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Abstract
This paper demonstrates the optimality of an interpolation set employed in derivative-free

trust-region methods. This set is optimal in the sense that it minimizes the constant of
well-poisedness in a ball centred at the starting point. It is chosen as the default initial
interpolation set by many derivative-free trust-region methods based on underdetermined
quadratic interpolation, including NEWUOA, BOBYQA, LINCOA, and COBYQA. Our
analysis provides a theoretical justification for this choice.
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1 Introduction

Derivative-free optimization (DFO) methods solve the optimization problem

min
x∈Ω⊆Rn

f(x) (1)

based on function evaluations without relying on derivative information. They are needed when
classical or generalized derivatives of the objective function f : Rn → R are unavailable or too
expensive to evaluate, which may also be the case for the constraint functions underlying the
feasible set Ω ⊆ Rn. Examples of such problems arise from many areas, such as reinforcement
learning [22], hyperparameter tuning [12], particle physics [10], and aircraft engineering [11]. The
DFO literature is vast. For comprehensive overviews, we refer to the monographs [1,5], the survey
papers [7, 13–15,25], the recent thesis [23], and the references therein.

This paper studies a set employed as the initial interpolation set by many derivative-free trust-
region methods [4, 28] based on underdetermined quadratic interpolation, such as NEWUOA [19],
and, when no constraints are present, BOBYQA [20], LINCOA, and COBYQA [23,24]. It is also
employed by [3] in a method for constrained problems. We show that this interpolation set is
optimal in the sense that it minimizes the constant of well-poisedness in a ball centred at the
starting point, which is detailed in Theorem 3.2.
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In what follows, we denote by Qn the space of polynomials on Rn of degree at most two,
which will be referred to as quadratic polynomials for simplicity. The DFO methods that we
consider maintain an interpolation set Y k ⊆ Rn at iteration k, and build a model f̂k ∈ Qn for f
according to the interpolation conditions

f̂k(y) = f(y), y ∈ Y k. (2)

Clearly, if the interpolation conditions (2) do not contradict each other, the model f̂k is uniquely
defined by (2) only if

card(Y k) = dim(Qn) = 1
2(n + 1)(n + 2).

Such a scheme, referred to as the fully-determined quadratic interpolation, is used, for example,
by UOBYQA [16]. However, the first iteration of this method requires O(n2) function evaluations
to construct the initial model f̂ 0. This is impracticable unless n is small. Therefore, modern
interpolation-based DFO methods work with fewer interpolation points, giving rise to the
underdetermined quadratic interpolation. To uniquely define f̂k in this case, it is common to
solve an interpolation problem of the form

min
Q∈Qn

F k(Q)

s.t. Q(y) = f(y), y ∈ Y k,
(3)

where F k is a functional that promotes certain desired regularity of f̂k. For example, DFO [6]
and MNH [26] take

F k(Q) =
∥∥∇2Q

∥∥2
F, (4)

where ∥·∥F denotes the Frobenius norm. In contrast, NEWUOA, BOBYQA, LINCOA, and
COBYQA employ

F k(Q) =
∥∥∇2Q − ∇2f̂k−1∥∥2

F (5)

with f̂−1 = 0. There are other functionals based on the ℓ1-norm [2] or Sobolev seminorms
of quadratic polynomials [27, 30]. The variational problem described by (3) and (5) defines
the derivative-free symmetric Broyden update proposed by Powell (see [17, 21], [29, § 3.6],
and [23, § 2.4.2]), with the functional (5) being inspired by the least-change property of quasi-
Newton updates [8]. To ensure that (3) admits a solution that includes second-order information,
one normally requires that

n + 2 ≤ card(Y k) ≤ 1
2(n + 1)(n + 2).

Finally, if the constraint functions underlying the feasible set Ω in (1) are nonlinear, we can
approximate them using similar techniques, which is the case for COBYQA.

Most interpolation-based DFO methods do not build the interpolation point Y k ab initio
at each iteration. Instead, they choose an initial interpolation set Y 0 and then update Y k to
obtain Y k+1. For example, only one point differs between Y k and Y k+1 in Powell’s trust-region
DFO methods and COBYQA during usual iterations. This mechanism tries to make the best of
the function evaluations, which are normally considered the principal cost of DFO methods. In
such a case, it is clear that the initial interpolation set Y 0 must be carefully chosen, as it will
impact the optimization method for subsequent iterations. Powell devised an initial interpolation
set for his methods, described in Subsection 3.1. Although the design of this set is natural, no
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theoretical analysis has been provided to justify its configuration. This paper contributes such an
analysis, showing that no other interpolation set is better in a well-poisedness sense [5, § 3.3].

This paper is organized as follows. Section 2 introduces the Λ-poisedness of interpolation
sets in the minimum Frobenius norm sense. Section 3 then employs this notion to study the
initial interpolation set used by Powell. We provide lower and upper bounds for the constant of
well-poisedness of the set, evaluate this constant in a few special cases, and then demonstrate the
optimality of this set under the default setting recommended by Powell. In addition, we raise
some open questions motivated by our results. Section 4 concludes this paper.

2 Well-poisedness of interpolation sets

In this section, we consider an interpolation set

Y = {y1, y2, . . . , ym} ⊆ Rn

and the interpolation problem

min
Q∈Qn

∥∇2Q∥F

s.t. Q(y) = f(y), y ∈ Y.
(6)

This problem covers (3)–(4), and also covers (3) with (5) by a simple change of variable.

Definition 2.1 (Poisedness). The set Y is poised in the minimum Frobenius norm sense if
problem (6) has a unique solution for any real-valued function f .

Observe that the variational problem (6) is an equality-constrained quadratic programming
problem with respect to the coefficients of Q. Thus, its KKT system is linear. The exact
formulation of this system can be found in [17, 18]. The interpolation set Y is poised if this KKT
system is uniquely solvable (see [17, § 2] and [5, § 5.3]). Intuitively, Y can be said well-poised if
this system is well-conditioned. This intuition will be formalized in the sequel.

2.1 Minimum Frobenius norm Lagrange polynomials

To formally define a measure of well-poisedness of Y , we first need to extend the classical definition
of the Lagrange polynomials as follows.

Definition 2.2 (Minimum Frobenius norm Lagrange polynomials [5, Definition 5.1]). Assume
that the interpolation set Y is poised. The ith minimum Frobenius norm Lagrange polynomial Li

for the interpolation problem (6), with i ∈ {1, 2, . . . , m}, is the unique quadratic polynomial that
solves

min
Q∈Qn

∥∥∇2Q
∥∥

F

s.t. Q(yj) = δi,j , j ∈ {1, 2, . . . , m},

where δi,j denotes the Kronecker delta.

Remark that if m = (n + 1)(n + 2)/2, then Definition 2.2 reduces to the classical definition of
the Lagrange polynomials. Moreover, it can be shown that the solution f̂ to problem (6) is given
by

f̂(x) =
m∑

i=1
f(yi)Li(x)
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for any x ∈ Rn [5, Lemma 5.2].

2.2 Well-poisedness in the minimum Frobenius norm sense

We are now equipped to define the notion of Λ-poisedness in the minimum Frobenius norm sense.

Definition 2.3 (Λ-poisedness in the minimum Frobenius norm sense [5, Definition 5.6]). Let Λ
be a positive constant and C ⊆ Rn be a compact set. The set Y is said to be Λ-poised in the
minimum Frobenius norm sense in C if it is poised and

max
1≤i≤m

max
x∈C

∣∣Li(x)
∣∣ ≤ Λ.

One can show that Y is Λ-poised in the unit ball if and only if the condition number of the
KKT system of (3) is bounded by some polynomials of Λ [5, Theorem 5.8]. Therefore, the notion
of Λ-poisedness formalizes the intuition about well-poisedness mentioned above.

If Y is a poised interpolation set and C ⊆ Rn is compact, then we will refer to

ΛC(Y) = max
1≤i≤m

max
x∈C

∣∣Li(x)
∣∣

as the constant of well-poisedness of Y in C.

3 Optimality of Powell’s initial interpolation set

This section first presents the initial interpolation set devised by Powell for his trust-region
DFO methods, and then analyzes its well-poisedness. We establish bounds on its constant of
well-poisedness and evaluate this constant in some special cases. Finally, we point out that
the default setting in Powell’s methods renders an optimal interpolation set in terms of the
well-poisedness in a ball centred at the starting point.

3.1 Description of the initial interpolation set

The initial interpolation that Powell designed for his methods is as follows. Without loss of
generality, we assume that the starting point is at the origin. Suppose that ∆ > 0 is the initial
trust-region radius. For i ∈ {1, 2, . . . , 2n + 1}, define

yi =


0, if i = 1,
∆ei−1, if 2 ≤ i ≤ n + 1,
−∆ei−n−1, otherwise,

(7)

where ei ∈ Rn denotes the ith canonical coordinate vector in Rn. Let m be the number of
interpolation points. We focus on the case with n+2 ≤ m ≤ 2n+1 following Powell’s suggestion.1
The initial interpolation set is then chosen to be

Y 0
m = {y1, y2, . . . , ym}, (8)

which can be found in [19, Equation (3.2)]. The default value for m proposed by Powell is 2n + 1.
In other words, the default initial interpolation set is Y 0 = Y 0

2n+1. This is a natural choice,
1Powell’s BOBYQA code contains a comment that “choices that exceed 2n + 1 are not recommended.”
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as the corresponding interpolation set is geometrically appealing. It consists of the origin and
equidistant points to the origin in the positive and negative coordinate directions. In what follows,
we provide a theory that justifies this natural choice, showing that Y 0

2n+1 is indeed optimal in
terms of well-poisedness.

3.2 Well-poisedness of the interpolation set

We now investigate the Λ-poisedness of Y 0
m. We will do this in the closed ℓp-norm ball of radius ∆

centred at the origin, namely

Bp(∆) = {x ∈ Rn : ∥x∥p ≤ ∆},

with p ∈ [1, ∞]. Note that we allow p = ∞, and that Bp(∆) is also the smallest ℓp-norm ball
enclosing Y 0

m. Trust-region DFO methods usually define the trust region by the Euclidean norm,
so the case with p = 2 is the most interesting. However, it can be beneficial to define the trust
region by polyhedral norms when bound or linear constraints are present, and p = 1 or p = ∞
will become more relevant.

According to Definition 2.3, the set Y 0
m is Λp-poised in Bp(∆) in the minimum Frobenius

norm sense with
Λp = max

1≤i≤m
max

∥x∥p≤∆

∣∣Li(x)
∣∣, (9)

where Li, for i ∈ {1, 2, . . . , m}, is the ith minimum Frobenius norm Lagrange polynomial
associated with Y 0

m. Indeed, Λp is the constant of well-poisedness of Y 0
m in Bp(∆). We will focus

on this constant in what follows.

3.2.1 Formulation of the Lagrange polynomials

To study Λp, we first present explicit formulae for Li for all i ∈ {1, 2, . . . , m}. These formulae
are given in [19, § 3] without proof.

Lemma 3.1. For all x ∈ Rn and m ∈ {n + 2, n + 3, . . . , 2n + 1}, the expression of Li,
for i ∈ {1, 2, . . . , m}, is given by

Li(x) =



1 − 1
∆2

m−n−1∑
j=1

x2
j − 1

∆

n∑
j=m−n

xj , if i = 1,

x2
i−1

2∆2 + xi−1

2∆ , if 2 ≤ i ≤ m − n,

xi−1

∆ , if m − n + 1 ≤ i ≤ n + 1,

x2
i−n−1
2∆2 − xi−n−1

2∆ , if n + 2 ≤ i ≤ m.

(10)

Here, xj denotes the jth entry of x for each j ∈ {1, 2, . . . , n}, and we define
∑n

j=m−n xj = 0 in
the formulation of L1 if m = 2n + 1.

Proof. Let i ∈ {1, 2, . . . , m} be fixed and let L be a quadratic polynomial satisfying

L(yj) = δi,j , j ∈ {1, 2, . . . , m}. (11)
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First, it is straightforward to verify that Li satisfies the interpolation conditions (11). Hence, it
suffices to show that ∥∇2Li∥F ≤ ∥∇2L∥F.

Consider any j ∈ {1, 2, . . . , m − n − 1}. Denote the jth diagonal entries of ∇2L and ∇2Li

by (∇2L)j,j and (∇2Li)j,j , respectively. According to equation (7), we have

y1 = 0, yj+1 = ∆ej , and yn+j+1 = −∆ej .

Since L and Li are quadratic polynomials sharing the same values on {y1, yj+1, yn+j+1}, Taylor
expansions of the quadratic polynomial L around y1 yield

(
∇2L

)
j,j

= L(yj+1) + L(yn+j+1) − 2L(y1)
∆2 =

(
∇2Li

)
j,j

.

On the other hand, it is easy to check according to (10) that all the entries of ∇2Li are zero
except for the first m − n − 1 diagonal entries. Therefore,∥∥∇2Li

∥∥2
F ≤

∥∥∇2L
∥∥2

F,

which completes the proof.

3.2.2 Bounds for the constant of well-poisedness

The next lemma simplifies the expression of Λp defined in (9) for further computations.

Lemma 3.2. For any m ∈ {n + 2, n + 3, . . . , 2n + 1} and any p ∈ [1, ∞], we have

Λp = max
∥x∥p≤∆

∣∣L1(x)
∣∣. (12)

Proof. According to Lemma 3.1, for each i ∈ {2, 3, . . . , n + 1}, Li(x) only depends on xi−1 for
all x ∈ Rn, and hence

max
∥x∥p≤∆

∣∣Li(x)
∣∣ = max

t∈[−∆,∆]

∣∣Li(tei−1)
∣∣ = 1.

Similarly, for each i ∈ {n + 2, n + 3, . . . , m}, since Li(x) only depends on xi−n−1 for all x ∈ Rn,
we have

max
∥x∥p≤∆

∣∣Li(x)
∣∣ = max

t∈[−∆,∆]

∣∣Li(tei−n−1)
∣∣ = 1.

Meanwhile, since L1(y1) = 1 and y1 ∈ Bp(∆), we have

max
∥x∥p≤∆

∣∣L1(x)
∣∣ ≥ L1(y1) = 1.

Hence, (12) holds according to the definition of Λp in (9).

We are now equipped to develop lower and upper bounds for Λp. For convenience, we define
henceforth

00 = 0 and ∞
∞

= 1.

Theorem 3.1. For any m ∈ {n + 2, n + 3, . . . , 2n + 1} and any p ∈ [1, ∞], we have

1 + (2n + 1 − m)
p−1

p ≤ Λp ≤ n. (13)
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In particular, we have Λ∞ = max{n − 1, 2n − m + 2}.

Proof. We will establish the bounds in (13) using the formulation of Λp in Lemma 3.2. For the
lower bound, by considering only the points in Rn whose leading m − n − 1 entries are zeros and
whose remaining 2n + 1 − m entries are equal, we have

Λp = max
∥x∥p≤∆

|L1(x)| ≥ max
t∈R

{
1− 1

∆(2n+1−m)t : (2n+1−m)
1
p |t| ≤ ∆

}
= 1+(2n+1−m)

p−1
p .

We now establish the upper bound. For any p ≥ 1, we have Bp(∆) ⊆ B∞(∆), so that Λp ≤ Λ∞.
Therefore, we only need to show that Λ∞ ≤ max{n − 1, 2n − m + 2} ≤ n. For any x ∈ B∞(∆),

−L1(x) = −1 + 1
∆2

m−n−1∑
j=1

x2
j + 1

∆

n∑
j=m−n

xj ≤ n − 1, (14)

and

L1(x) = 1 − 1
∆2

m−n−1∑
j=1

x2
j − 1

∆

n∑
j=m−n

xj ≤ 1 − 1
∆

n∑
j=m−n

xj ≤ 2n − m + 2. (15)

Thus
Λ∞ = max

∥x∥∞≤∆

∣∣L1(x)
∣∣ ≤ max{n − 1, 2n − m + 2},

which completes the proof of (13).

Finally, remark that the right-hand side in (14) is attained by the vector whose entries are
all ∆. Moreover, the right-hand side in (15) is attained by the vector whose first m − n − 1 entries
are zero and whose remaining entries are all −∆. Hence, Λ∞ = max{n − 1, 2n − m + 2}.

3.2.3 Some special cases

Theorem 3.1 provides the value of Λ∞, which is either n − 1 or n since m ≥ n + 2. There are
more cases where we can evaluate Λp, as we will detail in the following. First, when 1 ≤ p ≤ 2,
Λp actually equals the lower bound in (13).

Proposition 3.1. For any m ∈ {n + 2, n + 3, . . . , 2n + 1} and any p ∈ [1, 2], we have

Λp = 1 + (2n + 1 − m)
p−1

p . (16)

Proof. According to Theorem 3.1, it suffices to show that the right-hand side of (16) is an upper
bound for Λp. We will prove this using Lemma 3.2.

Consider any x ∈ Bp(∆). Note that ∥x∥2 ≤ ∥x∥p ≤ ∆ for p ∈ [1, 2]. According to Lemma 3.1
and the Hölder inequality, we have

−L1(x) = −1 + 1
∆2

m−n−1∑
j=1

x2
j + 1

∆

n∑
j=m−n

xj

≤ −1 + 1
∆2 ∥x∥2

2 + 1
∆(2n + 1 − m)

p−1
p ∥x∥p

≤ (2n + 1 − m)
p−1

p .
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Similarly,

L1(x) ≤ 1 + 1
∆

n∑
j=m−n

|xj | ≤ 1 + 1
∆(2n + 1 − m)

p−1
p ∥x∥p ≤ 1 + (2n + 1 − m)

p−1
p .

Therefore, invoking Lemma 3.2, we have

Λp = max
∥x∥p≤∆

∣∣L1(x)
∣∣ ≤ 1 + (2n + 1 − m)

p−1
p ,

which concludes the proof.

We can also evaluate Λp under the default and natural setting m = 2n + 1 recommended by
Powell. To this end, recall the following elementary fact.

Lemma 3.3. For any p ∈ [1, ∞] and q ∈ [1, ∞], we have

max
∥x∥p≤1

∥x∥q = max{1, n
1
q − 1

p }. (17)

Proof. If p or q is infinity, then (17) is straightforward to verify. So, we assume that both of them
are finite.

Consider the case where p ≤ q. For x ∈ Bp(1), we have ∥x∥q
q ≤ ∥x∥p

p ≤ 1, and this bound is
attained at the first coordinate vector e1 ∈ Bp(1), so that (17) holds in this case.

We now suppose that p > q. Let 1 ∈ Rn denote the vector with all entries being one, r = p/q,
and s = r/(r − 1) = p/(p − q). For x ∈ Bp(1), define z = (|x1|q, |x2|q, . . . , |xn|q). According to
the Hölder inequality, we have

∥x∥q =
(
1Tz

) 1
q ≤

(
∥1∥s∥z∥r

) 1
q = n

1
sq ∥x∥p ≤ n

p−q
qp .

Moreover, this bound is attained at x∗ = n− 1
p1, which proves (17) for p > q.

Proposition 3.2. For any p ∈ [1, ∞], if m = 2n + 1, then

Λp = max
{

1, n
p−2

p − 1
}

.

Proof. Since m = 2n + 1, we have L1(x) = 1 − ∆−2∥x∥2
2 according to Lemma 3.1. Then, it is

clear that
max

∥x∥p≤∆
L1(x) = max

∥x∥p≤∆

(
1 − ∆−2∥x∥2

2
)

= 1. (18)

Moreover, according to Lemma 3.3, we have

max
∥x∥p≤∆

−L1(x) = max
∥x∥p≤∆

(
∆−2∥x∥2

2 − 1
)

= max
∥z∥p≤1

∥z∥2
2 − 1 = max{0, n

p−2
p − 1}. (19)

The desired result is obtained by combining (18) and (19) with Lemma 3.2.

Now we can show that Y 0
2n+1 attains the minimal constant of well-poisedness in Bp(∆) among

all interpolation sets that contain the origin, provided that 1 ≤ p ≤ 2. In this sense, Y 0
2n+1 is an

optimal interpolation set in Bp(∆) for p ∈ [1, 2]. Indeed, the upper bound for p can be slightly
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larger than 2, as is detailed in Theorem 3.2. Recall that p = 2 is of interest for most trust-region
DFO methods, including those by Powell.

Theorem 3.2. Assume that m = 2n + 1, and that either n ≤ 2 or

1 ≤ p ≤ 2 log n

log(n/2) . (20)

If an interpolation set containing 0 is Λ-poised in Bp(∆), then Λ ≥ Λp.

Proof. Under the assumptions, we have Λp = 1 according to Proposition 3.2. If an interpolation
set containing 0 is Λ-poised in Bp(∆), then we have Λ ≥ 1, because the Lagrange polynomial
corresponding to 0 takes the value 1 at 0. Thus, the theorem holds.

It is worth mentioning that Proposition 3.1 also implies that Y 0
2n+1 renders Λp = 1 for p ∈ [1, 2].

Theorem 3.2 shows that this equality holds for a larger range of p, because the right-hand side
in (20) is greater than 2 when n > 2.

3.2.4 Remarks and open questions

Note that Λp can be regarded as a function of m. Theorem 3.2 implies that m∗ = 2n+1 minimizes
this function if p satisfies inequality (20). Thus, it is natural to ask whether 2n + 1 minimizes Λp

for any p ≥ 1, to which we do not have an answer yet.

The definition of Y 0
m in (7) and (8) assumes that m ≤ 2n + 1. Even though larger values of m

are not recommended in practice, Powell [19] proposed an extension of Y 0
m for m > 2n + 1. With

such an extension, we can define Λp by (9) for any m ∈ {n + 2, n + 3, . . . , (n + 1)(n + 2)/2}. It is
interesting to ask whether 2n + 1 still minimizes Λp for any p ≥ 1 after the extension. We expect
that the analysis will be more challenging than what we have done. One of the challenges is that
Lemma 3.2 does not hold when m > 2n + 1, and hence, the estimations of Λp will become more
involved.

Another interesting open question is whether an interpolation set containing the origin can
be Λ-poised in Bp(∆) with Λ < Λp. Theorem 3.2 provides a negative answer when p satisfies (20).
If the answer is negative for all p ≥ 1, then the optimality of 2n + 1 mentioned in the above two
paragraphs is true, and Y 0

2n+1 is an optimal interpolation set in Bp(∆) for all p ≥ 1.

4 Conclusion

We have analyzed the well-poisedness (in the minimum Frobenius norm sense) of an interpolation
set that appears in many trust-region DFO methods, particularly those by Powell [19,20]. It is
proved to be an optimal interpolation set under the default setting, because it minimizes the
constant of well-poisedness in a ball centred at the starting point. Our analysis justifies the
natural configuration of this set from the viewpoint of interpolation theory.

The spirit of our analysis is similar to that of [9], which proves that a widely used direction set
is indeed optimal for directional direct search methods based on sufficient decrease. While proving
nothing surprising, this kind of investigation deepens our understanding of certain algorithmic
strategies that we often employ but rarely ask why.
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