization in spherical
separation, Computational Optimization and Applications 53 (2012)
301–322.

[34] A. Astorino, A. Fuduli, Semisupervised spherical separation, Applied
Mathematical Modelling 39 (2015) 6351–6358.

[35] A. Astorino, A. Fuduli, Spherical separation with infinitely far center,
Soft Computing 24 (2020) 17751–17759.

31

[36] M. C. de Almeida Calado, Explaining Incorrect Feature Learning in
the Training of Deep Neural Networks, Master thesis, NOVA School of
Science and Technology, NOVA University Lisbon, 2022.

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, R. Fergus, Intriguing properties of neural networks, arXiv preprint
arXiv:1312.6199 (2013).

[38] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing ad-
versarial examples, arXiv preprint arXiv:1412.6572 (2014).

[39] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, A. T. Kalai,
Man is to computer programmer as woman is to homemaker? debiasing
word embeddings, Advances in neural information processing systems
29 (2016).

[40] J. Angwin, J. Larson, S. Mattu, L. Kirchner, Machine bias: There’s soft-
ware used across the country to predict future criminals. and it’s biased
against blacks, 2016. URL: https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing.

[41] S. Wang, M. Gupta, Deontological ethics by monotonicity shape con-
straints, in: International Conference on Artificial Intelligence and
Statistics, PMLR, 2020, pp. 2043–2054.

[42] R. K. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan,
P. Lohia, S. Mehta, A. Mojsilovic, S. Nagar, et al., Think your artificial
intelligence software is fair? think again, IEEE Software 36 (2019)
76–80.

[43] S. Jentzsch, P. Schramowski, C. Rothkopf, K. Kersting, Semantics de-
rived automatically from language corpora contain human-like moral
choices, in: Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, 2019, pp. 37–44.

[44] R. Livni, S. Shalev-Shwartz, O. Shamir, On the computational efficiency
of training neural networks, Advances in neural information processing
systems 27 (2014).

[45] D. M. Cardoso, J. Szymanski, M. Rostami, Matemática discreta, Escolar
Editora (2009).

32

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

[46] H. Nagamochi, T. Ibaraki, Algorithmic aspects of graph connectivity,
Cambridge University Press, 2008.

[47] R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, A. Weintraub,
Imposing connectivity constraints in forest planning models, Operations
Research 61 (2013) 824–836.

[48] T. L. Magnanti, S. Raghavan, Strong formulations for network design
problems with connectivity requirements, Networks: An International
Journal 45 (2005) 61–79.

[49] J. Thunberg, P. Ögren, A mixed integer linear programming approach
to pursuit evasion problems with optional connectivity constraints, Au-
tonomous Robots 31 (2011) 333–343.

[50] P. Li, X. Huang, J. Qi, H. Wei, X. Bai, A connectivity constrained milp
model for optimal transmission switching, IEEE Transactions on Power
Systems 36 (2021) 4820–4823.

[51] S. Elloumi, O. Hudry, E. Marie, A. Martin, A. Plateau, S. Rovedakis,
Optimization of wireless sensor networks deployment with coverage and
connectivity constraints, Annals of Operations Research 298 (2021) 183–
206.

[52] N. V. Sahinidis, Baron: A general purpose global optimization software
package, Journal of global optimization 8 (1996) 201–205.

[53] D. Dua, C. Graff, UCI machine learning repository, 2017. URL: http:
//archive.ics.uci.edu/ml.

33

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	State of the art
	A critical view over black-box machine learning methods

	Classification using the Connected Cloud of Spheres Problem (CCSP)
	MINLP Formulation of the Connected Cloud of Spheres Problem
	Variables
	Objective function
	Constraints defining the set of spheres
	Constraints defining a sequential numbering of the spheres
	Constraints defining the connectivity of the graph induced by the cloud of the spheres
	CCSP with margins

	Heuristic approach
	Define the iteration's candidate sphere Sk
	Guarantee Connectivity of Sk to the already defined spheres in S

	Computational Experience
	Conclusion

