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Abstract

In this work we investigate the min-max-min robust optimization problem and the k-
adaptability robust optimization problem for binary problems with uncertain costs. The idea
of the first approach is to calculate a set of k feasible solutions which are worst-case optimal
if in each possible scenario the best of the k solutions is implemented. It is known that the
min-max-min robust problem can be solved efficiently if k is at least the dimension of the
problem, while it is theoretically and computationally hard if k is small. However, nothing
is known about the intermediate case, i.e. k lies between one and the dimension of the
problem. We approach this open question and present an approximation algorithm which
achieves good problem-specific approximation guarantees for the cases where k is close to
or where k is a fraction of the dimension. The derived bounds can be used to show that the
min-max-min robust problem is solvable in oracle-polynomial time under certain conditions
even if k is smaller than the dimension. We extend the previous results to the robust k-
adaptability problem. As a consequence we can provide bounds on the number of necessary
second-stage policies to approximate the exact two-stage robust problem. We derive an
approximation algorithm for the k-adaptability problem which has similar guarantees as
for the min-max-min problem. Finally, we test both algorithms on knapsack and shortest
path problems and related two-stage variants. The experiments show that both algorithms
calculate solutions with relatively small optimality gap in seconds.

Robust Optimization Min-max-min K-adaptability Approximation Algorithm

1 Introduction

Integer optimization problems nowadays emerge in many industries as production, health care,
disaster management or transportation, just to name a few. The latter problems are tackled by
companies, non-profit organizations or governmental institutions and providing good solutions is
a highly relevant topic in our society. Usually solving optimization problems in practice involves
uncertainties which have to be incorporated into the optimization model. Typical examples are
uncertain traffic situations, demands or failures of a network. The optimization literature pro-
vides several ways to model uncertainties, e.g. stochastic optimization [12], robust optimization
[4] or distributionally robust optimization [44, 29].

In robust optimization we assume that all possible realizations of the uncertain parameters
are contained in a given uncertainty set and the aim is to find a solution which is optimal in the
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worst-case and feasible for all possible scenarios in the uncertainty set. The robust optimization
approach was intensively studied for convex and discrete uncertainty sets; see e.g. [6, 7, 11, 10,
34, 2, 17]. Despite its success it can be too conservative since the calculated robust solution has
to hedge against all scenarios in the given uncertainty set, which can lead to bad performances in
the mean scenario. To overcome this problem several new robust models have been introduced;
see e.g. [5, 24, 36, 1].

In this work we study the min-max-min robust optimization problem, which was first intro-
duced in [15] to overcome the conservativeness of the classical robust approach. We consider
deterministic optimization problems

min
x∈X

c>x (P)

where X ⊆ {0, 1}n is the set of incidence vectors of all feasible solutions and c ∈ Rn+ is an
uncertain cost-vector which we assume is contained in a given convex uncertainty set U ⊆ Rn+.
Note that most of the combinatorial problems can be modeled as binary problems and that the
restriction to binary variables is theoretically no limitation as general integer variables can be
modeled by binary variables using binary encoding.

Similar to the idea of k-adaptability ([8, 32, 43]) the main idea of the min-max-min robust
optimization problem is to hedge against the uncertainty in the cost-vector in a robust manner,
i.e. considering the worst-case costs over all scenarios in U , while providing more flexibility
compared to the classical robust approach since multiple solutions are calculated and can be
used to react to the emerging uncertain scenarios. In contrast to the k-adaptability problem the
min-max-min robust approach does not consider two-stage structures and is therefore tailored for
binary problems where no second-stage decisions exist, i.e. where a set of complete solutions has
to be prepared in advance. This can be inevitable in many applications regarding the construction
of transportation plans, e.g. evacuation plans for buildings, airports or cities [18, 39, 37, 38] or
route plans for robot systems [40]. Note that the restriction to objective uncertainty is still
an interesting case since despite many combinatorial problems, also real-world problems appear
which can be modeled by objective uncertainty (see e.g. [41]). Furthermore recent works on
two-stage robust optimization indicate that it is possible to use Lagrangian relaxation to shift
uncertain constraints into the objective function; see [42, 35].

Since 2015 the min-max-min robust approach was studied for several uncertainty sets and
combinatorial problems. It was studied for convex uncertainty sets in [15, 14] and for discrete
uncertainty sets in [16]. Regarding its complexity and solvability the min-max-min robust prob-
lem is a very interesting problem due to the unusual connection between its problem parameters
and its complexity. A reasonable assumption would be that the problem gets harder to solve
with increasing k. However this is not true from a theoretical as well as from a computational
point of view. While for discrete uncertainty sets it is weakly or strongly NP-hard for most of
the classical combinatorial problems [16], in the case of convex uncertainty the problem can be
solved in polynomial time if k ≥ n and if (P) can be solved in polynomial time [15]. On the other
hand it is NP-hard for each fixed k ∈ N even if U is a polyhedron. The authors in [15] present an
efficient algorithm for the case k ≥ n and a fast heuristic for each fixed k ∈ N. Later in [19] it was
shown that the problem can be solved in polynomial time for several combinatorial problems if U
is a convex budgeted uncertainty set and k = 2. In [20] faster exact and heuristic algorithms for
the same uncertainty set were presented. For the discrete budgeted uncertainty set the authors
in [28] derive exact and fast heuristic algorithms and show that the problem is weakly or strongly
NP-hard for most of the classical combinatorial problems. For binary uncertainty sets defined
by linear constraints it was shown in [21] that the min-max-min robust problem is Σp2-complete.
Recently an efficient exact algorithm based on smart enumeration was derived in [3] for problems
where X does not contain too many good solutions. In [23] the min-max-min robust problem
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was applied to the vehicle routing problem where a set of k possible routes has to be prepared
in advance which are robust to uncertain traffic scenarios. The idea of the min-max-min robust
approach was also applied to the regret robust approach in [22].

However, no efficient algorithms are known which solve the min-max-min problem for any
k ∈ N efficiently with a certain approximation guarantee. Furthermore nothing is known about
the complexity of the problem if k has intermediate size.

As mentioned above the min-max-min problem has a similar structure as the k-adaptability
problem which was introduced in [8] to approximate two-stage robust optimization problems
with integer second-stage variables (recently a short note on the incorrectness of the continuity
assumption made in the latter paper appeared [33]). The idea is to calculate k second-stage
policies already in the first stage and choose the best of it after the scenario is revealed. This
idea provides a heuristic solution to the exact two-stage robust problem and no approximation
guarantees were known so far. Due to the similar structure, algorithmic ideas from the k-
adaptability literature can also be applied to the min-max-min problem. In [32] a mixed-integer
programming formulation was derived to solve the k-adaptability problem. Later in [43] the
authors present an algorithm based on a branch & bound scheme which iteratively constructs
partitions of scenarios. In [25] a logic-based benders decomposition approach is used where the
main problem calculates a first-stage solution while a subproblem is used to derive cuts on the
objective value. Interestingly the subproblem is a classical min-max-min problem and the authors
use methods from the min-max-min literature to solve it. Finally in [9] geometric properties of
the uncertainty set are used to derive approximation guarantees for the k-adaptability problem
with right-hand side uncertainty.

From a theoretical perspective there is not much known about the approximation guarantees
the k-adaptability approach provides for the two-stage robust problem. The only result into
that direction was proved in [32] where it is shown that the k-adaptability problem provides an
optimal solution of the exact two-stage problem if the number of second-stage policies is at least
the dimension of the problem. We will close this gap in this work, providing better bounds on k
which lead to a certain problem-specific approximation guarantee. Furthermore we provide the
first approximation algorithms with a provable approximation guarantee for the k-adaptability
problem.

Contributions

• We provide efficient algorithms to calculate solutions with provable additive and multi-
plicative approximation guarantees for the cases where a) k is smaller but close to n and
b) k is a fraction of n. The derived guarantees hold for a wide class of binary problems
and involve a problem-specific parameter.

• We use the approximation guarantees to derive ranges for parameter k for which the algo-
rithm provides a certain approximation guarantee.

• We show for the first time that under certain assumptions the min-max-min robust problem
remains oracle-polynomial solvable if k = n− l and l is a fixed parameter.

• We extend the derived approximation guarantees to the k-adaptability approach and show
that they can be used to calculate better bounds for the number of second-stage policies k
which are necessary to achieve a certain approximation guarantee for the exact two-stage
robust problem.

• We derive an efficient approximation algorithm which calculates solutions for the k-adaptability
problem with a certain approximation guarantee.
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• We perform experiments to test both approximation algorithms on knapsack and shortest
path instances and on a generic k-adaptability problem and a two-stage network construc-
tion shortest path problem.

The paper is organized as follows. In Section 2 we provide preliminary results on min-max-min
robustness and k-adaptability. In Section 3 we provide the approximation algorithm and de-
rive additive and multiplicative approximation guarantees depending on n and k. In Section 4
we extend the derived results to the k-adaptability approach and provide better bounds on the
parameter k to achieve a certain approximation guarantee. Afterwards we present an approxima-
tion algorithm and prove its approximation guarantee. Finally in Section 5 we show the results
of our computational experiments and give a conclusion in Section 6.

2 Preliminaries

2.1 Notation

We define [k] := {1, . . . , k} for k ∈ N and Rn+ = {x ∈ Rn : x ≥ 0}. We denote by ‖x‖ :=√∑
i∈[n] x

2
i the euclidean norm and by ‖x‖∞ := maxi∈[n] |xi| the maximum norm. The convex

hull of a finite set S = {s1, . . . , sm} is denoted by

conv (S) =

s =
∑
i∈[m]

λis
i : λi ≥ 0 ∀i ∈ [m],

∑
i∈[m]

λi = 1

 .

The vector of all ones is denoted by 1 and the i-th unit vector by ei.

2.2 Min-max-min Robust Optimization

Formally the min-max-min robust optimization problem is defined as

min
x(1),...,x(k)∈X

max
c∈U

min
i=1,...,k

c>x(i) (M3(k))

where X ⊆ {0, 1}n, U ⊆ Rn+ is a convex uncertainty set and k ∈ N is a given parameter
controlling the conservativeness of the problem. In [15] the authors study Problem (M3(k)) for
convex uncertainty sets U and show, by using lagrangian relaxation, that Problem (M3(k)) for
any k ∈ N is equivalent to problem

min
x∈X(k)

max
c∈U

c>x (1)

where X(k) is the set of all convex combinations derived by at most k solutions in X, i.e.

X(k) :=

x ∈ Rn : x =
∑
i∈[k]

λix
(i), x(i) ∈ X, λ ∈ Rk+,

∑
i∈[k]

λi = 1

 .

By the theorem of Carathéodory it follows that each point in conv (X) can be described by a
convex combination of at most n + 1 points in X, therefore it holds X(k) = conv (X) for all
k ≥ n+ 1. Since for any given point x ∈ conv (X) and µ ∈ R+ we have

max
c∈U

c>(µx) = µmax
c∈U

c>x
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an optimal solution is always attained on the boundary of conv (X) if k ≥ n + 1, i.e. can be
described by a convex combination of at most n solutions in X. It follows that for each k ≥ n
Problem (M3(k)) is equivalent to the problem

min
x∈conv(X)

max
c∈U

c>x. (2)

From the latter result we obtain the following chain of optimal values, where we denote by opt(k)
the optimal value of (M3(k)) with k solutions:

opt(1) ≥ opt(2) ≥ . . . ≥ opt(n) = opt(n+ 1) = . . . .

Note that opt(1) is equal to the optimal value of the classical robust problem.
For an optimal solution x∗ of Problem (2) the corresponding optimal solution x(1), . . . , x(n)

of Problem (M3(n)) can be calculated in polynomial time, if we can linearly optimize over X in
polynomial time; see [30, 15] for more details.

Problem (2) is a convex problem, since the objective function f(x) := maxc∈U c
>x is convex

and conv (X) is a convex set. Unfortunately for many classical combinatorial problems no outer-
description of polynomial size for conv (X) is known. Nevertheless the authors in [15] prove that
Problem (2) and therefore the min-max-min robust problem can be solved in polynomial time if
the underlying deterministic problem (P) can be solved in polynomial time. More precisely the
theorem states that, if we can linearly maximize over U in polynomial time and if we can linearly
minimize over X in polynomial time, then we can solve the min-max-min robust problem in poly-
nomial time. However the proof in [15] is not constructive, i.e. no implementable algorithm with
a polynomial runtime guarantee is presented. Instead the authors present a column-generation
algorithm to solve Problem (M3(k)) for k ≥ n where iteratively the deterministic problem (P)
and an adversary problem over U is solved. They show that this algorithm is very efficient on
random instances of the knapsack problem and the shortest path problem. Furthermore the same
algorithm was used successfully in [23] for the min-max-min version of the capacitated vehicle
routing problem. We will adapt this algorithm to find good approximate solutions and calculate
strong lower bounds for Problem (M3(k)) for any k.

On the other hand it is shown in [15] that Problem (M3(k)) with an uncertain constant is NP-
hard for any fixed k ∈ N, even if U is a polyhedron given by an inner description and X = {0, 1}n.
This result fits to the computational experience which was made in other publications, where it
turns out that Problem (M3(k)) is very hard to solve for small k ∈ N; see [3, 20]. Nevertheless
to tackle the problem even for small k in [15] the authors present an heuristic algorithm which
is based on the column-generation algorithm mentioned above. The idea is to solve Problem
(M3(k)) for k = n with this algorithm and afterwards select k of the calculated solutions with
largest induced weights, given by the optimal convex combination of Problem (2). It is shown
computationally that this heuristic calculates solutions which are very close to the optimal value
of Problem (M3(k)). We will present a theoretical understanding of this behavior in Section 3
for the first time and provide approximation bounds.

2.3 Two-stage robust optimization and k-adaptability

The k-adaptability problem was introduced with the goal to approximate two-stage robust prob-
lems with second-stage integer variables in [8]. We define the two-stage robust problem with
objective uncertainty as

min
x∈X

max
ξ∈U

min
y∈Y (x)

d>x+ ξ>y (2RO)

where X ⊆ Rm, Y (x) ⊆ {0, 1}n for all x ∈ X and U ⊆ Rn+ is a convex uncertainty set. The
variables x are the first-stage decisions which have to be taken before the uncertainty reveals.
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The variables y are second-stage decisions which can be taken after the uncertain parameters
ξ are known. Note that the feasible set Y (x) depends on the taken first-stage decision. While
the following results hold for the more general case, in the linear case often the second-stage
feasibility set is given as

Y (x) = {y ∈ Y ⊆ {0, 1}n | Tx+Wy ≤ h}

for matrices T , W and vector h of appropriate size. The vector d ∈ Rm+ contains the given
first-stage costs which we assume to be not uncertain, although all the following results are still
valid otherwise.

The k-adaptable problem was already studied in [8, 32, 43, 25]. The idea is to calculate a set
of k second-stage solutions y1, . . . , yk ∈ Y (x) already in the first-stage and select the best one
for each scenario ξ ∈ U . This problem can be formulated as

min
x∈X,

y1,...,yk∈Y (x)

max
ξ∈U

min
i=1,...,k

d>x+ ξ>yi. (k-adapt)

Note that while the k-adaptability problem is complexity-wise harder than the min-max-min
problem (M3(k)), both problems have a quite similar structure. Namely, if we fix a first-stage
solution x, then (k-adapt) becomes a classical min-max-min robust problem (M3(k)).

We can reformulate (k-adapt) as

min
x∈X,

y1,...,yk∈Y (x)

max
ξ∈U

min
i=1,...,k

d>x+ ξ>yi = min
x∈X,

y1,...,yk∈Y (x)

max
ξ∈U

min
λ≥0,∑
i λi=1

d>x+

k∑
i=1

λiξ
>yi.

Since the feasible regions of the inner max and the inner min are both convex, and the objective
function is linear in both variables, we can swap the maximum and the inner minimum, which
leads to the formulation

min
x∈X, λ≥0

y=
∑
i∈[k] λiy

i∑
i∈[k] λi=1

y1,...,yk∈Y (x)

max
ξ∈U

d>x+ ξ>y.

Note that each feasible solution y of the latter problem is a convex combination of k feasible
second-stage policies. Since each point in the convex hull can be described by a convex combina-
tion of at most n+ 1 points (by Theorem of Carathéodory), it follows from the last formulation
that (k-adapt) attains the exact optimal value of (2RO) for each k ≥ n+ 1 which was proved in
[32]. In the following we denote by opt(2RO) the optimal value of the two-stage robust problem
(2RO). Furthermore we denote by adapt(k) the optimal value of (k-adapt) with k second-stage
policies. Note that by the previous analysis it holds opt(2RO) = adapt(n+ 1). Furthermore we
obtain the following chain of optimal values:

adapt(1) ≥ adapt(2) ≥ . . . ≥ adapt(n) ≥ opt(2RO) = adapt(n+ 1) = adapt(n+ 2) = . . .

where adapt(1) is equal to the optimal value of the classical robust problem.

3 Approximation algorithm for min-max-min robust opti-
mization

The min-max-min robust problem is known to be easy to solve if k ≥ n, both theoretically
and practically (see [15]), while it is NP-hard for any fixed k ∈ N even if U is a polyhedron
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and X = {0, 1}n. Moreover recent results indicate that it is computationally very hard to
solve (M3(k)) exactly for general convex uncertainty sets U even if k is fixed and small, e.g.
k ∈ {2, 3, 4}; see [15, 20, 3]. However nothing is known for the intermediate setting, i.e. if k
is not small but smaller than n. Furthermore no algorithms with approximation guarantees are
known for the problem.

In this section we approach this gap by answering the following research questions.

RQ1. Can we derive an algorithm with general additive and multiplicative approximation guar-
antees for Problem (M3(k)) for any number of solutions k?

RQ2. For which range of k is a certain approximation guarantee valid?

RQ3. What is the theoretical complexity of Problem (M3(k)) for an intermediate number of
solutions k?

We first have to define what we mean by “intermediate size of k”. To this end we consider
two cases where a) k = n − l for a fixed l ∈ [n − 1] and b) k = qn for a fixed q ∈ (0, 1). Case
a) can be interpreted as “k is close to n” while case b) means “k is a fraction of n” where the
parameter q controls the distance to 1 and to n.

In Algorithm 1 we present an efficient algorithm which calculates feasible solutions for
(M3(k)). The algorithm was already studied computationally in [15]. In this work we study
the approximation performance of Algorithm 1. Note that Step (1) can be solved theoretically
in oracle-polynomial time in the input values; see [15]. This step can be implemented by using
any algorithm for the case k ≥ n, e.g. the oracle-based column-generation algorithm presented
in [15]. In Step (2) we then calculate the optimal coefficients of the convex combination of the
calculated n solutions and afterwards select only the k solutions with largest coefficients. The
maximum expression in the problem of Step (2) can be dualized for classical uncertainty sets
(e.g. polyhedra or ellipsoids). Hence this step involves solving a continuous convex optimization
problem which can be done in polynomial time for polyhedral or ellipsoidal uncertainty sets.
In [15] it was shown that the algorithm is computationally very efficient and provides solutions
which are often close to optimal. However no theoretical understanding of this behavior is known.
In this section we will, for the first time, derive additive and multiplicative problem-specific ap-
proximation guarantees for Algorithm 1. Furthermore we will show how to calculate ranges for k
for which a given approximation guarantee holds. The derived results can be used to show that
(M3(k)) is actually oracle-polynomial solvable under certain conditions even if k < n.

Remark 1 (Variant of Algorithm 1). Note that we can add a sparsity constraint to the problem
in Step 2 which ensures that at most k of the optimal λi values are non-zero. More precisely we
can solve the following problem in Step 2 in Algorithm 1:

min max
c∈U

c>x

s.t.

n∑
i=1

λi = 1

x =

n∑
i=1

λix
i

λi ≤ ui i = 1, . . . , n
n∑
i=1

ui ≤ k

λ ∈ Rn+, u ∈ {0, 1}n
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Algorithm 1 Approximation Algorithm for (M3(k))

Input: n ∈ N, k ∈ [n], convex set U ⊂ Rn, X ⊆ {0, 1}n

1: calculate an optimal solution x1, . . . , xn of (M3(n))
2: calculate an optimal solution λ∗ of

min
λ≥0

max
c∈U

c>x

s.t.

n∑
i=1

λi = 1

x =

n∑
i=1

λix
i

3: sort the λ∗ values in decreasing order

λ∗i1 ≥ λ∗i2 ≥ . . . ≥ λ∗in

4: Return: xi1, . . . , xik

Since the latter problem selects the best k of the n solutions involved in the convex combination,
the solution returned by Algorithm 1 when using the latter problem has an objective value at most
as large as the original solution of Algorithm 1. Hence all the approximation results shown in
this paper also hold for this variant of the algorithm. On the other hand the latter problem is
computationally harder since it involves a sparsity constraint. In our experiments in Section 5
we show that indeed the solutions of the variant have better objective values coming along with
a slightly larger computation time. We will denote the variant of the algorithm as Algorithm 1
(Variant).

In the following we denote the exact optimal value of Problem (M3(k)) by opt(k) and the
objective value of the solution returned by Algorithm 1 as approx(k). We say Algorithm 1 has
an additive approximation guarantee of a : N→ R+ if

approx(k) ≤ opt(k) + a(n)

for all n ∈ N. We say Algorithm 1 has an multiplicative approximation guarantee of a : N→ R+

if
approx(k) ≤ (1 + a(n)) opt(k)

for all n ∈ N. Note that a can also be a constant function, e.g. a(n) ≡ ε for any ε > 0 and we
say the algorithm has a constant approximation guarantee in this case.

We assume that we have an oracle which returns an optimal solution of the deterministic
problem (P) for each objective cost vector c ∈ U in constant time. If we speak in the following
of an oracle-polynomial algorithm this means that the calculations for the deterministic problem
are assumed to be constant.

We assume that ‖c‖∞ ≤ M∞ and ‖c‖∞ ≥ m∞ > 0 for all c ∈ U . While assuming an upper
bound on U is more natural, the assumption on the lower bound seems restricting. However
all results in Section 3.1 can be derived without assuming a lower bound m∞ leading to non-
substantially worse guarantees. For the multiplicative bounds in Section 3.2 the assumption
is needed since for non-positive objective values the definition of multiplicative approximation
guarantees is not well-defined. From a practical point of view the assumption is reasonable since
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for many combinatorial problems the objective costs can be assumed to be strictly positive.
Note that considering a maximum-norm bound for any n ∈ N is less restrictive than using the
euclidean-norm since the latter grows with increasing n even if the entries of the scenarios remain
of the same size. In the following we denote the number of non-zero entries of x ∈ X by ‖x‖0,
i.e.

‖x‖0 := |{i ∈ [n] : xi = 1}|.

We furthermore assume that for a given problem class there exist functions p, p̄ : N → R+ such
that for each instance X of the problem class of dimension n it holds p(n) ≤ ‖x‖0 ≤ p̄(n) for all
x ∈ X. Note that while p(n) ≡ 1 and p̄(n) = n are always valid functions it is possible to derive
problem-specific tighter functions as shown in the following proposition. The problem specific
functions p, p̄ will later appear in the derived approximation guarantees.

Proposition 2. In the following we present functions p, p̄ for a list of combinatorial problems.

a) For the spanning tree problem defined on a graph G = (V,E) for each solution x we have
‖x‖0 = |V | − 1, i.e. p(n) = 1 and p̄(n) ≤ n. If G is a complete graph, then the number of
edges is |V |(|V | − 1), i.e. for each given n the number of vertices |V | is uniquely defined and
we have p(n) = p̄(n) ≤

√
n.

b) For the matching problem defined on a graph G = (V,E) for each solution x we have ‖x‖0 ≤
1
2 |V |, i.e. p(n) = 1 and p̄(n) ≤ n. If G is a complete graph (which is the case for the

assignment problem), then the number of edges is at most |V |2, i.e. we have p(n) = p̄(n) ≤√
n.

c) For each cardinality constrained problem, i.e. Xc = {x ∈ X |
∑n
i xi = p̄} for a given fixed p̄ ∈

[n], we have p(n) = p̄(n) = p̄. One popular example from robust combinatorial optimization
is the p-selection problem where X = {0, 1}n.

d) For the traveling salesmen problem (TSP) defined on a complete graph G = (V,E) for each
solution x we have ‖x‖0 = |V |, i.e. p(n) = p̄(n) ≤

√
n.

e) For the vehicle routing problem (VRP) defined on a complete graph G = (V,E) with m
customers and one depot for each solution x we have ‖x‖0 ≤ 2m (in case each vehicle visits
exactly one customer) and m+1 ≤ ‖x‖0 (in case only one vehicle visits all customers). Since
the graph has m(m+ 1) edges we have c̄

√
n ≤ p(n) ≤ p̄(n) ≤ C̄

√
n for constants c̄, C̄ ≥ 0.

3.1 Additive approximation guarantees

We first prove the following general lemma which generalizes the result used in the proof of
Theorem 6 in [15].

Lemma 3. Assume s, k ∈ [n] where s < k, then it holds

opt(s)− opt(k) ≤M(n)
k − s
s+ 1

.

where M(n) := M∞p̄(n)−m∞p(n).

Proof. Let x∗(k) be an optimal solution of Problem (1) with parameter k. Then by the results
in [15] we have

opt(k) = max
c∈U

c>x∗(k)
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and there exists a convex combination x∗(k) =
∑
i∈[k] λix

i where xi ∈ X and λ ∈ Rk+ with∑
i∈[k] λi = 1. We may assume without loss of generality that λ1 ≥ . . . ≥ λk. Define a solution

x(s) by

x(s) :=
∑

i∈[s−1]

λix
i +

(
k∑
i=s

λi

)
xs, (3)

then x(s) ∈ X(s) and therefore opt(s) ≤ maxc∈U c
>x(s). Furthermore let c∗(s) ∈ arg maxc∈U c

>x(s).
It follows

opt(s)− opt(k) ≤ max
c∈U

c>x(s)−max
c∈U

c>x∗(k)

≤ c∗(s)> (x(s)− x∗(k))

=

k∑
i=s+1

λic
∗(s)>

(
xs − xi

)
≤M(n)

(
k∑

i=s+1

λi

)
where the second inequality holds since c∗(s) is a subgradient of the function g(x) = maxc∈U c

>x
in x(s). For the first equality we used the definition of x(s) and x∗(k) and for the last inequality
we used the assumption p(n) ≤ ‖x‖0 ≤ p̄(n) and m∞ ≤ c∗(s)j ≤M∞ for all j ∈ [n]. Due to the

sorting λ1 ≥ . . . ≥ λk and since the sum over all λi is one, we have λi ≤ 1
i and hence

M(n)

(
k∑

i=s+1

λi

)
≤M(n)

(
k∑

i=s+1

1

i

)

≤M(n)
k − s
s+ 1

which proves the result.

Note that the bound derived in the latter lemma is small if s is large compared to the difference
k − s. Particularly it holds

opt(k)− opt(k + 1) ≤M(n)
1

k + 1
→ 0 for k →∞.

We can conclude that the objective value gain when k is increased by one unit decreases to zero
when k gets large. From Lemma 3 we can easily derive an additive approximation guarantee for
Algorithm 1.

Corollary 4. For given k Algorithm 1 returns a solution to Problem (M3(k)) with

approx(k) ≤ opt(k′) +M(n)
n− k
k + 1

.

for all k′ ≥ k.

Proof. We can apply Lemma 3 for k = n and s = k. The solution x(s) constructed in (11) is
composed of the same solutions x1, . . . , xs which Algorithm 1 returns. Hence the approximation
guarantee holds also for this solution and we obtain

opt(k)− opt(n) ≤ approx(k)− opt(n) ≤M(n)
n− k
k + 1

.

It always holds approx(k)−opt(k′) ≤ approx(k)−opt(n) for all k′ ≥ k which proves the result.

10
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Figure 1: Additive approximation guarantee depending on k for fixed n = 250.

Note that the latter approximation guarantee holds for a large number of problem classes
and the parameter M(n) is problem-specific since it involves the functions p, p̄. While the
approximation guarantee is linear in n and hence can be large, the interesting observation here
is that it goes to zero if k approaches n.

In Figure 1 we show examples of the additive guarantee provided in the latter corollary for
different constantsM(n). It can be seen that for all relevant functions p, p̄ with 1 ≤ p(n), p̄(n) ≤ n
the approximation guarantee goes to zero when k approaches n. The smaller p, p̄ grow the faster

the approximation guarantee approaches zero. This indicates that we can approximate (M3(k))
well by Algorithm 1 even for intermediate values k.

Ranges for k with given approximation guarantee The latter results lead to the intuition,
that the range for k for which Algorithm 1 provides an approximation guarantee of a(n), gets
larger with increasing n. This is shown in the following lemma.

Lemma 5. Let k = n− l and l ∈ [n−1], then Algorithm 1 returns a solution with approximation
guarantee at most a(n) for all

l ∈
[
0,min

{
n− 1,

a(n)n

M(n) + a(n)

}]
∩ N.

Proof. We can estimate

approx(k)− opt(k) ≤M(n)
l

n− l
≤M(n)

a(n)n

M(n) + a(n)

M(n) + a(n)

nM(n)
= a(n)

where the first inequality follows from Corollary 4 and the second follows from

l ≤ a(n)n

M(n) + a(n)
.

Note that the upper bound term a(n)n
M(n)+a(n) for l in Lemma 5 (and therefore the absolute

number of approximable k < n) goes to infinity if the approximation guarantee grows at least

11
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Figure 2: The smallest approximable k = n−l for given approximation factor a(n) andM(n) = 10
(left) or M(n) =

√
n (right). The blue permanent line is the function f(n) = n, hence all k

values between this line and the k = n− l line are approximable within the given approximation
guarantee.

as fast as M(n), i.e. either a(n)
M(n) → ∞ or a(n)

M(n) → C ∈ R for n → ∞. Additionally if a(n)

is constant, the upper bound goes to infinity if M(n) grows sub-linearly, i.e. n
M(n) → ∞ for

n → ∞. Note that the latter is the case for all examples in Proposition 2. This means that
the range for k for which opt(k) can be approximated grows with n. Additionally this means
that the difficult instances, which do not achieve the approximation guarantee are the ones for
k < n− l. In Figure 3.1 we show examples of the development of the ranges of k for which the
approximation guarantee is ensured. It can be seen that the larger the approximation guarantee
the smaller is the smallest k that can be approximated. Furthermore for increasing n the range
of approximable k increases.

In Table 1 we show analytical lower bounds k0 such that for all k ≥ k0 the given approximation
guarantee is achieved. The values are derived as follows: first we estimate

M(n) = M∞p̄(n)−m∞p(n) ≤M∞p̄(n).

Using this estimation we obtain that the result of Lemma 5 is valid for all

k ≥ n− a(n)n

M∞p̄(n) + a(n)
.

Note that while the estimation of M(n) results in easier notation, the size of this value signif-
icantly influences the quality of the bounds. Hence using the exact value for M(n) can lead to
better bounds. The values in Table 1 are derived by plugging in p̄(n) and a(n) and bounding
the derived terms from above. It is important to note that for each value k0 in the table, it is
given as a fraction of n, i.e. k0 = q(n)n where q(n) ∈ (0, 1). Depending on the combination of
a(n) and p̄(n) either q(n) is constant, q(n) → 0 or q(n) → 1 for n → ∞. Note that a constant
q(n) means that the absolute number of k values for which the approximation holds grows with
n but remains always a certain fraction of n. The case q(n) → 0 is the most desirable case,
since here the fraction of approximable k even increases. The less desirable case is the one where
q(n) → 1 since it means that the fraction of n which can be approximated goes to zero with
increasing n. However for most bounds it holds that the absolute number of approximable k, i.e.
|[n− k0, n] ∩ N|, goes to infinity for n→∞.

Note that most of the problems considered in Proposition 2 have either p̄(n) = v, p̄(n) =
√
n

or p̄(n) = n.

12



p̄(n)
a(n)

ε log n n1−γ

const. v n
(

1− ε
M∞v+ε

)
n
(

1− log(n)
M∞v+log(n)

)
n
(

1− n1−γ

M∞v+n1−γ

)
log n n

(
1− ε

(M∞+1) logn

)
n
(

1− 1
M∞+1

)
n

(
1− n

1
2
−γ

M∞+n
1
2
−γ

)
n1−δ n

(
1− ε

n1−δ(M∞+1)

)
n
(

1− logn
n1−δ(M∞+1)

)
n
(

1− nδ−γ

M∞+nδ−γ

)
Table 1: For each pair of function p̄(n) and approximation guarantee a(n) the table shows a
value k0 such that for all k ≥ k0 Algorithm 1 returns a solution of (M3(k)) with approximation
guarantee a(n). It holds γ, δ ∈ [0, 1).

Complexity We will now analyze the complexity of (M3(k)) for k = n − l where l ∈ [n − 1]
is a fixed parameter. The following lemma shows, that for a fixed l we can find a value n0 such
that for all n ≥ n0 Algorithm 1 returns an optimal solution (up to an additive accuracy of ε > 0)
if p̄(n) grows sub-linear.

Lemma 6. Assume p̄(n) ≤ Cn1−δ where δ ∈ (0, 1] and C > 0. Furthermore let k = n − l and
ε > 0. If

n ≥ l 1δ
(
CM∞
ε

+ 1

) 1
δ

(4)

then opt(n) ≤ opt(n− l) ≤ opt(n) + ε.

Proof. The inequality opt(n) ≤ opt(n − l) follows since (M3(k)) attains smaller optimal values
if more solutions are allowed. To prove the inequality opt(n− l) ≤ opt(n) + ε we apply Lemma
3 with p̄(n) = Cn1−δ, p(n) ≡ 0, s = n− l and k = n and we obtain

opt(n− l)− opt(n) ≤ Cn1−δM∞
l

n− l + 1

= CM∞
l

nδ − l
n1−δ + 1

n1−δ

≤ CM∞
l

nδ − l
≤ ε

where in the second inequality we used n ≥ 1 and in the third inequality we used inequality (4).

The result of the latter lemma essentially says that, if we want to solve (M3(k)) with k = n−l,
we do not have to worry about instances where n is large, since we can solve these instances
efficiently by using Algorithm 1. This is a pretty surprising result since we only have to care
about the instances with bounded n. If we fix all parameters of the bound in (4), then we can
also solve (M3(k)) for small n by enumerating all solutions, which leads to the following theorem.

Theorem 7. Assume p̄(n) ≤ Cn1−δ where δ ∈ (0, 1] and C > 0. Furthermore let k = n− l and
ε > 0. Then we can calculate an optimal solution of (M3(k)) (up to an additive error of ε) in
polynomial time in n, if all parameters M∞, δ, C, ε and l are fixed.
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Proof. Given an instance of (M3(k)) we check if condition (4) is true or not, which can be done
in polynomial time, since the right hand side is a constant. Note that to avoid calculations of
the root-terms an easier bound without the exponents 1

δ could be used.
Case 1: If the condition is true, we solve M3(n) up to an additive error of ε in polynomial

time which can be done by Algorithm 1 due to Lemma 6 and Corollary 4.
Case 2: If condition (4) is not true, then n is bounded from above by the constant

τ := l
1
δ

(
2CM∞

ε
+ 1

) 1
δ

.

Therefore the number of possible solutions in X is in O(2τ ) and hence the number of solutions

of (M3(k)) is in O(2τk) = O(2τ
2

) since k ≤ n ≤ τ . We can calculate an optimal solution in this
case by enumerating all possible solutions of (M3(k)) and comparing the objective values. Note
that we can calculate the objective value of a given solution x(1), . . . , x(k) by solving the problem

min
x∈conv(x(1),...,x(k))

max
c∈U

c>x

which can again be done in polynomial time in n.

The following corollary follows directly from Theorem 7 and Proposition 2.

Corollary 8. Under the assumptions of Theorem 7 we can calculate an optimal solution of
(M3(k)) (up to an additive error of ε) in oracle-polynomial time, if the underlying problem (P)
is the spanning-tree problem on complete graphs, the matching problem on complete graphs, any
cardinality constrained combinatorial problem, the TSP or the VRP.

Note that the necessary condition on p̄ is likely to be true for many other problems. Besides
the p-selection problem several combinatorial problems with cardinality constraint |x| = p were
studied in the literature; see [13] for an overview. Finally note that the latter corollary states that
we obtain an oracle-polynomial algorithm (and not a polynomial algorithm) which is because
some of the stated problems are NP-hard and hence no polynomial algorithm can be derived
unless P = NP .

3.2 Multiplicative approximation guarantees

In this subsection we follow similar ideas as in the latter section to derive multiplicative approx-
imation guarantees. In contrast to the previous subsection we assume now that k = dqne for a
fixed q ∈ (0, 1). However all results also go through for the case k = n − l, leading to slightly
different bounds and guarantees. With slight abuse of notation in the following we write k = qn
and assume that k is integer.

Approximation Guarantees The following lemma is the multiplicative counterpart of Lemma 3.

Lemma 9. Let s, k ∈ [n] where s < k, then it holds

opt(s) ≤
(

1 + M̃(n)
k − s
s+ 1

)
opt(k)

where M̃(n) := M∞
m∞

p̄(n)
p(n) . Furthermore if for all instances of dimension n it holds p(n) = p̄(n),

then M̃(n) := M∞
m∞

is independent of n.
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Proof. First note that due to the assumptions p ≤ ‖x‖0 for all x ∈ X and c ≥ m∞1 > 0 for
all c ∈ U we have opt(k) > 0 for all k ∈ [n] and therefore the multiplicative approximation
guarantee stated in the lemma is well defined.

By Lemma 3 we have

opt(s) ≤ opt(k) +M(n)
k − s
s+ 1

≤ opt(k) +M∞p̄(n)
k − s
s+ 1

(5)

Let x∗(k) be an optimal solution of Problem (1) with parameter k. Then by the results in [15]
we have

opt(k) = max
c∈U

c>x∗(k)

and there exists a convex combination x∗(k) =
∑
i∈[k] λix

i where xi ∈ X and λ ∈ Rk+ with∑
i∈[k] λi = 1. Then it holds

opt(k) = max
c∈U

c>x∗(k) ≥ m∞1>x∗(k) (6)

where the last inequality holds due to the assumption c ≥ m∞1 and since x∗(k) ≥ 0. We can
now reformulate

m∞1>x∗(k) =
∑
i∈[k]

λim∞1>xi ≥
∑
i∈[k]

λim∞p(n) = m∞p(n) (7)

where in the first inequality we used the assumption p(n) ≤ ‖x‖0. Together with (6) we obtain
opt(k) ≥ m∞p(n). It follows

opt(s)

opt(k)
≤

opt(k) +M∞p̄(n)k−ss+1

opt(k)
≤ 1 +

M∞p̄(n)k−ss+1

m∞p(n)

which proves the result.
The second result follows directly from p(n) = p̄(n).

Analogously to Corollary 4 we can now derive a multiplicative approximation guarantee for
each k ∈ [n] from Lemma 9.

Corollary 10. For given k ∈ [n] Algorithm 1 returns a solution to Problem (M3(k)) with
multiplicative approximation guarantee

approx(k) ≤
(

1 + M̃(n)
n− k
k + 1

)
opt(k′)

for all k′ ≥ k.

Note that the behavior of the multiplicative approximation guarantee a(n) = M̃(n)n−kk+1 is

up to the factor M̃(n) the same as for the additive approximation guarantee; see Figure 1 for
exemplary behaviors.

If we choose k to be a fraction of n, i.e. k = dqne for a fixed q ∈ (0, 1), and if additionally
we have p(n) = p̄(n) (which is the case for the spanning tree problem and the matching problem
on complete graphs, the traveling salesmen problem and each cardinality constrained problem),
then the approximation factor is given as

1 +
M∞
m∞

n− dqne
dqne+ 1

≤ 1 +
M∞
m∞

(1− q)n
qn

= 1 +
M∞
m∞

1− q
q

which is independent of the dimension n. This proves the following corollary.
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Corollary 11. Algorithm 1 has a constant multiplicative approximation guarantee for (M3(k))
if k = dqne for a fixed q ∈ (0, 1) and p(n) = p̄(n).

Note that for budgeted uncertainty sets where each parameter is allowed to deviate from its
mean by at most 50% we have M∞

m∞
= 1.5. If we choose q = 1

2 the constant approximation factor
of Algorithm 1 is

1 +
M∞
m∞

1− q
q

= 2.5.

Ranges for k with given approximation guarantee The latter results lead to the intuition,
that the range for k for which Algorithm 1 provides a multiplicative approximation guarantee of
a(n), gets larger with increasing n. This is shown in the following lemma.

Lemma 12. Let k = qn and q ∈ (0, 1], then Algorithm 1 returns a solution with multiplicative
approximation guarantee at most a(n) for all

q ∈

[
M̃(n)

M̃(n) + a(n)
, 1

]
.

Proof. We can estimate

approx(k)

opt(k)
≤ 1 + M̃(n)

n− qn
qn

≤ 1 + M̃(n)
1− q
q

≤ 1 + M̃(n)
a(n)

M̃(n) + a(n)

M̃(n) + a(n)

M̃(n)
= 1 + a(n)

where the first inequality follows from Corollary 10 and the third follows from

q ≥ M̃(n)

M̃(n) + a(n)
. (8)

Note that the lower bound term (8) for q goes to zero if the approximation guarantee grows
faster than M̃(n) while it goes to one if it grows slower. If M̃(n) grows as fast as a(n), then it
is constant. In Figure 3 we show examples for the development of the ranges for k for which the
approximation guarantee is ensured.

In Table 2 we show lower bounds k0 such that for all k ≥ k0 the given approximation guarantee
is achieved. The values are derived analogously to Table 1. It is important to note that each value
k0 in the table is given as a fraction of n, i.e. k0 = q(n)n where q(n) ∈ (0, 1). Depending on the

combination of a(n) and p̄(n)
p(n) either q(n) is constant, q(n)→ 0 or q(n)→ 1 for n→∞. Note that

a constant q(n) means that the number of k values for which the approximation holds grows with
n but remains always a certain fraction of n. The case q(n)→ 0 is the most desirable case, since
here the number of k values for which the approximation holds grows with n and the fraction
of values for which it holds even increases. The less desirable case is the one where q(n) → 1
since it means that the fraction of n which can be approximated goes to zero with increasing n.
However for all bounds the absolute number of approximable k values, i.e. |[n− k0, n] ∩N| goes
to infinity for n→∞. Note that in contrast to the results in Section 3.1 here the function ratio
p̄(n)
p(n) has to be bounded. As shown in Proposition 2 this fraction is constant for the spanning

tree problem and the matching problem on complete graphs, as well as for all other mentioned
problems.
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Figure 3: The smallest approximable k = qn for given approximation factor a(n) and M̃(n) = 2
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n (right). The blue permanent line is the function f(n) = n, hence all k

values between this line and the k = qn line are approximable within the given approximation
guarantee.

p̄(n)
p(n)

a(n)
ε log n n1−γ

const. v n
(

m̂v
m̂v+ε

)
n
(

m̂v
m̂v+logn

)
n
(

m̂v
m̂v+n1−γ

)
log n n

(
m̂ logn
m̂ logn+ε

)
n
(

m̂
m̂+1

)
n
(

m̂ logn
m̂ logn+n1−γ

)
n1−δ n

(
m̂n1−δ

m̂n1−δ+ε

)
n
(

m̂n1−δ

m̂n1−δ+logn

)
n
(

m̂
m̂+nδ−γ

)
Table 2: For each pair of function ratio p̄(n)

p(n) and approximation guarantee a(n) the table shows

a value k0 such that for all k ≥ k0 Algorithm 1 returns a solution of (M3(k)) with approximation
guarantee a(n). It holds m̂ := M∞

m∞
and γ, δ ∈ [0, 1).

Complexity Unfortunately following the previous methods it is not possible to prove a mul-
tiplicative version of Theorem 7 which provides a polynomial time algorithm to approximate
(M3(k)) for k = qn for each fixed q ∈ (0, 1). However a weaker version of the result will be
proved in the following.

Lemma 13. Assume that p(n) = p̄(n) and let ε > 0, k = qn. If

q ∈

[
M∞
m∞

ε+ M∞
m∞

, 1

]
then opt(qn) ≤ (1 + ε) opt(n).

Proof. We can apply Lemma 9 with k = n and s = qn which leads to the bound

opt(qn) ≤
(

1 + M̃(n)
1− q
q

)
opt(n).

where M̃(n) = M∞
m∞

since p(n) = p̄(n). We can estimate

M̃(n)
1− q
q
≤ M∞
m∞

ε

ε+ M∞
m∞

ε+ M∞
m∞

M∞
m∞

= ε
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Note that the latter result only holds if p(n) = p̄(n). However this is the case for all problems
in Proposition 2 on complete graphs. Furthermore we do not need any assumption on the
behavior of p̄(n) here. The following theorem follow directly from Lemma 13.

Theorem 14. Assume that for all n ∈ N it holds p(n) = p̄(n), let ε > 0 and k = qn with

q ∈

[
M∞
m∞

ε+ M∞
m∞

, 1

]
.

Then (M3(k)) can be approximated with an multiplicative error of 1+ε in oracle-polynomial time
in n if all parameters M∞

m∞
and ε are fixed.

The next corollary follows directly from Theorem 14 and Proposition 2.

Corollary 15. Under the assumptions of Theorem 14 Algorithm 1 calculates a solution of
(M3(k)) with multiplicative approximation guarantee 1 + ε in oracle-polynomial time for the
spanning-tree problem on complete graphs, the matching problem on complete graphs, any cardi-
nality constrained combinatorial problem, the TSP or the VRP.

4 Approximation algorithm for k-adaptability problems

In this section we extend the results of the previous section to the k-adaptability problem and
answer the following research questions:

RQ1. Can we derive general additive and multiplicative approximation guarantees for the k-
adaptability problem depending on k?

RQ2. For which range of k does the k-adaptability problem provide a certain approximation
guarantee for the two-stage robust problem?

RQ3. Can we derive an algorithm which efficiently calculates a solution of the k-adaptability
problem with a certain approximation guarantee?

We already showed in Section 2 that the optimal values of the k-adaptability problem follow
the chain

adapt(1) ≥ adapt(2) ≥ . . . ≥ adapt(n) ≥ opt(2RO) = adapt(n+ 1) = adapt(n+ 2) = . . .

where adapt(1) is equal to the optimal value of the classical robust problem.
However calculating a set of n+1 second-stage policies can be computationally heavy. Hence it

would be desirable to find smaller bounds for k, which lead to a certain approximation guarantee
for the optimal value of the two-stage robust problem opt(2RO). In the following we will show
that the results from the previous section can be extended to (k-adapt) to provide better bounds
on k. We will first show that Lemma 3 and Lemma 9 also hold for (k-adapt).

Similar to the previous sections, we assume that for a given problem class there exist functions
p, p̄ : N → R+ such that for each instance (X,Y (X)) of the problem class where the number of
second-stage variables is n it holds p(n) ≤ ‖y‖0 ≤ p̄(n) for all y ∈ Y (x) for all x ∈ X. We also
assume again that ‖ξ‖∞ ≤ M∞ and ‖ξ‖∞ ≥ m∞ > 0 for all ξ ∈ U . Furthermore we assume
d ≥ 0.
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Lemma 16. Assume s, k ∈ [n+ 1] where s < k, then it holds

adapt(s)− adapt(k) ≤M(n)
k − s
s+ 1

.

where M(n) := M∞p̄(n)−m∞p(n).

The proof of Lemma 16 is very similar to the proof of Lemma 3 and is provided in the
Appendix.

We now prove that also Lemma 9 can be extended to the k-adaptable case.

Lemma 17. Let s, k ∈ [n] where s < k and for the first-stage costs it holds d ≥ 0, then it holds

adapt(s) ≤
(

1 + M̃(n)
k − s
s+ 1

)
adapt(k)

where M̃(n) := M∞
m∞

p̄(n)
p(n) . Furthermore if for all instances of dimension n it holds p(n) = p̄(n),

then M̃(n) := M∞
m∞

is independent of n.

Proof. Similar as in the proof of Lemma 9 we can estimate

adapt(k) ≥ m∞p(n)

where we used the fact that the first stage costs d>x ≥ 0. We can now follow the proof of Lemma
9 to prove the result.

Approximation guarantees for two-stage robust optimization We can now follow the
derivations in Section 3.1 and 3.2 analogously to prove the following bounds on the number of
second-stage policies needed to approximate the optimal value of the robust two-stage robust
problem up to a certain approximation guarantee.

Lemma 18. Let k = n− l, then

adapt(k) ≤ opt(2RO) + a(n)

for all

l ∈
[
0,min

{
n− 1,

a(n)n

M(n) + a(n)

}]
∩ N.

From the latter Lemma we can conclude that to derive a solution to (2RO) with an additive
approximation guarantee of a(n) it is enough to calculate an optimal solution of (k-adapt) with

k = n− a(n)n

M(n) + a(n)

second-stage policies. Furthermore all the bounds k0 provided in Table 1 can also be used in
this case for (k-adapt). Note that the number of second-stage policies needed in Table 1 is
significantly smaller than n, especially with increasing n. This is also shown in Example 20 and
21.

Analogously as in the latter derivation we can conclude for the multiplicative approximation
guarantees.
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Lemma 19. Let k = qn and q ∈ (0, 1], then

adapt(k) ≤ (1 + a(n)) opt(2RO)

for all

q ∈

[
M̃(n)

M̃(n) + a(n)
, 1

]
.

From the latter Lemma we can conclude that to derive a solution to (2RO) with an multiplica-
tive approximation guarantee of a(n) it is enough to calculate an optimal solution of (k-adapt)
with

k =
⌈ M̃(n)

M̃(n) + a(n)
n
⌉

second-stage policies. Furthermore all the bounds k0 provided in Table 2 can also be used in this
case for (k-adapt). Note that the number of second-stage policies needed in Table 2 is significantly
smaller than n, especially with increasing n. This is shown in the following examples.

Example 20 (Facility Location). Consider the two-stage robust facility location problem (see
[32]) for a fixed number s of locations and a variable number r of customers. Fixing the number
of locations is rarely a restriction in practice since the number of locations can be chosen to be
small. We consider the case s = 100. In the first stage we can open facilities in a subset of
the locations which comes with a cost. In the second-stage we have to assign each customer to
exactly one of the opened facilities. We assume that the costs of assigning customers to facilities
is uncertain. In the classical integer programming formulation the first-stage dimension is m = s
and the second-stage dimension is n = sr. For each second-stage solution y it holds ‖y‖0 = r,
i.e. p(n) = p̄(n) = 1

sn.
We assume the second-stage assignment costs are given by an uncertainty set U ⊆ [c̄ −

0.02c̄, c̄+ 0.02c̄]n where c̄ ∈ Rn is a given mean vector with entries in [800, 1000]. Then we have

784 ≤ ‖c‖∞ ≤ 1020 ∀ c ∈ U

and hence
M∞
m∞

≤ 1020

784
≤ 2.

We can conclude that M(n) ≤ 2.5n and M̃(n) ≤ 2. Applying the result of Lemma 12 we obtain
the following number of second-stage policies which have to be used in the k-adaptability approach
to achieve a additive or multiplicative approximation guarantee of a(n) for (2RO). In brackets
we show the fraction of n for r = 1000 customers.

a(n) additive guarantee multiplicative guarantee
1 0.999996n 2

3n
log(n) 0.99998n 0.15n√

n 0.9987n 0.007n

Table 3: Number of second-stage policies needed in the k-adaptability approach (with n ≥ 1000)
to approximate the recoverable robust optimization problem up to an approximation guarantee
of a(n).
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Example 21 (Recoverable Robust Optimization). In the recoverable robust optimization problem
(see [36]) the idea is to find a solution in X ⊆ {0, 1}m which is worst-case optimal where in the
second-stage after the uncertain parameters are revealed we are allowed change at most p̄ entries
of the solution and the result has to be another feasible solution in X. This can be modeled as a
two-stage robust optimization problem as

min
x∈X

max
c∈U

min
y∈Y (x)

c>y

where

Y (x) :

{
z+, z− ∈ {0, 1}m : x+ z+ − z− ∈ X,

m∑
i=1

z+
i + z−i ≤ p̄,

}
.

Here the dimension of the second-stage is n = 2m and p(n) = p̄(n) = p̄. We consider the same
uncertainty set as in Example 20, i.e.

M(n) = M∞p̄−m∞p̄ = 0.04‖c̄‖∞p̄ ≤ 40p̄

and M̃(n) ≤ 2. In the following table we show the values for the number of second-stage policies k
we have to use in the k-adaptability approach to get an additive (or multiplicative) approximation
guarantee of a(n). We show the values for m = 500 (i.e. n = 1000) and p̄ = 10. Note that
the values also holds for dimensions larger than that, however in this case the fraction should be
re-calculated to obtain better values.

The result indicates, e.g. if we use the k-adaptability approach with k = 60 second-stage
policies, then we obtain a multiplicative

√
n-approximation of the recoverable robust problem.

a(n) additive guarantee multiplicative guarantee
1 0.998n 2

3n
log(n) 0.98n 0.23n√

n 0.93n 0.06n

Table 4: Number of second-stage policies needed in the k-adaptability approach (with n ≥ 1000)
to approximate the recoverable robust optimization problem up to an approximation guarantee
of a(n).

Furthermore note that Corollary 11 can directly be extended to k-adaptability problems.

Corollary 22. The k-adaptability problem achieves a constant multiplicative approximation
guarantee of

1 +
M∞
m∞

1− q
q

for the two-stage robust optimization problem if k = dqne for a fixed q ∈ (0, 1) and p(n) = p̄(n).

Note that the latter corollary is especially valid for the recoverable robust problem. For
budgeted uncertainty sets where each parameter is allowed to deviate from its mean by at most
50% we have M∞

m∞
= 1.5. If we choose q = 1

2 the constant approximation factor of Algorithm 1 is

1 +
M∞
m∞

1− q
q

= 2.5.
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4.1 Approximation algorithm for k-adaptability problems

The results in the latter subsection provide useful bounds on the number of second-stage policies
k which have to be calculated to obtain a certain approximation guarantee for the exact two-
stage robust problem. While this is useful from a theoretical point of view, there is no algorithm
known which can achieve these approximation guarantees. Unfortunately using Algorithm 1 is
not possible since it cannot provide first-stage solutions.

In [26] the authors derive approximation guarantees for the two-stage robust problem with
discrete uncertainty. They show that by choosing an appropriate set of scenarios and solving
the two-stage robust problem for this set, the obtained first-stage solution has a certain approx-
imation guarantee. In the following we will adapt the results of [26] to derive an approximation
algorithm for the k-adaptability problem with convex uncertainty sets.

We first adapt and generalize the result from [26] to our setting, i.e. for convex uncertainty
sets and for the k-adaptability problem.

Lemma 23. Let {ξ̂1, . . . , ξ̂t} ⊂ U be a set of scenarios and α ≥ 1 such that

∀ξ ∈ U ∃i ∈ [t] : ξ ≤ αξ̂i (9)

holds. Then any optimal solution x̂ of the problem

min d>x+ µ

s.t. µ ≥ (yi)>ξ̂i i = 1, . . . , t

x ∈ X, y1, . . . , yt ∈ Y (x)

(10)

has a multiplicative approximation guarantee of α−1 for the k-adaptability problem for all k ≤ t.

Proof. The proof follows similar steps as in [26]. Let x̂, ŷ1, . . . , ŷt be an optimal solution of Prob-
lem (10) and let x∗, y1∗, . . . , yk∗ be an optimal solution of the k-adaptability problem (k-adapt).
We bound the k-adaptable objective value of solution x̂, ŷ1, . . . , ŷt as follows:

d>x̂+ max
ξ∈U

min
i=1,...,t

ξ>ŷi ≤ d>x̂+ max
ξ∈{ξ̂1,...,ξ̂t}

min
i=1,...,t

αξ>ŷi

≤ α

(
d>x̂+ max

ξ∈{ξ̂1,...,ξ̂t}
min

i=1,...,t
ξ>ŷi

)

≤ α

(
d>x∗ + max

ξ∈{ξ̂1,...,ξ̂t}
min

i=1,...,k
ξ>yi∗

)

≤ α
(
d>x∗ + max

ξ∈U
min

i=1,...,k
ξ>yi∗

)
= α · adapt(k)

where for the first inequality we used Condition (9) and for the second inequality we used α ≥ 1
and d>x̂ ≥ 0. Note that Problem (10) is equivalent to the problem

min
x∈X

y1,...,yt∈Y (x)

d>x+ max
ξ∈{ξ̂1,...,ξ̂t}

min
i=1,...,t

ξ>yi

and since x̂, ŷ1, . . . , ŷt is an optimal solution of the latter problem the third inequality follows
since k ≤ t. The last inequality follows since {ξ̂1, . . . , ξ̂t} ⊂ U .
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The latter lemma shows how to find a solution with an approximation guarantee of α− 1 for
the k-adaptability problem. However, deriving the scenario set {ξ̂1, . . . , ξ̂t} which leads to the
best approximation guarantee is computationally heavy; see [26]. In the following we propose
a more efficient heuristic approach in Algorithm 2 where an arbitrary set of t scenarios in U
is used, which leads to a certain approximation guarantee for the k-adaptability problem; see
Theorem 25.

Algorithm 2 Approximation Algorithm K-adaptability

Input: n ∈ N, k ∈ [n], t ≥ k, convex set U ⊂ Rn, u, ū ∈ Rn s.t. U ⊆ [u, ū]

1: Select arbitrary ξ̂1, . . . , ξ̂t ∈ U .
2: Calculate an optimal solution (x̂, ŷ1, . . . , ŷt) of Problem (10) with scenarios ξ̂1, . . . , ξ̂t.
3: Calculate solutions ȳ1, . . . , ȳk ∈ Y (x̂) by Algorithm 1 for the min-max-min problem

d>x̂+ min
y1,...,yk∈Y (x̂)

max
ξ∈U

min
i=1,...,k

ξ>yi

4: Return: x̂, ȳ1, . . . , ȳk

Remark 24 (Variant of Algorithm 2). In Remark 1 we presented a variant of Algorithm 1
where for the selection of the k solutions a sparsity constraint is added to the Problem in Step 2
of Algorithm 1. Obviously we directly obtain a variant of Algorithm 2 by applying Algorithm 1
(Variant) in Step 3 of Algorithm 2. We will denote this algorithm as Algorithm 2 (Variant).

In the following we define the k-adaptable objective value for the solution x̂, ȳ1, . . . , ȳk re-
turned by Algorithm 2 as

approxadapt(k) := d>x̂+ max
ξ∈U

min
i=1,...,k

ξ>ȳi.

We can now show the following theorem.

Theorem 25. Let k ∈ N with k ≤ n, U ⊂ Rn+ and u, ū ∈ Rn+ such that U ⊆ [u, ū]. Then for the
solution x̂, ȳ1, . . . , ȳk returned by Algorithm 2 it holds

approxadapt(k) ≤ α
(

1 + M̃(n)
n− k
k + 1

)
adapt(k)

where α = maxj=1,...,n
ūj
uj

and M̃(n) is defined as in Lemma 9.

Proof. We first derive the approximation value α in Lemma 23 for the set of scenarios ξ̂1, . . . , ξ̂t

selected in Step (1). Note that for every scenario ξ ∈ U it holds

ξj

ξ̂ij
≤ ūj
uj

∀i ∈ [t], j ∈ [n]

since ξ̂1, . . . , ξ̂t ∈ U . Hence, the assumption of Lemma 23 is true for

α := max
j=1,...,n

ūj
uj
.
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We can now bound the objective value of the solution calculated by Algorithm 2 as follows:

approxadapt(k) = d>x̂+ max
ξ∈U

min
i=1,...,k

ξ>ȳi

≤ d>x̂+

(
1 + M̃(n)

n− k
k + 1

)
min

y1,...,yk∈Y (x̂)
max
ξ∈U

min
i=1,...,k

ξ>yi

≤
(

1 + M̃(n)
n− k
k + 1

)(
d>x̂+ min

y1,...,yk∈Y (x̂)
max
ξ∈U

min
i=1,...,k

ξ>yi
)

≤ α
(

1 + M̃(n)
n− k
k + 1

)
adapt(k)

where the first inequality follows from the multiplicative approximation guarantee derived in
Corollary 10 which we obtain since we apply Algorithm 1 in Step (3) to the min-max-min problem

with fixed first-stage solution x̂. The second inequality follows since
(

1 + M̃(n)n−kk+1

)
≥ 1 and

d>x̂ ≥ 0 and the third inequality follows by applying Lemma 23 with the α value derived
above.

Note that the derived approximation guarantee differs only by the multiplicative factor α
from the one shown in Lemma 17 and α does not depend on the dimension n. Hence the analysis
shown in Section 3 can be easily adapted here. However, the approximation guarantee can never
be smaller than α. The factor α is given as the maximum ratio of the upperbound and the
lowerbound value of the uncertainty set over all dimensions. Hence, larger uncertainty sets lead
to larger approximation guarantees. Note that if we consider budgeted uncertainty sets where
the deviation of the mean-value is at most 50%, then α = maxj=1,...,n

ūj
uj
≈ 1.5.

One limitation of our analysis is that the parameter α is independent of the number of
scenarios t which are chosen. This is counter intuitive since generating more scenarios in Step 1
of Algorithm 2 can lead to better approximation guarantees.

4.2 Calculating lower bounds for k-adaptability problems

In the following we show how to efficiently calculate lower bounds for the k-adaptability problem
which can be used together with the upper bounds calculated in the previous section in classical
algorithmic frameworks to calculate optimality gaps.

Using the reformulation of the k-adaptability problem

min
x∈X, λ≥0

y=
∑
i∈[k] λiy

i∑
i∈[k] λi=1

y1,...,yk∈Y (x)

max
ξ∈U

d>x+ ξ>y.

it is easy to see that a valid lower bound is given by the case where k = n and in this case the
problem is equivalent to

min
x∈X,y∈conv(Y (x))

max
ξ∈U

d>x+ ξ>y.

This problem can be lower bounded by

min
(x,y)∈conv(Z)

max
ξ∈U

d>x+ ξ>y

where Z = {(x, y) : x ∈ X, y ∈ Y (x)}. The latter problem is of the type (2) and hence it is
equivalent to a min-max-min robust problem over the set Z with k = n. This can be efficiently
solved again by the standard methods shown in [15]. We will use this lower bound to provide
optimality gaps for Algorithm 2 in Section 5.
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5 Computations

In this section we test Algorithm 1 (and its variant) on random instances from the min-max-min
literature for the shortest path problem and the knapsack problem and compare the objective
values to the lower bound obtained by solving M3(n).

Additionally we test Algorithm 2 on a generic two-stage robust problem studied in [25] and
on a two-stage version of the shortest path problem (see [27]), where in the first stage a set of
edges has to be bought, while after the edge costs are revealed in the second-stage a shortest
path has to be calculated where only edges bought in the first stage can be used. We apply
Algorithm 2 with t = n scenarios selected in the first step.

All algorithms were implemented in Python 3.10 and all optimization problems were solved
by Gurobi 10 [31] with standard hyperparameter setup. Experiments were executed on a cluster
with AMD Genoa 9654 (2x) 96 Cores/Socket 2.4GHz 360W CPU and with 24 x 16GiB 4800MHz,
DDR5 RAM.

5.1 Instances

We test the algorithm on the minimum knapsack problem (KP) which is given by

min
a>x≥b
x∈{0,1}n

c̄>x

where the instances were generated as in [20, 28]. For n ∈ {50, 100} we generate 10 random
knapsack instances where the mean-costs c̄i and the weights ai were drawn from a uniform
distribution on {1, . . . , 100} and the knapsack capacity b was set to 35% of the sum of all weights.
For each knapsack instance we generated a budgeted uncertainty set

U =

c ∈ Rn : ci = c̄i + δi∆i,
∑
i∈[n]

δi ≤ Γ, δ ∈ [0, 1]n


where each ∆i was drawn uniformly from {1, . . . , c̄i} with budget parameter Γ ∈ {2, 5, 10}.

For the shortest path problem (SPP) we use the original instances from [32] which were
also used in several other publications of the min-max-min literature. We consider random
graphs G = (V,E) with |V | ∈ {30, 50} nodes corresponding to points in the Euclidean plane
with random coordinates in [0, 10]. For each dimension we randomly select 10 of the graphs
generated in [32]. We consider budgeted uncertainty sets described as above where the mean
values c̄ij on edge (i, j) are set to the euclidean distance of node i and j and the deviation values
are set to ∆ij =

c̄ij
2 . The budget parameter Γ was chosen in ∈ {2, 5, 10}.

For the two-stage case we consider the generic k-adaptability problem (GP) studied in
[25] which is defined as

min max
ξ∈U

min
i=1,...,k

d>x+ ξ>yi

s.t.

m∑
i=1

xi = 10

f>yi − a>x ≥ 0 i = 1, . . . , k

x ∈ {0, 1}m, y1, . . . , yk ∈ {0, 1}n

where x are the first-stage decision variables and yi the second-stage decision variables and
n = m = 50. The parameters di, ai and fi are uniformly and randomly generated in [8, 12],
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[50, 100] and [80, 90], respectively. We generate budgeted uncertainty sets as above with mean

values ξ̄i uniformly and randomly generated from [8, 12] and deviations values ∆i = ξ̄i
4 . The

budget parameter Γ was chosen in ∈ {2, 5, 10}.
Finally we consider a two-stage network construction variant of the shortest path

problem (2SP). We consider the same instances as for the shortest path problem but study
the k-adaptability problem

min max
ξ∈U

min
i=1,...,k

d>x+ ξ>yi

s.t. x ∈ {0, 1}E

y1, . . . , yk ∈ YSP(x)

where YSP(x) is the set of paths in G (encoded by their 0-1 incidence vectors) where yie ≤ xe for
all i ∈ [k]. Hence, the task is to buy a set of edges in the first-stage (indicated by the decisions
x) such that for every scenario ξ ∈ U a good path yi exists which only uses edges bought in
the first stage. This problem was already studied e.g. in [27]. The first-stage costs are set to
d = 1

2 mini=1,...,n ξ̄i1 where ξ̄ is the mean-cost vector of the budgeted uncertainty set. The latter
choice is motivated by the observation that if the costs are set significantly smaller, the optimal
solution is to buy all edges of the graph. On the other hand if the value is set significantly larger
the optimal solution is to buy just one path in the graph, so in the second-stage there is no
option to adapt to the scenarios.

5.2 Computational Results

In the following subsections we show the achieved optimality gaps and runtimes of Algorithm
1 (and its variant) and Algorithm 2 (and its variant) for the problem instances introduced in
the previous subsection and for different values of k. All values are given as the average over 10
random instances.

To obtain the optimality gap, we first run Algorithm 1 (or Algorithm 2) and record the
objective value obj of the returned solution. Then we calculate a lowerbound for the KP and
SPP instances by calculating the optimal value of the corresponding min-max-min problem for
k = n by applying the iterative method presented in Section 4.2 to the one-stage problems. For
the two-stage problems GP and 2SP we apply the same algorithm presented in 4.2 to obtain a
lower bound. The optimality gap is defined as

gap :=
obj− lowerbound

lowerbound
· 100.

The runtimes are given in seconds. We set a timelimit of 1800 seconds for the problem to be
solved in Step 2 of Algorithm 1 (Variant) since in our experiments it was the only subproblem
which sometimes lead to huge runtimes, due to the sparsity constraint. In case the timelimit is
reached we take the best known solution provided by Gurobi.

5.2.1 The Knapsack Problem

In the following we show the results of Algorithm 1 and Algorithm 1 (Variant) on the KP
instances described above. In Figure 4 the optimality gaps are shown in % for different values
of k for the KP. The results show exactly the behaviour we analyzed in Section 3, namely the
optimality gap decreases for increasing k and returns the optimal solution already for k ≥ 10 for
both instance sizes. For k = 4 the optimality gap is at most 1.5%. The results show that the
optimality gaps increase for larger uncertainty sets (i.e. larger Γ) and for a larger dimension of
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the problem. Furthermore Algorithm 1 (Variant) performs significantly better with only small
increases in computation times as shown in Figure 5. Both algorithms are able to achieve small
optimality gaps in less than 1 second.
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Figure 4: Average optimality gaps for KP instances with n = 50 (left) and n = 100 (right) for
Algorithm 1 and Algorithm 1 (Variant) for different values of Γ.
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Figure 5: Average runtimes for KP instances with n = 50 (left) and n = 100 (right) for Algorithm
1 and Algorithm 1 (Variant) for different values of Γ.

5.2.2 Shortest Path Problem

In the following we show the results of Algorithm 1 and Algorithm 1 (Variant) on the SPP
instances described above. In Figure 6 the optimality gaps are shown in % for different values
of k for the SPP. Similar to the previous section, the results show exactly the behaviour we
analyzed in Section 3, namely the optimality gap decreases for increasing k and returns the
optimal solution already for k ≈ 20 for both instance sizes. Compared to KP the optimality gaps
are larger for small k. The results show that the optimality gaps increase for larger uncertainty
sets (i.e. larger Γ) and for a larger dimension of the problem. Furthermore Algorithm 1 (Variant)
performs significantly better. However this comes with larger computation times as shown in
Figure 7. Interestingly the instances with midsize k are the hardest instances for Algorithm 1
(Variant) while for larger k the runtime decreases again. Possibly this is because the sparsity
constraint is redundant for larger k. Algorithm 1 (Variant) is able to achieve optimality gaps
below 10% for k = 4 and Γ = 5 in less than 10 seconds.
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Figure 6: Average optimality gaps for SPP instances with 30 nodes (left) and 50 nodes (right)
for Algorithm 1 and Algorithm 1 (Variant) for different values of Γ.
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Figure 7: Average runtimes for SPP instances with 30 nodes (left) and 50 nodes (right) for
Algorithm 1 and Algorithm 1 (Variant) for different values of Γ.

5.2.3 A Generative K-adaptability Problem

In the following we show the results of Algorithm 2 and Algorithm 2 (Variant) on the GP instances
described above. In Figure 8 the optimality gaps are shown in % for different values of k. Similar
to the previous section, the results show exactly the behaviour we analyzed in Section 3, namely
the optimality gap decreases for increasing k. However since the first-stage solution calculated by
Algorithm 2 is only an approximation, the optimality gap does not necessarily converge to zero
for growing k as it was the case in the previous sections. The optimality gaps for small k are not
larger than 5%. The results show that the optimality gaps increase for larger uncertainty sets
(i.e. larger Γ) and for a larger dimension of the problem. Furthermore Algorithm 2 (Variant)
performs significantly better. This comes with a small increase in computation times as shown
in Figure 9. Similar to SPP the instances with midsize k are the hardest instances for Algorithm
1 (Variant) while for larger k the runtime decreases again. Possibly this is because the sparsity
constraint is redundant for larger k. Algorithm 2 (Variant) is able to achieve optimality gaps
below 2% for k = 4 in less than 1000 seconds.
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Figure 8: Average optimality gaps for GP instances with n = m = 30 (left) and n = m = 50
(right) for Algorithm 2 and Algorithm 2 (Variant) for different values of Γ.
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Figure 9: Average runtimes for GP instances with n = m = 30 (left) and n = m = 50 (right) for
Algorithm 2 and Algorithm 2 (Variant) for different values of Γ.

5.2.4 Network Construction Shortest Path Problem

In the following we show the results of Algorithm 2 and Algorithm 2 (Variant) on the 2SP
instances described above. In Figure 10 the optimality gaps are shown in % for different values of
k. The optimality gap decreases for increasing k. However since the first-stage solution calculated
by Algorithm 2 is only an approximation, the optimality gap does not necessarily converge to
zero for growing k as it was the case for the min-max-min instances. The approximate first-
stage solution is significantly worse compared to GP and the optimality gaps remain large. Here
better problem-specific approximation algorithms for finding good two-stage solutions have to
be developed. The results show that the optimality gaps increase for larger uncertainty sets
(i.e. larger Γ) and for a larger dimension of the problem. Both, Algorithm 2 and Algorithm 2
(Variant) perform similarly in terms of optimality gap and runtimes. Interestingly, the runtimes
for instances with Γ = 10 are smaller for Algorithm 2 (Variant). In total the runtime is always
smaller than 600 seconds.
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Figure 10: Average optimality gaps for 2SP instances with 30 nodes (left) and 50 nodes (right)
for Algorithm 2 and Algorithm 2 (Variant) for different values of Γ.
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Figure 11: Average runtimes for 2SP instances with 30 nodes (left) and 50 nodes (right) for
Algorithm 2 and Algorithm 2 (Variant) for different values of Γ.

6 Conclusion

In this work we study the min-max-min robust problem for binary optimization problems with
uncertain costs. We focus on the case when the number of calculated solutions k is of interme-
diate size, i.e. either it is smaller but close to n or a fraction of n. We present an algorithm
with provable additive and multiplicative approximation guarantees (involving problem-specific
parameters) for both cases. The derived approximation guarantees depend on the size of the
uncertainty set and the dimension of the problem and can be large for small k, but converge
quickly to zero with increasing k. For special cases the guarantees provide an constant approx-
imation guarantee (independent of n). Furthermore we calculate the range of parameter k for
which a certain guarantee is achieved. We show that surprisingly if k is close to n, the min-
max-min problem remains theoretically tractable and can be solved exactly and approximately
in polynomial time for a large set of combinatorial problems if some problem parameters are
fixed.

We extend the previous results to derive an approximation algorithm for k-adaptability prob-
lems and to derive lower bounds on the number of second-stage policies k which have to be used
to achieve a certain approximation guarantee for the exact two-stage robust problem. We show
that these bounds can also be used to approximate the recoverable robust problem.
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Finally, the theoretical insights are confirmed by computations on min-max-min and k-
adaptability instances from the literature. The experiments show that the presented algorithm
is able to calculate solutions with small optimality gap in seconds, where the optimality gaps
quickly go to zero with increasing k.

The results of this paper indicate that solving the min-max-min problem (and to some extend
the k-adaptability problem) gets easier if k gets larger. This is in contrast to the results usually
presented in the min-max-min and k-adaptability literature, where the number of solved instances
(during a given timelimit) is often decreasing in k. However, if the approximation algorithms
derived in this work (and the presented lower bounds) would be used to calculate solutions with
good optimality guarantee, most of the known exact algorithms will scale much better for growing
k due to the presented behaviour of the approximation bounds. Hence, we strongly recommend
to use the presented approximation algorithms and lower bound calculations.

While the approximation quality in dependence of k for objective uncertainty is now well
understood, for future work it would be interesting to derive similar results for the case that
uncertain parameters are also allowed to appear in the constraints. However, the analysis pre-
sented in this work cannot be directly extended to this case and a completely new approach has
to be developed.
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Appendix

Proof of Lemma 16

Proof. Let x∗(k) ∈ X, y∗(k) =
∑
i∈[k] λiy

i be an optimal solution of Problem (k-adapt) with
parameter k. We may assume without loss of generality that λ1 ≥ . . . ≥ λk. Define a solution
x(s), y(s) of the s-adaptable problem by setting x∗(s) = x∗(k) and

y(s) :=
∑

i∈[s−1]

λiy
i +

(
k∑
i=s

λi

)
ys. (11)

The latter solution is clearly feasible for the s-adaptable problem and hence

adapt(s) ≤ max
ξ∈U

d>x(s) + ξ>y(s).

Furthermore let ξ∗(s) ∈ arg maxξ∈U d
>x(s) + ξ>y(s). It follows

adapt(s)− adapt(k) ≤ max
ξ∈U

d>x(s) + ξ>y(s)− (max
ξ∈U

d>x∗(k) + ξ>y∗(k))

≤ ξ∗(s)> (y(s)− y∗(k))

=

k∑
i=s+1

λiξ
∗(s)>

(
ys − yi

)
≤M(n)

(
k∑

i=s+1

λi

)

where the second inequality holds since ξ∗(s) is a subgradient of the function g(y) = maxξ∈U d
>x+

ξ>y in y(s) and since x∗(k) = x(s). For the first equality we used the definition of y(s) and y∗(k)
and for the last inequality we used the assumption p(n) ≤ ‖y‖0 ≤ p̄(n) and m∞ ≤ ξ∗(s)j ≤M∞
for all j ∈ [n]. Due to the sorting λ1 ≥ . . . ≥ λk and since the sum over all λi is one, we have
λi ≤ 1

i and hence

M(n)

(
k∑

i=s+1

λi

)
≤M(n)

(
k∑

i=s+1

1

i

)

≤M(n)
k − s
s+ 1

which proves the result.
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