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We consider the variable selection problem for two-sample tests, aiming to select the most informative variables to
distinguish samples from two groups. To solve this problem, we propose a framework based on the kernel maximum
mean discrepancy (MMD). Our approach seeks a group of variables with a pre-specified size that maximizes
the variance-regularized MMD statistics. This formulation also corresponds to the minimization of asymptotic
type-II error while controlling type-I error, as studied in the literature. We present mixed-integer programming
formulations and develop exact and approximation algorithms with performance guarantees for different choices
of kernel functions. Furthermore, we provide a statistical testing power analysis of our proposed framework.
Experiment results on synthetic and real datasets demonstrate the superior performance of our approach*.

1. Introduction

We study the variable selection problem for two-sample testing, which aims to select the most infor-
mative variables to distinguish differences in the distributions between two groups of samples. On the
one hand, it is crucial to identify interpretable variables that contribute to the inherent differences
between populations, as they play a critical role in various scientific discovery areas. For instance,
in the context of gene expressions and biological indicators, only a small subset of variables may
account for the disparities between normal and abnormal data samples [63]. On the other hand,
the dissimilarities between high-dimensional datasets often exhibit a low-dimensional structure [59].
Consequently, extracting a small set of crucial variables as a pre-processing step enhances the efficacy
of high-dimensional two-sample testing. The selection of key variables can be challenging primarily
for the following reasons: (i) Limited information is available regarding the data distribution for
each group; (ii) The number of observed samples is insufficient to obtain accurate estimates of the
distributions for each group; (iii) The high dimensionality of the data points makes it challenging to
compare the two groups effectively; (iv) The task of variable selection problem is typically formulated
as a combinatorial optimization, which is NP-hard to solve in most cases.
The problem of non-parametric variable selection for two-sample testing with limited data sam-

ples has been a long-standing challenge in literature. Classical approaches mainly rely on paramet-
ric assumptions regarding the data-generating distributions. For example, Taguchi and Rajesh [56]
assume target distributions as Gaussian and find important variables such that the difference
between mean and covariance among two groups is maximized. Following this seminal work, refer-
ences [30, 29, 28] further model distributions as Gaussian graphical models and detect the difference
between distributions in correlation and partial correlation. However, it is undesirable to restrict the
analysis to parametric distributions because those assumptions may not hold for real-world data. The
Bonferroni method [10] has been proposed in the two-sample testing context to compare every single
feature using statistical tests to obtain representative variables, but it may not perform well when
correlations exist between them.

*Our numerical implementation code is online available at https://github.com/WalterBabyRudin/MMDVar_Selection
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Recently, Mueller and Jaakkola [47] proposed the projected Wasserstein distance for this task,
operating by finding the sparse projection direction such that the univariate Wasserstein distance
between projected samples is maximized. Since the Wasserstein distance is flexible enough to com-
pare arbitrarily two distributions even with non-overlapping support [23], this approach serves as a
non-parametric way for selecting variables. However, it is important to note that the non-asymptotic
convergence of the proposed projected Wasserstein distance depends significantly on factors such as
the size of the distribution support and the projected dimension. Furthermore, due to the nonconvex
nature of the problem, only approximation algorithms have been proposed to find local optimal solu-
tions. Unfortunately, there is currently no theoretical result available to quantify the sub-optimality
gap of the estimated solution. In statistical analysis, the assumption typically made is that one can
successfully identify the global optimum, which is not guaranteed in this case.
In addition to Wasserstein distance, the MMD statistics are also popular in signal processing and

machine learning areas, motivated by their computational efficiency and nice statistical properties [27,
26, 25]. TheMMD-based approaches have been proposed in the literature to study the problems of one-
or two-sample testing [27, 26, 25, 40, 31, 15, 53, 54]. In this paper, we leverage the MMD framework
to propose a novel approach for variable selection in two-sample testing. Specifically, we aim to select
key variables that maximize the variance-regularized MMD statistic, which in turn (approximately)
maximizes the corresponding kernel testing power. Our contributions are summarized as follows:
(I) We first provide computation algorithms for an inhomogeneous quadraticmaximization problem
with ℓ2 and ℓ0 norm constraints (see Section 3), called Sparse TrustRegion Subproblem (STRS),
which plays a key role for MMD optimization. Despite NP-hardness, we provide an exact
mixed-integer semi-definite programming formulation together with exact and approximation
algorithms for solving this problem. To the best of our knowledge, this study is new in the
literature.

(II) From the computational aspect, we reformulate the MMD optimization framework for the
linear kernel case as STRS (see Section 4.1), which can be solved based on our proposed
algorithms. For generic kernel cases, the MMD optimization becomes a sparse maximization of
a non-concave function (see Section 4.2), which is intractable in general. We propose a heuristic
algorithm that iteratively optimizes a quadratic approximation of the objective function, which
is also a special case of STRS.

(III) From the statistical aspect, we first provide a convergence analysis regarding our proposed
objective function. Next, we demonstrate the consistency of testing power and the rate of
type-II risk of our proposed framework (see Section 5).

(IV) Finally, we conduct numerical experiments with synthetic and real datasets to demonstrate the
superior performance of our proposed framework over other baseline models.

Notations. Given a positive integer n, define [n] = {1, . . . , n}. Let F = {0,1}, and S+
n denote the

collection of n×n symmetric positive semi-definite matrices. Given a vector z ∈RD and a set S ⊆ [D],
we use z(k) denote the k-th entry in z, and z(S) to denote the subvector with entries indexed by S.
Given anm×nmatrixA and two sets S ⊆ [m], t⊆ [n], denoteA(i,j) the (i, j)-th entry inA and denote
A(S,T ) as the submatrix with rows and columns indexed by S and T . Given a vector z ∈ RD and a
distribution µ in RD, denote z ◦µ as the distribution of the random variable∑k∈[D] z

(k)x(k) provided
that x∼ µ. Define the norm ∥z∥(d) =maxS: |S|≤d

∥∥z(S)
∥∥
2
.

1.1. Related Work

Variable selection. Classical variable selection approaches seek to extract the most valuable features
from a group of high-dimensional data points. In particular, the sparse PCA approach seeks to select
crucial variables that maximize the sample covariance based on sample sets [37, 18, 17]; the truncated
SVD approach aims to formulate a low-rank data matrix with minimum approximation error [36],
and the maximum entropy sampling or experiment design approach aims to select a subgroup of
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samples that reserve information as much as possible [38, 35]. However, the literature has paid less
attention to variable selection for identifying differences between the two groups. Recently, Mueller
and Jaakkola [47] proposed to find the optimal subset of features such that the Wasserstein distance
between projected distributions in dimension d= 1 is maximized. Later Wang et al. [60, 61] modified
the projection function as the linear mapping with general dimension d > 1 and nonlinear map-
ping, respectively, thus improving the flexibility of dimensionality reduction and power of two-sample
testing. Nevertheless, these references do not impose sparsity constraints when performing dimen-
sionality reduction, and therefore, they are unable to select a subset of variables that differentiate the
differences between the two groups.
Kernel-based two-sample tests. A popular approach for non-parametric two-sample testing is based
on kernel methods [49]: such tests quantify the difference of probability distributions by measuring
the difference in kernel mean embeddings [6, 46], which is also called the maximum mean discrep-
ancy (MMD) in the lierature [25, 21, 32, 50, 51]. The follow-up references [40, 55] further improve
the performance of kernel-based two-sample tests by selecting kernels that maximize the variance-
normalized empirical MMD. We adopt this idea in our variable selection framework. However, we
observe that using this criterion for variable selection results in a fractional program subject to spar-
sity and norm constraints, which is highly challenging to solve. Hence, we are inspired to consider
optimizing the variance-regularized empirical MMD statistic as a surrogate.
Classifier-based two-sample tests. Some widely-used hypothesis testing frameworks employ classi-
fication techniques for two-sample testing (see, e.g., [14, 34, 33]). It is worth noting that our approach
adopts a distinct framework compared to those references: these aforementioned testingmethods may
not effectively identify interpretable variables capable of distinguishing between two distributions.
One potential alternative is to employ a classifier based on sparse logistic regression [8] to construct
a two-sample test. However, this approach may not yield satisfactory performance due to the limited
flexibility of the parametric form of the classifier, as we will demonstrate in Section 2.1.

2. Model Formulation

Let xn := {xi}ni=1 and yn = {yi}ni=1 be n i.i.d. samples generated from distributions µ and ν, respec-
tively. We assume the sample sizes from these two groups are equal for notational simplicity, but our
results can be easily extended for cases with unequal sample sizes. In particular, those data samples
are in the Euclidean space RD, where the dimension D denotes the number of feature variables. In
the following, we present a variable selection framework for two-sample testing, aimed at identifying
the most informative variables that can distinguish whether the distributions µ and ν are different.
We first present some background information about maximum mean discrepancy (MMD). MMD

measures the discrepancy between two probability distributions by employing test functions within
a reproducing kernel Hilbert space (RKHS), which has been commonly used in two-sample testing
literature [27, 26, 25, 40, 31, 15].
Definition 1 (Maximum Mean Discrepancy). A kernel function K : RD×RD→R is called a posi-
tive semi-definite kernel if for any finite set of n samples {xi}ni=1 in RD and {ci}ni=1 in R, it holds that∑

i∈[n]

∑
j∈[n] cicjK(xi, xj)≥ 0. A positive semi-definite kernel K induces a unique RKHS H. Given

a RKHS H containing a class of candidate testing functions and two distributions µ,ν, define the
corresponding MMD statistic as

MMD(µ,ν;K)≜ sup
f∈H,∥f∥H≤1

{
Eµ[f ]−Eν [f ]

}
. ♢

Leveraging reproducing properties of the RKHS, the MMD statistic can be equivalently written as

MMD2(µ,ν;K) =Ex,x′∼µ[K(x,x′)]+Ey,y′∼ν [K(y, y′)]− 2Ex∼µ,y∼ν [K(x, y)],
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which enables convenient computation and sample estimation. When the distributions µ and ν are
not available, one can formulate an estimate of MMD2(µ,ν;K) based on samples xn and yn using
the following statistic [25]:

M̂MD
2

(xn,yn;K)≜
1

n(n− 1)

∑
i∈[n],j∈[n],i̸=j

Hi,j, (1)

with
Hi,j :=K(xi, xj)+K(yi, yj)−K(xi, yj)−K(yi, xj). (2)

The choice of kernel function largely influences the performance of variable selection for two-sample
tests. To achieve satisfactory performance, we consider the following types of kernel functions,
denoted as Kz(·, ·). Here, the coefficient vector z = (z(s))s∈[D] involved in the kernel functions deter-
mines which variables to be selected, which is in the domain set

Z := {z ∈RD : ∥z∥2 = 1,∥z∥0 ≤ d}. (3)

• Linear Kernel: For each coordinate s ∈ [D], we specify the scalar-input kernel ks : R×R→R
and then construct

Kz(x, y) =
∑
s∈[D]

z(s)ks
(
x(s), y(s)

)
. (4)

Those scalar-input kernels ks(·, ·), s ∈ [D] defined above are used to compare the difference of
distributions among each coordinate, which can be chosen as the Gaussian kernel with certain
bandwidth hyper-parameter τ 2

s , i.e., ks(x, y) = e−(x−y)2/(2τ2s ).
• Quadratic Kernel: For each coordinate s∈ [D], we specify the scalar-input kernel ks : R×R→R
and then construct

Kz(x, y) =

∑
s∈[D]

z(s)ks
(
x(s), y(s)

)
+ c

2

. (5)

Here c ≥ 0 is a bandwidth hyper-parameter of the quadratic kernel, and scalar-input kernels
ks(·, ·), s∈ [D] can be chosen in the same way as defined in the linear kernel case.

• Gaussian Kernel: We first specify the bandwidth hyper-parameter σ2 > 0 and then construct

Kz(x, y) = exp

(
−
∑

s∈[D]

(
z(s)(x(s)− y(s))

)2
2σ2

)
. (6)

We pick the sparse selection vector z to achieve the most powerful test. Inspired by the fact that
the kernel function leading to the most powerful two-sample test approximately maximizes the MMD
testing statistic normalized by its variance [55], we aim to pick the selection vector z that solves the
following optimization problem:

max
z∈Z

{
F̂ (z;xn,yn) := M̂MD

2

(xn,yn;Kz)−λσ̂2
H1

(xn,yn;Kz)
}
, (7)

where λ > 0 is a regularization hyper-parameter that can be tuned by cross-validation. Here
M̂MD

2

(xn,yn;Kz) and σ̂2
H1

(xn,yn;Kz) are unbiased empirical estimators of the population testing
statistic and the variance of testing statistic under alternative hypothesis H1 : µ ̸= ν, respectively. For
fixed samples xn,yn and kernel function K(·, ·), by [55], the variance estimator

σ̂2
H1

(xn,yn;K) =
4

n3

∑
i∈[n]

∑
j∈[n]

Hi,j

2

− 4

n4

∑
i∈[n]

∑
j∈[n]

Hi,j

2

, (8)
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Algorithm 1 A permutation two-sample test using MMD with variable selection
Require: cardinality d, type-I error threshold αlevel, bootstrap size Np, collected samples xn and yn.
1: Split data as xn = xTr ∪xTe and yn = yTr ∪yTe.
2: Solve (7) with input data (xTr,yTr) to obtain optimal sparse selection vector z∗.
3: Compute test statistic T = M̂MD

2

(xTe,yTe;Kz∗).
4: {decide threshold}
5: for i= 1, . . . ,Np do
6: Shuffle xTe ∪yTe to obtain xTe

(i) and yTe
(i).

7: Compute test statistic for bootstrap samples Ti = M̂MD
2

(xTe
(i),y

Te
(i);Kz∗).

8: end for
9: tthres← (1−αlevel)-quantile of {Ti}i∈[Np].
10: Reject H0 (i.e., decide the two sample distributions are different) if T > tthres.

whereHi,j, i, j ∈ [n] are defined in (2). The rationale behind problem (7) is that, by properly tuning the
regularizer λ> 0, we balance the trade-off between maximizing the testing statistic and minimizing
its variance, which amounts to approximately optimize the testing power criteria.
Using the proposed variable selection framework, we present a kernel two-sample test as follows.

The data points are divided into training and testing datasets. Initially, the training set is utilized
to obtain the selection coefficient that optimally identifies the differences between the two groups.
Next, a permutation test is performed on the testing data points, projected based on the trained
selection coefficient. The detailed algorithm is presented in Algorithm 1. This test is guaranteed to
control the type-I error [24] because we evaluate the p-value of the test via the permutation approach.
In the following sections, we discuss how to solve the optimization problem (7) with linear and
quadratic kernels, respectively. In the subsequent sections, we first provide optimization algorithms
for solving a special mixed-integer quadratic programming (MIQP), which plays a key role in MMD
optimization. Next, we develop tractable algorithms for solving the MMD optimization. Finally, we
establish statistical testing power guarantees for our proposed framework.

2.1. Connections with Classification-Based Testing

It is worth noting that our proposed method can be viewed as a generalized classifier-based testing
using logistic loss. Specifically, our proposed method has the following two phases:
(I) At the first phase, we choose a suitable kernel function K(·, ·) based on training data xTr

and yTr that depends only on a small group of variables leading to satisfactory two-sample
testing performance. Such a variable selection procedure makes our classification model more
interpretable.

(II) At the second phase, we obtain the witness function (see, e.g., [25, Section 2.3]), denoted as
f̂ , based on validation data xTe and yTe:

f̂(z)∝ 1

|xTe|
∑

x∈xTe

K(x, z)− 1

|yTe|
∑

y∈yTe

K(y, z). (9)

Consequently, for a new given sample z, we classify it into group X with data distribution µ or group
Y with data distribution ν using the Bayesian rule

P(z ∈X) =
ef̂(z)

1+ ef̂(z)
, P(z ∈ Y ) =

1

1+ ef̂(z)
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A notable existing variable selection approach for classification is the sparse logistic regres-
sion (SLR) [8], aiming to classify z according to the rule

P(z ∈X) =
eβ

Tz

1+ eβTz
, P(z ∈ Y ) =

1

1+ eβTz

for some sparse vector β. The non-zero entries of the coefficient vector β correspond to the selected
variables that distinguish the differences between groups X and Y . This approach can also be used
for two-sample testing: based on samples xTe and yTe, we formulate the following testing statistic
and reject the null hypothesis if it exceeds a certain threshold:

TSLR =
1

|xTe|
∑

x∈xTe

βTx− 1

|yTe|
∑

y∈yTe

βTy.

Such an approach assumes a parametric assumption that the data distributions µ and ν are linearly
separable since otherwise the linear predictor may not achieve satisfactory performance. In contrast,
our proposed approach constructs a non-parametric and kernel-based classifier defined in (9), which
seems more flexible for real-world applications.
In the following, we provide an example to demonstrate that our proposed framework can success-

fully select useful variables to distinguish the difference between two groups, while the sparse logistic
regression cannot finish this task.
Example 1 (Example when sparse logistic regression cannot identify variables). Consider
the example where µ=N (0, ID) and ν =N (0,diag((1+ ϵ)2,1, . . . ,1)) with ϵ > 0. Here, only the first
coordinate can differentiate between µ and ν. When using the sparse logistic regression, it is clear
that for any β satisfying ∥β∥0 ≤ 1, it holds that the population version of testing statistic E[TSLR] = 0.
This indicates that sparse logistic regression may not achieve satisfactory performance in hypothesis
testing or classification. In contrast, consider our proposed MMD framework with the linear kernel.
For any z such that ∥z∥2 = 1,∥z∥0 ≤ 1, it holds that the population version of the objective in (7)
achieves the unique optimal solution ẑ with ẑ(1) = 1 if the variance regularization λ is selected
properly. Specifically, when λ is chosen to be smaller than a constant λ̄ > 0, our proposed MMD
framework can always select the true useful variable.1 ♣

3. Sparse Trust Region Subproblem (STRS)
To achieve variable selection in our setting, we need to solve the following mixed-integer quadratic
program (MIQP):

max
z∈Z

{
zTAz+ zTt

}
, (STRS)

where the set Z is defined in (3) and (A, t) are input coefficients to be specified later. Without loss of
generality, we assume A⪰ 0, since otherwise, we can re-write the problem as

max
z∈Z

{
zT(A−λmin(A)ID)z+ zTt

}
+λmin(A),

where the shiftedmatrixA−λmin(A)ID ⪰ 0, where λmin denotes the smallest eigenvalue of a matrix. It
is worth mentioning that the problem (STRS) reduces to sparse PCA formulation when the coefficient
vector t= 0, which has been studied extensively in the literature [5, 22, 45, 37]. However, the study
for general vector t for the problem (STRS) is new. In the following, we discuss the exact and
approximation algorithms for solving (STRS) with generic data matrix A and vector t.
There are two challenges solving (STRS) in particular for large-scale problems. First, since the

objective function is non-concave in z, it is difficult to develop exact algorithms directly for solving
(STRS). Instead, we provide a mixed-integer convex programming reformulation, which motivates us
to develop exact algorithms in Section 3.1. Second, this problem is NP-hard even if t= 0, as pointed
out in [43]. When the problem is large-scale, we provide approximation algorithms with provable
performance guarantees.
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3.1. Exact Mixed-Integer SDP (MISDP) Reformulation

We first provide an exact MISDP reformulation of (STRS). When the coefficient vector t= 0, similar
reformulation results have been developed in the sparse PCA literature [37, 7]. However, such a
reformulation for t ̸= 0 is new in the literature. For notational simplicity, we define the following block
matrix of size (D+1)× (D+1):

Ã=

(
0 1

2
tT

1
2
t A

)
.

Theorem 1 (MISDP Reformulation of (STRS)). Problem (STRS) can be equivalently formulated as
the following MISDP

max
Z∈S+

D+1
,q∈Q

⟨Ã,Z⟩ (10a)

s.t. Z(i,i) ≤ q(i), i∈ [D], (10b)
Z(0,0) = 1,Tr(Z) = 2, (10c)

where the set

Q=

q ∈ FD :
∑
k∈[D]

q(k) ≤ d

 , (11)

and we assume the indices of Z, Ã∈ S+
D+1 are both over [0 :D]× [0 :D]. The continuous relaxation value

of (10) equals wrel =maxz: ∥z∥2=1 {zTAz+ zTt} .

The proof idea of Theorem 1 is to express the problem (STRS) as a rank-1 constrained SDP problem.
Leveraging well-known results on rank-constrained optimization (see, e.g., [48, 16, 39]), one can
remove the rank constraint without changing the optimal value of the original SDP problem. Although
(10) is equivalent to (STRS), the fact that its continuous relaxation value is equal to wrel suggests that
it may be a weak formulation. Inspired from [37, 7], we propose the additional two valid inequalities
to strengthen the formulation (10) in Corollay 1.
Corollary 1 (Stronger MISDP Reformulation of (STRS)). The problem (STRS) reduces to the fol-
lowing stronger MISDP formulation:

max
Z∈S+

D+1
,q∈Q

⟨Ã,Z⟩ (12a)

s.t. (10c),
∑
j∈[D]

(Z(i,j))2 ≤Z(i,i)q(i),

∑
j∈[D]

|Z(i,j)|

2

≤ dZ(i,i)q(i), ∀i∈ [D]. (12b)

It is worth noting that two distinct references [37, 7] have independently introduced two valid
inequalities to enhance the performance of solving the sparse PCA problem, which is a special instance
of (STRS) for t= 0. However, one of the valid inequalities in (12b) proposed in [7] is dominated by a
valid inequality proposed in [37], while the other valid inequality has been proposed simultaneously
in these two references. This motivates us to incorporate two valid inequalities from [37] into our
formulation, as outlined in Corollary 1. On the one hand, the resulting formulation (12) can be directly
solved via some exact MISDP solvers such as YALMIP [41]. On the other hand, it enables us to develop
a customized exact algorithm to solve this formulation based on Benders decomposition since the
binary vector q can be separated from other decision variables.
To develop the exact algorithm, we first reformulate the problem (12) as a max-min saddle point

problem so that it can be solved based on the outer approximation technique [ref].
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Theorem 2 (Saddle Point Reformulation of (12)). Problem (12) shares the same optimal value as the
following problem:

max
q∈Q

{
f(q)≜ max

Z∈S+
D+1

{
⟨Ã,Z⟩ : s.t. (12b)

}}
. (13)

Here the function f(q) is concave in q over the domain Q := conv(Q), and equivalently, is the optimal
value to the following problem:

min
λ,λ0,ν1,ν2,Λ,β,µ,W1,W2

λ0 +2λ+ qT
[
d

2
(ν1− ν2)+

1

2
(µ−diag(Λ))

]
(
−λ0

1
2
tT

1
2
t A−λID +W1−W2 +Λ+ 1

2
diag(ν1 + ν2)

)
⪯ 0, W1 +W2−diag(β)≤ 0,∑

j

(Λ(i,j))2 ≤ (µ(i))2, (β(i))2 +(ν
(i)
2 )2 ≤ (ν

(i)
1 )2, i∈ [D],

ν1, β,µ∈RD
+ , W1,W2 ∈RD×D

+ , λ,λ0 ∈R, ν2 ∈RD,Λ∈RD×D.
(14)

For fixed q, the sup-gradient of f with respect to q can be computed as

∂f(q) =
d

2
(ν∗

1 − ν∗
2 )+

1

2
(µ∗−diag(Λ∗)),

where (ν∗
1 , ν

∗
2 , µ

∗,Λ∗) is an optimal solution to the optimization problem above.

By Theorem 2, we find that given a reference direction q̂,
f(q)≤ f̄(q; q̂)≜ f(q̂)+ gTq̂ (q− q̂),

where gq̂ is a sup-gradient of f at q̂.

Algorithm 2 Exact Algorithm for solving (STRS)
1: Input:Max iterations imax, initial guess q1, tol-
erance ϵ.

2: for i= 1, . . . , imax− 1 do
3: Compute qi+1 as the optimal solution from

max
q∈Q

{
f̄ i(q)≜ min

1≤j≤i
f̄(q; qj)

}
4: Compute f(qi+1) and gqi+1

∈ ∂f(qi+1)
5: Break if f(qi+1)− f̄ i(qi+1)< ϵ
6: end for
7: Return qimax

Based on this observation, we use the com-
mon outer-approximation technique, which is
widely used for general mixed-integer nonlin-
ear programs [20, 9], to solve the problem: at
iterations i = 1,2, . . . , imax − 1, we maximize
and refine a piecewise linear upper-bound of
f(q):

f̄ i(q) = min
1≤j≤i

f̄(q; qj).

The algorithm is summarized in Algorithm 2.
By the reference [20], it can be shown that

this algorithm yields a non-increasing sequence
of overestimators {f̄ i(q)}imax

i=1 , which converge
to the optimal value of f(q)within a finite num-
ber of iterations imax ≤

(
D
1

)
+ · · ·+

(
D
d

)
.

3.2. Approximation Algorithms

3.2.1. Convex Relaxation Algorithm. Inspired by Theorem 2, a natural idea of approximately
solving the problem (10) is to consider the following problem, in which we replace the nonconvex
constraint q ∈Q by a set of linear constraints, which forms its convex hull:

max
q∈Q

f(q), where Q= conv(Q) =
{
q ∈ [0,1]D :

∑
i

q(i) ≤ d

}
. (15)
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Since the problem (15) is a convex program, it can be solved in polynomial time. Besides, one can
obtain a high-quality feasible solution to the problem (10), using a greedy rounding scheme: We first
solve (15) to obtain its optimal solution q̃, and then project it onto Q to obtain q. Next, we solve the
problem (10) by fixing the variable q and optimizing Z only.
In the following theorem, we provide the approximation ratio regarding the SDP formulation

above. The proof adopts similar techniques as in [37, Theorem 5], but we extend the analysis for
inhomogeneous quadratic maximization formulation.
Theorem 3 (Approximation Gap for Convex Relaxation). Denote by optval(15) and optval(10) the
optimal values of problem (15) and (10), respectively. Then, it holds that

optval(10)≤ optval(15)≤ ∥t∥2 +min

{
D/d · optval(10), d · optval(10)−min

k
|t(k)|

}
.

Despite the convexity of problem (15), it is challenging to solve especially for high-dimensional
scenarios. References [7, 37] solved a special case of problem (15) when t= 0 based on the interior
point method (see, e.g., [2, 12, 57]). Unfortunately, since the constraint set of (15) involves the
intersection of a semidefinite cone and a large number of second-order cones, re-writing it as a
standard conic program and using off-the-shelf solvers to solve this problem spends lots of time.
Shiqian [42] designed a novel variable-splitting technique and proposed a first-order Alternating
Direction Method of Multipliers [11] (ADMM) algorithm to solve a special convex relaxation of sparse
PCA. Unlike this reference that only considers the simplest convex relaxation of sparse PCA without
adding strong inequalities, our problem (15) has considerably complicated constraints.
Inspired by the reference [42], we use a similar variable-splitting technique to split the second-order

conic constraints and all the other constraints in two blocks of variables, and then propose an ADMM
algorithm to optimize the augmented Lagrangian function. The advantage is that each subproblem in
iteration update involves only second-order conic constraints or other constraints that are easy to deal
with, which results in considerably fast computational speed. We provide a detailed implementation
of the proposed algorithm for solving (15) in Appendix EC.1.

3.2.2. Truncation Algorithms with Tighter Approximation Gap. Unfortunately, the SDP relax-
ation formulation is still challenging to solve for extremely high-dimension scenarios, which motivates
us to develop the following computationally cheap truncation approximation algorithms. Compared
with the approximation ratio of relaxed SDP formulation in Theorem 3 (i.e., min(D/d,d) +O(1)),
the ratio for our proposed algorithm is tighter (i.e., min(D/d,

√
d) +O(1)). We first introduce the

definition of normalized sparse truncation operator.
Definition 2 (Normalized Sparse Truncation). For a vector z ∈ RD and an integer d ∈ [D], we
say z̄ is a d-sparse truncation of z if

z̄(i) =

{
z(i), if |z(i)| is one of the d largest (in absolute value) entries in z
0, otherwise.

Besides, the vector ẑ = z̄/∥z̄∥2 is said to be the normalized d-sparse truncation of z.

Now, we introduce the following two truncation algorithms:
Truncation Algorithm (I): Let A(:,i) be the i-th column of A for i ∈ [D], and denote by ẑi the
normalized d-sparse truncation of A(:,i). Then return the estimated optimal solution as the best over
all ẑi’s and ei’s for i∈ [D], where ei denotes the i-th standard basis vector.
Truncation Algorithm (II): Relax the ℓ0-norm constraint in (STRS) and solve the trust region problem
maxz: ∥z∥2≤1 {zTAz+zTt} to obtain the optimal primal solution v. Then, return the estimated optimal
solution z as the normalized d-sparse truncation of v.
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We summarize the approximation ratios of these two truncation algorithms in Theorem 4. Its proof
technique is adopted from [13]. The difference is that the authors consider the approximation ratio
under the case t= 0, while we adopt the structure of in-homogeneous quadratic functionmaximization
to extend the case for the general coefficient vector t.
Theorem 4 (Approximation Gap for Truncation Algorithm). (I) Truncation Algorithm (I)

returns a feasible solution of (STRS) with objective value V(I) such that

optval(STRS)≥ V(I) ≥
1√
d
optval(STRS)− 2∥t∥(d+1).

(II) Truncation Algorithm (II) returns a feasible solution of (STRS) with objective value V(II) such that

optval(STRS)≥ V(II) ≥
d

D
· optval(STRS)− d

D
· ∥t∥2−

(
1+

√
d

D

)
· ∥t∥(d).

We return the best over the output from Truncation Algorithm (I) and (II) as the estimated opti-
mal solution. By Theorem 4, we find the returned solution approximates the optimal solution up to
approximation ratio min(D/d,

√
d) +O(1). It has been shown in Chan et al. [13] that it is NP-hard

to implement any algorithm with constant approximation ratio. Therefore, it is of research inter-
est to explore polynomial-time approximation algorithms with approximation ratio that has milder
dependence on D and d. Instead of trying this direction, in the next subsection, we propose another
approximation algorithm such that, though NP-hard to solve, it achieves a higher approximation ratio.

3.2.3. Approximation Algorithm via Convex Integer Programming. In this part, we propose
an approximation algorithm based on convex integer programming. We first consider the following
ℓ1-norm relaxation of the problem (STRS), which plays a key role in developing our algorithm:

max
{
zTAz+ zTt : ∥z∥2 ≤ 1,∥z∥1 ≤

√
d
}
. (16)

This problem is a relaxation of problem (STRS) because constraints ∥z∥2 ≤ 1,∥z∥0 ≤ d imply ∥z∥1 ≤√
d. Following the similar proof technique as in [17, Theorem 1], we show that solving this new problem
results in a constant approximation ratio. The difference is that the authors therein only consider the
special case of (STRS) with t= 0, while we extend their analysis for general inhomogeneous quadratic
objective functions.
Theorem 5 (Approximation Gap for ℓ1-Norm Relaxation). There exists a factor ρ ∈ (1,1 +√
d/(d+1)] such that

optval(STRS)≤ optval(16)≤ ρ2optval(STRS)+(ρ2− ρ)∥t∥2.

Although the problem (16) is a relaxation of (STRS), it is still intractable to solve due to the non-
concavity of the objective function (recall that A ⪰ 0). We adopt techniques from [17, Section 2.2]
to derive a further convex integer program that serves as a further relaxation of the relaxation
problem (16). Before proceeding, we define the following notations. For i∈ [D], denote by (λi, vi) the
i-th eigen-pair of the matrix A, denote

θi :=max{zTvi : ∥z∥2 ≤ 1,∥z∥1 ≤
√
d},

and let γ[−N :N ]
i be the set of partition points of the domain [−θi, θi], i.e.,

γj
i =

j

N
θi, j =−N, . . . ,N.

Let λ0 ∈R+ be a fixed number such that λ0 ≤ optval(STRS).
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Proposition 1 (Convex Integer Programming Relaxation of (16)). Consider the convex integer pro-
gram:

Maximize λ0 +
∑

i: λi>λ0
(λi−λ0)ξi− s (17a)

that is subject to the following constraints:{
gi = zTvi,

|gi| ≤ θi,
i∈ [D], (17b)

gi =
∑

j∈[−N,N ]

γj
i η

j
i ,

ξi =
∑

j∈[−N,N ]

(γj
i )

2ηj
i ,

η
[−N,N ]
i ∈ SOS-2,

i∈ {i : λi >λ0}, (17c)


∑
i∈[D]

(z(i))2 ≤ 1,

∑
i: λi>λ0

(
ξi−

θ2i
4N 2

)
+

∑
i: λi≤λ0

g2i ≤ 1,
(17d)


∑
i∈[D]

yi ≤
√
d,

yi ≥
∣∣z(i)∣∣ , i∈ [D],

(17e)

∑
i: λi<λ0

−(λi−λ0)g
2
i − zTt≤ s, (17f)

with SOS-2 denoting the special ordered set of type-2 [4], and involves the following decision variables:

{gi}Di=1 ∈RD, {ξi}i∈{i: λi>λ0} ∈R|{i: λi>λ0}|, {ηj
i }i∈{i: λi>λ0},j∈[−N :N ] ∈R(2N+1)|{i: λi>λ0}|,

{yi}Di=1 ∈RD, s∈R, z ∈RD.

This problem is a relaxation of the ℓ1-norm relaxed problem (16). Besides, it holds that

optval(STRS)≤ optval(17)≤ ρ2optval(STRS)+(ρ2− ρ)∥t∥2 +
1

4N 2

∑
i: λi>λ0

(λi−λ0)θ
2
i ,

where the constant ρ> 0 is defined in Theorem 5.

The convex integer program (17) seems appealing because it only requires solving
O((2N)|{i: λi>λ0}|) number of finite-dimensional convex optimization problem to obtain its optimal
solution. In practice, the choice of λ0 influences the computational traceability of problem (17), and
the choice of N influences the quality of the approximation. We follow the heuristic described in [17,
Section 4.3.1] to select λ0 and N . After solving the problem (17), one obtains the decision variable z
that may not be feasible in Z. Then, one can use the greedy rounding scheme to project z onto Z to
obtain a primal feasible solution.

4. MMD Optimization with Different Kernels

In this section, we provide detailed algorithms for solving the MMD optimization problem (7) for
various kernels considered in (4)-(6).



12

4.1. Linear Kernel Case

For linear kernel defined in (4), one can verify that Hi,j defined in (2) can be written as a linear
function in terms of z:

Hi,j =
∑
s∈[D]

z(s)
[
ks(x

(s)
i , x

(s)
j )+ ks(y

(s)
i , y

(s)
j )− ks(x

(s)
i , y

(s)
j )− ks(y

(s)
i , x

(s)
j )
]
= zThi,j,

where we denote the vector

hi,j = (ks(x
(s)
i , x

(s)
j )+ ks(y

(s)
i , y

(s)
j )− ks(x

(s)
i , y

(s)
j )− ks(y

(s)
i , x

(s)
j ))s∈[D]. (18)

Since the empirical MMD estimator M̂MD
2

(xn,yn;Kz) is a linear combination of {Hi,j}i,j and the
empirical variance estimator σ̂2

H1
(xn,yn;Kz) is a quadratic function in terms of {Hi,j}i,j , it is clear that

the MMD optimization problem (7) can be reformulated as a mixed-integer quadratic optimization
problem, i.e., a STRS that has been studied in Section 3:

optval(7)=max
z∈Z

{
zTAz+ zTt

}
,

where the data matrix A∈RD×D and t∈RD have the following expressions:

A(s1,s2) =
4λ

n3

∑
i∈[n]

∑
j∈[n]

h
(s1)
i,j

∑
j∈[n]

h
(s2)
i,j

− 4λ

n4

 ∑
i,j∈[n]

h
(s1)
i,j

 ∑
i,j∈[n]

h
(s1)
i,j

 , ∀s1, s2 ∈ [D],

t=
∑

i∈[n],j∈[n],i̸=j

hi,j.

Therefore, one can query either the exact or approximation algorithm to solve problem (7) with strong
optimization guarantees for this linear kernel case. In the following remark, we discuss under which
conditions will linear kernel MMD may or may not achieve satisfactory performance on the variable
selection task.
Remark 1 (Concerns about Linear Kernel). Under the linear kernel choice, it can be shown that

MMD2(µ,ν;Kz) =
∑
s∈[D]

z(s)MMD2(Projs#µ,Projs#ν;ks)

where Projs#µ,Projs#ν are the s-th marginal distributions of µ,ν, respectively. In other words, the
selection coefficient z aims to find a direction to identify the difference betweenmarginal distributions
of µ and ν. However, under the case where marginal distributions of µ and ν are the same, the
linear kernel MMD does not have enough power to find informative variables to distinguish those two
distributions. ♣

4.2. Other Kernel Choices

For other kernel choices such as the quadratic kernel in (5) and Gaussian kernel in (6), the objective
for MMD optimization is a nonlinear non-concave function with respect to z. This, together with the
sparse constraint of the domain set Z, makes this type of problem very challenging to solve. In this
subsection, we provide a heuristic algorithm that incorporates simulated annealing (SA) and STRS
that tries to find a feasible solution of (7) with high solution quality. Such a heuristic can also be
naturally extended for generic kernel choices.
Here, we outline our SA and STRS-based heuristic. For notational simplicity, we denote the objective

of (7) as F (z) instead. Our proposed algorithm is an iterative method that generates a trajectory
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Algorithm 3 Heuristic algorithm for solving (7) with generic kernel
1: Input: Max iterations imax, initial guess z1, initial temperature Tem, cooling parameter α, and a
set of regularization values G

2: for i= 1, . . . , imax− 1 do
3: Randomly pick the regularization value τi from G.
4: Obtain z̃i by solving a STRS in (19).
5: Compute residual level ∆i = F (z̃i)−F (zi) and probability pi = e∆i/Tem

6: if rand(0,1)< pi then
7: zi+1 = z̃i
8: else
9: zi+1 = zi
10: end if
11: Tem = α ·Tem
12: end for
13: Return zimax

of feasible solutions z1, . . . , zimax . At the iteration point zi, we generate a candidate solution z̃i by
optimizing a second-order approximation of the objective F (z) with quadratic penalty regularization
around zi:

z̃i = argmax
z∈Z

{
F (zi)+∇F (zi)

T(z− zi)+
1

2
(z− zi)

T∇2F (zi)(z− zi)−
τi
2
∥z− zi∥22

}
, (19)

where τi denotes the quadratic regularization value. Such a problem is a special case of STRS,
which can be solved by querying the exact or approximation algorithm described in Section 3. Let
∆(zi, z̃i) = F (z̃i)− F (zi) denote the residual value for moving from zi to z̃i. The central idea of SA
is to always accept moves with positive residual values while not forbidding moves with negative
residual values. Specifically, we assign a certain temperature Tem, and update zi+1 as z̃i according to
the probability

p(zi, z̃i;Tem)=

{
1, if ∆(zi, z̃i)≥ 0

e∆(zi,z̃i)/Tem , if ∆(zi, z̃i)< 0.

If the candidate solution z̃i is not accepted, we update zi+1 as zi. The temperature parameter Tem is a
critical hyper-parameter in this algorithm. We assign an initial value of Tem and iteratively decrease
it such that in the last iterations the moves with worse objective values are less and less likely to be
accepted. See our detailed algorithm procedure in Algorithm 3.
Finally, we add remarks regarding the tractability and flexibility of quadratic and Gaussian kernels.

Remark 2 (Quadratic Kernel). For quadratic kernel defined in (5), it can be shown that
MMD2(µ,ν;Kz) = zTA(µ,ν)z+ zTT (µ,ν),

where A(µ,ν) is a RD×D-valued mapping such that

(A(µ,ν))(s1,s2) =Ex,x′∼µ[ks1(x
(s1), x′(s1))ks2(x

(s2), x′(s2))]

+Ey,y′∼ν [ks1(y
(s1), y′(s1))ks2(y

(s2), y′(s2))]− 2Ex∼µ,y∼ν [ks1(x
(s1), y(s1))ks2(x

(s2), y(s2))],

and T (µ,ν) is a RD-valued mapping such that
(T (µ,ν))(s) = 2cMMD2(Projs#µ,Projs#ν;ks).

Given two multivariate distributions, the quadratic MMD aims to find a direction z to distinguish
the difference in each coordinate together with the correlation between two coordinates the most.
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Compared with the linear MMD that only identifies the difference in each coordinate, the quadratic
MMD is a more flexible choice. However, it can be shown that the objective in (7) with the quadratic
kernel is a 4-th order non-concave monomial with respect to z, which is computationally intractable
to optimize. In practical experiments, we use the heuristic algorithm in Algorithm 3 to obtain a
reasonably high-quality solution. ♣
Remark 3 (Gaussian Kernel). One can also re-write the population testing statistic for the Gaussian
kernel defined in (6). For notational simplicity, letK(x, y) = exp

(
−∥x−y∥22

2σ2

)
,∀x, y ∈Rd be a standard

Gaussian kernel with low-dimensional data, and define z#ν as a d-dimensional distribution such that
z#ν =

(
z(s)x(s)

)
s∈supp(z)

, where x∼ ν.

With these notations, it can be shown that
MMD2(µ,ν;Kz) =MMD2(z#µ, z#ν;K).

Because the kernelK satisfies the universal property [44], our proposed Gaussian kernel distinguishes
the difference between µ and ν as long as there exists a d-size sub-group of coordinates of µ and
ν that cause the difference. Compared with linear and quadratic kernels, the Gaussian kernel is a
more flexible choice. Unfortunately, the computation burden of the Gaussian kernel is heavier than
the other two simple kernels because the objective in (7) can be viewed as a non-concave∞-degree
monomial with respect to z, whereas the second-order approximation scheme in (19) may not provide
reliable performance for optimization. ♣

5. Testing Power Analysis

In this section, we provide statistical performance guarantees for the variance-regularized MMD
statistics in (7). We first make the following assumptions regarding the kernel choiceKz(·, ·), variance
regularization value λ, and data distributions µ,ν.
Assumption 1. The kernel Kz(·, ·) is uniformly bounded and satisfies the Lipshitz continuous condition,
i.e., for any z, z′ ∈Z, x, y ∈Ω, it holds that |Kz(x, y)| ≤M and |Kz(x, y)−Kz′(x, y)| ≤L∥z− z′∥2.
Assumption 2. Under the alternative hypothesisH1 : µ ̸= ν, there exists λ≥ 0 such that for some z̄ ∈Z,
it holds that MMD2(µ,ν;Kz̄)> 0 and

∆z̄ ≜MMD2(µ,ν;Kz̄)−λ
[
max
z∈Z

σ2
H1

(µ,ν;Kz)−min
z∈Z

σ2
H1

(µ,ν;Kz)
]
> 0. (20)

Here σ2
H1

(µ,ν;Kz) denotes the population version of the empirical variance estimator defined in (8).
Assumption 1 is a standard assumption used in the statistical analysis of kernel-based testing in
literature. Besides, it is worth noting that Assumption 2 is not too restrictive: by properly specifying the
kernel functionKz̄(·, ·), one canmake the population testing statisticMMD2(µ,ν;Kz̄) strictly positive.
For example, when some marginal distributions of µ,ν are different, according to Remark 1, the linear
kernel satisfies this technical condition. Besides, one can impose a uniform bounded condition of
the kernel {Kz(·, ·)}z∈Z to argue that maxz∈Z σ2

H1
(µ,ν;Kz)−minz∈Z σ2

H1
(µ,ν;Kz) is also bounded.

Hence, we can take a sufficiently small value of λ to make the condition (20) in Assumption 2 satisfied.
In the following, we demonstrate that, under mild conditions, our proposed kernels in (4)-(6) indeed
satisfy Assumptions 1 and 2.
Proposition 2 (Sufficient Condition of Assumptions 1 and 2). (I) (Linear Kernel) For the kernel

in (4), Assumption 1 is guaranteed to hold with M =
√
d and L=

√
2d. As long as there exists

s∗ ∈ [D] such that Projs∗#µ ̸=Projs∗#ν, Assumption 2 is guaranteed to hold with

λ∈
[
0,

maxz∈Z
∑

s∈[D] z
(s)MMD2(Projs#µ,Projs#ν;ks)

16d

)
.
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(II) (Quadratic Kernel) For the kernel in (5), Assumption 1 is guaranteed to hold with M = 2c2 +
2d and L = 4d + 2c

√
2d. As long as there exists s∗ ∈ [D] such that Projs∗#µ ̸= Projs∗#ν or

(A(µ,ν))(s∗,s∗) > 0 holds, Assumption 2 is guaranteed to hold with

λ∈
[
0,

maxz∈Z zTA(µ,ν)z+ zTT (µ,ν)
16(2d+2c2)2

)
.

(III) (Gaussian Kernel) For the kernel in (6), if additionally assuming that Ω⊆ {x∈RD : ∥x∥∞ ≤R},
Assumption 1 is guaranteed to hold withM = 1 and L= 2R

σ
√
e
. As long as there exists S ⊆ [D] with

|S| ≤ d such that ProjS#µ ̸=ProjS#ν, Assumption 2 is guaranteed to hold with

λ∈
[
0,

maxz∈Z MMD2(µ,ν;Kz)

16

)
.

Next, we derive concentration properties to show that, the empirical estimators S2(xn,yn;Kz) and
σ̂2
H1

(xn,yn;Kz) uniformly converge to their population version as the sample size n increases. Such
a property is useful for showing the testing consistency and the rate of testing power of our MMD
framework.
Theorem 6 (Non-asymptotic Concentration Properties). Under Assumption 1, with probability at
least 1− δ, (i) the bias approximation error can be bounded as

sup
z∈Z

∣∣∣S2(xn,yn;Kz)−MMD2(µ,ν;Kz)
∣∣∣≤ ϵ1n,δ ≜

8√
n

[
M

√
2 log

(
D

d

)
2

δ
+2d log(4

√
n)+L

]
,

(ii) and the variance approximation error can be bounded as

sup
z∈Z

∣∣∣σ̂2
H1

(xn,yn;Kz)−σ2
H1

(µ,ν;Kz)
∣∣∣≤ ϵ2n,δ ≜

64√
n

[
7

√
2 log

(
D

d

)
2

δ
+2d log(4

√
n)+

18M 2

√
n

+8LM

]
,

where σ2
H1

(µ,ν;Kz)≜Exn∼µ,yn∼ν [σ̂
2
H1

(xn,yn;Kz)].

Proof of the theorem above follows similar covering number arguments in [40, Theorem 6]. The main
difference is that when applying union bound on the set Z, the corresponding error bound is sharper
because the covering number of sparse-constrained set Z is much smaller. Finally, we are ready to
prove the main theorem of this section. For fixed δ ∈ (0,1) and sample size n, we define the following
error parameter for notational simplicity:

ϵn,δ = ϵ1n,δ +λϵ2n,δ.

As a simple corollary from Theorem 6, the objective in (7) approximates its population version with
error ϵn,δ/2 with probability at least 1− δ.
Theorem 7 (Asymptotic Distribution of Testing Statistic). Under Assumptions 1 and 2, let ẑTr be the
obtained sparse coefficient by solving (7) from training dataset (xTr,yTr) with |xTr|= |yTr|= nTr, and
TnTe

be the testing statistic evaluated on testing dataset (xTe,yTe) with |xTe| = |yTe| = nTe. Then, it
holds that
(I) Under alternative hypothesis H1 : µ ̸= ν, E[TnTe

| H1]≥∆z̄ − 2ϵnTr,δ/4 with probability at least
1− δ, where the expectation is taken with respect to the randomness from testing dataset, and the
probability error is from the randomness from training dataset. In other words, when training
sample size nTr is sufficiently large so that the error ϵnTr

is sufficiently small, we have that
E[TnTe

| H1]> 0.
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(II) Under null hypothesis H0 : µ = ν, it holds that nTeTn→
∑

i σi(Z
2
i − 2), with σi denoting the

eigenvalues of the µ-covariance operator of the centered kernel; under alternative hypothesis
H1 : µ ̸= ν, it holds that √nTe(Tn−E[TnTe

| H1])→N (0, σ2
H1

(µ,ν;KẑTr
)).

Corollary 2 (Consistency). Under the setting of Theorem 7, suppose that E[TnTe
| H1] > 0. Let α ∈

(0,1) denote the level of two-sample test and take τ as the (1−α)-quantile of the limiting distribution∑
i σi(Z

2
i −2) defined in Theorem 7(II), and let the threshold of the test be tthres := τ

nTe
. As a consequence,

P
(
TnTe

> tthres | H0

)
→ α, P

(
TnTe

≤ tthres | H1

)
→ 0.

The consistency of the testing framework requires the assumption that E[TnTe
| H1]> 0, i.e., ϵnTr,δ/4

should be a sufficiently small number. It is worth mentioning that ϵnTr,δ/4 = O(1/
√
nTr), where the

precise hidden constant relies on factors poly(D),poly(d),polylog(1/δ), and polylog(nTr), indicating
the statistical guarantees of our proposed variable selection framework do not suffer from the curse
of dimensionality.
Theorem 8 (Testing Power). Under the setting of Theorem 7, suppose that E[|T1|3 | H1] <∞ and
E[TnTe

| H1] > 0. Let α ∈ (0,1) denote the level of two-sample test and take τ as the (1− α)-quantile
of the limiting distribution∑i σi(Z

2
i − 2) defined in Theorem 7(II), and let the threshold of the test be

tthres :=
τ

nTe
. When the testing sample size nTe is sufficiently large so that

E[TnTe
| H1]≥ tthres +

Φ−1(1−n
−1/2
Te )√

nTe

=
τ

nTe

+

√
ln nTe

2π
− ln ln nTe

2π

nTe

(1+ o(1)),

it holds that

P
(
TnTe

> tthres | H0

)
≤ α+O(n

−1/2
Te ), P

(
TnTe

≤ tthres | H1

)
≤O(n

−1/2
Te ),

where O(·) hides constant related to parameters E[|T1|3 | H1] and σ2
H1

.

Theorem 8 indicates that under alternative hypothesis µ ̸= ν, as long as the testing sample size
nTe is sufficiently large such that E[TnTe

| H1] dominates n−1/2
Te multiplied by a near-constant factor

Õ(1), the testing power approaches 1 with error rate O(n
−1/2
Te ). Besides, Theorem 7 ensures that

ETnTe
= Θ(1) with probability at least 1 − δ as long as nTr

polylog(nTr)
= Ω(1/∆2

z̄), where the precise
hidden constant relies on factors poly(D),poly(d), and polylog(1/δ). Combining those two theorems,
we imply that our proposed MMD test achieves satisfactory performance as long as both the training
and testing sample sizes are moderately large.

6. Numerical Simulation

We first consider synthesized data sets to examine the performance of our proposed variable selection
framework. We consider the following four cases:
(I) (Gaussian Mean Shift): Data distribution µ = N (0,Σ) with the covariance matrix Σ(s1,s2) =

ρ|s1−s2| for some correlation level ρ∈ (0,1). Data distribution ν =N (µ,Σ)with the mean vector
µ(s) = τ/s,∀s∈ [dtrue] for some scalar τ > 0 and otherwise µ(s) = 0.

(II) (Gaussian Covariance Shift): Data distribution µ = N (0,Σ) with Σ specified the same as in
Part (I), and ν =N (0, Σ̃), with Σ̃(s1,s2) = τΣ(s1,s2),∀s1, s2 ∈ [dtrue] for some scalar τ > 1 and
otherwise Σ̃(s1,s2) =Σ(s1,s2).

(III) (Gaussian versus Laplacian): Data distribution µ=N (0, ID). The first dtrue coordinates of ν are
independent Laplace distributions with zero mean and standard deviation 0.8. The remaining
coordinates of νY are independent Gaussian distributions N (0,1).
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(IV) (Gaussian versus Gaussian Mixture): Data distribution µ =N (0, ID). The first d coordinates
of ν are Gaussian mixture distribution 1

2
N (−µ, Idtrue) + 1

2
N (µ, Idtrue) while the remaining

coordinates are independent Gaussian distributions N (0,1). Here the mean vector µ(s) =
τ/s,∀s∈ [dtrue] for some scalar τ > 0.

Throughout the numerical experiment, we take hyper-parameters in Case (I) as τ = 1, ρ = 0.5, in
Case (II) as τ = 2, ρ = 0.5, and in Case (IV) as τ = 2. We quantify the performance in terms of
hypothesis testing metrics rather than the prediction accuracy metrics used in the literature. Besides,
we also measure the quality of variable selection using false-discovery proportion (FDP) and the non-
discovery proportion (NDP) defined in [3]:

FDP(I) = |I \ I
∗|

|I| , NDP(I) = |I
∗ \ I|
|I∗| , (21)

where I∗ denotes the ground truth feature set and I denotes the set obtained by variable selection
algorithms. The smaller the FDP or NDP is, the better performance the obtained feature set has.
For simplicity of implementation, we chose the bandwidth hyper-parameter τ 2

s for the kernel
ks(x, y) using the median heuristic, i.e., we specify it as the median among all pairwise distances for
data points in the s-th coordinate. Similarly, we take bandwidth σ2 of Gaussian kernel as the median
among all pairwise distances for data points (over all coordinates), and bandwidth of quadratic kernel
as c=

√
σ2. Users are also recommended to tune those hyper-parameters based on the cross-validation

technique, which tends to return near-optimal hyper-parameter choices for large sample sizes.

6.1. Numerical Performance for Solving (STRS)
We first examine the numerical performance of various approximation algorithms for solving (STRS),
by taking the MMD optimization with linear kernel (see the reformulation in Section 4.1) as a
numerical example. For each of the four synthetic datasets, we try various choices of parameters
(N,D,d) from the set

{(1e3,20,5), (1e3,40,10), (1e3,60,6), (1e3,80,8), (1e3,100,10)}.

We also specify different hyper-parameters λ ∈ {0.8,0.7,0.6,0.5} when using these four different
datasets, respectively. Since those approximation algorithms may return a solution that is infeasible
to the constraint Z, we estimate the corresponding feasible solution by performing the normalized
sparse truncation (see Definition 2). Figure 1 reports the objective value obtained from the feasible
solution based on those approximation algorithms, where the error bars are generated using 100
independent trials. The larger the objective value is, the better performance the designed algorithm
has. From the plot, we can check that semidefinite relaxation and convex integer programming
algorithms have nearly optimal performance compared with the ground truth, whereas the perfor-
mance truncation algorithm is slightly worse compared with those approaches. Table 1 reports the
corresponding computation time of those approximation algorithms, from which we identify that the
truncation algorithm has the fastest computational speed while SDP relaxation has the slowest speed.
Since the convex integer programming algorithm has satisfactory performance with relatively fast
computational speed, we recommend using this approximation algorithm when solving (STRS).

6.2. Impact of Sample Size and Data Dimension

In this subsection, we compare the performance of variable selection based on the following
approaches: (I) Linear kernel MMD; (II) Quadratic kernel MMD; (III) Gaussian kernel MMD; (IV)
Sparse Logistic Regression: a framework that trains the projection vector with ℓ0-norm constraint to
minimize the logistic loss [8]; and (V) Projected Wasserstein: variable selection framework using pro-
jected Wasserstein distance [47]. For baselines (I)-(III), we also compare the performance of standard
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Figure 1 Box plots on the performance of various approximation algorithms for solving (STRS). The x-axis corresponds
to various choices of (N,D,d), and y-axis corresponds to the estimated objective value of (STRS). Plots from
top to bottom correspond to four types of synthetic datasets.

MMD testing without the variable selection technique. We quantify the performance using the testing
power metric with controlled type-I error αlevel = 0.05, and take the training/testing sample sizes as
nTr = nTe = n.
Figure 2 reports a numerical study on the impact of sample size n with data dimension D = 100,

number of different variables dtrue = 20 and sparsity level d = 20. The error bars are generated
using 20 independent trials. From these plots, we find the sparse logistic regression does not have
competitive performance in general. The explanation is that a linear classifier is not flexible enough
to distinguish the distributions from two groups. Following the similar argument from Example 1, one
can check the testing statistic of this baseline always equals to zero as long as the mean vectors of two
distributions are the same, which explains why this baseline has nearly zero power for the synthetic
dataset of case (II)-(IV). The testing power for the other two-sample testing methods increases with
respect to the sample size. We can see the variable selection technique improves the performance of
the standard MMD framework. For the first three synthetic datasets, the linear or quadratic MMD
testing with variable selection achieves superior performance than other baselines, while for the last
example, the projected Wasserstein distance has the best performance. One possible explanation is
that the MMD testing framework may not be good at detecting distribution changes for Gaussian
mixture distributions.
Next, we examine the impact of the data dimension D with fixed n = 50, dtrue = 20, d = 20 in

Figure 3. We omit to report the performance of the sparse logistic regression baseline because it does
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Table 1 Averaged computational time of various approximation algorithms for solving (STRS).

Data Type Parameters Averaged Computational Time(s) of Approximation Algorithms
n D d Truncation Algorithm SDP Relaxation Convex Integer Programming

Gaussian 1e3 20 5 2.13e-3 1.18 1.25e-1
Mean Shift 1e3 40 10 6.08e-3 2.55 2.29e-1

1e3 60 6 1.30e-2 4.80 4.47e-1
1e3 80 8 3.08e-2 6.19 6.87e-1
1e3 100 10 6.87e-2 9.47 8.77e-1

Gaussian 1e3 20 5 2.33e-3 1.18 1.24e-1
Covariance Shift 1e3 40 10 5.86e-3 2.57 3.11e-1

1e3 60 6 1.32e-2 4.80 4.02e-1
1e3 80 8 3.07e-2 6.46 9.38e-1
1e3 100 10 6.76e-2 9.73 1.23

Gaussian 1e3 20 5 2.28e-3 1.29 1.69e-1
versus Laplacian 1e3 40 10 6.39e-3 2.85 5.65e-1

1e3 60 6 1.44e-2 5.20 5.14e-1
1e3 80 8 3.31e-2 6.79 1.15
1e3 100 10 6.95e-2 1.02e+1 2.10

Gaussian 1e3 20 5 2.17e-3 1.16 1.17e-1
versus 1e3 40 10 6.38e-3 2.57 2.14e-1

Gaussian Mixture 1e3 60 6 1.42e-2 4.72 3.94e-1
1e3 80 8 3.31e-2 6.07 5.91e-1
1e3 100 10 7.25e-2 9.44 8.67e-1
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Figure 2 Testing power of various two-sample tests with different choices of sample size n. Here we fix parameters
D= 100, dtrue = 20, d= 20 and control the type-I error αlevel = 0.05. Plots from top to bottom correspond to
four different types of synthetic datasets.
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not achieve satisfactory testing performance as studied before. From those plots, we find that as the
data dimension increases, all methods tend to have decreasing testing power. However, the decaying
rate of MMD testing with the variable selection procedure seems to be slower than that of standard
MMD testing. For the synthetic dataset of case (I), the Gaussian kernel has the best performance, while
for case (II)-(III), the linear or quadratic kernel has the best performance. A possible explanation is
that one can optimize the linear kernel with strong performance guarantees, whereas we only use
quadratic approximation heuristics to optimize other types of kernel functions. Since the quadratic
approximation of the objective for the quadratic kernel seems to be tight, it is intuitive to see the
performance of the quadratic kernel is also consistently good.

0.00

0.25

0.50

0.75

1.00

50 60 70 80 90 100
Dimension D

Te
st

in
g 

P
ow

er

Method

Linear MMD
Quadratic MMD
Gaussian MMD
Projected Wasserstein

Var_Selection

Yes
No

0.00

0.25

0.50

0.75

1.00

50 60 70 80 90 100
Dimension D

Te
st

in
g 

P
ow

er

Method

Linear MMD
Quadratic MMD
Gaussian MMD
Projected Wasserstein

Var_Selection

Yes
No

0.00

0.25

0.50

0.75

1.00

50 60 70 80 90 100
Dimension D

Te
st

in
g 

P
ow

er

Method

Linear MMD
Quadratic MMD
Gaussian MMD
Projected Wasserstein

Var_Selection

Yes
No

0.00

0.25

0.50

0.75

1.00

50 60 70 80 90 100
Dimension D

Te
st

in
g 

P
ow

er

Method

Linear MMD
Quadratic MMD
Gaussian MMD
Projected Wasserstein

Var_Selection

Yes
No

Figure 3 Testing power of various two-sample tests with different choices of data dimension D. Here we fix parameters
n= 50, dtrue = 20, d= 20 and control the type-I error αlevel = 0.05. Plots from top to bottom correspond to
four different types of synthetic datasets.

6.3. Results on Support Recovery

In this subsection, we show the performance of support recovery for various variable selection
approaches. We specify parameters n = 100,D = 100, dtrue = 20 and vary the sparsity level d =
1, . . . ,40. We quantify the performance using the FDP and NDP metrics defined in (21). Besides, we
are interested in whether those methods perform consistently well in both metrics, so we further
quantify the performance as the sum of those two metrics. Figure 4 presents these three metrics
based on various variable selection approaches across different choices of sparsity level d for a single
independent trial. From these plots, we can see that our proposed variable selection framework with
linear or quadratic kernel achieves the best performance for all four cases, as indicated by the lowest
values of FDP and NDPmetrics. This observation is also consistent with the testing power performance
examined in the previous subsection.

7. Numerical Study on Real-World Datasets

In this section, we present additional numerical study with real-world datasets. Specifically, we demon-
strate a visualization of variable selection based on the MNIST handwritten digits image dataset in
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Figure 4 FDP and NDP metrics obtained by various approaches for different choices of sparity level d using synthetic
datasets.

Section 7.1. Next, we show that the variable selection approach can help with identifying key variables
for disease diagnosis in Section 7.2.

7.1. Visualization on MNIST Image Datasets

In this part, we demonstrate a visualization of our variable selection framework by taking the clas-
sification of MNIST image datasets, consisting of 28× 28 gray-scale handwritten images for digits
from 0 to 9, as toy examples. We take the training sample size nTr = 20 and testing sample size
nTe = 5. We pre-process the MNIST images by performing a 2d convolutional operator using the
kernel of size 9× 9. The pre-processed samples have dimension D= 169, and we take the number of
selected variables d= 20. We construct four types of data distributions (µ,ν) for two-sample testing:
µ and ν are distributions of images corresponding to digits 0 and 6, 8 and 9, 3 and 8, or 7 and 9,
respectively. We show the visualization results in Figure 5. Specifically, different rows correspond to
different data distributions for two-sample testing. Plots in the left two columns visualize the selected
pixels (highlighted with red square markers) on two different image samples based on our linear
kernel variable selection framework, from which we can see that our proposed method identifies the
difference between two digits correctly. Plots in the 3rd column report the MMD statistic compared
with the empirical distribution under H0 via test-only bootstrap, where the green circle markers cor-
respond to the bootstrap threshold for rejecting H0 and red star markers correspond to the testing
statistics. From these plots, we find our proposed framework has satisfactory testing power even with
small training and testing sample sizes. Plots on the 4th column report the visualization of the distri-
bution of the MNIST dataset after variable selection embedded in 2D generated by tSNE [58], which
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Figure 5 Different rows correspond to two-sample testing with different MNIST digits. The first two column plots
visualize the selected pixels based on the variable selection framework. The 3rd column plots visualize the
MMD statistic together with the empirical distribution under H0 that is estimated via bootstrapping. The 4th
column plots visualize the distribution of MNIST digits after variable selection embedded in 2D. The 5th column
plots visualize the estimated witness function.

is estimated based on 1000 testing samples. In comparison, we plot the estimated witness function
as a color field over those samples in the right-hand-side figures. From those plots, we can see that
the estimated witness function identifies the region of the distribution change for all of these four
two-sample testing tasks.

7.2. Healthcare Datasets

Finally, we study the performance of variable selection on a healthcare dataset [62] that records
information for healthy people and Sepsis patients. This dataset consists of D = 39 features from
m= 20771 healthy people and n= 2891 Sepsis patients. We take training samples with sample sizes
mTr = 20000, nTr = 2000 and specify the remaining as validation samples.We quantify the performance
of variable selection as the testing power on testing samples with sample size mTe = nTe = 100, which
are selected randomly from the validation sample sets. We repeat the testing procedure for 2000
independent trials and report the average testing power in Table 2.
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Figure 6 Top 5 variables selected by various approaches in the healthcare dataset.

We report the top 5 features selected by various approaches based on the training samples in
Figure 6. From the Table, we can see that methods Quadratic MMD and Linear MMD perform the
best, and the intersection of those selected features are pulse, Bicarbonate, Alkaline Phosphatase.

Table 2 Averaged testing power for the sepsis prediction.
Linear
MMD

Quadratic
MMD

Gaussian
MMD

Logistic
Regression

Projected
Wasserstein

0.835 0.915 0.784 0.771 0.749

8. Conclusion

We studied variable selection for the kernel-based two-sample testing problem, which can be formu-
lated as mixed-integer programming problems. We developed exact and approximate algorithms with
performance guarantees to solve those formulations. Theoretical properties for the proposed frame-
works are provided. Finally, we validated the power of this approach in synthetic and real datasets.
In the meantime, several interesting research topics are left for future work. For example, provid-
ing theoretical analysis on the optimal choice of kernel hyper-parameters and support recovery for
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variable selection is of future research interest. Additionally, it holds great significance in developing
more efficient algorithms for variable selection when working with different types of kernels.

Notes
1Here we take λ̄= MMD2(N (0,1),N (0,(1+ϵ)2);k1)

σ2
H1

(N (0,1),N (0,(1+ϵ)2);k1)
to satisfy the desired result. Specifically, we provide closed-form expres-

sions on those statistics in the following (see the proof in Appendix EC.2):

A≜MMD2(N (0,1),N (0, (1+ ϵ)2);k1) =

√
τ2
1

τ2
1 +2

+

√
τ2
1

τ2
1 +2(1+ ϵ)2

− 2

√
τ2
1

τ2
1 +1+ (1+ ϵ)2

,

B ≜ σ2
H1

(N (0,1),N (0, (1+ ϵ)2);k1) = 4C − 4A2,

C ≜

√
τ4
1

(τ2
1 +1)(3+ τ2

1 )
+

√
4τ4

1

(τ2
1 +2)(τ2

1 +2(1+ ϵ)2)

−

√
16τ4

1

2τ2
1 +1+ (1+ ϵ)2 +(1+ τ2

1 )((1+ ϵ)+τ2
1 )

−

√
16τ4

1

(τ2
1 +1+ (1+ ϵ)2)(τ2

1 +2(1+ ϵ)2)

+

√
16τ4

1

(τ2
1 +(1+ ϵ)2)(τ2
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+

√
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1

(τ2
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Supplementary for “Variable Selection for Kernel Two-Sample Tests”

EC.1. ADMM for Solving SDP Problem (15)
Define the domain sets

C =
{
Z ∈ S+

D+1 : Z
(0,0) = 1,Tr(Z) = 2

}
,

B=

{
(Z,q) :

∑
j∈[D]

(
Z(i,j)

)2 ≤Z(i,i)q(i),

∑
j∈[D]

|Z(i,j)|

2

≤ dZ(i,i)q(i),∀i∈ [D], q ∈Q
}
.

Let IA(·) denote the indicator function of set A. Then problem (15) can be reformulated as

min
Z,q

{
−⟨Ã,Z⟩+ IC(Z)+ IB(Z,q)

}
.

By introducing a new variable Y , the problem above can be written as

min
Z,Y,q

{
−⟨Ã,Z⟩+ IC(Z)+ IB(Y, q) : Z = Y

}
. (EC.1)

The augmented Lagrangian function for problem (EC.1) is defined as

Lµ(Z,Y, q;Λ) =−⟨Ã,Z⟩+ IC(Z)+ IB(Y, q)−⟨Λ,Z −Y ⟩+ 1

2τ
∥Z −Y ∥2F ,

where τ > 0 is a penalty parameter. The ADMM approach produces the following iterations:
Zk+1 = argmin

Z

Lµ(Z,Yk, qk;Λk), (EC.2a)
(Yk+1, qk+1) = argmin

Y,q

Lµ(Zk+1, Y, q;Λk), (EC.2b)

Λk+1 =Λk−
1

τ

[
Zk+1−Yk+1

]
. (EC.2c)

The ADMM algorithm terminates at iteration k if for some tolerance parameter tol> 0, it holds that
∥Zk+1−Yk+1∥

1+ ∥Ã∥1
≤ tol.

The advantage of ADMM is that, based on the variable splitting trick, the subproblems (EC.2a) and
(EC.2b) are easier to solve than the original SDP problem.
Specifically, the subproblem (EC.2a) reduces to

Zk+1 = argmin
Z∈C

∥∥∥Z − (Yk + τÃ+ τΛk)
∥∥∥2
F
, (EC.3)

which amounts to solving an eigenvalue problem. See the detailed algorithm design in Remark EC.1.
Next, the subproblem (EC.2b) reduces to

(Yk+1, qk+1) = argmin
(Y,q)∈B

∥Y − (Zk+1− τΛk)∥2F , (EC.4)

which amounts to solving a large-scale second-order cone program. See the detailed algorithm design
in Remark EC.2.
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Remark EC.1. Given a symmetric matrix X ∈R(D+1)×(D+1), consider the optimization problem

min
Z∈C
∥Z −X∥2F .

Since this problem is unitary-invariant, its optimal solution is given by Z∗ = U diag(a∗)UT for some
vector a∗ ∈ RD+1, where the matrix X admits eigendecomposition X = U diag(b)UT. The vector a∗

can be obtained by solving the following problem:

a∗ = argmin

{
∥a− b∥22 : a≥ 0, a(0) = 1,

D∑
i=0

a(i) = 2

}
. (EC.5)

Such a problem is a variant of the projection problem onto the simplex in Euclidean space. We adopt
the algorithm in [52] with complexity O(D logD) to solve this problem. See details in Algorithm 4.

Algorithm 4 An O(D logD)-complexity algorithm to solving problem (EC.5)
1: Sort b(1:D) to b̂ such that b̂(1) ≤ · · · ≤ b̂(D).
2: Find smallest index ĵ such that b̂(j)− 1

D−j+1

(∑D

i=j b̂
(i)− 1

)
> 0.

3: Compute θ= 1
D−ĵ+1

(∑D

i=ĵ b̂
(i)− 1

)
4: Return vector a such that a(0) = 1 and a(i) =max{0, b(i)− θ}, i∈ [D].

Remark EC.2. Given a matrix X ∈R(D+1)×(D+1), consider the optimization problem

min
(Y,q)∈B

∥Y −X∥2F .

It can be reformulated as a second-order cone program that could be solved efficiently based on some
off-the-shelf solver:

min
Y,q∈Q,Ai,i∈[D]

∥vec(Y )− vec(X)∥22

s.t. ∥Y (i,:)∥1 ≤Ai, i∈ [D],

(2Ai, Y
(i,i)− dq(i), Y (i,i) + dq(i))∈ C3, Y (i,i) ≥ 0, i∈ [D],

(Y (i,1), . . . , Y (i,i)− 1

2
q(i), . . . , Y (i,D),

1

2
q(i))∈ CD+1, i∈ [D],

where CD+1 denotes the second-order cone of dimension D+1:

CD+1 = {(x, t) : x∈RD, t∈R,∥x∥2 ≤ t}.



ec3

EC.2. Proof of Example 1
Proof of Example 1. Note that the population version of the objective in (7) becomes

F (z) =MMD2(N (0,1),N (0, (1+ ϵ)2);k1)−λσ2
H1

(N (0,1),N (0, (1+ ϵ)2);k1), if z(1) ̸= 0,

when z = ẑ and otherwise F (z) = 0. Therefore, taking the variance regularization

λ∈
[
0,

MMD2(N (0,1),N (0, (1+ ϵ)2);k1)

σ2
H1

(N (0,1),N (0, (1+ ϵ)2)

)
,

achieves the desired result. It remains to compute MMD2(N (0,1),N (0, (1 + ϵ)2);k1) and
σ2
H1

(N (0,1),N (0, (1+ ϵ)2) to finish the proof. According to the definition, it holds that

MMD2(N (0,1),N (0, (1+ ϵ)2);k1)

=Ex,x′∼N (0,1) [k1(x,x
′)]+Ey,y′∼N (0,(1+ϵ)2) [k1(y, y

′)]− 2Ex∼N (0,1),y∼N (0,(1+ϵ)2) [k1(x, y)]

=Ex,x′∼N (0,1) [k1(x,x
′)+ k1((1+ ϵ)x, (1+ ϵ)x′)− 2k1(x, (1+ ϵ)y)]

=

√
τ 2
1

τ 2
1 +2

+

√
τ 2
1

τ 2
1 +2(1+ ϵ)2

− 2

√
τ 2
1

τ 2
1 +1+ (1+ ϵ)2

,

where the last step is by substituting the expression k1(x, y) = e−(x−y)2/(2τ21 ) and calculating several
integral of exponential functions. Also, we have that

σ2
H1

(N (0,1),N (0, (1+ ϵ)2);k1) = 4E[H1,2H1,3]− 4MMD4(N (0,1),N (0, (1+ ϵ)2);k1).

According to the definition of Hi,j in (2), it holds that

E[H1,2H1,3] =Ex1,x2,x3,x4∼N (0,1)

[
k1(x1, x2)k1(x1, x3)+ 2k1(x1, x2)k1((1+ ϵ)x3, (1+ ϵ)x4)

− 4k1(x1, x2)k(x1, (1+ ϵ)x3)− 4k1(x1, (1+ ϵ)x2)k1((1+ ϵ)x3, (1+ ϵ)x4)

+ 4k1(x1, (1+ ϵ)x2)k1(x1, (1+ ϵ)x3)+ k1((1+ ϵ)x1, (1+ ϵ)x2)k1((1+ ϵ)x1, (1+ ϵ)x3)
]

=

√
τ 4
1

(τ 2
1 +1)(3+ τ 2

1 )
+

√
4τ 4

1

(τ 2
1 +2)(τ 2

1 +2(1+ ϵ)2)
−
√

16τ 4
1

2τ 2
1 +1+ (1+ ϵ)2 +(1+ τ 2

1 )((1+ ϵ)+τ 2
1 )

−
√

16τ 4
1

(τ 2
1 +1+ (1+ ϵ)2)(τ 2

1 +2(1+ ϵ)2)
+

√
16τ 4

1

(τ 2
1 +(1+ ϵ)2)(τ 2

1 +(1+ ϵ)2 +2)

+

√
τ 4
1

(τ 2
1 +(1+ ϵ)2)(τ 2

1 +3(1+ ϵ)2)

The proof is completed. □
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EC.3. Proofs of Technical Results in Section 3
Proof of Theorem 1 A natural combinatorial reformulation of (STRS) is

max
S⊆[D]: |S|≤d

z∈RD

{
zTAz+ zTt : ∥z∥2 = 1, z(k) = 0,∀k /∈ S

}
. (EC.6)

Given a size-d set S ⊆ [D], and problem parameters A∈ SD, t∈RD, it holds that

max
z∈RD

{
zTAz+ zTt : ∥z∥2 = 1, z(k) = 0,∀k /∈ S

}
=max

z∈Rd

{
zTA(S,S)z+ zTt(S) : ∥z∥2 = 1

}
. (EC.7)

Next, we linearize the problem (EC.7) using the auxiliary variable defined as

Z =

(
1
z

)(
1
z

)T

=

(
1 zT

z zzT

)
and the matrix

Ã(S,S) =

(
0 1

2
(t(S))T

1
2
t(S) A(S,S)

)
.

Assume the index of Z and Ã(S,S) is over {0,1, . . . , d}2. Then we equivalently reformulate the prob-
lem (EC.7) as

max
Z∈S+

d+1

⟨Ã(S,S),Z⟩

s.t. rank(Z) = 1,

Z(0,0) = 1,Tr(Z) = 2.

(EC.8)

In particular, constraints Z ⪰ 0, rank(Z) = 1,Z(0,0) = 1 together imply that

Z =

(
1 zT

z zzT

)
for some vector z ∈Rd, and the condition Tr(Z) = 2 implies ∥z∥2 = 1. By [39, Corollary 3], we further
obtain the following equivalent reformulation of problem (EC.7) when dropping the nonconvex rank
constraint rank(Z) = 1:

max
Z∈S+

d+1

⟨Ã(S,S),Z⟩

s.t. Z(0,0) = 1,Tr(Z) = 2.

(EC.9)

In summary, we obtain the following reformulation of (STRS):

max
Z∈S+

d+1
,S⊆[D]: |S|≤d

⟨Ã(S,S),Z⟩

s.t. Z(0,0) = 1,Tr(Z) = 2.

(EC.10)

It remains to show the equivalence between formulations (10) and (EC.10). We only need to show for
any feasible q ∈Q with its support S := {k : q(k) = 1}, it holds that

max
Z∈S+

D+1

{
⟨Ã,Z⟩ : Zi,i ≤ q(i), i∈ [D],Z(0,0) = 1,Tr(Z) = 2

}
= max

Z∈S+
d+1

{
⟨Ã(S,S),Z⟩ : Z0,0 = 1,Tr(Z) = 2

}
.

(EC.11)
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Since Z ∈ S+
D+1 is a positive semi-definite matrix, the condition Z(i,i) = 0 for i∈ [D] \S implies

Z(i,j) = 0, ∀(i, j) /∈ S×S.

Leveraging this property, we check the relation (EC.11) indeed holds true. □

Proof of Corollary 1. It suffices to verify the following two valid inequalities hold for problem (10):∑
j∈[D]

(Z(i,j))2 ≤Z(i,i)q(i), ∀i∈ [D], (EC.12)
∑

j∈[D]

|Z(i,j)|

2

≤ dZ(i,i)q(i), ∀i∈ [D]. (EC.13)

This verification step follows a similar argument in [37, Lemma 2]. □

Proof of Theorem 2. We first re-write f(q) as the optimal value to the following optimization
problem:

max
Z∈S+

D+1
,U≥0,Y,y,t

⟨Ã,Z⟩

Z(0,0) = 1, [λ0]

Tr(Z) = 2, [λ]∑
j

U (i,j) ≤ y(i), ∀i∈ [D], [β(i)]

−U (i,j) ≤Z(i,j) ≤U (i,j), ∀i, j ∈ [D], [W
(i,j)
1 ,W

(i,j)
2 ]

∥(yi; ti)∥2 ≤
1

2
Z(i,i) +

d

2
q(i), ∀i∈ [D], [ν

(i)
1 ]

ti =
1

2
Z(i,i)− d

2
q(i), ∀i∈ [D], [ν

(i)
2 ]

Y (i,:) =Z(i,:)− 1

2
q(i)ei, ∀i∈ [D], [Λ(i,:)]∥∥Y (i,:)

∥∥
2
≤ 1

2
q(i), ∀i∈ [D]. [µ(i)]

Here, we associate dual variables with primal constraints in brackets. In detail, constraints corre-
sponding to [β(i)], [W

(i,j)
1 ,W

(i,j)
2 ], [ν

(i)
1 ], [ν

(i)
2 ] are reformulation of the valid inequality (EC.13), and

constraints corresponding to [Λ(i,:)] and [µ(i)] are second-order conic reformulation of the valid
inequality (EC.12).
Its Lagrangian dual reformulation becomes

min
λ,λ0,ν2,Λ

β,W1,W2,ν1,µ≥0

max
Z∈S+

D+1
,U≥0,Y,y,t

⟨Ã,Z⟩+λ0

(
1−Z(0,0)

)
+λ
(
2−Tr(Z)

)
+
∑
i

β(i)
[
y(i)−

∑
j

U (i,j)
]

+
∑
i,j

W
(i,j)
1

[
U (i,j) +Z(i,j)

]
+
∑
i,j

W
(i,j)
2

[
U (i,j)−Z(i,j)

]
+
∑
i

ν
(i)
1

[
1

2
Z(i,i) +

d

2
q(i)−∥(yi; ti)∥2

]
+
∑
i

ν
(i)
2

(
1

2
Z(i,i)− d

2
q(i)− ti

)
+
∑
i

Λ(i,:)

[
Z(i,:)− 1

2
q(i)ei−Y (i,:)

]
+
∑
i

µ(i)

(
1

2
q(i)−

∥∥Y (i,:)
∥∥
2

)
.

Or equivalently, it can be written as

min
λ,λ0,ν2,Λ

β,W1,W2,ν1,µ≥0

{
λ0 +2λ+

d

2
(ν1− ν2)

Tq+
1

2
(µ−diag(Λ))Tq



ec6

+ max
Z∈S+

D+1

{
⟨Ã,Z⟩−λ0Z

(0,0)−λTr(Z)+
∑
i,j

(W
(i,j)
1 −W

(i,j)
2 +Λ(i,j))Z(i,j) +

1

2

∑
i

(ν
(i)
1 + ν

(i)
2 )Z(i,i)

}

+max
U≥0

{
−
∑
i

β(i)
∑
j

U (i,j) +
∑
i,j

(W
(i,j)
1 +W

(i,j)
2 )U (i,j)

}
+max

Y

{
−
∑
i

Λ(i,:)Y (i,:)−
∑
i

µ(i)∥Y (i,:)∥2
}

+max
y,t

{∑
i

β(i)y(i)−
∑
i

ν
(i)
1 ∥(yi; ti)∥2−

∑
i

ν
(i)
2 ti

}}
.

The inner maximization over Z can be simplified into the constraint(
−λ0

1
2
tT

1
2
t A−λID +W1−W2 +Λ+ 1

2
diag(ν1 + ν2)

)
⪯ 0.

The inner maximization over U can be simplified as

W1 +W2−diag(β)≤ 0.

The inner maximization over Y can be simplified as∑
j

(Λ(i,j))2 ≤ (µ(i))2, i∈ [D].

The inner maximization over (y, t) can be simplified as

(β(i))2 +(ν
(i)
2 )2 ≤ (ν

(i)
1 )2, i∈ [D].

Combining those relations, we arrive at the dual problem

min
λ,λ0,ν2,Λ

β,W1,W2,ν1,µ≥0

λ0 +2λ+ qT
[
d

2
(ν1− ν2)+

1

2
(µ−diag(Λ))

]
(
−λ0

1
2
tT

1
2
t A−λID +W1−W2 +Λ+ 1

2
diag(ν1 + ν2)

)
⪯ 0,

W1 +W2−diag(β)≤ 0,∑
j

(Λ(i,j))2 ≤ (µ(i))2, i∈ [D],

(β(i))2 +(ν
(i)
2 )2 ≤ (ν

(i)
1 )2, i∈ [D].

□

Proof of Theorem 3 The left-hand-side relation is easy to show. The proof for the right-hand-side
relation is separated into two parts:
• optval(15)≤ ∥t∥2 + d · {optval(10)−mink |t[k]|};
• optval(15)≤ ∥t∥2 +D/d · optval(10).
(I) For any feasible solution (q,Z) to (15), we find∑

i

t(i)Z(0,i) ≤
∑
i

|t(i)||Z(0,i)| ≤
∑
i

|t(i)|
√
Z(0,0)Z(i,i)

=
∑
i

|t(i)|
√
Z(i,i) ≤

(∑
i

|t(i)|2
)1/2(∑

i

Z(i,i)

)1/2

= ∥t∥2,
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where the first inequality is due to taking absolute values, the second inequality is because
Z ⪰ 0 and |Z(0,i)| ≤

√
Z(0,0)Z(i,i), and the last inequality is by the Cauchy-Schwarz inequality.

As a consequence, for any feasible solution (q,Z) to (15), it holds that

⟨Ã,Z⟩=
∑
i,j

A(i,j)Z(i,j) +
∑
i

t(i)Z(0,i) ≤
∑
i,j

∣∣A(i,j)
∣∣ ∣∣Z(i,j)

∣∣+ ∥t∥2. (EC.14)

On the other hand, it is easy to verify that for any i ∈ [D], the following is a feasible solution
to (10):

Zi =

(
1
ei

)(
1
ei

)T

or Zi =

(
1
−ei

)(
1
−ei

)T

,

where ei is a basis vector with the i-th element being 1. This yields

optval(10)≥max
{
A(i,i) + t(i),A(i,i)− t(i)

}
=A(i,i) + |t(i)|, ∀i∈ [D].

Therefore, we obtain

A(i,i) ≤ optval(10)− |t(i)| ≤ optval(10)−min
i∈[D]

|t(i)|,

and |A(i,j)| ≤
√
A(i,i)A(j,j) ≤ optval(10) − mini∈[D] |t(i)| for any i, j ∈ [D]. Combining this

expression with (EC.14) implies that

⟨Ã,Z⟩ ≤
∑
i,j

∣∣Z(i,j)
∣∣ ·(max

i,j

∣∣A(i,j)
∣∣)+ ∥t∥2 ≤

∑
i,j

∣∣Z(i,j)
∣∣ ·(optval(10)−min

i∈[D]
|t(i)|

)
+ ∥t∥2.

(EC.15)
Also, because of the valid inequality

(∑
j

∣∣Z(i,j)
∣∣)2

≤ dZ(i,i)q(i), it holds that

∑
i,j

∣∣Z(i,j)
∣∣≤√d∑

i

√
Z(i,i)q(i) ≤

√
d

(∑
i

Z(i,i)

)1/2(∑
i

q(i)

)1/2

= d.

Combining this relation with (EC.15) gives the desired result.
(II) For any feasible solution (Z,q) in (10), we enforce Z(0,i) = Z(i,0) = 0 for i ∈ [D], then the

updated solution is still feasible, with the associated objective value

⟨Z([D],[D]),A⟩.

Therefore, we obtain the relation

optval(10)≥ max
Z∈S+

D
,q∈Q

{
⟨Z,A⟩ : Z(i,i) ≤ q(i), i∈ [D],Tr(Z) = 1

}
≥ d/D ·λmax(A), (EC.16)

where the last inequality is due to [37, Proposition 2 and proof of Theorem 5].
For any feasible solution (Z,q) in (15), according to Part (I), it holds that∑i t

(i)Z(0,i) ≤ ∥t∥2,
and therefore

⟨Ã,Z⟩=
∑
i,j

A(i,j)Z(i,j) +
∑
i

t(i)Z(0,i) ≤ ⟨A,Z([D],[D])⟩+ ∥t∥2

≤ max
Z⪰0,Tr(Z)=1

⟨A,Z⟩+ ∥t∥2 = λmax(A)+ ∥t∥2.

Combining this relation with (EC.16) gives the desired result.
□
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Proof of Theorem 4(I). Let z∗ =
∑

i y
(i)ei be the optimal solution of (STRS), where ei is the i-th

basis vector. Then it holds that
optval(STRS)=

∑
i

y(i)
[
eTi (Az∗ + t)

]
≤
√∑

i

(y(i))2
√∑

i

(eTi (Az∗ + t))2

≤
√
dmax

i
eTi (Az∗ + t)

≤
√
dmax

i

{
max
z∈Z

eTi (Az+ t)
}

=
√
dmax

i

{
eTi (Aẑi + t)

}
,

where the last equality is because
ẑi = argmax

z∈Z
eTi (Az) = argmax

z∈Z
eTi (Az+ t).

Based on the observation above, one can assert that there exists i∈ [D] such that
√
deTi (Aẑi + t)≥ optval(STRS). (EC.17)

Next, we provide the lower bound for V(I):

V(I) =max
i

max
(
eTi Aei + eTi t, ẑ

T
i Aẑi + ẑTi t

)
≥max

i

{
max

(
eTi Aei, ẑ

T
i Aẑi

)
+min

(
eTi t, ẑ

T
i t
)}

≥max
i

{
eTi Aẑi +min

(
eTi t, ẑ

T
i t
)}

=max
i

{
eTi (Aẑi + t)+min

(
0, (ẑi− ei)

Tt
)}

≥ 1√
d
optval(STRS)+max

i
min

(
0, (ẑi− ei)

Tt
)

≥ 1√
d
optval(STRS)− 2∥t∥(d+1),

where the second inequality is becauseA⪰ 0 and 0≤ (ei− ẑi)TA(ei− ẑi) = (eTi Aei+ ẑTi Aẑi)−2eTi Aẑi,
i.e.,

eTi Aẑi ≤
1

2
(eTi Aei + ẑTi Aẑi)≤max

(
eTi Aei, ẑ

T
i Aẑi

)
,

the third inequality is due to (EC.17), and the last inequality is because ẑi − ei is a (d+ 1)-sparse
vector with ∥ẑi− ei∥2 = 2, and

max
i

min
(
0, (ẑi− ei)

Tt
)
≥−max

i
max

a: ∥a∥0≤d+1,∥a∥2≤2
aTt=−2∥t∥(d+1).

The proof is completed. □

Proof of Theorem 4(II). By [1, Theorem 1.1], the primal-dual pair (v,λ) of the trust region sub-
problem satisfies the following: 

(A−λI)v=−t
A⪯ λI

∥v∥2 ≤ 1

λ(1−∥v∥2) = 0
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Let z̄ be the d-sparse truncation of v. Then it holds that

zTAv+ tTz = zTAv+ zT(−A+λI)v

= λzTv= λzTz̄ = λ∥z̄∥2 ≥ λ

√
d

D
.

On the other hand,

zTAv+ tTz ≤
√
zTAz

√
vTAv+ tTx≤

√
zTAz ·

(
λ− tTv

)1/2

+ tTz,

where the last inequality is because (A−λI)v=−t and therefore

vTAv+ tTv= λ∥v∥22 ≤ λ.

By re-arrangement, it holds that√
d

D
λ≤
√
zTAz ·

(
λ− tTv

)1/2

+ tTz.

Or equivalently, the dual multiplier λ satisfies

d

D
λ2−

[
2

√
d

D
zTt+ zTAz

]
λ+(zTt)2 +(zTAz)(vTt)≤ 0.

Consequently,
d

D
λ2−

[
2

√
d

D
∥t∥(d) + zTAz

]
λ− (zTAz)∥t∥ ≤ 0.

The determinant of the quadratic function on the left-hand-side above is non-negative:

∆ :=

[
2

√
d

D
∥t∥(d) + zTAz

]2
+

4d

D
zTAz∥t∥ ≥ 0.

On the other hand,
√
∆≤ zTAz+2

√
d

D
∥t∥(d) +

2d

D
∥t∥2.

Hence, we find the upper bound of λ:

λ≤
2
√

d
D
∥t∥(d) + zTAz+

√
∆

2 d
D

≤ D

d
zTAz+ ∥t∥2 +

√
D

d
∥t∥(d)

≤ D

d
V(II) + ∥t∥2 +

(√
D

d
+

D

d

)
∥t∥(d).

This, together with the fact that λ≥ vTAv+ tTv≥ optval(STRS) completes the proof. □
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Proof of Theorem 5. Define the following two sets:

Td := {z ∈RD : ∥z∥2 ≤ 1,∥z∥1 ≤
√
d},

Sd := {z ∈RD : ∥z∥2 ≤ 1,∥z∥0 ≤ d}.

It has been shown in [17, Lemma 1] that there exists a factor ρ∈ (1,1+
√

d/(d+1)] such that

Td ⊆ ρ · conv(Sd).

It follows that

optval(16)≤ max
z∈ρ·conv(Sd)

{zTAz+ zTt}= max
z∈conv(Sd)

{ρ2zTAz+ ρzTt}

=max
z∈Sd

{ρ2zTAz+ ρzTt} ≤ (ρ2− ρ)∥t∥2 +max
z∈Sd

{ρ2zTAz+ ρ2zTt}

=ρ2optval(STRS)+(ρ2− ρ)∥t∥2.

□

Proof of Proposition 1. The proof of this proposition is a simple extension from [17]. □
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EC.4. Proofs of Technical Results in Section 5
Proof of Proposition 2. (I) We first verify the boundness and Lipschitz continuity conditions.

Specifically, it holds that
|Kz(x, y)| ≤

∑
s∈[D]

|z(s)| ≤max
z∈Z

∑
s∈[D]

|z(s)| ≤ max
z∈Rd: ∥z∥2=1

∑
s∈[d]

|z(s)| ≤
√
d,

where the first inequality is because |ks(x, y)| ≤ 1 for any x, y ∈R, and the third inequality is
because any vector in Z only has at most d non-zero entries. Next, we find

|Kz(x, y)−Kz′(x, y)|=

∣∣∣∣∣∣
∑
s∈[D]

(z(s)− (z′)(s))ks(x
(s), y(s))

∣∣∣∣∣∣
≤
∑
s∈[D]

|z(s)− (z′)(s)|= ∥z− z′∥1

≤
√
2d∥z− z′∥2,

where the first inequality is because |ks(x, y)| ≤ 1 for any x, y ∈R, s∈ [D], the second inequality
is because the vector z− z′ only has at most 2d non-zero entries. The remaining of Part (I) can
be proved by noting that

MMD2(µ,ν,Kz̄)≤max
z∈Z

∑
s∈[D]

z(s)MMD2(Projs#µ,Projs#ν;ks)

and
max
z∈Z

∣∣σ2
H1

(µ,ν;Kz)
∣∣≤ 8d.

(II) For quadratic kernel, we find

|Kz(x, y)| ≤ 2

∑
s∈[D]

z(s)ks(x
(s), y(s))

2

+2c2 ≤ 2d+2c2,

where the first inequality is based on the relation (a+b)2 ≤ 2a2+2b2, and the second inequality
is because in Part (I) we have shown that |∑s∈[D] z

(s)ks(x
(s), y(s))| ≤

√
d.

Besides, it holds that

|Kz(x, y)−Kz′(x, y)|=

∣∣∣∣∣∣
∑
s∈[D]

(z(s)− (z′)(s))ks(x
(s), y(s))

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
s∈[D]

(z(s) +(z′)(s))ks(x
(s), y(s))+ 2c

∣∣∣∣∣∣ .
Recall the first term on the right-hand-side can be bounded by

√
2d∥z− z′∥2, and the second

term can be upper bounded by a constant:∣∣∣∣∣∣
∑
s∈[D]

(z(s) +(z′)(s))ks(x
(s), y(s))+ 2c

∣∣∣∣∣∣
≤
∑
s∈[D]

|z(s) +(z′)(s)||ks(x(s), y(s))|+2c

≤
∑
s∈[D]

|z(s) +(z′)(s)|+2c

≤ max
v: ∥v∥0≤2d,∥v∥2≤2

∥v∥1 +2c

≤2
√
2d+2c.
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Combining those two relations gives the desired result. The remaining of Part (II) can be
proved by noting that

MMD2(µ,ν,Kz̄)≤max
z∈Z

max
z∈Z

zTA(µ,ν)z+ zTT (µ,ν)

and
max
z∈Z

∣∣σ2
H1

(µ,ν;Kz)
∣∣≤ 8(2d+2c2)2.

(III) The boundness of Gaussian kernel is easy to check. The Lipscthiz continuity condition of the
Gaussian kernel follows from [40, Lemma 20]. The remaining of Part (III) can be proved by
noting that

max
z∈Z

∣∣σ2
H1

(µ,ν;Kz)
∣∣≤ 8.

Before showing the proof of Theorem 6, we list two useful technical lemmas.
Lemma EC.1 ([25, Theorem 10]). Assume the kernel Kz(·, ·) is uniformly bounded, i.e., for any z ∈
Z, x, y ∈Ω, it holds that |Kz(x, y)| ≤M . For fixed z ∈Z, with probability at least 1− δ,∣∣∣S2(xn,yn;Kz)−MMD2(µ,ν;Kz)

∣∣∣≤ 16M√
2n

√
log

2

δ
.

Lemma EC.2 ([40, Lemma 17 and 18]). Assume the kernel Kz(·, ·) is uniformly bounded, i.e., for any
z ∈Z, x, y ∈Ω, it holds that |Kz(x, y)| ≤M . For fixed z ∈Z, with probability at least 1− δ,∣∣∣σ̂2

H1
(xn,yn;Kz)−σ2

H1
(µ,ν;Kz)

∣∣∣≤ 448

√
2

n
log

2

δ
+

1152M 2

n
.

Proof of Theorem 6 We first consider an ϵ-cover of Z, denoted as {zi}i∈[T ]. According to the defini-
tion of Z, it can be shown that T ≤

(
D
d

)
(4/ϵ)d. Applying the union bound regarding the concentration

inequality in Lemma EC.1, we obtain with probability at least 1− δ,

max
z∈{zi}i∈[T ]

∣∣∣S2(xn,yn;Kz)−MMD2(µ,ν;Kz)
∣∣∣≤ 16M√

2n

√
log

2T

δ
.

For any z ∈Z, there exists z′ from {zi}i∈[T ] such that ∥z−z′∥2 ≤ ϵ. Based on the Lipschitz assumption
regarding the kernel function, we find with probability at least 1− δ, it holds that

sup
z∈Z

∣∣∣S2(xn,yn;Kz)−MMD2(µ,ν;Kz)
∣∣∣

≤ max
z∈{zi}i∈[T ]

∣∣∣S2(xn,yn;Kz)−MMD2(µ,ν;Kz)
∣∣∣+8Lϵ

≤16M√
2n

√
log

2T

δ
+8Lϵ

≤16M√
2n

√
log

(
D

d

)
2

δ
+ d log

4

ϵ
+8Lϵ.

Setting ϵ= 1/
√
n gives the desired result.

Next, applying the union bound regarding the concentration inequality in Lemma EC.2, we obtain
with probability at least 1− δ,

max
z∈{zi}i∈[T ]

∣∣∣σ̂2
H1

(xn,yn;Kz)−σ2
H1

(µ,ν;Kz)
∣∣∣≤ 448

√
2

n
log

2T

δ
+

1152M 2

n
.
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Similar as in the first part, we find with probability at least 1− δ, it holds that

sup
z∈Z

∣∣∣σ̂2
H1

(xn,yn;Kz)−σ2
H1

(µ,ν;Kz)
∣∣∣

≤ max
z∈{zi}i∈[T ]

∣∣∣σ̂2
H1

(xn,yn;Kz)−σ2
H1

(µ,ν;Kz)
∣∣∣+512LMϵ

≤448
√

2

n
log

2T

δ
+

1152M 2

n
+512LMϵ

≤448
√

2

n
log

(
D

d

)
2

δ
+

2

n
d log

4

ϵ
+

1152M 2

n
+512LMϵ.

Also, setting ϵ= 1/
√
n gives the desired result.

Proof of Theorem 7. To simplify notation, let us define the population version of the objective in
(7) as follows:

F ∗(z) =MMD2(µ,ν;Kz)−λσ2
H1

(µ,ν;Kz).

We first derive the lower bound of F ∗(ẑTr) in terms of F ∗(z̄) with z̄ defined in Assumption 2 using
concentration analysis. It is clear that |F ∗(z)− F (z)| ≤ ϵn,δ/2 with probability at least 1− δ. As a
consequence, with probability at least 1− δ, it holds that

F ∗(ẑTr)≥ F (ẑTr)− ϵnTr,δ/4 ≥ F (z̄)− ϵnTr,δ/4 ≥ F ∗(z̄)− 2ϵnTr,δ/4, (EC.18)

where we use this observation in the first and last inequalities, and the second inequality is because
of the sub-optimality of z̄. Now we are ready to show part (I) of this theorem. By definition, we find

E[TnTe
] =MMD2(µ,ν;KẑTr

)

= F ∗(ẑTr)+λσ2
H1

(µ,ν;KẑTr
)≥ F ∗(ẑTr)+λmin

z∈Z
σ2
H1

(µ,ν;Kz).

Combining the relation above and (EC.18) implies that, with probability at least 1− δ, it holds that

E[TnTe
]≥ F ∗(z̄)− 2ϵnTr,δ/4 +λmin

z∈Z
σ2
H1

(µ,ν;Kz) =∆z̄ − 2ϵnTr,δ/4.

The second part of this theorem follows from [25, Theorem 12]. □

Lemma EC.3 (Asymptotics of Inverse Error Function [19]). Denote by S(x) the inverse of the error
function

Φ(x) :=
1√
2π

∫ x

−∞
e−t2/2 dt.

As x→ 1, it holds that

S(x)→
√
LW

(
1

2π(x− 1)2

)
,

where LW(x) denotes the function Lambert W (x) admiting the series expansion

LW(x) =
∑
n≥1

(−1)n−1

n!
xn.

Specifically, LW(x)→ ln(x)− ln ln(x) as x→∞.
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Proof of Theorem 8. It is worth noting that

P(TnTe
> tthres) = P

(
TnTe

>
τ

nTe

)
= 1−P

(√
nTe(TnTe

−ETnTe
)

σH1

≤ τ

σH1

√
nTe

−
√
nTeETnTe

σH1

)
≥ 1−Φ

(
τ

σH1

√
nTe

−
√
nTeETnTe

σH1

)
− Cρ

σ3
H1

√
nTe

,

where for the inequality above we apply the Berry–Esseen theorem to argue that the distribution
of √nTe(TnTe

− ETnTe
)/σH1

can be approximated as the normal distribution with residual error
O(1/

√
nTe). Therefore, as long as we ensure that

τ

σH1

√
nTe

−
√
nTeETnTe

σH1

≤Φ−1(ϵ)⇐⇒ETnTe
≥ τ

nTe

+
Φ−1(1− ϵ)√

nTe

,

it holds that the testing power is lower bounded:

P(TnTe
> tthres)≥ 1− ϵ− Cρ

σ3
H1

√
nTe

.

Taking ϵ = 1/
√
nTe and applying the asymptotic formula on the inverse cdf Φ−1(·) in Lemma EC.3

gives the desired result. The type-I risk upper bound follows a similar argument. □
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