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Abstract

We study a two-stage stochastic combinatorial optimisation problem that integrates
fleet-sizing, assignment, routing, and scheduling problems. Although this problem has wide
applicability, it arises in particular in the home healthcare industry where a service team
of caregivers have to be assigned to patients and put in vehicle fleet that have to be routed
amongst the patients they are going to serve, and one also needs to schedule within a single
planning horizon and amidst uncertainty from factors such as service duration, travel time,
and customer cancellation rates. A stochastic mixed-integer linear programming model is
proposed. For the solution method, we first devise a Benders’ decomposition algorithm with
a heuristic-based warm-start. To accelerate the convergence process, we present a closed-
form solution to the primal formulation for the subproblem to allow the computational time
to increase linearly with the instance size. Furthermore, we provide a set of valid inequalities
for the master problem that proved to be beneficial for reducing the number of feasibility cuts
needed to be added and overall speeding up the convergence of the algorithm. In order to
handle larger instances, we develop a two-stage heuristic to provide high-quality and timely
solutions based on the information available at each stage. The proposed approach aims
to reduce costs, create efficient routes with balanced workloads and team-based customer
service zones, and increase customer satisfaction by implementing a two-stage appointment
notification system that is updated at different stages before the actual service. The results
from the computational experiments indicate that the proposed two-stage heuristic is highly
effective in addressing our problem, as it can provide good-quality solutions for reasonable-
sized instances and efficiently handle the uncertainty present in the problem. In particular,
the heuristic is competitive with CPLEX’s exact solution methods in terms of providing
time and cost-effective decisions and can update previously-made decisions based on an
increased level of information.

1 Introduction

We study a two-stage stochastic problem which integrates fleet-sizing, assignment, routing, and
scheduling problems. This problem setting has a wide-range of real-world applications, particu-
larly in the home service industry which encompasses businesses that provide a range of services
to individuals in their homes. We motivate our problem by focusing on the home health care
(HHC) sector, also known as domiciliary care or hospital-at-home services, which is an impor-
tant part of home services. This type of care involves providing medical, paramedical, and social
services to patients in out-of-hospital settings such as private homes, care facilities, boarding
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homes, hospices, and shelters [LMS10]. In recent years, the HHC sector has experienced signif-
icant growth due to various societal changes, including shifts in family structures, increased life
expectancy, an ageing population, hospital overcrowding, and the spread of infectious diseases.

The typical business requirements for HHC organisations are to decide on the number of
professional service teams to deliver services to geographically distributed customers, the as-
signment of the service teams to customers, the sequences of customer visits, and the scheduling
of appointments to all customers with service demands. These four decisions form the Home
Service Assignment, Routing, and Appointment scheduling (H-SARA) problem, which was pre-
sented for the 13th AIMMS-MOPTA Optimization Modeling Competition [SC21] 1. H-SARA
is a multifaceted optimisation problem that integrates planning decisions at tactical and oper-
ational levels and is related to a set of widely studied problems in academia and industry. It
considers real-world complexities and uncertainties, such as travel times and service durations,
making it a crucial problem to be addressed by HHC organisations.

Uncertainty and perturbation are inevitable in the healthcare system and cannot be ne-
glected in real-life situations, where a planned schedule is often unlikely to be conducted
throughout the planning horizon without any disruption. Amongst all uncertainties, vari-
ability in travel times, service times, and patients’ availabilities are the most often appearing
real-world unpredictabilities and have been widely studied in practice [DME21]. As a result,
involving some uncertain aspects from real life within the healthcare decision framework is es-
sential in producing practical solutions. The H-SARA problem considers the following real-life
aspects: First, travel times can vary due to traffic congestion, while delays may occur dur-
ing peak hours. Second, the actual service duration at each patient’s location is intrinsically
random. Third, both uncertainties can result in service teams incurring idle times or waiting
times for the patients in the system. Finally, patient presence during the decision-planning
stage can be uncertain. For instance, patients can cancel the service with short notice after
the healthcare provider has already made the routing and scheduling decisions. Cancellations
consequently lead to abrupt modifications of service plans and timetables. In this work, we
assume uncertainties in service duration, travel times, and customer cancellations to resemble
reality better when solving the H-SARA problem.

In this work, we apply a priori optimisation, where a set of a priori vehicle routes is first
planned using expected travel and service times. The precise duration of each tour becomes
available only after the actual travel and service times are revealed in the second stage. An
extension beyond the consideration of stochastic travel and service times is the stochasticity
of customer behaviour (customer presence). We come up with three customer cancellation
scenarios on the service day and their associated policies: in-time cancellation, last-minute
cancellation, and no-presence, all of which are further explained in Section 3.2.

The H-SARA problem requires the organisation of a set of service tours to each customer
node and finishing the service by the predefined ending time, minimising the different penalties
caused by uncertainty realisations, including the customer waiting, service team idling and
overtime penalties. The overall chronological timeline for the daily operations rundown as
well as the list of static and adjustable decisions are given in Figure 1, where a set of decisions
related to the fleetsizing, routing and scheduling are made with different uncertainty realisations.
During the initial planning stage, the decision-makers need to make pre-arrangements with
incomplete information to work diligently to ensure a smooth rundown on the actual service
day. The tour refinement stage resembles the actual service day, with the visiting sequences

1This paper is an extension of the the proceedings paper [Joh+21] which contained the authors’ submission
to the AIMMS-MOPTA Modeling Competition 2021 at which they were awarded the First Prize.
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re-optimised based on in-time cancellations. For the post-service evaluation stage, complete
information about travel and service durations are revealed after the actual service, allowing
decision-makers to evaluate the service teams’ performance.

Stage 1 — Initial planning

Stage 2 — Tour refinement

Post-service Evaluation

• Fleet-sizing
• Team-customer assignment
• Plan initial set of routes on
  estimated data

Notify initial customer
appointment time window

Day 0

Afternoon

• Receive customer cancellation
  list before cut-off time
• Remove cancelled customers
  from routes

Notify updated customer
appointment time window

Day 1

(7 AM) (8-8:30 AM)

• Perform actual service
• Receive realisation of
  traversal and service times

Evaluation of whole
day’s perfomance

Out-of-sample simulation

Day 1

(9 AM – 4 PM) (6 PM)

Figure 1: Daily operations rundown with chronological timeline

In this work, we have proposed two solution approaches: an exact method that focuses
on the tour refinement stage with the realisation of cancellations, and the heuristic tackling
problems from the first to third stages considering all three uncertainties.

We derive a stochastic mixed-integer linear programming (MIP) model for H-SARA and
propose exact solution methods to solve it. To begin with, we use Benders’ decomposition for
the multi-scenario model setting. Realising the natural partition of our stochastic model, we
take the first stage as the scenario-independent master problem that decides which set of cus-
tomers to visit and treat each scenario inside the second-stage recourse model as a subproblem
fixing the time-dependent decisions for the service teams and customers. We have improved
the exact solution method applied in Johnn et al. [Joh+21] and derived a problem-specific Ben-
ders’ decomposition formulation for the subproblem with Benders cuts that were formulated
based on the problem structure. For larger instances, we develop a tailored two-stage heuris-
tic approach that provides high-quality and in-time solutions based on information revealed
at different stages. The embedded adaptive large neighbourhood search (ALNS) meta-heuristic
helps to create routes with balanced service teams workloads. We also introduce a two-stage
appointment notification system to increase customer satisfaction.

For the stochastic MIP model, given the distinct nature of uncertainties that encompass
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both continuous and linear types, we make the assumption that the model should be solved
once before the cut-off time after all the cancellations are known. Therefore, the stochastic
model follows the in-time cancellation policy assuming deterministic customer cancellations
that occur either in the previous day or on the actual service day before the cut-off time.
Consequently, the stochastic model is solved only with non-cancelled customers to get a set
of valid routes, with the second stage encountering various travel and service time scenarios.
For the heuristic approach, we follow the last-minute cancellation, so that in the first stage we
include all customers in the routes before the actual service day for the decision-making. After
receiving updates from customers in the second stage, we remove the customer set who cancel
their service requirements on short notice and update the traversal decisions correspondingly.
Therefore, we consider all three types of uncertainties within the heuristic framework.

Results show that our Benders technique can deliver good-quality solutions with better ef-
ficiency than the whole MIP model solved by CPLEX. Our Benders is also competitive with
CPLEX built-in Benders for small-scale instances. Moreover, our two-stage heuristic is com-
petitive to CPLEX’s exact solution methods in providing time and cost-effective decisions for
large-scale instances and can update previously-made decisions based on an increased level of
information.

The organisation of this paper is as follows. In Section 2, we review the studies related to
human resource planning in HHC. In Section 3 we define the general problem (which subsumes
the H-SARA problem) and formulate the problem as a two-stage stochastic MIP model. To
solve the problem, we present the Benders’ decomposition in Section 4 and a tailored two-stage
heuristic solution method in Section 5. Computational results and performance analysis are
presented in Section 6. Conclusion follows in Section 7.

2 Literature Review

Our problem consists of determining the number of required agents (in the context of H-SARA
these would be caregivers) and their visiting routes to minimise the total hiring, service, and
travel expenses while satisfying a set of constraints. It relates to a set of widely studied academic
and industry problems. In this section, we summarise several relevant problems in the context
of HHC.

2.1 Related Problems

The vehicle routing problem (VRP) is a significant issue at an operational level. The VRP
has been extensively studied in the literature and has several variants and applications [Lap09;
Lin+14; BRV16]. The problem studied in this paper generalises the VRP to determine the
necessary personnel to meet demand at the lowest cost. This approach includes a fleet-sizing
aspect, commonly known as the staffing or personnel planning problem, to balance fixed team
hiring costs and routing expenses [Rod+15]. Many HHC problems also involve a patient-to-
staff or patient-to-slot assignment aspect over a planning horizon [CLM18], which is considered
alongside other planning decisions.

Another related operational decision is scheduling, which refers to the chronological alloca-
tion of tasks to workers such that the list of tasks is accomplished within the shortest amount
of time and with minimal time clashes. For example, in healthcare, appointment scheduling
specifies the allocation of patients to staff for services, including care visits and elective surg-
eries. It aims at constructing staff schedules that satisfy patient requirements. From a service
provider’s perspective, each customer visit is scheduled as part of a service team’s timetable in
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sequential order [GD08]. The vehicle routing problem with time windows (VRP-TW) [DMR14]
is a VRP variant with a scheduling aspect, stressing that vehicle arrival or departure times
must satisfy additional customer availability requirements. The difference between scheduling
and the VRP-TW is the pro-activeness of the decision-makers in appointing the visiting time
window due to the initial routing criteria instead of customer-imposed time requirements.

At an operational level, our problem can be formulated as the routing and scheduling problem
(RSP), which involves producing for every caregiver a job schedule and a visiting sequence at
minimal cost respecting regulatory and operational constraints [DME21]. RSP in the HHC
context has received growing attention and has been the predominant research focus [ND18].
For comprehensive reviews of RSP in the context of HHC, we refer the readers to Fikar and
Hirsch [FH17] with a focus on the standard parameters, Cissé et al. [Cis+17] with analysis on
Operations Research models applied to RSP, and Di Mascolo et al. [DME21] with specification
on the RSP constraints and objectives in RSP. Besides, Gutiérrez and Vidal [GV13] review the
main models and decisions related to the design and delivery of HHC services. Furthermore, a
more recent survey by Grieco et al. [GUC20] gives a systematic review of a broader framework
of Operations Research literature in HHC logistics management. Finally, a comprehensive
overview of planning decisions in health care can be found in Hulshof et al. [Hul+12].

2.2 Uncertainties

There is a growing trend in the recent HHC literature that deals with uncertainties such as
travel times, service times variability, or customer cancellations. Yuan et al. [YLJ15], Shi et
al. [SBG17], Zhan and Wan [ZW18], and Shi et al. [SBG19] consider uncertain service times
or demand for their RSP models. Rest and Hirsch [RH16] consider time-dependent travelling
time for the staff routing and rostering problem. Several works involve customer cancellation
or departure in a routing and scheduling context. For instance, in the work of Eveborn et
al. [EFR06] and Eveborn et al. [Eve+09], the authors consider changes in staff and patients’
availabilities in their staff routing and scheduling problem in home care. Trautsamwieser et al.
[TGH11] considers personal preferences from both patients and nurses that allow refusal of
service. Nickel et al. [NSS12], Fikar et al. [Fik+16], and Cappanera et al. [Cap+18] and Gomes
and Ramos [GR19] all consider the uncertainty of patient inflow due to patient cancellation or
new requests. Finally, Lin et al. [Lin+18] considers sudden incidents, which include nurse leave,
patients requesting changes of their assigned time slot, and patient cancellation. Furthermore,
some other complex models include more than one type of the above uncertainties in the
literature. Works from Shi et al. [Shi+18], Yuan et al. [YLJ18], Liu et al. [LYJ19], Nikzad
et al. [NBA21], Shahnejat-Bushehri et al. [Sha+21], and Naderi et al. [Nad+23] and Yang et
al. [YNY21] consider travel and service times uncertainties. Han et al. [Han+17] considers
uncertainties in staff response time and customer cancellation in the form of no-shows. A
review of other types of uncertainties apart from the above three can be found in the work
of Di Mascolo et al. [DME21]. Nevertheless, to our best knowledge, no research integrates all
three types of uncertainties together with the fleetsizing, assignment, routing, and appointment
scheduling decisions in the context of HHC.

Many solution methods have been applied to handle uncertainty, amongst which stochastic
programming has been one of the most selected methods that shows good performance in the
HHC context [HPR20; DME21; ZWW21]. A common approach applied in stochastic program-
ming models is two-stage optimisation. In the first stage, an initial solution is created before
the cancellation parameters are revealed in the second stage, meaning that first-stage decisions
should possess sufficient flexibility to guarantee the feasibility of second-stage recourse actions.

5



Although this paper focuses on a problem emerging in home service delivery, decomposition
methods, specifically two-stage optimisation, can be easily found in practice. Many interna-
tional shippers (e.g., DPD [DPD20], Royal Mail [Daw19]) have now adapted to similar concepts
in their last-mile deliveries: they first assign an estimated time slot to all customers based on
the pre-collected information, then re-assign a narrower time slot on the actual day of deliv-
ery when more information is known (e.g., customer delivery sequence, cancellations). This
multi-stage decomposition approach also suits the real-life circumstances in the HHC service
industry, where last-minute service cancellations, i.e. customers cancelling their requests after
being given an appointment time, are allowed.

The use of decomposition techniques, specifically Benders’ decomposition, to solve inte-
grated large-scale NP-hard problems like ours has gained considerable significance in recent
years [Rah+17; Nad+23]. One specific application of Benders’ decomposition is the L-shaped
method, which is used to solve stochastic problems. The method has been shown to be particu-
larly effective in solving these kinds of problems and has therefore positioned itself in the field.
The L-shaped method breaks the problem down into smaller sub-problems, which can then
be solved separately and combined using cuts to find the overall solution. This approach can
effectively tackle complex problems that would be difficult to solve using traditional methods.
As a result, we believe the L-shaped method is a good fit for our problem settings and could
be an effective solution for similar service problems.

Table A.1 gives an extensive summary of the literature on HHC with stochasticity and
focuses on routing and scheduling. The most similar works to ours in terms of solution methods
are Hashemi Doulabi et al. [HPR20] and Zhan et al. [ZWW21], both of which considered
stochasticity in their models. The former studied the stochastic VRP with synchronised staff
visits and uncertain travel and service times and proposed an L-shaped algorithm and a branch-
and-cut implementation as solution methods for instances up to 20 customers. In contrast,
the latter studied an integrated routing and scheduling problem with stochastic service times
and proposed an L-shaped algorithm for instances up to 10 customers and a problem-specific
heuristic for larger-sized instances.

2.3 Our Novelties and Contributions

Based on our literature review, the main contribution of this work is the mathematical treat-
ment of a problem integrating the following four planning decisions: fleet-sizing, assignment,
routing, and scheduling. These decisions are jointly integrated into the solution framework to
contribute to a comprehensive decision-making process. Travel times, service duration, and
cancellation rates are considered jointly as uncertain quantities, which to our best knowledge,
has not been investigated in the literature before. For the solution methods, we first develop
an exact method using Benders’ decomposition based on the natural partition of our two-stage
stochastic model to tackle small-sized instances. We propose a set of valid inequalities for the
master problem that proved to be beneficial for reducing the number of feasibility cuts needed
to be added and overall speeding up the convergence of the algorithm. Besides, we present
a closed-form primal formulation for the subproblem to allow the computational time to in-
crease linearly with the instance size. Moreover, we develop a metaheuristic-based warm-start
algorithm to accelerate the convergence process. An alternative two-stage heuristic approach
is proposed for tackling medium-to-large sized instances, allowing decision-making based on
imperfect information before the actual customer demands are revealed and updating existing
solutions with increased information.
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3 Mixed Integer Programming Model

3.1 Problem Statement

Let a service area be represented by a directed graph G := (V,A). Here, the node set V
encloses the customer set J1, nK := {1, . . . , n}, a single depot {0}, and its duplicate {n + 1}.
The arc set consists of all the ordered pairs linking each pair of customers, one link from the
depot to each customer and another from each customer back to the duplicated depot; namely
A := {(i, j) : i 6= j,∀i, j ∈ J1, nK} ∪ {(0, j) : ∀j ∈ J1, nK} ∪ {(i, n+ 1) : ∀i ∈ J1, nK}. The service
for all n customers of known geographical location is provided by a group of no more than
m homogeneous service teams, each of which makes a single trip starting from and returning
to the depot. We aim to partition the set of customers into the minimum number of groups,
each visited exactly once by an individual service team in an explicit visiting sequence, and
to determine customer appointment time slots prior to the actual visits. The solution should
satisfy time and capacity constraints given by the customers and the service teams. Customers
must be informed of their appointment time slots on the service day before the cut-off time
(8 am) or the departure of the assigned service teams from the depot, whichever is earlier.
Lastly, the probability distributions associated with travel and service times are known, and
the associated variables are assumed to be independent.

3.2 Uncertainties

We come up with three customer cancellation scenarios on the service day and their associated
policies. A cancellation policy analysis is given in Section 6.5.

1. In-Time Cancellation: Any cancellation that occurs before a fixed cut-off time or the
departure of the assigned team from the depot, whichever is earlier. Any such customer
is skipped by the team, which will travel from its previous stop directly to the next
scheduled customer, whose appointment time is adjusted;

2. Last-Minute Cancellation: Any cancellation occurs when the team is at any service stage
but before its departure for the cancelled customer from the previous visit. The additional
travel to the customer cannot be avoided due to short notice, but the team spends zero
time (i.e., service duration is 0) at such location;

3. No-Presence: Considered as a “no-show” or “irresponsible customer” who does not notify
about the cancellation. The team arrives at the customer assuming regular service and
waits for a short period (less than service time) before registering the cancellation and
thus chooses to leave for the next stop. Additional idling time occurs.

3.3 Stochastic MIP Model

3.3.1 Parameters

The set Ω denotes different scenarios ω, each associated with a different realisation of the travel
and service times with a certain probability qω. We assume that Ω is a finite set and denote
its cardinality by |Ω|. We impose a traversal duration matrix T := (τωi,j) under scenario ω for
any arc (i, j) ∈ A based on the stochastic traversal variables, and a service duration vector
S := (sωi ) for customer i under scenario ω from the stochastic service variables. The distance
from i to j is labelled di,j . In this formulation, symmetry of T and d is not required, capturing
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possible discrepancies in the underlying road network, i.e., city topography and street layout.
Let p : J1, nK→ R≥0 be a probability mass function defined over the set of customers, such that
for each customer i ∈ J1, nK the probability of service cancellation of i is given by pi. The cost
of hiring a homogeneous team i ∈ J1,mK is taken as a constant fm, where m is the maximum
number of service teams available despite the hiring status. The maximum allowed working
time is given by L ≥ 0. Working times are expected to be within the interval [0, L], yet we
anticipate and allow possible overtime occurring in the interval (L,L + θ] with θ > 0. Any
additional time beyond the maximum working time L and within L+ θ results in an overtime
cost. Finally, let cwait, cidle, and cover be the fixed non-negative unit customer waiting, team
idling, and team overtime costs, respectively.

3.3.2 Decision Variables

The binary variable xi,j ∈ {0, 1} is equal to 1 if and only if the arc (i, j) ∈ A is traversed by a
service team. Notice that xi,i due to the domain restriction is not allowed in the model. For
each customer i ∈ J1, nK, we use the following continuous variables: aωi ∈ [0, L] and hωi ≥ 0 for
the team’s arrival time and idling time at i; wωi ≥ 0 for the customer’s waiting time; and gωi
measures the overtime of a service team registered at their arrival at the depot when returning
from i. Finally, since an actual arrival time under the stochastic setting could be different
from a customer’s first-stage appointment time, we have differentiated an appointment time
(scheduled service start time) variable ti for each i. We assume the appointment time window
is [ti−W, ti+W ] with a fixed width of 2W . The arrival of a service team before the appointment
time window leads to team idling, whereas an arrival after the time window leads to the customer
waiting.

3.3.3 Two-stage MIP Formulation

We decompose the original problem into two smaller subproblems based on the presence of the
integer arc traversal variables and the continuous time-related variables. The traversal variables
xi,j and the appointment time variables ti are our first-stage decisions. Notice that the fleet
size can be derived using xi,j if we consider the total number of edges linking customers to
the depot is exactly twice the size of the fleet. The team idling time hωi , overtime gωi , and
customer waiting time wωi are our second-stage decisions dependent on the different scenarios.
The first-stage formulation for the stochastic model is as follows:

(1st Stage) min
(x;t)

fm
∑

i∈J1,nK

xi,n+1 +
∑

(i,j)∈A

di,jxi,j + E
[
Q(x, t;ω)

]
(1a)
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subject to ∑
i∈J1,nK

x0,i ≤ m, (1b)

∑
i∈J0,nK
i 6=j

xi,j = 1 ∀j ∈ J1, nK, (1c)

∑
i∈J0,nK
i 6=j

xi,j =
∑

i∈J1,n+1K

xj,i ∀j ∈ J1, nK, (1d)

∑
i∈J1,nK

x0,i =
∑

i∈J1,nK

xi,n+1, (1e)

ŝi + τ̂i,j ≤ θ(1− xi,j) + tj − ti ∀i, j ∈ J1, nK, i 6= j; (1f)

0 ≤ ti ≤ L ∀i ∈ J1, nK (1g)

xi,j ∈ {0, 1} ∀(i, j) ∈ A; (1h)

where E
[
Q(x, t;ω)

]
=
∑

ω∈Ω q
ω · Q(x, t;ω) for any x satisfying the above equations, Q is the

expected average cost of customer waiting, service idling and overtime penalties from the second
stage, and any ω ∈ Ω associated with probability qω. The objective function (1a) minimises
the total team hiring costs and expected idling, waiting, and overtime costs under all scenarios.
Constraint (1b) states that there are no more than m homogeneous service teams departing from
the depot {0}, where a tighter bound m = m̂ can be derived using the root-node method given
in Section 4.3.2. Constraints (1c) require that each customer must be visited once and only
once by a service team. The flow conservation constraints (1d) require that a team travelling
to any customer node must leave the node afterwards. This is complemented with (1e), which
stresses that the number of teams leaving the depot must equal the number that returns. (1h)
are the domain constraints for the traversal variable.

To strengthen our initial approach from [Joh+21], we introduced the auxiliary constraints
(1f) and (1g) to the model. Once the arc traversal variables xi,j all carry integer values, we
can compute the auxiliary appointment time variable ti using the estimated travel and service
times. The ti variables are sequentially computed for each route based on the values of xi,j ,
the expected travel time τ̂i,j , and the expected service time ŝi. The two constraints help to
eliminate any overtime tours induced by a set of visiting sequences given by x.

In the first stage, a feasible traversal decision should be binary and contain no cycles, i.e., a
customer sequence without including a depot. To avoid the first stage solution from containing
any cycles, we introduce the following subtour elimination constraint :∑

(i,j)∈S′
xi,j ≤ |S′| − r(S′), (2)

where S′ refers to an infeasible inter-customer cycle not containing the depot, and r(S′) refers
to the (minimum) fleet size needed to serve the customers in S′.

The second-stage formulation for the stochastic model are as follows:

(2nd Stage) Q(x, t;ω) := min
w,h,g

cwait

∑
i∈J1,nK

wωi + cidle

∑
i∈J1,nK

hωi + cover

∑
i∈J1,nK

gωi (3a)
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subject to

aωi + hωi + sωi + τωi,j ≤ aωj +M(1− xi,j) ∀(i, j) ∈ A, (3b)

aωi + hωi + sωi + τωi,j ≥ aωj −M(1− xi,j) ∀(i, j) ∈ A, (3c)

aωi + hωi + sωi + τωi,n+1 ≤ L+ gωi + θ(1− xi,n+1) ∀i ∈ J1, nK, (3d)

hωi ≥ (ti −W )− aωi ∀i ∈ J1, nK, (3e)

wωi ≥ aωi − (ti +W ) ∀i ∈ J1, nK, (3f)

gωi ≤ θ ∀i ∈ J1, nK, (3g)

aωi , h
ω
i , w

ω
i , g

ω
i ≥ 0 ∀i ∈ J1, nK. (3h)

where the scenario-based objective function (3a) minimises the idling, waiting, and overtime
costs under scenario ω. The functionality of (3b) is two-fold. First, they join (3c) to link
together the arrival time to the first customer, its service time, and the traversal time to
the next customer, given that the two customer visits are consecutive. Second, it forbids the
formation of subtours, which are circles formed only by a group of customers without the
depot. Constraints (3d) determine the incurred overtime when returning to the depot from
the last customer. Constraints (3e) and (3f) specify the idling and waiting times, respectively.
Constraints (3g) and (3h) provide upper and lower bounds for the relevant variables. Finally,
an additional requirement of no arrival or idle times at the depot can be enforced by setting
aω0 = hω0 = 0.

4 L-shaped Method

Benders’ decomposition [Ben62] is a frequently-applied technique for solving large-scale MIP
problems with a block-diagonal structure. It is called the L-shaped method when applied to
two-stage problems. Benders’ decomposition has a “row-generation” strategy that relaxes the
original problem and iteratively generates cuts to strengthen the relaxed problem until conver-
gence is achieved.

4.1 Benders Algorithm

We introduce the Benders’s algorithm below. A given stochastic programming model containing
both global and local constraints can be represented as zMIP := min

{
cx +

∑
ω∈Ω dy

ω : Ax +
Byω ≥ b, Dx ≥ f, x ∈ Zn, yω ∈ Rm, ω ∈ Ω

}
, Benders’ decomposition separates the complex

optimisation problem into the master problem (MP) and subproblem. It keeps the complicated
linking variable x within the MP, which can be written as zMP := min

{
cx + zSP(x) : Dx ≥

f, x ∈ Zn
}

and projects out the remaining variables in a composite format which yields the
subproblem’s objective value as the sum of different scenarios zSP =

∑
ω∈Ω z

ω
SP. Here, for a fixed

first-stage decision vector x = x, the remaining subproblem can be formulated as zωSP(x) :=
min

{
dyω : Byω ≥ b − Ax, yω ∈ Rm

}
which can be solved independently for each scenario

ω ∈ Ω. Since the second-stage variable yω is continuous for any scenario ω, each subproblem is
a linear programming problem and therefore has a corresponding dual formulation zωDP(x) :=
max

{
u(b − Ax) : ub ≤ d, u ≥ 0

}
, where u is the vector of dual multipliers corresponding to

the constraints Byω ≥ b − Ax. The polyhedron of the dual formulation can be represented in
terms of its extreme points and extreme rays. We begin by solving the MP. For each iteration
of the Benders algorithm, a vector x can be derived from the reduced master problem (RMP).
The subproblems are linked to the RMP through two types of additional cuts. In the first case,
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if the corresponding dual subproblem zωDP(x) has a bounded and nonempty feasibility region,
a Benders optimality cut u(b − Ax) ≤ ϕ is generated using the extreme point u, which are
the corner points of the feasible region that satisfy a particular subset of constraints. ϕ is a
scalar value determined by the SP solution that represents the threshold for the violation of
constraints at the extreme point that is allowed to satisfy optimality. The generated optimality
cuts are added to the RMP for the consecutive iteration. Otherwise, if the subproblem dual is
unbounded and determines that the first-stage realisation x is infeasible, a Benders feasibility
cut u(b−Ax) ≤ 0 is generated using the extreme ray u and added to the RMP.

Compared to the single-cut Benders’ decomposition that generates a single optimality cut
integrating all the subproblems for each iteration, the multi-cut reformulation produces a cut
from each subproblem, which can lead to a more aggressive pruning of the solution space and
therefore be potentially more efficient compared to the classical single-cut method. The RMP
is iteratively updated and solved to generate new Benders cuts until the gap between the upper
and lower bounds on the objective function value falls below the termination threshold.

4.2 Benders Framework Overview
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Figure 2: Benders’ decomposition flowchart

We visualise our customised Benders’ decomposition process in a flowchart depicted in Fig-
ure 2. The process commences with the upper centre box in red on the flowchart, where we first
relax the MIP formulation for our stochastic programming model by separating the first-stage
traversal decision from the time-related decisions that are scenario-dependent in the second
stage. We form the initial RMP based on constraints (1a)–(1f), solving the resulting MIP
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model yields a set of visiting sequences x and appointment times t for each customer. A pre-
processing warm start can be included prior to solving the RMP and this is also explained as
part of the MP in Section 4.3. After validating the tours for feasibility and eliminating any ille-
gal subtours that involve sequences without visiting the depot, we proceed to derive the master
solution and record the lower bound. At the MP, any detected subtour formed by a group of
customer nodes Ns without the inclusion of a depot is used to generated subtour elimination
constraints and added to the RMP. Afterwards, we determine the second-stage time-related
variables a, g, h, w for the scenario-based subproblems (3a)–(3h), which are used to verify the
feasibility of the master-level traversal decision and generate the corresponding Benders cuts.
At this stage, we check for any group of nodes ND causing overtime infeasibility, which are again
used to generate constraints that are added to the RMP. To derive solutions for a large number
of subproblems more efficiently, we develop a closed-form formulation explained in Section 4.4
for each primal subproblem with realisations of scenario-dependent travel and service time. The
generations of Benders optimality and feasibility cuts are explained in Section 4.5. Specifically,
if the master-level traversal decision is feasible for a certain scenario, a Benders optimality cut
is generated using the dual multipliers from the subproblem. For any infeasible scenario, we
generate a feasibility cut to forbid the formation of an overtime tour visiting an oversized group
of customers. Furthermore, we provide some acceleration techniques using the minimum infea-
sible subsystem (MIS) and maximum feasible subsystem (MFS) for generating optimality cuts
based on infeasible scenarios and strengthening feasibility cuts will be explained in Section 4.6
and Section 4.7, respectively. Finally, the iteration terminates when the MP lower bound and
subproblem upper bound satisfy a predetermined threshold. Regarding the overall Benders
method, we utilise a single tree approach, where the first stage is solved optimally as an MIP
model. The generated feasibility and optimality cuts from the second stage are incorporated
using the callback function to reintroduce them to the first stage model.

4.3 Master Problem

In order to limit the domain of our first-stage decision variables x and t, we have added the
following valid inequalities to the MP to shrink the feasibility region:

ti ≥ min
ω∈Ω
j∈V

τω0,j ∀i ∈ J1, nK, (4a)

|ti − tj | ≥ min{τωi,j , τωj,i}+ min{sωi , sωj } ∀(i, j) ∈ A. (4b)

where constraint (4a) requires that the appointment time for each customer cannot precede the
completion of the team’s journey from the depot in any scenario. Notice that the triangular
inequality does not hold due to the stochasticity in travel time. Constraint (4b) states that the
intermediate appointment time for any pair of customer nodes must be equal to or greater than
the combined duration of travel and service times needed for either direction of visit.

4.3.1 Lifted Formulation

We further consider a lifted formulation to strengthen the MP. We start with the following lifted
valid inequality. For simplicity, we do not explicitly show the scenario index for all second-stage
variables.

aj ≥
∑

i∈J1,nK

(ai + hi + si + τi,j)xi,j (5)
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The inequality above is derived after considering any two consecutive customers i and j in the
MP solution. To see this, first observe that

ajxi,j = (ai + hi + si + τi,j)xi,j (6)

holds for all arcs (i, j). Indeed, if xi,j = 0, this is trivial, and thus let us focus on the case
xi,j = 1. Combining constraints (3b) and (3c) gives a linear constraint with equality in the
form ai + hi + si + τi,j = aj , which is exactly (6). We then accumulate (6) over all start nodes
i ∈ J1, nK with the same end node j. Since

∑
i∈J1,nK xi,j ≤ 1 holds for all nodes j, multiplying it

by aj to obtain aj ≥
∑

i∈J1,nK xi,jaj . This allows us to replace the left hand side in the sum by aj
which results in (5). However, equation (5) exhibits a quadratic form as a result of the product
involving the variables aixi,j and hixi,j . To convert this equation into its linear equivalent,
we use McCormick envelopes [McC76] through the introduction of auxiliary variables ς and %.
These auxiliary variables are characterised by the following set of inequalities:

ςi,j ≤ xi,j , ςi,j ≤ aj + θ(1− xi,j), ςi,j ≥ 0, ςi,j ≥ aj − θ(1− xi,j), (7a)

%i,j ≤ xi,j , %i,j ≤ hj + θ(1− xi,j), %i,j ≥ 0, %i,j ≥ hj − θ(1− xi,j). (7b)

It is worth noting that θ represents the maximum overtime length, which also serves as an
upper bound for aj and hj . The set of inequalities in (7) ensures that ςi,j = ajxi,j and %i,j =
hjxi,j when xi,j ∈ {0, 1}. Throughout the paper, we will employ the lifted formulation by
incorporating (7) and substituting ajxi,j and hjxi,j with ςi,j and %i,j , respectively.

4.3.2 Warm Start

To warm-start the MIP solver, we implement a metaheuristic based on an adaptive large neigh-
bourhood search to install a feasible initial solution for the MP. The metaheuristic methodology
is further introduced in Section 5.2.4.

To produce such an initial solution through a metaheuristic, we propose a root-node method
to select a feasible fleet size while addressing a trade-off between fixed vehicle costs and routing
costs. Since service team hiring costs typically dominate the remaining costs, starting the
search process with a near-optimal fleet size is crucial to discovering the optimal solution and
promising solution candidates in reasonable computational time.

The tightness of constraint (1b) is strongly dependent on the value of m, which is generally
large given that the number of available service teams might be more than the number eventually
hired. Therefore, we aim to provide a tighter restriction on m by establishing both upper and
lower bounds for the service teams, such that the domain is effectively constrained. The root-
node method begins with limiting the fleet size options using the upper and lower bounds given
below. For notational simplicity, the hat decorator in the travel and service times involved in
the following constraints are the expected values for each arc and node, namely τ̂ and ŝ. We
can find an upper bound on the number of teams required to visit all clients by solving the
following linear programme:

min `u (8a)

subject to∑
i∈J1,nK

ŝi +
1

2

∑
i∈V

(
max{τ̂i,j : (i, j) ∈ A}+ max{τ̂j,i : (j, i) ∈ A}

)
≤ `u(L+ θ), (8b)

1 ≤ `u ≤ m̂, and `u ∈ Z; (8c)
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where `u is a decision variable representing the maximum number of needed teams to satisfy,
in a mean-worst-case scenario, all the transportation and service requirements. Here, m̂ is an
upper limit on the number of teams, which can be as large as the number of customers n, and an
optimal solution of (8) determines a choice over m. Observe that if we divide constraint (8b) by
`u, the resulting expression distributes the routing task in two parts: There is a term averaging
service time, and another term averaging the time required to travel between customers taking
time-consuming paths. Notice that the optimal solution can be obtained using exhaustive
enumeration in O(1) time.

Likewise, service times can provide a lower bound on the amount of time that all service
teams spend on the road. To do so, we define `l as the minimum number of teams required
to distribute the aggregated service time and minimum transportation time. Thus, we need to
solve the following nonlinear program:

max
1

`l
(9a)

subject to∑
i∈J1,nK

ŝi +
1

2

∑
i∈V

(
min{τ̂i,j : (i, j) ∈ A}+ min{τ̂j,i : (j, i) ∈ A}

)
≤ `l(L+ θ), (9b)

1 ≤ `l ≤ m̂, and `l ∈ Z; (9c)

Notice that if this problem is infeasible, then there are not enough teams to solve the problem
with mean values for service and transportation times. As a result, we have an infeasibility
certificate. Again, this problem can be solved in O(1) time.
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Start with
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Figure 3: Depiction of warm-start

After shrinking the fleetsize domain using the bounds above, we enumerate through the
list of possible fleetsize options in {`l, `l + 1, . . . , `u} and for each fixed fleetsize value, the
CPLEX solver is instructed to stop at the first integer solution found in the root node before
the branching begins. After all associated root node values are computed, we instruct CPLEX
to identify the smallest root node value out of the list of integer solutions amongst all fleetsize
options and return its associated fleetsize m̂, which is used to provide an initial solution during
the warm-start. This way, we find a good starting point of the search with fleet size m̂ for the
specific travel and service times realisations. As a result, the warm-start metaheuristic produces
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an initial solution with m̂ service tours for the RMP. We use the expected travel and service
times from all scenarios during the warm start to generate such tours.

4.4 Closed-form Primal Solution for SP

Once the first-stage routing plan is established, the second-stage becomes a linear programming
problem, for each scenario ω ∈ Ω, resembling a network flow problem. In fact, as the routing
variables x are fixed for this stage, constraints (3b) and (3c) can be simplified, significantly
reducing the size of the model. More explicitly, and dropping the scenario index, the following
reduced second stage model is obtained:

(Reduced 2nd Stage) QR(x, t, ω) := min
w,h,g

cwait

∑
i∈J1,nK

wi + cidle

∑
i∈J1,nK

hi + cover

∑
i∈J1,nK

gi (10a)

subject to

ai + hi + si + τi,j = aj ∀(i, j) ∈ A : xi,j = 1, j 6= n+ 1, (10b)

ai + hi + si + τi,n+1 ≤ gi + L ∀i ∈ J1, nK : xi,n+1 = 1, (10c)

hi ≥ (ti −W )− ai ∀i ∈ J1, nK, (10d)

wi ≥ ai − (ti +W ) ∀i ∈ J1, nK, (10e)

0 ≤ gi ≤ θ ∀i ∈ J1, nK : xi,n+1 = 1, (10f)

ai, hi, wi ≥ 0 ∀i ∈ J1, nK, (10g)

a0 = h0 = 0. (10h)

Proposition 4.1. Algorithm 1 constructs a closed-form solution for the reduced second-stage
primal solution (10) with optimal cost.

Proof. The general approach works as follows: First, letK be the number of active teams (tours)
determined by the traversal variables; i.e., K :=

∑
i∈J1,nK x0,i. Second, the set of first nodes

visited in all tours after leaving the depot are collected in the set I := {i : x0,i = 1}. Similarly,
the set of last visited nodes before going back to the depot are collected in J := {j : xj,n+1 = 1}.
Observe that there is a unique path constructed by the first-stage from only one node in I to
a corresponding node in J , given by the k-th route. The sequence of arcs form the k-th route,
a complete tour starting and ending at the depot, is denoted by X[k]; namely

X[k] :=
(
(i, j) : is part of the k-th route from I to J

)
, (11)

for all k ∈ J1,KK. Now, a simple propagation of initial values of arrival time variables a in (10b)
allows us to build a solution. For instance, consider a fixed route k ∈ J1,KK given by the path
X[k] =

(
(0, i), (i, j), . . . , (`, n+ 1)

)
. As a0 = h0 = s0 = 0, we have ai = τ0,i for the first visited

node i in path X[k]. This initial value can be then replaced in the inequalities for the idling
and waiting times at the node, such that these are satisfied; i.e., hi = max{0, (ti−W )−ai} and
wi = max{0, ai − (ti + W )}. Once this is done, the next consecutive node j in the same path
is considered. In this case, the value of aj is again set such that (10b) is satisfied. This can
be done recursively for all the remaining nodes in the path and for all paths until the terminal
node is reached, at which point overtime is computed using the maximum value of the arrival
times at the duplicate depot {n+1}. By construction, the solution attained is not only feasible
but optimal, as any increment in ai to reduce hi or wi in the initial nodes i ∈ I propagates into
higher objective costs and any decrement in any variable results in an infeasible solution.

Observe that the reduced second-stage model (10) can have multiple solutions as there is
no effect of splitting waiting and idle times in a sequence of visits.
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Algorithm 1 Closed-form solution for reduced 2nd stage variables a, g, h, w for given x and t

1: Let I = {i : x0,i = 1}, J = {j : xj,n+1 = 1}, and K = |I|.
2: Retrieve X[k] as in (11) for all k ∈ J1,KK.
3: for i ∈ I do
4: ai = τ0,i

5: hi = max{0, ti −W − ai}
6: wi = max{0, ai − ti +W}
7: for k ∈ J1,KK do
8: for (i, j) ∈ X[k] with i 6= 0 do
9: if j = n+ 1 then

10: gi = max{0, ai + si + τi,n+1 − L}
11: if gi > θ then

12: Return feasibility cut:
∑

(s,r)∈X[k]

xsr ≤
∣∣X[k]

∣∣− 1

13: else
14: aj = ai + hi + si + τi,j
15: hj = max{0, tj −W − aj}
16: wj = max{0, aj − tj +W}

4.5 Benders Cuts

In what follows, we present two specialised Benders cuts for determining optimality and feasi-
bility certificates provided by the subproblems.

If any subproblem under a specific scenario is feasible, a Benders optimality cut u(b−Ax) ≤
ϕ is generated using the dual multipliers from the subproblem; i.e., the vector u. For each
subproblem under a particular scenario, infeasibility only occurs when the duration of any
generated tour incurs an overtime. That is, the total travel, service, and idling times for a service
team visiting a sequence of customers exceeds the maximum time given, plus the penalised
overtime allowance. Therefore, any feasibility cut is equivalent to a subtour elimination cut
with respect to the overloaded customer visiting sequence 0 → i1 → . . . → i` → n + 1 for
{0, i1, . . . , i`, n + 1} ∈ S′, ` ∈ N≥1. The following combinatorial Benders cut is generated to
forbid the formation of such an overtime tour:∑

i,j∈S′
(i,j)∈A

xi,j ≤ |S′| − 1, (12)

which can be further strengthened into the following feasibility cut, removing the two traversal
arcs from depot to the first customer and from the last customer back to the depot. In this
way, we are searching for an overloaded chain here:∑

i,j∈S

xi,j ≤ |S| − 1, S ⊂ S′, |S| ≥ 2; (13)

where the left-hand side of the constraint showcases an overloaded customer chain ci → . . .→ cj
that can occur in multiple additional extended tours. Once we identify S = {ci, . . . , cj} as an
infeasible customer set that creates an overtime tour, any longer tours containing this exact
chain must also yield infeasibility. Therefore, for any overtime customer chain, constraint (13)
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has a broader applicability than (12) in terms of forbidding time-infeasible tours, for the latter
can only forbid a single overtime tour formed by precisely one set of customers including the
depot. Here, |S| ≥ 2 comes from the value settings that ensure that a tour must be capable of
serving at least one customer. The following result proves that the strengthened version (13)
is stronger and can dominate (12).

Proposition 4.2. Given a customer chain i1 → . . . → i` that exceeds the overtime limit, any
extended tour formed by inserting additional customers before and/or after the chain cannot
restore the tour to feasibility.

Proof. For the strengthened constraint (13) to hold, any longer tours involving additional cus-
tomers before or after the customer chain cannot result in earlier arrival times as the tour
gets back to the depot. Without loss of generality, we assume any customer j∗ appears before
the customer chain and k∗ appears afterwards. We can then formulate the extended tour as
j1 → . . . → ja → (i1 → . . . → i`) → k1 → . . . → kb containing the given overtime cus-
tomer chain. Since all customer service times are strictly positive, any two chronologically and
consecutively visited customers i and j should satisfy the appointment time inequality ti ≤ tj .

We start by including a single customer on the extended tour. When a = 1 and b = n+ 1,
one additional customer is visited after the depot and ahead of the first customer in the chain.
Depending on the values of the team idling time hi1 and customer waiting time wi1 at the
chain’s first stop i1, we have the following three cases: (a) When hi1 = wi1 = 0, the service at
i1 begins immediately after team arrival. The total time required to include j1 can be written
as τd,j1 + hj1 + sj1 + τj1,i1 > τd,j1 + τj1,i1 ≥ τd,i1 because of hj1 ≥ 0, sj1 > 0 and the triangular
inequality. Hence, the extended tour with inserted customer j is also overtime. (b) When
hi1 > 0 and wi1 = 0, the team arrives prior to i1’s earliest availability, causing the team to wait.
In this case, it is possible for the respective team to serve at least one more customer beforehand
and still encounters idling time at i1. This can be written as τd,j1 +hj1 + sj1 + τj1,i1 ≤ ti1 −hi1 .
The service starting time however will not be any earlier than what was initially scheduled for
the chain. Hence, the duration of the extended tour must be as long as the original overtime
chain tour. (c) When hi1 = 0 and wi1 > 0, the team arrives late, thus causing the customer
to wait until the start of service. The extended tour is strictly longer than the overtime chain
tour by reusing the inequality under case (a). When a = 0, b = 1, one additional visit occurs
after the chain of customers is served. Since sk1 > 0, the extended tour must be longer than
the chain tour.

Any tour with a ≥ 1 or b ≥ 1 can be treated as a further extension by considering the
additional customers one by one using the above cases. This means that the extended tour’s
completion time cannot be any earlier than the original customer chain tour. In conclusion,
any insertion of additional customers before or after an overtime chain tour cannot create an
earlier finishing time than before and so overtime is ensured.

Notice that our Benders model does not have complete recourse, for the subproblems in our
case are not always feasible. Feasibility cuts are generated to tackle any infeasible subproblem.
Furthermore, the master level subtour elimination constraints in (2) carry a similar format.
During the computational experimentation, it was observed that a large proportion of RMP
solutions contained both feasible and infeasible tours. To enhance the MP algorithm’s efficiency,
we replace (2) with a tighter version as in (13). The focus of this substitution is to prevent a
group of customers that previously has formed illegal customer cycles to be allocated to the
same tour at the master level, without entailing considerations regarding overtime from as in
the subproblem level.
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4.6 Maximum Feasible Subsystem

The Benders feasibility cuts are generally considered unpreferable, for they bring no improve-
ment to the lower bound in the RMP. Slow convergence of the Benders’ lower bound is most
often due to the creation of numerous infeasible solutions that yield many feasibility cuts before
a feasible solution occurs and produces an optimality cut. In order to generate optimality cuts
earlier on to accelerate the convergence of the Benders’ lower bound, we adapt the idea of a
maximum feasible subsystem (MFS) from [SI10] so that each time a feasibility cut is produced,
we generate alongside an additional MFS cut to return to the current RMP.

The MFS cut is formed by relaxing a minimum number of SP constraints to restore the
feasibility of the subproblem. Since any infeasible subproblem in our case can only be caused
by overtime, we identify the only unsatisfied constraint in the subproblem as (3g). By relaxing
it, we can derive an MFS containing (3b)–(3f), (3h), and the following constraint to restore
that particular scenario to feasibility:

gi ≤ θ +M ′ ∀i ∈ J1, nK; (14)

where M ′ is a sufficiently large number to make sure that any overtime tour can now fit into
the service team time capacity. We can then generate an MFS cut in the same way as with an
optimality cut via computing the dual multipliers of the relaxed primal subproblem. The dual
multipliers associated with the relaxed constraint (14) can be fixed to zero due to complementary
slackness. As a result, an infeasible scenario can generate one feasibility cut and one MFS cut,
which shares similar structure with an optimality cut.

Even though Rahmaniani et al. [Rah+17] suggests the strategy can be non-competitive due
to the additional computational cost for finding the MFS compensating the gain in fewer cut
iterations. This weakness however does not apply to our implementation because we know
precisely which constraint will be infeasible. Therefore, there is no need to iterate through
all the subsystems to identify the maximal one. Besides, our closed-form subproblem solution
ensures that our computational time remains linear with respect to the node size.

4.7 Minimum Infeasible Subsystem

Another issue associated with slow convergence of the Benders bound is the poor quality of
cuts generated in each iteration, especially at the beginning of the Benders algorithm. For the
combinatorial Benders feasibility cut (13), the effect can be relatively weak, especially if the size
of the set S′ is large with a large excess in overtime. Therefore, we strengthen the feasibility cuts
based on the minimum infeasible subsystem (MIS) from [CF06], which is a subset of customers
that cannot be served together by a single service team without overtime but the removal of
any node results in a feasible single tour.

Enumerating through every existing MIS for a particular customer set would be highly
computationally inefficient. To derive stronger MIS feasibility cuts, we start with the tours
formulated in the MP. We use a local-search-based heuristic for each tour within the solution to
find the set of minimum infeasible subsets that are slightly overtime, yielding stronger feasibility
cuts. We adapt a local search procedure based on the current status of the tour, to iteratively
remove or insert customer nodes to create a MIS and return relevant cuts, see Algorithm 2.

18



Algorithm 2 Finding MIS

1: Let tour be infeasible
2: while tour is infeasible do
3: MIS tour← tour

4: candidate← ∅
5: for node ∈ tour do
6: aux tour← tour.Remove(node)

7: if aux tour is infeasible then
8: gain← cost(tour)− cost(aux tour)

9: candidate← candidate.Append(node, gain)

10: node← node with maximum gain from candidate

11: tour← tour.Remove(node)

12: Return MIS tour

5 Heuristic Algorithm

Realising the difficulty of tackling the problem as a whole, we have decomposed the problem
into its fleet-sizing, districting, routing, and scheduling components and developed a problem-
tailored two-stage heuristic, which dynamically tackles one or multiple decisions without leaving
the others out of sight. For our tailored two-stage heuristic, we have first decomposed the
problem into different stages with an embedded chronological structure, allowing us to make
dynamical decisions at each stage with an increased level of information.

5.1 Description of the Method

Our two-stage heuristic resembles a typical home service rundown: previous-day initial plan-
nings (Section 5.2), service day tour refinements (Section 5.3), and post-service performance
evaluation (Section 5.4). The heuristic showcases an ”inter-feedback process” that the previously-
made decisions can be re-optimised and updated at a later stage with an increased level of
information. Figure 4 displays an example for the two-stage heuristic outputs.

Initial Planning Stage represents the real-time circumstances when the decision-makers
make pre-arrangements to work diligently to ensure a smooth rundown on the actual service day
with incomplete information. The available information at this stage includes the customers’
geographical locations, the expected probability of cancellations, and estimated travel and
service times (from known distributions or historical data). Before the heuristic begins, we
aim to determine a fleet of available teams m on a strategic level based on methods such as the
root node approach or estimations. At the initial stage of the heuristic, we aim to determine a
workable fleet size m̂ to use and construct a set of a priori routes for the service teams. We also
aim to notify the customers of an initial appointment slot for the service. The decision-makers
are free to select a specific fleet size within the feasibility interval according to their preference
or risk-averseness, and the fleet size will then be optimised by the heuristic (see Figure 4 for an
example).

Tour Refinement Stage resembles the actual service day. With all customer cancellations
obtained before a given cut-off time, the second stage provides a refinement of the a priori
solution from the first stage. After cancelled customer nodes are removed from the tours,
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Figure 4: Heuristic framework: initial planning, tour refinement, and post-service performance
evaluation stages
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the cluster and the visiting sequences are re-optimised for more balanced workload among
the service teams. All non-cancelled customers will be notified of an updated and narrower
appointment time window at the beginning of the service day. Specifically, we aim to design
the routes such that all the second-stage updated appointment time windows lie within their
associated initial time windows derived in the previous stage (see Figure 4 for an example).

Post-service Evaluation Stage possesses complete information with specific travel and
service durations revealed after the actual service. This is a post-service reflection period for the
service providers to evaluate the service teams’ performance and their business plans. Different
scenarios are generated to evaluate the feasibility of the second-stage solutions. Specifically, we
generate multiple scenarios of different travel and service times for each realisation of customer
cancellation set using a stochastic sampling-based approach.

5.2 Initial Planning Stage

The initial planning stage consists of four consecutive steps: customer districts construction,
district-based routes construction, workload balance improvement, and initial appointment
scheduling. The upper set of graphs in Figure 5 demonstrates the first-stage decision plan-
ning process. For the decision-makers, the a priori solution provides an initial estimation on
the number of service teams to hire, the sequence of customers for each service team, and an
initial 2-hour appointment slot assigned to all existing customers. The solutions are gener-
ated based on the expected traversal and service times from known distributions and customer
cancellations with an estimated probability.

5.2.1 Estimate service and travel times with probabilistic customer presence

We first provide an estimation on the activity measure, which is the expected amount of time
required to include a specific customer in a tour. This helps us to determine the size of a tour
servable by an individual team. In our application, the customer cancellation rate is known
probabilistically, which means that the actual sequencing of customers or the computation of
route lengths can be inaccurate without knowing the actual cancellation list. Notwithstanding,
we can estimate the travel and service times for probabilistic customers without explicit routing
as proposed by Bard and Jarrah [BJ09].

The estimated total time required for a group of customers can be divided into (i) stem
time: estimated travel time from the depot to the nearest customer inside the group; (ii)
intermediate transit : estimated travel time between customers of the same group; (iii) service
time: estimated stopping time at each customer. Parts (i) and (iii) are self-explanatory and
can be estimated by the distributions associated to travel and service times. For (ii), we can
estimate ei, which is the expected travel time from customer i to any same-group customer j
with probabilistic customer presence rate, using the following formula given in [BJ09]:

ei =

bi∑
j=1

p
(∗)
i,j ·

di,j
vi,j

=

bi∑
j=1

(1− qj)(bi −Ri,j + 1)
bi∑
`=1

(1− q`)(bi −Ri,` + 1)

· di,j
vi,j (15)

where qj is customer j’s probabilistic cancellation rate, bi is the fixed number of closest cus-
tomers to customer i, Ri,j is the rank of the j-th closest customer with respect to i, with

j ∈ J1, biK. p
(∗)
i,j can be interpreted as the likelihood of customer j following i on a route.
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di,j is the Euclidean metric and vi,j is the travel velocity from node i to j. As a result, the
activity measure, AMi, for customer i can be estimated by the expected service time ŝi plus
the estimated travel time from i to the district centre j using (15). Here we use the expected
travel velocity v̂. We estimate the number of nearest customers to be the average number of
customers inside a district bi = d nme. This way we have that for a specific customer i:

AMi := ŝi + ei = ŝi +

bi∑
i=1

p
(∗)
i,j ·

di,j
v̂i,j

(16)

Here, we use the average number of nodes within a district. However, we observe that bi is
sensitive to the cancellation rate, for a high cancellation indicates that the selection of the next
customer can exhibit a significantly random pattern. In contrast, a low cancellation makes the
next node to be visited almost certain and establishes an inverse relationship with the distance.

5.2.2 Customer districting (Stage 1.1)

At the beginning of the initial planning stage, we apply a cluster-first-route-second construction
heuristic to come up with an initial set of routes. Mathematically, we first aggregate customers
into m compact and balanced districts that are each manageable by an individual service team,
then we develop explicit routes within each district. A feasible fleet sizem can be pre-determined
using the root-node solution method described in Section 4.3.2.

We adapt the districting formulation proposed by Hess et al. [Hes+65] and solve the resulting
MIP model to optimality to receive our initial customer-team assignment decisions. Let J1, nK,
be the set of customers and {0} be the depot as before. Let AMi ∈ R+ be the activity
measure associated with customer i. The number of districts to be formed is the same as
the pre-defined number of vehicles m. The average activity measure per district is defined
then as µ := 1

m

∑
i∈J1,nK AMi. We denote AMmin ≤ 100 and AMmax ≥ 100 as the minimum

and maximum percentage of activity measures in a district, respectively. Finally, the decision
variable yi,j is equal to one if customer i is assigned to the district centred at customer j, and
it is zero otherwise. Here yjj takes the value of one if customer j is selected to be the district
centre. The districting MIP model can be defined as below:

min
∑

j∈J1,nK

∑
i∈J1,nK

AMi d
2
i,jyi,j (17a)

subject to ∑
j∈J1,nK

yi,j = 1 ∀i ∈ J1, nK, (17b)

∑
j∈J1,nK

yj,j = m (17c)

yi,j ≤ yj,j ∀j ∈ J1, nK, (17d)∑
i∈J1,nK

AMi yi,j ≥
AMmin

100
µ · yj,j ∀j ∈ J1, nK, (17e)

∑
i∈J1,nK

AMi yi,j + 2d0,j ≤ L ∀j ∈ J1, nK, (17f)

yi,j ∈ {0, 1} ∀i, j ∈ J1, nK. (17g)
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Constraints (17b) require every customer to be assigned to a district. Constraint (17c) requires
exactly m districts to be formed. Constraints (17d) state that each formed district must have a
center. Constraints (17e) define the minimal workload of any district. Constraints (17f) stress
that the workload (activity measure) within each district, together with the pendulum tour to
and from the depot, cannot exceed the total time allowance.

5.2.3 Routing within individual districts (Stage 1.2)

After clustering the customers, we form a single cycle inside each district containing all its
customers and the depot. This is equivalent to solving the travelling salesman probelm for
m times, where m is the number of service teams. We adapt the TSP model formulated by
Dantzig et al. [DFJ09] to receive our initial routing decisions:

min
n∑
i=1

n∑
j 6=i,j=1

di,jxi,j (18a)

subject to∑
i∈J1,nK
i 6=j

xi,j = 1 j ∈ C, (18b)

∑
j∈J1,nK
i 6=j

xi,j = 1 i ∈ C, (18c)

∑
i,j∈Q
i 6=j

xi,j ≤ |Q| − 1 Q ( C, |Q| ≥ 2, (18d)

where xi,j is a binary variable indicating that arc (i, j) is traversed. Constraints (18b) and
(18c) guarantee the flow conservation that each node should has exactly one vehicle arriving
and leaving. Constraints (18d) eliminate sub-cycles containing only a subset of nodes. A
comprehensive review on the TSP heuristics methodologies and implementations can be found
in [Reg+11]. Taking into account the size of our problem, an exact solution can be obtained
using existing solvers.

5.2.4 Improving the initial routes (Stage 1.3)

So far we have constructed the initial set of routes with the cluster-first-routing-second strategy.
To improve upon these routes, we employ the adaptive large neighbourhood search (ALNS) meta-
heuristic. ALNS was first introduced by Ropke and Pisinger [RP06] as an extension of the large
neighbourhood search (LNS) proposed by Shaw [Sha99] with the general principle of “destroy
and repair”. The method looks for a better solution by destructing a part of the solution and
reconstructing the damaged part in a different way. The implementation of this metaheuristic
and its variations have yielded promising results on some complicated VRP variants with large
instances [RP06; HCC12]. Our pseudocode for the ALNS is presented in Algorithm 3.

Destroy and Repair Operators. The algorithm removes a pre-defined number of nodes
from the solution together with their linking arcs before adding them back iteratively, with the
hope that the newly formed solution yields a smaller objective value. We introduce the whole
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Algorithm 3 Basic steps of ALNS

1: s← Initial Solution, Initial Score(w∗) and sbest = s
2: while stopping criteria not met do
3: N− ← Choose(All Destroy Operators, w∗d)
4: N+ ← Choose(All Repair Operators, w∗r)
5: s′ ← Destroy Repair Apply(s,N−, N+)
6: if s′ < Quality Threshold then
7: s′ ← Local Search(s′)

8: obj(s′) = sum cost (team, travel, overtime)

9: if s′ satisfies an acceptance criterion then
10: s← s′

11: if s′ < sbest then
12: sbest ← s′

13: update Roulette Wheel operators performance scores

list of destroy operators below. The first three destroy operators are at the customer node level,
while the latter three are at the routing level. We set by default the choice of q = 5 from our
experimental results.

1. Random Removal: a group of q randomly selected customers are removed from their
existing routes and placed inside the customer pool.

2. Worse Removal: a group of q customers with the highest removal gain are selected and
removed from their existing routes. The removal gain refers to the difference of cost of
having or not a customer inside a given allocated tour.

3. Related Removal: a single customer is randomly selected and moved together with the
(q − 1) nearest customers from their tours to the customer pool.

4. Tour Removal: randomly removes a single tour and moves all the allocated customers
from this single tour to the customer pool.

5. Longest Tour Break into Half: breaks the longest tour found into two smaller tours of the
same length (or with one containing one more customer). Link the starting and ending
customers of the smaller tours to the depot.

6. Overcapacitated Tour Break into Half: breaks all the infeasible tours (time capacity ex-
ceeded) in the middle and form two smaller tours. Link the start and end of the smaller
tours with the depot.

After the destruction process, all customers inside the customer pool will be re-inserted by
a repair operator selected from below [HCC12]:

1. Greedy Insertion: Randomly select a customer from the customer pool, insert it into the
position that increases the total expected costs by the least. The insertion can be between
two consecutive customers or between the depot and a linking customer.

2. Greedy Insertion Perturbation: The same mechanism as Greedy Insertion. However,
the insertion cost of the selected customer at each specific position is influenced by a
perturbation factor in the interval [0.8, 1.2].
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3. Greedy Insertion Forbidden: Once again, the same mechanism as Greedy Insertion, only
that a customer node cannot be re-inserted to the same position it has just been removed
from.

Local Search methods (move, swap, and 2-opt) are applied after each destroy-repair iteration
to further improve the repaired solutions. However, since local search is usually computationally
expensive, we only wish to apply it to promising candidates whose objective values after the re-
pair stage are within a limit of the best-found incumbent (default 30% from initial experiments).
A description of the local search methods is given in Figure 6.

Move / Relocate
Move a single node from its position to a new position

Intra-tour Inter-tour

Inter-tour

Swap / Exchange
Swap the positions of two distinct customers

Intra-tour

2–OPT
Delete two non-adjacent edges and replace them with two other edges

Intra-tour

Overlap-Breaker
Find two overlapping tours, merge them, and split workload evenly

Inter-tour

Figure 6: Local Search Operators: a graphical description of the move, swap, and two-opt
methods

Since the destruction and reconstruction process (with local search) allow us to modify the
number of existing tours, it is therefore possible to re-optimise the fleet size during the ALNS
search. Consequently, ALNS allows our first-stage heuristic to be less affected by a fixed service
team number m.

Roulette Wheel Selector with Adaptive Weight. We apply the roulette wheel (a prob-
abilistic mechanism) to independently select the destroy and repair operators at each iteration.
An operator with index i is selected with probability owi,j

/∑K
k=1 owk,j , where K is the group

of same-category operators and j is the segment index. A segment is a consecutive number of
iterations during the solution process. During a segment, the i-th operator is associated with
a weight owi,j to reflect its capability to bring improvement to the incumbent in the current
segment j. The weight of each operator is periodically updated using a weighted balance of
the previous N iterations and the overall historical performance throughout the ALNS process.
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We compute the weight of the i-th operator in segment j + 1 via:

owi,j+1 =

owi,j(1− r) + πi
Qi
r if πi > 0,

owi,j if πi = 0,
(19)

where owi,j is the weight of the i-th operator in the previous segment j. πi is the score that the
operator earned in segment j for contributing to the improvement of incumbent quality, and Qi
is the number of times the i-th operator has been employed. Thus πi

Qi
is the average score the

i-th operator earns each time it is selected in segment j. This is weighted by a reaction factor r
that controls how much the previous segment j determines each operator’s overall performance.
Here we choose r = 1/2 based on our computational experimentation.

Acceptance and Stopping Criteria. ALNS has an embedded simulated annealing (SA)
meta-heuristic served as the acceptance criterion, which allows the algorithm to accept a newly-
found solution s′ that not necessarily brings a lower total cost. SA contributes to ALNS’s strong
capability and robustness in exploring the solution neighbourhood with both diversification
and intensification, allowing the search to escape from a local minimum and visit unexplored
areas of the search space. Mathematically, we accept the new solution s′ with probability
exp{[f(s′)−f(s)]/Tem} where s is the current solution and Tem the initial temperature. For the
stopping criteria, we force the search to terminate after either a certain amount of time or a
prescribed number of non-improving iterations is reached.

5.2.5 First-stage appointment scheduling (Stage 1.4)

The last step of the first-stage heuristic is to notify all customers of their initial appointment
time windows. Based on the set of ALNS-refined routes, we derive each individual appointment
time for a customer from the associated team’s arrival time at the customer using the expected
travel and service times. To cope with potential customer cancellations and unpunctuality, we
expand each individual appointment time into an appointment time window with fixed length
T1 and quote this individual-tailored appointment time window to every registered customer.
For example, assuming T1 = 4 hours and a customer’s estimated appointment time is at 11:30
am, the first-stage appointment time window for this customer will be [9:30, 13:30] am.

5.2.6 Further Improvements

To further improve on the real-life practicality of our routes and schedules derived after the
districting-first-routing-second construction heuristic from Sections 5.2.2 and 5.2.3 and the
ALNS improvement heuristic from Section 5.2.4, we consider the following improvements for
our first-stage solution: (i) team workload balance, (ii) multiple tours overlapping minimisation,
and (iii) twisted tour elimination.

Each service team’s assigned workload is bounded by (17e) and (17f), which means a team
could still be assigned a much higher or lower workload compared to the rest of the teams. To
further balance the workload amongst the teams, we include a soft workload balance penalty
P ·max

{
µ−1|

∑
i∈k AMi−µ|−α, 0

}
in the ALNS objective function to penalise the extra units of

workload above or below a certain threshold α for any service team (district k) and an average
workload µ amongst all districts. We have chosen α = 0.3 based on experimental results.

Occasional multiple tours overlapping is unavoidable, especially with a tight number of
available service teams. Service durations have a larger scale than the inter-customer travel
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times, leading to customer assignments prioritising a good fit of customer service times into the
remaining workload over the geographical adjacency. The randomness of customer geographi-
cal location can result in an unevenly high concentration of customers. The randomness then
challenges the algorithm to form disjoint, compact, and contiguous driver zones within a rea-
sonable computing time. However, the application of overlap-breaker and 2-opt (cf. Figure 6)
can remove the majority of overlaps and eliminate twisted tours that self-intersect.

5.3 Tour Refinements Stage

We make initial routing decisions during the first-stage heuristic without knowing which cus-
tomers will remain in the system. At the beginning of the second stage, however, the list of
cancelled customers I becomes known. So we re-optimise the initial tours to fit the up-to-date
customer information. The lower set of graphs in Figure 5 shows the decision process for our
second-stage tour refinement: we remove cancelled customers from the first-stage tours, com-
pute the estimated arrival times for all non-cancelled customers, improve service teams workload
balance, and notify all non-cancelled customers of a narrower appointment time window.

5.3.1 Second-stage Routing Improvements (Stage 2.3)

At the beginning of the tour refinement stage, the list of cancelled customers is revealed and
removed from the first-stage tours. From the right-hand-side column of the diagram in Figure 5,
the second stages 2.1 and 2.2 are relatively straightforward. For Stage 2.3, we re-apply the ALNS
improvement heuristic introduced in Section 5.2.4 to refine the routes and customer schedules.
The differences in implementing ALNS at this stage are twofold.

First of all, in contrast to the expected travel and service times from known distributions
used inside the first stage computation, we use a scenario-generated set of travel and service
times at the second stage. Secondly, the objective function in the previous stage consists of
total costs from team hiring, travelling, and working overtime. In contrast, our second-stage
objective function consists of the averaged total costs from the total travelling costs, team hiring
costs, overtime costs, team workload imbalance penalties, and the penalties for scheduling the
new arrival times outside the first-stage appointment time windows. The last term encourages
the algorithm to create a nested structure for the updated appointment times to lie within the
pre-defined time windows, which is essential to service quality because abrupt modifications to
service starting times are highly unfavourable with customers.

5.3.2 Second-stage Appointment Scheduling (Stage 2.4)

The service teams’ arrival times to customers and the depot are random variables since they
depend on travel and service times which are by definition random variables. This lead to our
decision of quoting yet again a time to every non-cancelled customer, albeit a narrower one.
Having the second-stage time window nested within the first-stage time window is essential
for successful service and thus customer satisfaction. Specifically, we assume we have a first-
stage time window [T start

1 , T end
1 ] and a second-stage estimated arrival time ai at a non-cancelled

customer i. We add to the ALNS objective term P
′ × max{T start

1 − ai, ai − T end
1 , 0}, which

penalises any arrival time not nested within the first-stage time window. Similar to the first-
stage appointment scheduling, we create a narrowed second-stage time window of length T2 = 30
min. Moreover, the time windows are not necessarily centred at their arrival times. This is
determined by a linear adjustment [ai − T start

i ] · cidle = [T end
i − ai] · cwait that forces the center
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forward in time to cope with more expensive waiting costs, or backward with more expensive
idling costs.

5.4 Out-of-sample Performance Evaluation

The quality of our second-stage routes and schedules will be evaluated at the tour-refinement
stage using a sampling-based approach. This is to ensure that the decisions are validated using
a larger set of scenarios before implementing them on the actual service day. We notice that
the issue of data over-fitting might occur in our two-stage heuristic framework, since we only
rely on in-sample objective values computed using a discretised set of scenarios ne clustered
from random samples. To avoid the data being overfitted to the in-sample population, we use
a new set of benchmark scenarios to evaluate the additional out-of-sample performance of our
second-stage solutions. This gives a fairer indication of how good the proposed level of service
obtained from the heuristic is on an unobserved set of data.

6 Experiments

6.1 Experimental Setting

Since our problem setting is motivated by an application in home healthcare, we consider
the parameter settings that were given in the AIMMS-MOPTA competition guidelines [SC21].
Specifically, we assume n customers are uniformly located over a 50×50 km geometric grid with
the depot located at the origin (0, 0). We set the fixed individual team hiring cost fm = 100,
hourly team idling time cost cidle = 2.5, hourly overtime cost cover = 5, and hourly customer
waiting cost cwait = 4. We also define the standard daily workload L = 8 hours for an individual
team, the first-stage time window length T1 = 2 hours, and second-stage time window length
T2 = 30 minutes. We assume the travel times between any two nodes are identically distributed
with a log-normal distribution. This distribution has been applied in many existing studies for
its recognition of the skewed distributions in modelling travel times [Gut+18]. For the customer
service time, we select the gamma distribution that is not strictly symmetric in order to avoid
generating a negative service time. We assume the expected service time ŝ = µs = 45 min
with its standard deviation set to µs/2, the expected travel speed v̂ = 1 km/min (equivalently,
expected travel time τi,j = 1 min/km). The traversing time on arc (i, j) can be computed by
the travel time per unit distance multiplying the Euclidean distance. Moreover, we assume all
customers share the cancellation probability defined at a fixed rate 5%.

We implemented our Benders algorithm, CPLEX exact methods algorithms, and our two-
stage heuristics framework in Python. For a unified measurement, we use CPLEX 20.1.0 as the
optimisation solver for both exact methods and heuristics. The computations are performed on
a machine with Intel Gold 6234 CPU and 512GB RAM installed. We used a single-core setting
to run a total of 10 test instances.

A Sampling-Based Objective Function Since the travel and service durations as well as
the customer cancellation list are random, we come up with a sampling-based objective function
computed from a number of ne randomly generated scenarios to guide the second-stage solution
process, inspired by the work of [SS09]:

f∗(x, t) =
1

ne

∑
i∈J1,neK

f
(
x, t, Si(τ, s)

)
(20)
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where f∗(x, t) is the expected total cost computed from a number of ne randomly generated
scenarios, x is the set of second-stage routes with the cancelled customers removed, S is the
sampling function, and Si(τ, s) represents the ith scenario with stochastic travel and service
times realisation. f

(
x, t, Si(τ, s)

)
represents the total costs of the ith scenario applied to x, and

finally ne is the total number of scenarios. The sampling-based objective function introduced
above in (20) is used to compute the first-stage objective in (1a) for the experiments.

Monte-Carlo Simulation and Scenario Generation We introduce a scenario-generating
procedure to include a more diverse set of scenarios, and meanwhile, we wish to maintain a
reasonable computational complexity by limiting the number of scenarios.

First, we assume a number of ne scenarios and apply Monte-Carlo simulation to randomly
generate ns samples, each with a different pair of travel and service times realisations. If
ns = ne, then each sample is an individual scenario. However, a large number of samples is
usually required to leverage a probability distribution and project outcomes more accurately.
Therefore, we generate a sufficiently large set of samples (ns � 30) because of the law of large
numbers, which states that the average experimental results converge to the expected value
with a large number of trials. Mathematically, we can treat each generated sample as a vector
consisting of the travel time realisation for every traversed arc and the service time realisation
for every non-cancelled customer node. For example, for a second-stage solution with two teams
travelling 8 arcs to serve 6 customers, the sample will be a vector of 14 values (8 travel times + 6
service times). Each value has been individually and independently drawn from the associated
known distributions.

We then partition these ns samples into ne clusters using a k-means clustering algorithm.
The sample at the center of each cluster is then taken as the representative scenario. The
probability qω of each scenario ω is computed as the number of samples clustered together
divided by the total number of generated samples. In this way, we are able to capture extreme
values using a moderate number of scenarios.

6.2 Comparison of Exact Methods

We implemented the CPLEX stochastic full model algorithm (MIP-full), CPLEX built-in
Benders algorithm (Benders-C), and our customised Benders framework (Benders). MIP-full
tackles the MIP model as a whole until an optimal solution is found or when the computational
time limit is reached. Benders-C uses CPLEX’s built-in Benders algorithm with the same
decomposition framework but works as a black box. Our customised Benders algorithm begins
with a RMP that is iteratively checked by subproblems and has its feasibility region reshaped
by optimality and feasibility Benders cuts until the MP converges.

We compare the performance of the three algorithms and report the results in Table 1.
The following Table 2 demonstrates the in-sample and out-of-sample analysis for the algorithm
performance. The maximal computational time for all three algorithms is fixed to be 1 hour.
Due to the variations in service time, travel time, and cancellations between different generated
scenarios, we run each customer |C| and scenario |S| combination for 10 times and return the
averaged performance data. We apply the ALNS metaheuristic warm-start to produce an initial
feasible solution from which all the algorithms begin. The generated Benders optimality and
feasibility cuts and the set of valid inequalities in our algorithm are added to the MP via the
LazyConstraintCallback. We test the algorithms using customer numbers from [10, 20, 30, 40].
For the stochastic instances, we generate sets of [20, 40, 60, 80, 100] scenarios for travel and
service times from 200 random samples using the proposed scenario generation procedure. For
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each customer-scenario combination, we report the average computational time in seconds,
UB as the best integer solution found in the branch-and-bound process, LB as the best lower
bound found, and Gap as the percentage difference between UB and LB, computed as Gap =
100 × (UB−LB)/UB %. Moreover, we also report the number of Branch-and-Bound nodes, as well
as the min, max, mean and standard deviation for the in-sample and out-of-sample analysis.

In Table 1, our Benders algorithm exhibits superior performance, particularly evident in
smaller instances comprising up to 30 customers. It achieves the smallest UB-LB gap across
various customer and scenario sizes compared to the two alternative methods. However, as the
customer size increases to 40 and coupled with more than 20 scenarios, Benders-C begins to
outperform its counterparts, showcasing the most optimal gap with the most searched nodes
amongst the three algorithms. In general, it is observed that as the size of customers and scenar-
ios increases, the Benders and Benders-C algorithms exhibit a more significant outperformance
compared to the MIP-full algorithm in terms of gap.

We name instances with a certain number of customers as a critical point, where the fleet
size will increase by one with any additional customers. Since the service team hiring costs
dominate the travel costs and other penalty costs, increasing the fleet size by one leads to a
significant difference in the total costs. During the solving process, an update in fleet size
can also cause a sudden jump in LB when specific scenarios contain large service and travel
times that make the master-level routes infeasible. The occurrence of a critical point is the
reason behind a sudden decrease in the gap from |S| = 20 to 60 for the 20-customer instances.
This is because more scenarios can appear that require the creation of another service tour to
accommodate unusually high travel and service times. A larger scenario size means that more
extreme scenarios like this can be included. The warm-start initial solution is more likely to
reflect this by building an initial set of tours with a larger fleet size, and hence influence the
evolving process of the UB and LB.

In Table 2, the observed trend in the out-of-sample compared to the in-sample results among
the three algorithms remains consistent. Despite the the slightly larger standard deviation
indicating greater variation in performance for our Benders, both the in-sample and out-of-
sample average objective values are comparable to the alternative methods. In Table 3, we
present the average Value of the Stochastic Solution (VSS) and the average Expected Value of
Perfect Information (EVPI) for 10 customers across various scenarios from [20, 40, 60, 80, 100].
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Table 3: EVPI and VSS performance Comparison of CPLEX stochastic whole model, CPLEX
built-in Benders and our implemented Benders algorithm

Benders-C Benders MIP-full

|C| |S| EVPI VSS EVPI VSS EVPI VSS

10 20 3.08 0.34 3.08 0.34 3.32 0.16
10 40 3.54 0.69 3.73 0.63 3.72 0.55
10 60 3.79 0.55 3.93 0.41 3.94 0.45
10 80 3.80 1.23 3.88 1.15 3.90 1.12
10 100 3.92 0.93 3.92 0.93 4.03 0.83

6.3 Analysis of Lifted Constraints

In Tables 4 and 5, we report the results produced by the MIP-full algorithm with and without
the lifted formulation proposed in Section 4.3.1. For the experiment below, we abbreviate “MIP-
full-L” for the CPLEX stochastic full model with the lifted formulation and “MIP-full-N” for
the non-lifted alternative. UB, LB, and Gap as in the previous experiment are the best integer
solution from branch-and-bound, the best bound, and the percentage difference, respectively.
The Gap-diff refers to the value difference between the lifted and non-lifted versions, computed
as (GapMIP-full-N−GapMIP-full-L)/GapMIP-full-L %. We set the computational time limit to be 1 hour and
each row of the table is an average computed from 5 tests. We enabled the ALNS metaheuristic
warm-start for both algorithms with and without the lifted formulation.

Table 4: Comparison of MIP-full-L and MIP-full-N algorithms

MIP-full-L MIP-full-N

|C| |S| UB LB Gap UB LB Gap Gap-diff

20 20 305.33 203.52 33.34% 305.33 203.47 33.36% 0.05%
20 40 305.41 203.41 33.40% 305.41 203.33 33.42% 0.08%
20 60 306.10 237.21 22.51% 306.09 236.78 22.64% 0.61%
20 80 306.57 303.45 1.02% 306.60 303.34 1.06% 4.64%
20 100 307.32 303.38 1.28% 307.32 303.35 1.29% 0.76%

30 20 407.12 303.85 25.37% 407.10 303.67 25.41% 0.16%
30 40 408.80 303.60 25.73% 408.88 303.55 25.76% 0.10%
30 60 458.46 303.42 33.82% 458.46 303.24 33.86% 0.12%
30 80 508.16 303.22 40.33% 508.16 303.15 40.34% 0.03%
30 100 509.04 303.17 40.44% 509.04 303.13 40.45% 0.02%

40 20 509.56 405.40 20.44% 509.56 405.41 20.44% -0.01%
40 40 576.44 405.21 29.71% 576.44 405.15 29.71% 0.03%
40 60 609.41 405.11 33.52% 609.41 405.09 33.53% 0.01%
40 80 609.73 404.98 33.58% 609.73 404.98 33.58% 0.00%
40 100 610.51 404.72 33.71% 610.51 404.70 33.71% 0.00%

From Table 4, we observe a better performance for MIP-full-L, reflected by a smaller UB-LB
gap within the same computational time limit of an hour. MIP-full-L outperforms its non-lifted
counterpart for almost all the instances apart from the |C| = 40, |S| = 20 case. For instances
with a fixed customer size, MIP-full-L shows better effectiveness in finding stronger LB. This
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Table 5: Comparison of MIP-full-L and MIP-full-N algorithms (with fixed number of integer
nodes)

MIP-full-L MIP-full-N

|C| |S| nodes UB LB Gap UB LB Gap Gap-diff

20 20 100 305.22 203.97 33.17% 305.38 203.92 33.23% 0.16%
20 40 100 306.45 203.94 33.45% 306.43 203.74 33.51% 0.19%
20 60 100 306.89 203.88 33.56% 306.89 203.62 33.65% 0.26%
20 80 40 307.30 203.77 33.69% 307.30 203.53 33.77% 0.23%
20 100 15 307.69 203.10 33.99% 307.69 203.02 34.02% 0.08%

30 20 100 407.66 304.87 25.21% 407.66 304.45 25.32% 0.41%
30 40 100 408.99 304.62 25.52% 408.99 304.28 25.60% 0.33%
30 60 40 467.84 304.37 34.94% 467.84 304.19 34.98% 0.11%
30 80 10 508.94 304.10 40.25% 508.94 304.01 40.27% 0.04%
30 100 5 509.75 303.48 40.47% 509.75 303.41 40.48% 0.03%

40 20 10 509.97 405.42 20.50% 509.97 405.32 20.52% 0.10%
40 40 10 586.48 405.04 30.94% 586.48 404.95 30.95% 0.05%
40 60 10 609.76 404.94 33.59% 609.76 404.89 33.60% 0.03%
40 80 5 609.97 404.50 33.68% 609.97 404.47 33.69% 0.01%
40 100 3 610.85 404.27 33.82% 610.85 404.25 33.82% 0.01%

difference is the largest for the instance with |C| = 20 and |S| = 80. Nevertheless, we observe
that a large number of lifted constraints is added to the MP that, on the one hand helps with
locating the integer solution with higher quality in each iteration, whereas on the other hand,
it can slow down the whole iterative convergence process by burdening the solving process with
a more extensive set of constraints.

To cope with this, Table 5 gives another set of experimental results. We fix the same
number of branch-and-bound nodes to be visited and compare the performances between MIP-
full-L and MIP-full-N algorithms. The number of integer nodes is determined from the previous
experiments so that both versions of the algorithm can explore the same number of branch-and-
bound nodes within the time limit of an hour. On reaching the node limit, the algorithm will
return the UB and LB. We observe a more extensive performance difference between MIP-full-L
and MIP-full-N, especially for instances with many customers and scenarios. This shows our
lifted formulation contributes to a faster convergence for the stochastic full model.

6.4 Two-stage Heuristic

In this section, we report the performance of our two-stage heuristic. For comparison, we include
the following algorithms: “SVRP” is our stochastic H-SARA-2 model solved with the proposed
time-saving root node approach that pre-fixes the fleet size m. “2-Stage Heur” is our two-stage
heuristic method with the local search operators enabled in the ALNS improvement process. “2-
Stage” ALNS is our proposed two-stage heuristic method without the tour-overlap-breaker local
search operator in the ALNS improvement process. This model applies the classical ALNS and
is regarded as the benchmark model in comparison to the two-stage heuristic. “1-stage Heur”
is solved as a comparison to our two-stage heuristic, assuming the full customer cancellation
list being available before the initial planning stage. Thus the second-stage re-routing and re-
scheduling are excluded from the solution process. We solve this by not removing any customers
at the second stage. This comparison tells how much customer cancellations cost the business
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apart from other uncertainties.
The experiment results are given in Table 6, where all the results (Score and Time) are

averaged from 10 experiments. Specifically, Score is the expected objective function value
averaged from 10 experiments on 100 test instances generated out of 10,000 samples by k-
means. Time is measured in seconds, and t∗ refers to the upper limit of computing time
which is 1800 s. Scenarios used in methods are generated randomly and independently from
test instances. We have observed the following points: To begin with, our two-stage heuristic
can tackle larger customer sizes within a reasonable time. It takes no more than 2 minutes
on our computer to compute a solution for a 40-customer instance, whereas the deterministic
model requires 19 minutes on average, and the stochastic model cannot even terminate within
30 minutes. If we further increase the model’s size to 100 customers, none of the exact MIP
approaches can terminate in hours, but our two-stage heuristic can still obtain results within 5
minutes, and within 10 minutes for 150 customers.

For the solution quality, our two-stage heuristic provides competitive solutions compared to
CPLEX solutions. By comparing same-scenario columns between the exact methods and the
two-stage heuristic, we observe that within the given time limit, our two-stage heuristic is able
to find solutions within 4% of the solutions computed by CPLEX. Even though all exact and
heuristic methods columns are non-optimal (since the global optimum is extremely difficult to
compute), we want to showcase the fact that our two-stage heuristic is able to provide same-
quality solutions and within less amount of time compared to CPLEX. Besides, the two-stage
heuristic is more robust in real-life applications and can provide up-to-date decisions at different
service preparation stages based on different levels of available information.

Hypothetically, if we obtain the complete customer cancellation information in the first
place, we can simply merge the two heuristic stages and deal with only stochastic travel and
service times. To determine the additional cost of making multi-stage decisions, we run a parallel
experiment “1-stage Heur”, assuming complete information for cancelled customers. It achieves
lower objective costs than the two-stage heuristic “2-stage Heur”, which receives no customer
cancellation list but only cancellation probability during the initial planning stage. Yet, our
two-stage heuristic is not worse-off in terms of average objective values and computing time
from the results. For experiment sets with 100 and 150 customers, “2-stage Heur” outperforms
“1-stage Heur” in the expected objective function value although with slightly longer computing
time on average. We recognise two potential reasons behind this phenomenon: local search-
based heuristics cannot guarantee the global optimum in general, and the solutions computed by
“1-stage Heur” being over-fitted to the single scenario than the benchmark instances/scenarios
from the evaluation stage. For more than 10 customers, the ”2-stage Heur” and ”2-stage ALNS”
columns show that our Overlap-breaker operator further improves the convergence speed and
solution quality comparing to a classical ALNS heuristic.

Thus, we are able to include customer cancellations into our solution process and make
initial decisions based on probabilistic customer cancellations, all at a reasonable additional
cost. The additional cost is mainly due to our requirement to nest the second-stage narrower
appointment time window within the first stage’s, thus limiting the freedom to optimise the
best routes and leading to slightly worse-off solutions. However, no perfect information exists
in reality. The differences between one-stage and two-stage solutions can be treated as the costs
of “imperfect information” (a priori decisions and previous-day customer notifications without
getting the complete picture).

6.5 Analysis of Cancellation Policy
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In this section, we design a second set of experiments to analyse the different cancellation
types and their effect on the customers, service teams, and the decision-making process. We
assume that the in-time cancellation policy allows sufficient time for rescheduling the service to
prevent visits to the cancelled customers. In contrast, under the last-minute cancellation and
no-presence policies, the service teams have to visit the cancelled customers, such that the arcs
linking the cancelled nodes will be traversed and the service time at each cancelled node will
be adjusted to 0 and 15 minutes, respectively. We fix a cancellation rate of 0.1 across all the
following experiments.

From Figure 7, last-minute and no-presence cancellations result in less efficient schedules
and higher idling time and overtime for the service teams. Since last-minute and no-presence
cancellations occur only after the tour refinement stage in our two-stage decision process, the
second-stage routes and schedules fail to satisfactorily adjust to the sudden change, which results
in an additional idling time (at the consecutive customer nodes) of 25 minutes per service team
if all customers cancel their service last minute. The no-presence scenario brings an additional
14 minutes of idling time to each service team on average, which is a 78% increase compared
to the in-time cancellation scenario.

For instances with more than 30 customers, the last-minute and no-presence cancellations
lead to a more prolonged service team overtime. Nevertheless, a longer idling time due to last-
minute and no-presence cancellations can bring down the average waiting time for customers,
since service teams arrive earlier than scheduled at the following customers. If all customers
follow last-minute cancellation or no presence, the average overtime for each team will be 18
minutes more, which is a 40% increase, but the average customer waiting time will be 11 minutes
less over all the experiments.

7 Conclusions

This paper studied a problem that integrates fleet-sizing, assignment, routing, and scheduling
problems. A stochastic MIP model is proposed and it is solved using a customised Benders’
decomposition algorithm. A closed-form solution is derived for the primal subproblem to allow
the computational time to increase linearly with the instance size. A master-level lifted formula-
tion was beneficial for reducing the number of feasibility cuts and accelerating the convergence
of the algorithm. The adaptive large neighbourhood search from our two-stage heuristic is
expanded to develop a metaheuristic-based warm-start process to speed up the convergence
process. We also developed a tailored two-stage heuristic solution method with an embedded
ALNS improvement heuristic to support a real-life decision-making process taking the evolution
of information into account. Our proposed heuristic shows good computational time and solu-
tion quality performance. It also demonstrates flexibility and robustness in adapting to multiple
scenarios with different travel times, service times, and customer cancellation rates. Using our
decision support framework, we can provide high-quality fleet sizing, districting, routing, and
scheduling decisions with low idling, waiting, and overtime costs, as well as two sets of customer
appointment time windows, and a balanced service team workload within geographically clear
service zones.
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A APPENDIX

Table A.1: HHC papers with a focus on routing and scheduling and uncertainties

Entry HHC Decisions Uncertainty Solution Method
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Modelling Approach Solution Approach

Begur 1997 * * * MIP Multiple heuristics

Cheng 1997 * * * MIP Two-phase heuristic

De Angelis 1998 * * Stochastic LP NA

Blais 2003 * MIP Tabu Search

Bertels 2006 * * * MIP Combination of constraint programming, tabu search and simulated annealing

Eveborn 2006 * * * * IP, Set Partitioning Repeated matching algorithm

Akjiratikarl 2007 * * * IP Particle Swarm Optimisation Meta-heuristic

Eveborn 2009 * * * * IP, Set Partitioning Repeated matching algorithm

Hertz 2009 * MIP Commercial solver (CPLEX), Meta-heuristic based on Tabu Search

Bennett 2011 * * Combinatorial optimisation Greedy heuristic

Trautsamwieser 2011 * * * * IP Meta-heuristic (VNS)

Trautsamwieser 2011 * * * IP Meta-heuristic (VNS)

An 2012 * * MIP Two-phase heuristic

Bennett 2012 * * * MIP Evaluations

Koeleman 2012 * * * * Markov decision process Heuristic

Lanzarone 2012 * * Stochastic Programming Structural policy

Lanzarone 2012 * * (Stochastic) Integer programming Not specified - OPL 5.1 solver used

Nickel 2012 * * * * Constraint programming two-phase method based on Constraint Programming and ALNS metaheuristic

Rasmussen 2012 * * * IP (Set Partitioning formulation) Branch-and-Price

Shao 2012 * * * MIP Greedy randomised adaptive search procedure (GRASP)

Allaoua 2013 * * * * ILP decomposition-based heuristic

Bard 2013 * * MIP Commercial solver and Heuristics

Benzarti 2013 * MIP Commercial solver (CPLEX)

Liu 2013 * * * MIP tabu search and genetic algorithm

Bard 2014 * * * MIP Heuristic based on a greedy randomised adaptive search procedure (GRASP)

Bard 2014 * * * MIP Branch-cut-and-price, rolling horizon heuristic

Carello 2014 * * Robust Optimisation Commercial solver (CPLEX)

Kergosien 2014 * * * MIP Tabu-search + Variable neighbourhood search

Lanzarone 2014 * * Analytical Analytical policy

Liu 2014 * * * MIP Tabu Search

Mankowska 2014 * * * MIP Heuristic

Trautsamwieser 2014 * * * MIP Branch-and-Price-and-Cut

Yalçındağ 2014 * * * MIP, Kernel Regression Assignment-first-routing-second and simutaneous policies

Bowers 2015 * * * Combinatorial optimisation Modified Clarke-Wright algorithm, simulation

Cappanera 2015 * * * ILP Branch and Bound

Fikar 2015 * * * IP two-stage matheuristic based on tabu search

Hiermann 2015 * * * Constraint programming Two-stage heuristic

Maya 2015 * * * Bi-objective MIP Three-stage heuristic

Nguyen 2015 * * * * Robust Optimisation Matheuristic

Rodriguez 2015 * * Stochastic Proramming Branch-and-cut

Rest 2015 * * * MIP Meta-heuristic approach based on tabu search Tabu search-based metaheuristic

Yuan 2015 * * * * Stochastic Programming Branch-and-price

Braekers 2016 * * * MIP Meta-heuristic

Decerle 2016 * * * MIP Two-phase metaheuristic

Errarhout 2016 * * Stochastic Programming Commercial solver (CPLEX)

Fikar 2016 * * * * IP Discrete-event driven metaheuristic

Lin 2016 * MIP Commercial solver (Gurobi)

López 2016 * * * * Multi-agent approach Commercial solvers (CPLEX, JADE)

Redjem 2016 * * MIP Heuristic Approach
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Table A.1 (continued)

Entry HHC Decisions Uncertainty Solution Method

Author Year
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Modelling Approach Solution Approach

Rest 2016 * * * * MIP Combination of dynamic programming and meta-heuristics based on tabu search

Wirnitzer 2016 * * MIP Commercial solver (Gurobi)

Yalçındaǧ 2016 * * * ILP Patter-based two-phase approach

Du 2017 * * * MIP Genetic algorithm

Guericke 2017 * * * MIP Meta-heuristic approach based on adaptive large neighbourhood search (ALNS)

Han 2017 * * * * * MIP hybrid heuristic algorithm (DP + TS)

Laesanklang 2017 * * * MIP Heuristic decomposition

Lin 2017 * MIP Greedy heuristic

Liu 2017 * * * MIP Branch-and-price

Shi 2017 * * * * MIP + fuzzy chance constraint Hybrid genetic algorithm

Shi 2017 * * * * * Stochastic Programming Hybrid genetic algorithm

Yuan 2017
a
pr
io
ri

a
pr
io
ri

* IP Heurisitic

Cappanera 2018 * * * * Robust Optimisation Metaheuristic

Carello 2018 * * MIP Commercial solver (CPLEX)

Decerle 2018 * * * MIP Memetic Algorithm

Issabakhsh 2018 * * * * MIP + Robust optimisation uncertainty level analysis

Lin 2018 * * * * MIP Heuristic

Liu 2018 * * * Bi-objective MIP Metaheuristic

Nasir 2018 * * * * MIP heuristic algorithm based on VNS approach

Nasir 2018 * * * * ILP Commercial solver (CPLEX)

Shi 2018 * * * * * Stochastic Programming Commercial solver (CPLEX) & SA-based heuristic algorithm

Yuan 2018 * * * * * Stochastic Programming Branch-and-Price

Zhan 2018 * * * * Stochastic Programming, MIP Tabu Search-based heuristic

Demirbilek 2019 * * * * MIP Scenario Based heuristic Approach

Grenouilleau 2019 * * * MIP set partitioning heuristic

Heching 2019 * * MIP, constraint programming Logic-based Benders Decomposition, Branch-and-check

Liu 2019 * * * * * IP Branch-and-Price

Shi 2019 * * * * * Robust Optimisation Gurobi Solver, Heuristics (Simulated Annealing, Tabu Search, and Variable Neigh-
bourhood Search)

Frifita 2020 * * * MIP Variable Neighbourhood Search

Grenouilleau 2020 * * Two-stage formulation Logic-based Benders Decomposition, LNS meta-heuristic

Kandakoglu 2020 * * * MIP Specific decision support system (HDSS)

Restrepo 2020 * * * * Stochastic Programming Commercial solver (CPLEX)

Shahedah 2020 * * * * * Robust Optimisation decomposition-based algorithm

Zhan 2020 * * * * MIP L-shapted Method, MTSP heuristic

Bazirha 2021 * * * * * Stochastic Programming with Recourse Commercial solver (CPLEX) , genetic algorithm (GA), general variable neighbour-
hood search (GVNS)

Carello 2021 * * MIP, Robust Optimisation Commercial solver (CPLEX)

Cinar 2021 * * * MIP Adaptive Large Neighbourhood Search (ALNS) and iterative mathematical pro-
gramming

Demirbilek 2021 * * * * MIP Scenario Based heuristic Approach

Khodabandeh 2021 * * * Bi-objective optimisation Epsilon-constraint-based approach

Li 2021 * * * nonlinear & convex programming ”outer-approximation method, genetic algorithm ”

Liu 2021 * * * MIP Matheuristic integrating (adaptive large Neighbourhood search, ALNS) heuristic
and commercial solver (Gurobi)

Liu 2021 * * * MIP Hybrid metaheuristics

Naderi 2021 * * * * * * MIP Benders Decomposition (logic-based Benders branching-decomposition algorithm)

Nikzad 2021 * * * * * * Stochastic Programming Multi (two)-phase matheuristic

Bushehri 2021 * * * * * robust Optimisation Meta-heuristic (simulated annealing, genetic algorithm, memetic algorithm)

Shiri 2021 * * * * Robust Optimisation Hybrid three-phase procedure

Xiang 2021 * * * Bi-objective MIP Hybrid elitist nondominated sorting genetic algorithm (hybrid NSGA-II)

Yang 2021 * * * * * Uncertain Programming Metaheuristic

Yadav 2022 * * * MIP Metaheuristic

Ours 2023 * * * * * * * MIP Benders Decomposition, two-stage heuristic
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Table A.2: Table of symbols (in alphabetical order)

Symbol Definition Description

ai Service team’s arrival time at customer i Continuous variable

A Arc set enclosing all edges linking any two nodes Non-negative integer

AMi Activity measure for customer i Non-negative parameter

AMmin Minimum percentage of activity measure in a district Non-negative parameter

AMmax Minimum percentage of activity measure in a district Non-negative parameter

bi Number of closest customers to i Positive integer

cwait Customer waiting cost (per unit time) Non-negative parameter

cidle Team idling cost (per unit time) Non-negative parameter

cover Team overtime cost (per unit time) Non-negative parameter

di,j Travel (Euclidean) distance between i and j Non-negative parameter

ei Expected travel time from customer i to j (same cluster) Positive number

fm Cost for hiring any service team m Positive parameter

gi Overtime length returning to depot from customer i Continuous variable

hi Idle time of service team at customer i Continuous variable

I Set of customers with service cancellations Non-negative integer set

I Customers set Non-negative integer set

i, j Node index Non-negative integer

`l Lower bound on the number of teams Non-negative integer

`u Upper bound on the number of teams Non-negative integer

L Standard maximum allowed working time Positive parameter

Lδ Safety time at the end of each tour Positive parameter

m Service team index Non-negative integer

m̂ Upper limit for the service team Non-negative parameter

M Big M Positive integer

n Number of customers Non-negative parameter

qi cancellation probability of customer i Non-negative parameter

p
(∗)
i,j Likelihood of customer j following i on a route Non-negative number

qω Scenario ω’s associated probability non-negative parameter

Ri,j Rank of the jth closest customer to i, Positive integer

sωi Service time at customer i under scenario ω Positive parameter

ŝi Expected service time at customer i Positive number

S Stochastic service duration vector non-negative parameter

ti Appointment time of customer i Continuous variable

τωi,j Traversal time from node i to j under scenario ω Positive parameter

τ̂i,j Expected traversal time from node i to j Positive number

T Stochastic traversal duration matrix non-negative parameter

T1 First-stage customer appointment time window (length) Positive parameter

T2 Second-stage customer appointment time window (length) Positive parameter

vi,j Traversal speed from node i to j Positive number

v̂i,j Expected travelling speed from node i to j Positive number

V Node set enclosing all customer nodes Non-negative integer

wi Waiting time for customer i Continuous variable

W Appointment time window half width Continuous variable

xi,j Determines if arc (i, j) is traversed by a team Integer (binary) variable

yi,j If customer i is assigned to district centred at j Integer (binary) variable

ω Scenario with travel and service times realisations samples

Ω Total set of scenarios [ω] samples set

θ Maximum overtime length Non negative parameter

λ Unit travel time cost (per hour) Positive parameter

µ Average activity measure per district Non-negative number

The notations from ALNS heuristic in Section 5.2.4 are explained as part of the ALNS methodology and hence not
listed.

45


	Introduction
	Literature Review
	Related Problems
	Uncertainties
	Our Novelties and Contributions

	Mixed Integer Programming Model
	Problem Statement
	Uncertainties
	Stochastic MIP Model
	Parameters
	Decision Variables
	Two-stage MIP Formulation


	L-shaped Method
	Benders Algorithm
	Benders Framework Overview
	Master Problem
	Lifted Formulation
	Warm Start

	Closed-form Primal Solution for SP
	Benders Cuts
	Maximum Feasible Subsystem
	Minimum Infeasible Subsystem

	Heuristic Algorithm
	Description of the Method
	Initial Planning Stage
	Estimate service and travel times with probabilistic customer presence
	Customer districting (Stage 1.1)
	Routing within individual districts (Stage 1.2)
	Improving the initial routes (Stage 1.3)
	First-stage appointment scheduling (Stage 1.4)
	Further Improvements

	Tour Refinements Stage
	Second-stage Routing Improvements (Stage 2.3)
	Second-stage Appointment Scheduling (Stage 2.4)

	Out-of-sample Performance Evaluation

	Experiments
	Experimental Setting
	Comparison of Exact Methods
	Analysis of Lifted Constraints
	Two-stage Heuristic
	Analysis of Cancellation Policy

	Conclusions
	APPENDIX

