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Abstract

In the paper [Torrealba, E.M.R. et al. Augmented Lagrangian algorithms for solv-
ing the continuous nonlinear resource allocation problem. EJOR, 299(1) 46–59, 2021]
an augmented Lagrangian algorithm was proposed for resource allocation problems
with the intriguing characteristic that instead of solving the box-constrained aug-
mented Lagrangian subproblem, they propose projecting the solution of the uncon-
strained subproblem onto such box. A global convergence result for the quadratic
case was provided, however, this is somewhat counterintuitive, as in usual augmented
Lagrangian theory, this strategy can fail in solving the augmented Lagrangian sub-
problems. In this note we investigate further this algorithm and we show that the
proposed method may indeed fail when the Hessian of the quadratic is not a multiple
of the identity. In the paper, it is not clear enough that two different projections
are being used: one for obtaining their convergence results and other in their imple-
mentation. However, despite the lack of theoretical convergence, their strategy works
remarkably well in some classes of problems; thus, we propose a hybrid method which
uses their idea as a starting point heuristics, switching to a standard augmented La-
grangian method under certain conditions. Our contribution consists in presenting
an efficient way of determining when the heuristics is failing to improve the KKT
residual of the problem, suggesting that the heuristic procedure should be abandoned.
Numerical results are provided showing that this strategy is successful in accelerating
the standard method.
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1 Introduction

The knapsack problem is the minimization problem of

Minimize
∑
xT y,

s.t. bTx = c,
x ∈ {0, 1},

(1)

originally it was formulated as the problem of best fitting several items on a knapsack
while attaining its maximum capacity, hence the name. Throughout the years this prob-
lem has been well studied with applications in several fields such as economics, engineering
and computer theory. It also appears as subproblems in several applications, such as in
equilibration procedures for traffic flows (see [Lotito (2006)]) and so on. The knapsack
problem has been extended to broader classes of functions, including separable or just
convex functions, as seen in [Hochbaum (1995)]; and substituting the integer constraints
for other discrete sets, or continuous bounded sets such as boxes. Whenever the inte-
ger condition is substituted by a continuous box, the problem is referred as “continuous
knapsack problem”. For a survey on the matter see [Patriksson (2008)].

There are several methods tailored to this class of problems, and due to its particular
structure, a solution can be found very quickly in comparison to using a general purpose
algorithm. Continuous knapsack problems may be classified in several different subclasses,
with different algorithms and applications, as exploited in [Bretthauer and Shetty (2002)].
In this paper we address the continuous quadratic resource allocation problem.

When the problem is separable, one may consider the pegging method, see for instance
[Bretthauer and Shetty (2002)], branch and bound methods as in [Li and Sun (2006)],
or Newton type methods such as [Cominetti et al. (2014)]. Lagrange multiplier meth-
ods for non-separable problems can be found in [Bretthauer and Shetty (2002)], or in
[Patriksson and Strömberg (2015)]. A complete open source library for the general case
is available in [Frangioni and Gorgone (2013)]. In [Torrealba et al. (2021)] an augmented
Lagrangian method for non-separable problems was proposed. Namely, they considered
the problem

Minimize f(x),
s.t. bTx = c,

` ≤ x ≤ u,
(2)

where f : Rn → R is a continuously differentiable convex function and b, `, and u are vec-
tors in Rn with c ∈ R. Considering the Powell-Hestenes-Rockafellar augmented Lagrangian
function L(x, λ, r) = f(x) + λ(bTx− c) + r

2(bTx− c)2 corresponding to penalization of the
equality constraints, a standard augmented Lagrangian method would define a sequence of
penalty parameters {rk} and a sequence of approximate Lagrange multipliers {λk} in or-
der to define a sequence of approximate solutions {xk} by means of approximately solving
the sequence of subproblems

Minimize L(x, λk, rk),
s.t. ` ≤ x ≤ u. (3)
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In [Torrealba et al. (2021)], the authors propose defining the sequence {xk} alternatively
by

xk = Π[`,u](arg min
x∈Rn

L(x, λk, rk)), (4)

however, the projection operator Π[`,u](·) onto the box [`, u] is used in the paper some-
what loosely, as in their experiments they considered it to mean the Euclidean projection,
whereas in their convergence results, more specifically on the quadratic case, they consid-
ered the functions

f(x) :=
1

2
xTPx− aTx, (5)

with a ∈ Rn and P a positive definite matrix, and the projection is taken with respect
to the so-called P -norm, which is defined by ‖u‖P :=

√
uTPu for all u ∈ Rn. When

considering the Euclidean projection, the authors were able to present a somewhat simple
formula for computing (4), which makes the strategy appealing, whereas computing the
projection with respect to the P -norm may be as hard as solving the standard subproblem
(3). Unfortunately, when xk is computed with the Euclidean projection, this strategy may
fail, as shown in the next example.

Example 1.1 Consider the problem

Minimize f(x, y, z) := x2 − 2xy + 2y2 + z2,
s.t. z = 0,

(1, 0,−1) ≤ (x, y, z) ≤ (5, 1, 1).
(6)

The augmented Lagrangian function for this problem is given by

L(x, y, z, λ, r) := x2 − 2xy + 2y2 + z2 + λz +
r

2
z2,

whose gradient with respect to (x, y, z) is given by

∇L (x, y, z, λ, r) =

 2x− 2y
−2x+ 4y

(2 + r)z + λ

 .
In order to compute (4), one must first solve the system ∇L(x, y, z, λ, r) = 0, which clearly
gives x = y = 0 and z = − λ

2+r . Thus, when using the Euclidean projection in (4), one

arrives at the point (1, 0,max{−1,min{1, z}})T . Assuming that the algorithm converges
to a feasible point, it can only converge to (1, 0, 0)T , which is not a solution of the problem
(notice that f(1, 12 , 0) < f(1, 0, 0), with (1, 12 , 0) being the actual solution).

In fact, the direction xk+1 − xk found by the algorithm in [Torrealba et al. (2021)]
using the Euclidean projection may not even be a descent direction, as is shown in the
extreme example below, where we start at the solution of the problem (minimizer) and
converge to a maximizer instead.
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Example 1.2 Consider the problem

Minimize f(x, y) := 45x2/2− 20xy + 5y2 + 30x− 20y,
s.t. y = 1,

(0, 0) ≤ (x, y) ≤ (1, 1).

One can check that the minimizer for this problem is (0, 1)T while (1, 1)T is the maximizer.
Starting the algorithm at the minimizer with λ = 0 and r = 1, and iterating as (4) with
the Euclidean projection the method converges to the maximizer point (1, 1)T satisfying
both stopping criteria in [Torrealba et al. (2021)] already in the first iteration.

It is important to emphasize that the convergence theory for the quadratic case in
Section 2 of [Torrealba et al. (2021)] is not wrong, it is in fact correct if one uses (4)
with projection with respect to the P -norm, however it is not clear how one would be
able to compute this projection efficiently. Examples 1.1 and 1.2 illustrate that defin-
ing an augmented Lagrangian iteration with the iterate xk given by (4) may not work
in general using the Euclidean projection. In the examples presented in Section 4.3 of
[Torrealba et al. (2021)] they considered quadratic functions (5) with P being a multiple
of the identity matrix, which implies that the Euclidean projection coincides with the pro-
jection with respect to the P -norm. Thus those numerical results are consistent with their
theory. However, for the problems in Section 4.2 of [Torrealba et al. (2021)], a full matrix
P is taken from the literature, which does not imply equality of the aforementioned pro-
jections. Despite that, surprisingly, numerical convergence to a solution is still achieved.
In fact, even though the augmented Lagrangian subproblems are not being solved, the
method somehow is able to converge to a solution. We show a particular example of this
behavior in the next example:

Example 1.3 Consider the problem

min 1
2x

TPx− aTx,
s.t x+ y = 0,

(0,−1) ≤ (x, y) ≤ (5, 1),

with P =

[
3 1
1 3

]
, a = (4,−4)T .

Applying the algorithm from [Torrealba et al. (2021)] using the Euclidean projection
to this problem with x0 = (0, 1)T and λ = 1, the sequence {xk} generated converges to the
actual solution (1,−1)T , yet ‖P[`,u](x

k − ∇L(xk, λk, rk))‖ = 1 for every k, which means
that the augmented Lagrangian subproblems (3) are not being solved. This behavior is
possible due to the fact that the generated sequence of approximate Lagrange multipliers
{λk} does not approximate the correct value λ = 2. The behavior is the same even if one
starts the algorithm at the true Lagrange multiplier at the solution.

In the next section we propose a hybrid algorithm which uses the algorithm from
[Torrealba et al. (2021)] unless it starts to fail in solving the original problem. That is, we
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compute xk by (4) using the Euclidean projection, benefiting from the efficiency of the pro-
posal in [Torrealba et al. (2021)], and then we monitor the progress in solving the original
problem in terms of its KKT residual. This can be done by finding suitable approximate
Lagrange multipliers associated with xk by means of a least squares procedure, which we
show that has a closed form solution. Once it is detected that an iterate xk fails in reducing
the KKT residual, the method may switch to any other strategy with guaranteed conver-
gence. We show that this hybrid strategy when combined with a standard augmented
Lagrangian or with the multiplier search method as in [Bretthauer and Shetty (2002)]
outperforms the corresponding standard method and is more robust than the algorithm
introduced in [Torrealba et al. (2021)].

2 A Hybrid General Framework

As previously mentioned, one should compute an iterate xk by means of (4) using the pro-
jection with respect to the P -norm in order for the algorithm in [Torrealba et al. (2021)]
to enjoy global convergence. However, in most cases, computing this projection is in-
tractable. It turns out that by using the Euclidean projection instead, this computation
is straightforward. Thus, we will investigate the use of the Euclidean projection in (4) as
an heuristic for speeding up the standard augmented Lagrangian method.

Since we do not expect xk as computed in (4) to solve the corresponding subproblem
of the augmented Lagrangian (3), even when the method performs well, we must devise a
way of checking whether the iterates computed in this way are successful or not. If not,
one should abandon the heuristic and solve (3) with a standard method. We do so by
measuring the progress of x := xk in satisfying the Karush-Kuhn-Tucker (KKT) conditions
of the original problem (2), when the objective function is the quadratic (5), which states
that x is feasible for (2) and there must exist Lagrange multipliers λ ∈ R and µ ∈ Rn such
that

Px− a+ λb+ µ = 0, (7)

µi ≤ 0 if xi = `i, µi ≥ 0 if xi = ui, and µi = 0 otherwise, i = 1, · · · , n. (8)

Here, λ is the Lagrange multiplier with respect to the equality constraint while µ is the
Lagrange multiplier with respect to the box constraints ` ≤ x ≤ u. Since feasibility is
already being controlled by the augmented Lagrangian, we shall monitor the KKT-residual
of an iterate xk by means of how well equations (7) and (8) are being satisfied at x := xk

for a suitable choice of λ and µ.
As the multiplier generated by the algorithm presented in [Torrealba et al. (2021)] may

not converge to the correct multiplier, we developed an efficient way to check the KKT
residual in xk. More precisely, for x := xk, we shall compute a least squares solution (λ, µ)
of (7)-(8) and measure the corresponding residual. The sign constraints on µ are ignored
in computing the least squares solution, which is then projected onto the appropriate
orthant, while for inactive constraints the multiplier is forced to be zero.

In order to do so, we deal first with (8) by considering the set I ⊆ {1, · · · , n} of active
constraints at xk, that is, the set of indexes i such that (xk)i = `i or (xk)i = ui and we
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define µi = 0 for all i 6∈ I. For simplicity of notation, let us assume that I = {1, . . . , q} ⊆
{1, . . . , n}. Denoting v = a− Pxk, we may write (7) as the linear system[

Iq b

0 b̃

] [
µ
λ

]
=

[
v
ṽ

]
, (9)

where Iq is the identity matrix of size q × q and we consider the partition of the vectors

bT = [b
T

b̃T ] and vT = [vT ṽT ] in their first q components and the remaining ones. The
vector µ represents the first q components of µ, being the remaining ones equal to zero.

Since (9) is not expected to have a solution, we compute its least squares solution,
whose corresponding normal equation reads as follows:[

Iq b

b
T ‖b‖2

] [
µ
λ

]
=

[
v
bT v

]
. (10)

We can now solve the system by performing an elementary row operation on (10),
arriving at the equivalent system[

I b

0T ‖b‖2 − ‖b‖2
] [

µ
λ

]
=

[
v

bT v − bT v

]
, (11)

which gives

λ =
b̃T ṽ

‖b‖2 − ‖b‖2
(12)

and

µ = v − λb. (13)

In order to address the sign constraint in (8), we project µ onto the appropriate orthant.
That is, we redefine µ as µi := max{0, µi} when (xk)i = ui, and µi := min{0, µi} when
(xk)i = `i for all i ∈ I. Notice that when xk is a minimizer of (2) with a unique Lagrange
multiplier associated, this procedure is capable of computing the multiplier with the correct
sign.

Then, after computing λ and µ in this way, we define the KKT-residual εk+1 at each
iterate xk by

εk+1 := ‖Pxk − a+ λb+ µ‖. (14)

Notice that when ‖b‖ = ‖b‖ this process fails and we simply set εk+1 := +∞. Note that
this is a rather peculiar pathological situation, as it could only happen if all variables have
values equal to one of their bounds, which would imply that we have n+1 active constraints
at xk. Now, to state our hybrid strategy, we evaluate whether the heuristic in computing
xk by (4) using the Euclidean projection is efficient in reducing the KKT-residual at each
iteration, that is, if εk+1 ≤ γεk where γ < 1 is predefined. If so, we continue with the
heuristic, otherwise we switch to solving the augmented Lagrangian subproblem (3). The
full algorithm with this modification is stated below.
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Algorithm 1 Hybrid augmented Lagrangian algorithm for the resource allocation
problem

Step 0. Choose λmin ∈ R, λmax ∈ R, λ0 ∈ [λmin, λmax], γ < 1, r0 > 0, θ ∈ (0, 1), β > 1,
k0 ≥ 0, and ε ≥ 0, and set k := 0.

Step 1. If k ≤ 1 or εk ≤ γεk−1, compute the iterate xk according to the following
procedure:

1.1) Find x̄k as a solution of min{L(x, λk, rk) : x ∈ Rn}.
1.2) Compute using the Euclidean projection:

xk = Π[`,u](x̄
k −∇xL(x̄k, λk, rk)).

Otherwise, switch to a standard augmented Lagrangian method, that is, from this
point onwards, this step consists of finding xk by approximately solving subproblem
(3) by any method of choice.

Step 3. Compute a new approximation of the Lagrange multiplier, according to:

λk+1 = max{λmin,min{λmax, λk + rk(b
Txk − c)}}.

Step 4. Update the penalty parameter:

rk+1 =

{
rk, if k ≤ k0 or |h(xk)| ≤ θ|h(xk−1)|
βrk, otherwise

where h(x) = bTx− c.

Step 5. Compute the KKT residual: Use the least squares procedure described to com-
pute λ and µ (formulas (12) and (13)), and compute εk+1 by (14).

Step 6. Test the stopping criterion: If |bTxk − c| < ε and ‖xk − xk−1‖ < ε, then stop.
Otherwise set k := k + 1 and return to Step 1.

The next result states that the hybrid procedure given by Algorithm 1 converges to a
solution of problem (2).

Theorem 2.1 The sequence {xk} generated by Algorithm 1 converges to a solution of the
original Problem (2).

Proof: Indeed, if εk > γεk−1 on an interaction, then the convergence is guaranteed by the
standard method in Step 3 (see Theorem 5.2 in [Birgin and Martinez (2014)]), therefore,
we can assume that εk → 0, meaning that Pxk − a + λb + µ → 0. This implies that the
sequential approximate KKT (AKKT) condition is satisfied.
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In addition, the feasibility is guaranteed by construction, by Step 1.

Also, since the multiplier components µ are redefined as µi := max{0, µi} when
(xk)i = ui, and µi := min{0, µi} when (xk)i = `i for all i ∈ I, we also guarantee the
complementarity inequalities.

In other words, the sequence converges to an approximate AKKT point for Problem
(2), and since there is only one linear constraint, we have that the sequence converges to
a solution of Problem (2) (see for instance [Andreani et. al. (2009)]). 2

3 Numerical Experiments

In this section we perform some numerical experiments illustrating the robustness and
effectiveness of Algorithm 1 and a variation of it which we describe later. All the exper-
iments were ran with Matlab on an Intel Core i7-8565U 1.99 GHz. The objective of this
experiments is showing both that the original algorithm of [Torrealba et al. (2021)] may
fail on the general quadratic when using the Euclidean projection as well as illustrating
that the hybrid approach performs well on all cases. In all tests the original algorithm of
[Torrealba et al. (2021)] was ran with the Euclidean projection.

In our first test, we illustrate that the original method in [Torrealba et al. (2021)] may
either perform well or very poorly depending on the structure of the problem. We select
two sets of problems and run the algorithm proposed in [Torrealba et al. (2021)] (abbrevi-
ated Alg), which corresponds to Algorithm 1 but where Step 1 is always computed using
the heuristic approach (4), never switching to solving subproblem (3). We compare it
with a standard augmented Lagrangian approach (abbreviated AL), where Step 1 of Al-
gorithm 1 is replaced by directly solving subproblem (3) at every iteration, using Matlab’s
optimization toolbox with standard settings.

In each set of problems, we chose 100 randomly generated convex quadratic objective
functions with structure defined as in (5). For each problem, entries of vector a were
randomly generated in the interval [0, 1], while constraint vector b and the initial point
to run each method were taken as e, the vector of ones in Rn, with n = 500. Entries of
matrix P were randomly generated on [0, 0.1], with P being redefined as P TP + I in order
to ensure positive definiteness. For both methods we used ε = 10−4, γ = 0.9, and k0 was
chosen large enough so that r = 1 was maintained constant, as in the implementation
in [Torrealba et al. (2021)]. This also dismisses the choice of the parameters θ and β.
Finally, for the first set of 100 problems we considered the constraints defined by the box
[`, u] = [−n

2 e,
n
2 e] with c = 0, while for the second set of 100 problems we considered a

displacement of this constraint by considering [`, u] = [0, ne] and c = n. Finally, in Step
6, we considered an additional stopping criterion of a maximum of 1000 iterations for both
methods.

In Figure 1a) we show the performance profile of the results on the first set of problems
while Figure 1b) shows the correspondent results on the second set of problem. We can
see that Alg is able to compete with AL in the first set of problems, being slightly more
efficient and solving almost all problems. However, in the second test, Alg performed
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considerably poorer than AL, being able to solve only circa 40% of the problems in less
than 50 times the time taken by AL.
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(a) Set 1: [`, u] = [−n
2 e,

n
2 e] and c = 0. (b) Set 2: [`, u] = [0, ne] and c = n.

Figure 1: Comparison of the standard augmented Lagrangian (AL) and the heuristic ap-
proach proposed in [Torrealba et al. (2021)] (Alg) on two sets of constraints and 100
randomly generated convex problems.

Figure 1 illustrates that the performance of the algorithm in [Torrealba et al. (2021)]
may drastically depend on the structure of the problem, which emphasizes the need of con-
sidering the hybrid approach of Algorithm 1 instead. It also suggests that the convergence
theory of this method with the Euclidean projection should be further investigated in the
sense of detecting larger classes of problems where the algorithm is able to perform well.
Notice that in the test set depicted in Figura 1a), the method is still able to perform quite
well despite the fact that the euclidean projection does not coincide with the projection
with respect to the P -norm.

In our second test, we considered the behavior of the hybrid approach we presented in
Algorithm 1 (which we abbreviate as Hyb-AL) in comparison with the standard augmented
Lagrangian approach (AL) and the original algorithm in [Torrealba et al. (2021)] (Alg).
The test set is choosen similarly as before but with a mixture of constraints where Alg

behaves well or poorly, that is, we considered 50 randomly generated problems with the
structure described in Figure 1a) and 50 randomly generated problems as described in
Figure 1b). The results are shown in Figure 2a) where we can see that Hyb-AL is able
to quickly switch to the standard augmented Lagrangian whenever the heuristic is failing
without hindering its performance.

Finally, in Figure 2b), we present the results on this same test of problems but con-
sidering a different method instead of the augmented Lagrangian approach. That is, we
considered Algorithm 1 but in Step 1, when the heuristic approach fails in reducing the
KKT-residual, we stop the execution and resort to a different method from this point on-
wards. The method we considered is a version of the multiplier search method as described
in [Bretthauer and Shetty (2002)], where the idea is solving the equation bTx(λ) = c using
a root finding algorithm, where x(λ) is the projection onto the box constraint of the solu-
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tion x of Px−a+λb = 0. We used the Regula Falsi method as the root finding algorithm
(see [Bretthauer and Shetty (2002)] for details). We then compare the hybrid algorithm
built in this way (Hyb-Reg), the original algorithm of [Torrealba et al. (2021)] (Alg), and
the pure multiplier search method (Reg), where the results are shown in Figure 2b). There,
we can see that the proposed heuristic is able to accelerate the multiplier search method
considerably, being the most efficient method for circa 80% of the problems.

5 10 15 20 25 30 35 40 45 50

at most  x × (the time of the other methods)

0

0.2

0.4

0.6

0.8

1

%
 o

f 
p

ro
b

le
m

s

Performance Profiles (100  problems) (time)

Hyb-AL

AL

Alg

5 10 15 20 25 30 35 40 45 50

at most  x × (the time of the other methods)

0

0.2

0.4

0.6

0.8

1

%
 o

f 
p

ro
b

le
m

s

Performance Profiles (100  problems) (time)

Hyb-Reg

Reg

Alg

(a) Comparison with augmented Lagrangian strategy (b) Comparison with multiplier method using regula falsi

Figure 2: Comparison of the heuristic approach proposed in [Torrealba et al. (2021)]
(Alg), the hybrid strategy (Hyb-AL or Hyb-Reg) based on Algorithm 1, and the respective
pure solver (AL or Reg) on a collection of 100 randomly generated problems from a mixture
of constraints from both sets of problems described in Figure 1.

In Figure 2 we can see that the hybrid approach is able to accelerate the method of
choice, switching to the original method once it detects failure of the heuristic. This is
done in such a way that, even when the heuristic fails, the extra work at each step is
negligible in comparison with the computation done by the original method. Thus our
heuristic approach is able to preserve robustness of the original method while also carrying
out the efficiency of the heuristic approach.

In the last experiment, we illustrate that the original algorithm (and by extension, the
hybrid algorithm) may perform better than the augmented Lagrangian in some cases. This
happens for instance on problems where the P -norm coincides with the Euclidean norm
such as the ones in Section 4.1 of [Torrealba et al. (2021)]. However, for random diagonal
matrices, which not necessarily have the P -norm coinciding with the Euclidean norm,
our experiments showed that the original algorithm may also outperform the classical
augmented Lagrangian despite not having theoretical support.

We run the original algorithm of [Torrealba et al. (2021)] (Alg), the augmented La-
grangian (AL), and the hybrid method (Hyb-AL) such as in the experiments reported
in Figure 2a). However, we generated 100 problems of dimension n = 1000 with box
[`, u] = [0, e], c = 0, and P a random matrix with entries generated in the same way as
before. The difference is that with a probability of 50%, we replace P by its diagonal.
The expectation is that on a mixed profile like that, the hybrid algorithm would make the
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most of the original and the augmented Lagrangian counterparts for each type of problem
(full or diagonal). For the rest of the parameters we used the same as in the previous
experiments. We report the results in Figure 3. We see that indeed the hybrid algorithm
outperforms both the augmented Lagrangian and the heuristic approach in this profile.
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Figure 3: Comparison of the heuristic approach proposed in [Torrealba et al. (2021)]
(Alg), the hybrid strategy (Hyb-AL) described in Algorithm 1, and the augmented La-
grangian method (AL) on a collection of 100 randomly generated problems with a 50%
chance of having a diagonal structure.

4 Conclusions

In this note we highlight that in the paper [Torrealba et al. (2021)], two different projec-
tions are being used somewhat loosely, where they suggest, instead of solving an augmented
Lagrangian subproblem, to first solve an unconstrained version of it and then project its
solution onto its corresponding feasible set. In the quadratic case, the paper shows con-
vergence by means of using the projection with respect to the P -norm, where P is the
Hessian of the objective function, however there is no easy way to compute this. In their
numerical experiments, the Euclidean projection is used without much explanation, where
the algorithm behaves well. We can explain their results by noticing that they consid-
ered mostly the case where P is a multiple of the identity, which guarantees that both
projections are the same.

Thus we suggested a hybrid strategy combining computation of the iterate using the
Euclidean projection and a standard augmented Lagrangian method. A new efficient pro-
cedure to measure the success of the computation of the iterate taking the KKT conditions
of the problem into consideration is devised, which gives a cheap criterion for switching to
the standard augmented Lagrangian or any other method of choice whenever the heuristic
approach is failing. In our numerical experiments we show that this strategy was success-
ful in accelerating the standard augmented Lagrangian method and the multiplier search
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method.
On the case that P is not diagonal, our tests show that for certain positions of the

box (Figure 1a)), the procedure works well despite the inconsistency on the projections.
Nevertheless, it is still not clear whether one can find a full class of problems where the
Euclidean projection is different from the projection with respect to the P -norm, yet the
approach of [Torrealba et al. (2021)] may be proved to work without using a safeguarding
procedure. This topic makes for interesting further investigation.
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