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Abstract

A suitable set of test instances, also known as benchmark problems, is a
key ingredient to systematically evaluate numerical solution algorithms for a
given class of optimization problems. While in recent years several solution
algorithms for the class of multiobjective mixed-integer nonlinear optimization
problems have been proposed, there is a lack of a well-established set of test
instances to compare the performance of these algorithms and evaluate their
strengths and weaknesses. Hence, in this manuscript we collect and classify
test instances that have been presented in the literature so far to obtain a first
collection of benchmark problems. In particular, for the classification we give an
overview of important properties that potentially influence the performance of
solution algorithms for multiobjective mixed-integer optimization problems and
investigate these properties for previously presented test instances. Our results
form a foundation for the systematic evaluation of solution algorithms as well as
the development and classification of corresponding test instances in the future.
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1 Introduction
One area of research in the field of mathematical optimization is the development of
solution algorithms for given classes of optimization problems. Each of these algorithms
has its own strengths and weaknesses. While some, for instance, might work especially
well for such optimization problems where function evaluations are computationally
costly, others might work especially well for large scale optimization problems with
a huge number of variables. In order to detect such strengths and weaknesses and
to find the best solution algorithm for a specific optimization problem, one typically
evaluates their performance on a well-established benchmark set of test instances. For
single-objective mixed-integer (nonlinear) optimization, a well-known example for such
a set of test instances is the MINLPLib [20] which is used, for instance, in [15] and
[18]. Well-known examples for multiobjective optimization problems are the DTLZ [4]
and the ZDT [21] test suite, see also [13] for an overview and characterization.

In recent years the first algorithms for multiobjective mixed-integer optimization
problems have been presented. These are optimization problems where several conflict-
ing objective functions have to be optimized simultaneously and some of the variables
are only allowed to take integer values. In particular, these integrality assumptions im-
mediately make the optimization problem nonconvex and difficult to solve numerically.
In the beginning, the focus of research in this area was on multiobjective mixed-integer
linear optimization problems, see [12] for a survey of corresponding solution algorithms.
Recently also the nonlinear setting has gained more and more attention. This is also
the setting in focus of this manuscript. Corresponding solution methods have been
presented for instance in [1, 5, 14] for biobjective problems and in [3, 9, 11] for mul-
tiobjective mixed-integer convex optimization problems with an arbitrary number of
objective functions. Even for the nonconvex setting first algorithms have been proposed
in [7, 16]. We remark that open source implementations of some of these algorithms
are provided, for instance, in [2] and [8].

Unfortunately, in contrast to single-objective mixed-integer or multiobjective con-
tinuous optimization, there currently exists no standard set of test instances for a
systematic evaluation and comparison of these algorithms. In fact, most of the papers
present their own set of test instances and only some are found in more than one paper.
Our manuscript is dedicated to closing this gap. More precisely, in Section 3 we suggest
and discuss the properties of test instances that are particularly relevant in the context
of multiobjective mixed-integer nonlinear optimization, especially regarding the evalua-
tion and comparison of different solution algorithms. We then collect and categorize 23
convex and nonconvex test instances from the existing literature with regard to these
properties in Section 4. As a result, we obtain a benchmark set of well-characterized
test instances that can be used for a systematic evaluation of the strengths and weak-
nesses of solution algorithms for multiobjective mixed-integer nonlinear optimization
problems. Moreover, the properties presented in Section 3 also serve as a foundation
for the development and classification of new test instances in the future.
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2 Notations and Definitions
Throughout this manuscript the inequality ≤ between vectors x, x′ ∈ Rp, p ∈ N is
understood componentwise, i.e., it holds x ≤ x′ if and only if xi ≤ x′i is fulfilled
for all i ∈ [p] := {1, . . . , p}. Based on this we define for l, u ∈ Rp with l ≤ u by
[l, u] := {z ∈ Rp | l ≤ z ≤ u} the p-dimensional box with lower bound l and upper
bound u. Finally, for a vector x ∈ Rp and for a nonempty set Ω ⊆ Rp we denote by
‖x‖2 the Euclidean norm of x and by |Ω| the cardinality of Ω, respectively.

We consider in the following multiobjective optimization problems, i.e., optimiza-
tion problems given by

min
x

f(x)

s.t. x ∈ S
(MOP)

with continuous objective functions fi : R` → R, i ∈ [p] where f = (f1, . . . , fp)> : R` →
Rp, and with a nonempty feasible set S ⊆ R`. Since in general there exists no feasible
point x ∈ S that minimizes all the different objective functions f1, . . . , fp at the same
time, we use the following optimality concept:
Definition 2.1 A feasible point x? ∈ S is an efficient solution of (MOP) if there exists
no x ∈ S with f(x) ≤ f(x?) and f(x) 6= f(x?). A point y? = f(x?) with x? ∈ S is
a nondominated point of (MOP) if x? is an efficient solution of (MOP). Moreover,
we denote by E ⊆ S the efficient set, i.e., the set of all efficient solutions, and by
N ⊆ f(S) the nondominated set, i.e., the set of all nondominated points, of (MOP),
respectively.

Note that by using a set notation one obtains that x? ∈ S is an efficient solution of
(MOP) if and only if

({f(x?)} − Rp
+) ∩ f(S) = {f(x?)},

with f(S) := {f(x) ∈ Rp | x ∈ S} and Rp
+ := {y ∈ Rp | yi ≥ 0 for all i ∈ [p]}.

We focus in the following on multiobjective mixed-integer optimization problems,
i.e., multiobjective optimization problems of the special type given by

min
x

f(x)

s.t. x ∈ S ⊆ Rn ×XI

(MOMIP)

with continuous objective functions fi : Rn+m → R for all i ∈ [p] where n,m, p ∈ N,
p ≥ 2, and f = (f1, . . . , fp)> : Rn+m → Rp. Further, let XI := [lI , uI ]∩Zm be a (finite)
subset of Zm with lI , uI ∈ Zm, and let S ⊆ Rn × XI ⊆ Rn × Zm be the nonempty
feasible set of (MOMIP).

In order to distinguish between the continuous and the integer variables of x ∈ S
we will write in the following x = (xC , xI) with xC ∈ Rn and xI ∈ XI . Moreover,
we call xI ∈ XI a feasible integer assignment of (MOMIP) if there exists xC ∈ Rn

such that x = (xC , xI) is feasible for (MOMIP). In the same manner, xI ∈ XI is
called an efficient integer assignment of (MOMIP) if there exists xC ∈ Rn such that
x = (xC , xI) is an efficient solution of (MOMIP). Based on this, we denote by SI the set
of all feasible integer assignments and by EI the set of all efficient integer assignments
of (MOMIP), respectively. Finally, for every feasible integer assignment x̂I ∈ SI we
define the corresponding patch problem (P(x̂I)) as

min
xC

f(xC , x̂I)

s.t. (xC , x̂I) ∈ S.
(P(x̂I))
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3 Useful properties of test instances in multiobjec-
tive mixed-integer nonlinear optimization

In the following we suggest some properties which should be taken into account when
choosing known or designing new optimization problems to test solution algorithms
for multiobjective mixed-integer optimization problems. Thereby we make no claim
on completeness in this regard. Depending on the specific techniques that are used
by an algorithm to solve (MOMIP), there exist various properties of the considered
problem that have an influence on the algorithm’s performance. In particular, for
different algorithms there will in general exist different properties that influence their
performance and not all of these properties will have an effect on all of the algorithms.
Nevertheless, there exists at least some properties that influence a huge class of solution
approaches and we will present and discuss those properties in the following.

3.1 General properties
First, we consider some of the more general properties of multiobjective mixed-integer
optimization problems. More precisely, these properties are not only of relevance for
solvers of (MOMIP), but also for solvers of general multiobjective optimization prob-
lems (MOP):

(1) number n ∈ N of continuous variables

(2) number m ∈ N of integer variables

(3) size of the feasible set S

(4) number p ∈ N of objective functions

(5) size of the image set (also called attainable set) f(S)

(6) size of the nondominated set N ⊆ f(S) relative to f(S)

We remark that the term “size” in properties (3), (5), and (6) typically represents a
value associated with the volume of the corresponding sets. In fact, often it refers
not to the volume of the set itself, but to the volume of a tight box containing that
set. For instance, with regard to decision space based methods such as branch-and-
bound algorithms, property (3) is often used to obtain a worst case estimate on the
number of branching steps. The same holds basically for property (5) and criterion
space based methods, e.g., algorithms that compute an enclosure. Hence, the term
“size” is used here to reflect exactly what one would intuitively expect when describing
the corresponding sets. However, these two properties are rather hard to determine in
practice. For example, the size of the feasible set S is easy to compute if it is only given
by some box constraints. But as soon as it becomes more complex, e.g., by adding
inequality constraints, it is not clear how exactly one should measure and evaluate the
size of S.
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This is one of the reasons why properties (1) and (2) are often used to give an
impression of the difficulty of an optimization problem (MOP). While the number of
variables is not necessarily directly related to the size of the feasible set S, it is at least
one of the factors that may contribute to that size. In particular, for test instances
that are scalable in the number of variables there often is a close relation between the
number of variables and the size of the feasible set. Analogously, property (4) is often
used as an estimator for the size of the image set.

Finally, property (6) is usually important for algorithms that rely on image points
y ∈ f(S) to improve a set of upper bounds. The largest improvement of an upper
bound set is usually obtained when using some nondominated point ȳ ∈ N ⊆ f(S)
to update the set. If the size of the nondominated set N is relatively small compared
to the size of the image set f(S), then finding such nondominated points (instead of
“only” image points) is rather difficult and this can slow down the improvement of
upper bound sets significantly.

3.2 Integer properties
In the setting of mixed-integer optimization, there exist some specific properties related
to the integer variables that can have an impact on the performance of corresponding
solution algorithms:

(7) number |XI | of possible integer assignments

(8) number |SI | of feasible integer assignments, in particular relative to |XI |

(9) number |EI | of efficient integer assignments, in particular relative to |SI | and also
relative to |XI |

A lot of algorithms for multiobjective mixed-integer optimization problems make use
of the finiteness of possible integer assignments. Often, the proof of the finiteness of
the algorithms themselves relies on the finiteness of possible integer assignments and
some worst case scenario where all these assignments would need to be enumerated.
Hence, property (7) is important for various aspects of the algorithmic performance
including worst case running time analysis.

As explained for the general properties, a lot of approximation algorithms make
use of an upper bound set and need to compute image points in order to improve
it. Hence, the number of feasible integer assignments (8) is of great interest for that.
If this number is very small (especially in comparison to the number of all possible
integer assignments) than it is usually more difficult to find image points. This holds
in particular for such algorithms that solve the overall mixed-integer problem (MOMIP)
by decomposing it into several purely continuous subproblems that are obtained when
fixing the integer variables.

For the same reason property (9) usually has an effect on the performance of these
algorithms. Not only that patches (P(x̂I)) for efficient integer assignments x̂I ∈ EI lead
to the best improvement of upper bound sets, they are often also needed in order to
compute valid lower bound sets.
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3.3 Algorithm dependent properties
Until now, we considered only such properties of (MOMIP) that affect almost all or
at least a huge subclass of solution algorithms for this kind of optimization problems.
In the following, we present some properties that are only of interest for very specific
types of algorithms:

(10) coupling of decision and criterion space, for example in the sense of Lipschitz
continuity of the objective functions

(11) similarity of the patch problems (e.g., if all patch problems lead to the same
image set in the criterion space that is “moved around” by the integer variables
as in the biobjective example from Figure 1)

(12) distribution/neighborhood of the efficient integer assignments xI ∈ EI in the
decision space

f1

f2

f(S)

Figure 1: Image set f(S) and nondominated set of a biobjective mixed-integer opti-
mization problem with similar patch problems for each integer assignment x̂I ∈ SI

Property (10) is of interest when it comes to the relation of approximations of efficient
solutions in the decision space and the approximation of nondominated points in the
criterion space. Usually only one of these two is obtained by a certain algorithm.
However, if there exists some kind of coupling between decision and criterion space
then it is possible to obtain a relation between both kinds of approximations. In
particular, algorithms like MOMIX from [3] that work with a termination criterion in
the decision space can then also be guaranteed to compute an approximation of the
nondominated set (in the criterion space) of certain quality.

For all algorithms that decompose the original problem (MOMIP) into patch prob-
lems, property (11) can be particularly relevant. This holds especially when the patches
are not treated individually/dynamically but rather a standard procedure is applied to
all of them. For example, a patch that consists only of a single isolated point should
be treated differently than a patch that contributes to a larger part of the image set
f(S). Such a distinction is of course not necessary if the patch problems are all very
similar to each other and can hence all be treated in the same way.
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Finally, property (12) provides valuable insights for decision space based methods
and in particular branch-and-bound approaches. If the efficient integer assignments
are all located within close distance to each other, then there is a high chance that this
is detected by a branch-and-bound approach and that huge parts of the decision space
can be discarded early.

4 Test Instances
In what follows we provide a collection of test instances for multiobjective mixed-integer
nonlinear optimization problems used in the literature. In doing so we distinguish be-
tween convex problems (see the forthcoming Subsection 4.1) and nonconvex problems
(see the forthcoming Subsection 4.2). Recall that (MOMIP) is called a multiobjective
mixed-integer convex optimization problem if the relaxed optimization problem, ob-
tained by ignoring the integrality constraints, is a convex optimization problem, i.e.,
has convex objective functions and a convex feasible set. Otherwise, (MOMIP) is called
a multiobjective mixed-integer nonconvex optimization problem. The feasible sets of
the test problems are often defined by inequality and equality constraints. Note that in
this case the feasible set of the corresponding relaxed optimization problem is convex
if all constraint functions gj : Rn+m → R, j ∈ [v] which describe inequality constraints
gj(x) ≤ 0 are convex and if all constraint functions hj : Rn+m → R, j ∈ [w] which
describe equality constraints hj(x) = 0 are affine linear. Regarding the description and
analysis of the presented test instances we restrict ourselves to the general properties
(1), (2), and (4), to the integer properties (7), (8), and (9), and, if possible, to the
algorithm dependent property (11).

4.1 Test Instances for Multiobjective Mixed-Integer Convex
Optimization

In the following we list 14 multiobjective mixed-integer convex optimization problems.
We start with 12 quadratic test instances. These are instances where all of the in-
volved objective and constraint functions are quadratic or even affine linear. The
first seven quadratic test problems (TI1) – (TI7) contain four biobjective and three
triobjective test instances, all with a fixed number of variables. The following two
biobjective quadratic test instances (TI8) and (TI9) are scalable only in the number
of integer variables. In contrast, the next three biobjective quadratic test instances
(TI10) – (TI12) are scalable both in the number of continuous variables as well as
in the number of integer variables. Finally, we present with (TI13) and (TI14) two
nonquadratic test instances, i.e., multiobjective mixed-integer optimization problems
with one nonquadratic but still convex objective or constraint function.

Test instance 1 [3, (T1)]:

min
x

(
x1 + x2
x2

1 + x2
2

)
s.t. (x1 − 2)2 + (x2 − 2)2 ≤ 36,

x ∈ X = [−2, 2]× ([−4, 4] ∩ Z)

(TI1)
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The test instance (TI1) is a biobjective mixed-integer convex optimization problem
with a single continuous and a single integer variable. It contains a linear and a
quadratic objective function and also a quadratic constraint function. All possible
integer assignments are feasible integer assignments, i.e., it holds XI = SI = [−4, 4]∩Z
and |XI | = |SI | = 9. Moreover, it holds EI = {−3,−2,−1, 0} and thus |EI | = 4, i.e.,
only four of the nine feasible integer assignments are also efficient integer assignments.
For an illustration of the image set and the nonconnected nondominated set of (TI1)
see Figure 2. Note that there exists an isolated image point (−2, 20)> ∈ f(S) for the
feasible integer assignment x2 = −4. All other feasible integer assignments lead to
patch problems with a similar image set (quadratic parabolas) in the criterion space
(cf. property (11)).

f1

f2

-6 -4 -2 2 4 6

8

16

Figure 2: Image set and nondominated set of (TI1)

Test instance 2 [11, (Ex2)]:

min
x

(
x1 + x3
x2 + x4

)
s.t. x2

1 + x2
2 ≤ 0.25,

x2
3 + x2

4 ≤ 1,
x ∈ X = R2 ×

(
[−1, 1]2 ∩ Z2

)
(TI2)

This is an illustrative biobjective example from [11] with two continuous and two integer
variables. Originally, it was formulated with x3, x4 ∈ Z, i.e., without a box constraint
regarding the integer variables. Here, according to our formulation of (MOMIP), we
choose xI = (x3, x4) ∈ XI := [−1, 1]2 ∩ Z2 which allows to calculate the value |XI | =
32 = 9 and thus also the ratios between |XI |, |SI |, and |EI |. Note that the inequality
constraint x2

3 + x2
4 ≤ 1 and x3, x4 ∈ Z imply

SI = {(0, 0), (0,−1), (0, 1), (−1, 0), (1, 0)} ⊆ XI ,
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and thus |SI | = 5. Moreover, (TI2) can be decomposed into the purely continuous
subproblem

min
(x1,x2)

(
x1
x2

)
s.t. x2

1 + x2
2 ≤ 0.25,

(x1, x2) ∈ R2

with efficient and nondominated set {(x1, x2) ∈ R2 | x2
1 + x2

2 = 0.25, x1 ≤ 0, x2 ≤ 0},
and into the purely integer subproblem

min
(x3,x4)

(
x3
x4

)
s.t. x2

3 + x2
4 ≤ 1,

(x3, x4) ∈ [−1, 1]2 ∩ Z2

with efficient and nondominated set {(0,−1), (−1, 0)}. According to [6] we refer to
problems with such a decomposable structure as separable multiobjective mixed-integer
optimization problems. For such a separable optimization problem every feasible integer
assignment x̂I ∈ SI leads to the same corresponding patch problem (P(x̂I)). Hence,
every separable (MOMIP), i.e., (TI2) and all following separable test instances, fulfills
property (11). Note that for (TI2) the image set of the patch problem (P(x̂I)) is a ball
with center x̂I and radius 0.5 for all x̂I ∈ SI . Using the separable structure it follows
by [6, Theorem 3.4] that for (TI2) the efficient set is given by

E =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 = 0.25, x1 ≤ 0, x2 ≤ 0
}
×
{

(0,−1), (−1, 0)
}

and the nondominated set by

N =
{

(x1, x2) ∈ R2 | x2
1 + x2

2 = 0.25, x1 ≤ 0, x2 ≤ 0
}

+
{

(0,−1), (−1, 0)
}
.

Thus it holds EI = {(0,−1), (−1, 0)} and |EI | = 2. For an illustration of the image set
and the nonconnected nondominated set of (TI2) see Figure 3.

Recently, a test instance generator for multiobjective mixed-integer linear and non-
linear optimization problems was presented in [6]. Similarly to (TI2), it generates
separable test instances based on well-known subproblems from multiobjective contin-
uous and multiobjective integer optimization. Moreover, the special structure allows to
construct instances scalable in the number of variables and objective functions. If the
efficient and nondominated sets of the purely continuous and of the purely integer input
problems are known, then the generator allows to control the resulting efficient and
nondominated sets as well as the number of efficient integer assignments. The following
test instances (TI12), (TI19), and (TI21) have been created using this generator.
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-1
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Figure 3: Image set and nondominated set of (TI2)

Test instance 3 [19, Example 1]:

min
x

(
x2

1 − x2 + x3 + 3x4 + 2x5 + x6
2x2

1 + x2
3 − 3x1 + x2 − 2x4 + x5 − 2x6

)
s.t. 3x1 − x2 + x3 + 2x4 ≤ 0,

4x2
1 + 2x1 + x2 + x3 + x4 + 7x5 ≤ 40,

−x1 − 2x2 + 3x3 + 7x6 ≤ 0,
−x1 + 12x4 ≤ 10,
x1 − 2x4 ≤ 5,
−x2 + x5 ≤ 20,
x2 − x5 ≤ 40,
−x3 + x6 ≤ 17,
x3 − x6 ≤ 25,

x ∈ X = R3 × {0, 1}3

(TI3)

(TI3) is a biobjective mixed-integer convex optimization problem with three contin-
uous and three binary variables. All possible integer assignments are feasible integer
assignments, i.e., it holds XI = SI = {0, 1}3 and thus |XI | = |SI | = 23 = 8.

Test instance 4 [10, (T9)]:

min
x

(
x1 + x3 + x5 + x7
x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,
(x5 − 2)2 + (x6 − 5)2 ≤ 10,
(x7 − 3)2 + (x8 − 8)2 ≤ 10,
x ∈ X = [−20, 20]4 ×

(
[−20, 20]4 ∩ Z4

)
(TI4)
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(TI4) is a separable biobjective mixed-integer convex optimization problem with four
continuous and four integer variables. Regarding property (11) the image set of all
patch problems is the Minkowski sum of two (two-dimensional) unit balls, and thus a
ball with radius 2. Moreover, it holds |XI | = 414, |SI | = 372, |EI | = 9, and

EI = {(x5, x6, x7, x8) ∈ SI | x5 + x6 = 3, x7 + x8 = 7}
= {(−1, 4), (0, 3), (1, 2)} × {(0, 7), (1, 6), (2, 5)}.

Thus only 0.048% of the possible integer assignments are feasible, 0.00032% of the
possible integer assignments are efficient, and 0.66% of the feasible integer assignments
are efficient. For an illustration of the image set and the connected nondominated set
of (TI4) we refer to Figure 4. Note that SI remains the same if [−20, 20]4 ∩ Z4 is
replaced by ([−1, 5]× [2, 8]× [0, 6]× [5, 11])∩Z4. In this case 57% of the possible inte-
ger assignments are feasible and 0.37% of the possible integer assignments are efficient,
respectively. Such a modification can have a significant impact on the performance of
an algorithm.

f1

f2

-3 -1 1 3 5 7 9 11 13

5

7

9

11

13

15

17

19

21

Figure 4: Image set and nondominated set of (TI4)

Test instance 5 [3, (T5)]:

min
x

x1 + x4
x2 − x4
x3 + x2

4


s.t. x2

1 + x2
2 + x2

3 ≤ 1,
x ∈ X = [−2, 2]3 × ([−2, 2] ∩ Z)

(TI5)

Test instance (TI5) is a separable biobjective mixed-integer convex optimization prob-
lem with three continuous variables and a single integer variable. Since the integer
variable is only box-constrained, all possible integer assignments are feasible. More-
over, all possible/feasible integer assignments are also efficient integer assignments,
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i.e., it holds XI = SI = EI = {−2,−1, 0, 1, 2} and thus |XI | = |SI | = |EI | = 5. Note
that due to the separable structure of (TI5), the image set of all patch problems is
basically the same, see also property (11). More precisely, for each integer assignment
x̂I = x4 ∈ {−2,−1, 0, 1, 2} the image set of the corresponding patch problem (P(x̂I)) is
the (three-dimensional) unit ball with center (x4,−x4, x

2
4). Hence, the nondominated

set is given by

N =
{
x ∈ R3 | x2

1 + x2
2 + x2

3 = 1, x1 ≤ 0, x2 ≤ 0, x3 ≤ 0
}

+
{

(−2, 2, 4), (−1, 1, 1), (0, 0, 0), (1,−1, 1), (2,−2, 4)
}
.

For an illustration of an approximation of the nondominated set of (TI5) we refer to
[3, Figure 13].

Test instance 6 [19, Example 5]:

min
x

 x2
1 + x2

2 − 10x1 − x2 − x3 − 2x4
1
3(4x2

1 + 3x2
2 − x1 − 5x2 − x3 + 10x4 − 10)

1
2(2x2

1 + 7x1 − 14x2 + 2x3 + 2x4 − 6)


s.t. −x1 + 3x2 − x3 ≤ −1

2 ,

x ∈ X = R2 × {0, 1}2

(TI6)

(TI6) is a triobjective mixed-integer convex optimization problem with two continuous
and two binary variables. It holds XI = SI = {0, 1}2 and thus |XI | = |SI | = 22 = 4,
i.e., all possible integer assignments are again feasible integer assignments.

Test instance 7 [11, (Ex1)]:

min
x

x1 + x4
x2 + x5
x3 + x6


s.t. x2

1 + x2
2 + x2

3 ≤ 1,
x2

4 + x2
5 + x2

6 ≤ 1,
x ∈ X = R3 × ([−1, 1]3 ∩ Z3)

(TI7)

This separable triobjective test instance (TI7) is formulated in [11] with x4, x5, x6 ∈ Z.
Again, in order to calculate the value |XI | we choose here [−1, 1]3∩Z3 and obtain XI =
{−1, 0, 1}3 and |XI | = 33 = 27. Note that the inequality constraint x2

4 + x2
5 + x2

6 ≤ 1
and x4, x5, x6 ∈ Z imply

SI = {(0, 0, 0), (0, 0,−1), (0, 0, 1), (0,−1, 0), (0, 1, 0), (−1, 0, 0), (1, 0, 0)} ⊆ XI

and thus |SI | = 7. As for (TI5), each image set of a patch problem is a (three-
dimensional) unit ball shifted by one of the seven points xI ∈ SI . Finally, it holds
EI = {(0, 0,−1), (0,−1, 0), (−1, 0, 0)}, |EI | = 3, and

N =
{
x ∈ R3 | x2

1 + x2
2 + x2

3 = 1, x1 ≤ 0, x2 ≤ 0, x3 ≤ 0
}

+ EI .
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Test instance 8 [3, (T2)]:

min
x

(
x>Q>1 Q1x+ (1, 2, . . . , 2, 1)x

x>Q>2 Q2x+ (−1,−2, . . . ,−2, 5)x

)
s.t. x ∈ X = [−5, 5]2 × ([−5, 5]m ∩ Zm)

(TI8)

with

(Q1)i,j :=


3 , if i = j = 1
4 , if i = j = 2 +m
1 , else

and

(Q2)i,j :=


2 , if i = j = 1 or i = j = 2 +m
4 , if i = j and i /∈ {1, 2 +m}
1 , else

This box-constrained test instance (TI8) is scalable in the number m ∈ N of integer
variables and it holds |XI | = |SI | = 11m. Note that Q>1 Q1 and Q>2 Q2 are positive
semidefinite, and hence both objective functions are convex.

Test instance 9 [3, (T3)]:

min
x

 x1

x2 +
m+2∑
i=3

10(xi − 0.4)2


s.t.

m+2∑
i=1

x2
i ≤ 4,

x ∈ X = [−2, 2]2 × ([−2, 2]m ∩ Zm)

(TI9)

(TI9) is again scalable in the numberm ∈ N of integer variables and it holds |XI | = 5m.
The following proposition provides a result regarding the feasible integer assignments.

Proposition 4.1 For the number |SI | of feasible integer assignments of the biobjective
optimization problem (TI9) with m ∈ N it holds

|SI | = 1 + 2
3m+ 16

3 m
2 − 8

3m
3 + 2

3m
4. (4.1)

Proof. For any feasible integer assignment xI ∈ SI of (TI9) we define

I0(xI) := {i ∈ [m] | xI,i = 0} ,
I±1(xI) := {i ∈ [m] | xI,i = −1 or xI,i = 1} , and
I±2(xI) := {i ∈ [m] | xI,i = −2 or xI,i = 2} .

Hence, it holds 0 ≤ |I±2(xI)| ≤ 1 for every xI ∈ SI by the inequality constraint.
We first prove (4.1) for m ≥ 4. If |I±2(xI)| = 1, then it follows by the inequality

constraint that |I±1(xI)| = 0 and |I0(xI)| = m− 1, and thus there exist

|{−2, 2}| ·
(
m

1

)
= 2m (4.2)

different feasible integer assignments in this case.

13



Hence, we may assume in the following |I±2(xI)| = 0 and we obtain 0 ≤ |I±1(xI)| ≤
4 by the inequality constraint for every corresponding feasible integer assignment xI .
If now |I±2(xI)| = 0 and |I±1(xI)| = ` ∈ {0} ∪ [4], then it follows |I0(xI)| = m− ` and

|{−1, 1}|` ·
(
m

`

)
, ` ∈ {0} ∪ [4] (4.3)

for the number of the corresponding different feasible integer assignments.
By adding up (4.2) and (4.3) for all ` ∈ {0} ∪ [4] it holds

|SI | = 1 + 4m+ 2m(m− 1) + 4
3m(m− 1)(m− 2) + 2

3m(m− 1)(m− 2)(m− 3), (4.4)

and (4.1) follows after a short calculation. Finally, it is easy to see that (4.4) holds
also in the case m ∈ [3] and we are done.

Moreover, it holds E = {x ∈ [−2, 0]2 × {0}m | x2
1 + x2

2 = 4}, and thus there exists
a uniquely determined efficient integer assignment EI = {0} ⊆ Zm.

Test instance 10 [3, (T4)]:

min
x


n
2∑
i=1

xi +
n+m∑
i=n+1

xi
n∑

i= n
2 +1

xi −
n+m∑
i=n+1

xi


s.t.

n∑
i=1

x2
i ≤ 1,

x ∈ X = [−2, 2]n × ([−2, 2]m ∩ Zm)

(TI10)

(TI10) is scalable both in the number n ∈ N of continuous variables, which is assumed
to be even, as well as in the number m ∈ N of integer variables. Since the integer
variables are only box-constrained, all possible integer assignments are feasible integer
assignments. Moreover, it holds XI = SI = EI = {−2,−1, 0, 1, 2}m and thus |XI | =
|SI | = |EI | = 5m. Note that here the image set of every patch problems is a shifted
(two-dimensional) ball with radius

√
n/2. For an illustration of the image set and the

connected nondominated set of the separable test instance (TI10) in the case n = 4
and m = 2 see Figure 5.

Test instance 11 [9, (H1)]:

min
x


n
2∑
i=1

xi +
n+ m

2∑
i=n+1

x2
i −

n+m∑
i=n+ m

2 +1
xi

n∑
i= n

2 +1
xi −

n+ m
2∑

i=n+1
xi +

n+m∑
i=n+ m

2 +1
x2
i


s.t.

n∑
i=1

x2
i ≤ 1,

x ∈ X = [−2, 2]n × ([−2, 2]m ∩ Zm)

(TI11)
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Figure 5: Image set and nondominated set of (TI10) with n = 4 and m = 2

This scalable and separable problem (TI11), with n,m ∈ N and both even, is a slight
modification of (TI10) with quadratic objective functions and the same quadratic con-
straint function. Hence, it holds again XI = SI = {−2,−1, 0, 1, 2}m and |XI | =
|SI | = 5m. Note that, as for (TI10), the image set of every patch problems is a shifted
(two-dimensional) ball with radius

√
n/2. For an illustration of the image set and the

nonconnected nondominated set of (TI11) in the case n = 4 and m = 2 see Figure 6.
Here we obtain EI = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)} and thus |EI | = 6.

f1

f2

-4 4 8

-4

4

8

Figure 6: Image set and nondominated set of (TI11) with n = 4 and m = 2
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Test instance 12 [6, Example 4.8 (ii)]:

min
x


α1
n

n∑
i=1

x2
i + ∑

i∈J
xi + ∑

i∈J̄
xi

α2
n

n∑
i=1

(xi − 2)2 + ∑
i∈J

xi −
∑
i∈J̄

xi


s.t. x ∈ X = [0, 2]n × ([−1, 1]m ∩ Zm)

(TI12)

For the box-constrained, scalable, and separable biobjective test instance (TI12) with
n,m ∈ N, 0 < αi < 0.25 for all i ∈ [2], J ( {n+1, . . . , n+m}, and J̄ := {n+1, . . . , n+
m} \ J it is XI = SI = {−1, 0, 1}m,

E = {x ∈ [0, 2]n | x1 = x2 = . . . = xn}
×{x ∈ [−1, 1]m ∩ Zm | xi = −1 for all i+ n ∈ J } ,

N = {(α1t
2, α2(t− 2)2)| t ∈ [0, 2]}

+{(−m+ δ,m− 2|J | − δ) ∈ Z2 | δ ∈ {0} ∪ [2(m− |J |)]}, and
EI = {x ∈ [−1, 1]m ∩ Zm | xi = −1 for all i+ n ∈ J } .

Consequently, we obtain |XI | = |SI | = 3m and |EI | = 3m−|J |. Hence, the number of
efficient integer assignments is controllable by the choice of m and J , respectively. Test
instance (TI12) is obtained by the test instance generator formulated in [6]. For more
details see [6, Example 4.8 (ii)] and the explanations made there. For an illustration
of the nonconnected nondominated set of (TI12) in the case m = 3, J = {n+ 1}, and
α1 = α2 = 0.2 we refer to [6, Figure 5].
Test instance 13 [3, (T6)]:

min
x

(
x1 + x3

x2 + exp(−x3)

)
s.t. x2

1 + x2
2 ≤ 1,

x ∈ X = [−2, 2]2 × ([−2, 2] ∩ Z)

(TI13)

For the separable test problem (TI13) with a single box-constrained integer variable
it holds XI = SI = EI = {−2,−1, 0, 1, 2} and thus |XI | = |SI | = |EI | = 5. For
an illustration of the image set and the nonconnected nondominated set of this test
instance we refer to Figure 7. The image set of every patch problem is a shifted unit
ball. The second objective function is nonquadratic but still convex.
Test instance 14 [10, (T10)]:

min
x

(
x1 + x3 + x5 + exp(x7)− 1

x2 + x4 + x6 + x8

)
s.t. x2

1 + x2
2 ≤ 1,

x2
3 + x2

4 ≤ 1,
(x5 − 2)2 + (x6 − 5)2 ≤ 10,
(x7 − 3)2 + (x8 − 8)2 ≤ 10,
x ∈ X = [−20, 20]4 ×

(
[−20, 20]4 ∩ Z4

)
(TI14)

In the last listed convex test problem (TI14) the first objective function is nonquadratic
but still convex. It is separable and a slight modification of (TI4) with |XI | = 414,
|SI | = 372, and

EI = {(−1, 4, 0, 7), (0, 3, 0, 7), (1, 2, 0, 7), (1, 2, 1, 6), (1, 2, 2, 5)}.
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Figure 7: Image set and nondominated set of (TI13)

Thus, as for (TI4), only 0.048% of the possible integer assignments are feasible. More-
over, 0.00018% of the possible integer assignments are efficient and 0.37% of the feasible
integer assignments are efficient. For an illustration of the image set and the noncon-
nected nondominated set of (TI14) see Figure 8. The image sets of the patch problems
remain the same as for (TI4). Moreover, the set SI remains the same if [−20, 20]4 ∩Z4

is replaced by ([−1, 5]× [2, 8]× [0, 6]× [5, 11]) ∩ Z4.
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Figure 8: Image set and nondominated set of (TI14) for x7 ≤ 2

17



4.2 Test Instances for Multiobjective Mixed-Integer Noncon-
vex Optimization

We continue with nine multiobjective mixed-integer nonconvex test instances. The first
four test instances (TI15) – (TI18) are problems with a fixed number of variables. The
following test problem (TI19) is scalable in the number of continuous variables, and
the test problems (TI20) and (TI21) are scalable both in the number of continuous
variables as well as in the number of integer variables. Note that (TI15) – (TI21)
are all biobjective. In contrast, test instance (TI22) is an example of a triobjective
mixed-integer nonconvex test instance with a fixed number of variables. The last test
problem (TI23) is scalable in the number of continuous variables, in the number of
integer variables, and also in the number of objective functions by using the identity
for the continuous variables.
Test instance 15 [1, Example 1]:

min
x

(
x1

x2 · 1
x1

+ x3 ·
(
0.2 + exp( 1

x1
)
))

s.t. x2 + x3 = 1,
x ∈ X = [0.4, 2.5]× {0, 1}2

(TI15)

The first nonconvex test instance (TI15) has a very special structure. It contains a
single continuous variable and two binary variables. Hence, it holds XI = {0, 1}2,
|XI | = 22 = 4, and it follows by the equality constraint that exactly one of the binary
variables takes the value 1 while the other binary variable takes the value 0, i.e., it
holds SI = {(0, 1), (1, 0)} and |SI | = 2. Based on this we obtain for x2 = 0 and x3 = 1
the corresponding patch problem

min
x

(
x

0.2 + exp( 1
x
)

)
s.t. x ∈ [0.4, 2.5]

(4.5)

and for x2 = 1 and x3 = 0
min
x

(
x
1
x

)
s.t. x ∈ [0.4, 2.5],

(4.6)

respectively. Hence, the binary variables act as a switch for the second objective
function. Thus, the image set for this test instance is the union of the two curves given
by the image sets of (4.5) and (4.6) (cf. property (11)), and we obtain EI = {(1, 0)},
E = [0.4, 2.5] × {(1, 0)}, and N =

{
(x, 1

x
) | x ∈ [0.4, 2.5]

}
. For an illustration of the

image set and the connected nondominated set of (TI15) see Figure 9.
Obviously, the special approach described here can be used to construct other test

instances (see for instance the forthcoming problem (TI23)).
Test instance 16 [11, (P2)]:

min
x

(
x1 + x3
x2 + x4

)
s.t. −x2

1 − x2
2 ≤ −1,

x2
3 + x2

4 ≤ 9,
x ∈ X = [0, 1]2 ×

(
[−3, 3]2 ∩ Z2

)
(TI16)
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Figure 9: Image set and nondominated set of (TI15)

(TI16) is a separable biobjective mixed-integer nonconvex optimization problem with
two continuous variables, two integer variables, and a quadratic but nonconvex inequal-
ity constraint for the continuous variables. Here it holds |XI | = 72 = 49, |SI | = 29,
EI = {(−3, 0), (−2,−2), (0,−3)}, and thus |EI | = 3. For each integer assignment
x̂I ∈ SI the image set of (P(x̂I)) is given as {x̂I} + ([0, 1]2 \ int(B(0, 1))) where
B(0, 1) := {y ∈ R2 | y1

1 + y2
2 ≤ 1}. Hence, all these image sets correspond to the

set difference between the unit square and the unit ball. The nondominated set is
given by
N =

(
{x ∈ [0, 1]2 | x2

1 + x2
2 = 1}+ {(−3, 0), (−2,−2), (0,−3)}

)
\ {(−2, 0), (0,−2)}.

An illustration of the image set and the nonconnected nondominated set of (TI16) is
presented in Figure 10.
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4

Figure 10: Image set and nondominated set of (TI16)

Test instance 17 [7, (P1)]:

min
x

(
x1 + x2 + x5

x3 + x4 − exp(x5)

)

s.t. −
4∑
i=1

x2
i ≤ −1,

x ∈ X = [0, 1]4 × ([−4, 1] ∩ Z)

(TI17)
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Test instance (TI17) is a separable biobjective mixed-integer nonconvex optimization
problem with a single box-constrained integer variable, and a quadratic but noncon-
vex constraint regarding the four continuous variables. All possible/feasible integer
assignments are also efficient integer assignments, i.e., it holds XI = SI = EI =
{−4,−3,−2,−1, 0, 1} and thus |XI | = |SI | = |EI | = 6. Note that here the image
set of every patch problem is a shifted set difference between the square [0,

√
2]2 and

the ball with radius
√

2 centered in (0, 0).

Test instance 18 [17, (P1)]:

min
x

(
1
2x
>Gx+ c>x
d>x

)
s.t. x ∈ X = [−1, 1]2 × {0, 1}8

(TI18)

with

G :=



1 −1 2 0 0 0 0 0 0 0
−1 2 0 0 2 0 0 0 0 0
0 0 3 0 2 0 0 0 0 0
2 0 0 4 0 2 0 2 0 0
0 0 0 0 5 2 0 0 0 0
0 0 0 0 0 6 0 0 0 0
0 0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 2 0 0 0 0 0 0 0 10



, c :=



−1
−1
1
−10

0
1
−2
0
3
0



, and d :=



1
2
−1
1
5
−2
0
6
0
3


(TI18) is a box-constrained biobjective mixed-integer nonconvex optimization problem
with two continuous and eight binary variables. All possible integer assignments are
feasible integer assignments, i.e., it holds XI = SI = {0, 1}8 and |XI | = |SI | = 28 =
256. Note that 1

2

(
G+G>

)
is not positive semidefinite, and hence the first objective

function is nonconvex. For an illustration of the image set and the nonconnected
nondominated set we refer to [17, Figure 6].

Test instance 19 [6, Example 3.1, Example 4.8 (i)]:

min
x

1− exp
(
−

n∑
i=1

(
xi − 1√

n

)2
)

+ xn+1 + xn+2

1− exp
(
−

n∑
i=1

(
xi + 1√

n

)2
)
− xn+1 − xn+2


s.t. x ∈ X = [−4, 4]n × ([−1, 1]2 ∩ Z2)

(TI19)

The box-constrained separable biobjective mixed-integer nonconvex optimization prob-
lem (TI19) is scalable in the number n ∈ N of continuous variables. Hence, again all
possible integer assignments are feasible integer assignments. Moreover, using the sep-
arable structure, it follows by [6, Theorem 3.4] that the efficient set is given by

E =
{
x ∈ [−4, 4]n

∣∣∣ x1 = x2 = . . . = xn ∈
[
− 1√

n
, 1√

n

]}
× {−1, 0, 1}2

and the nondominated set by

N = {(1− exp(−4(t− 1)2), 1− exp(−4t2))| t ∈ [0, 1]}
+{(−2, 2), (−1, 1), (0, 0), (1,−1), (2,−2)}.
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Thus it holds XI = SI = EI = {−1, 0, 1}2 and |XI | = |SI | = |EI | = 32 = 9.
Similar to (TI12), test instance (TI19) is also obtained by the test instance generator

introduced in [6]. For further explanations in this regard we refer to [6, Example 3.1,
Example 4.8 (i)]. An illustration of the nonconnected nondominated set of (TI19) is
provided in [6, Figure 1].

Test instance 20 [7, (P3)]:

min
x


n
2∑
i=1

xi +
n+ m

2∑
i=n+1

xi
n∑

i= n
2 +1

xi +
n+m∑

i=n+ m
2 +1

xi


s.t. −

n∑
i=1

x2
i ≤ −1,

n+m∑
i=n+1

x2
i ≤ 9,

x ∈ X = [0, 1]n × ([−3, 3]m ∩ Zm)

(TI20)

The separable biobjective mixed-integer nonconvex test instance (TI20) is scalable both
in the number n ∈ N of continuous variables as well as in the number m ∈ N of integer
variables which are both assumed to be even. It holds |XI | = 7m. The following
proposition provides a result regarding the feasible integer assignments.

Proposition 4.2 For the number |SI | of feasible integer assignments of the biobjective
optimization problem (TI20) with m ∈ N it holds

|SI | = 1 + 1126
315 m−

418
45 m

2 + 84668
2835 m

3 − 152
5 m

4

+2152
135 m

5 − 64
15m

6 + 584
945m

7 − 2
45m

8 + 4
2835m

9.
(4.7)

The proof of Proposition 4.2 is similar to the proof of Proposition 4.1 and thus
omitted. Note that here the image set of every patch problem is a shifted set difference
between the square [0,

√
n/2]2 and the ball with radius

√
n/2 centered in (0, 0).

Test instance 21 [6, Example 4.8 (iii)]:

min
x


α1

(
1− exp

(
−

n∑
i=1

(
xi − 1√

n

)2
))

+ ∑
i∈J

xi + ∑
i∈J̄

xi + 0.75xm+n

α2

(
1− exp

(
−

n∑
i=1

(
xi + 1√

n

)2
))

+ ∑
i∈J

xi −
∑
i∈J̄

xi − 0.25xm+n


s.t. x ∈ X = [−4, 4]n ×

(
([−1, 1]m−1 × [0, 1]) ∩ Zm

) (TI21)

For the box-constrained scalable and separable test instance (TI21) with n,m ∈ N,

0 < αi <
1

4 · (1− exp(−4)) for all i ∈ [2],
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J ( {n + 1, . . . , n + m − 1}, J̄ := {n + 1, . . . , n + m − 1} \ J , and XI = SI =
{−1, 0, 1}m−1 × {0, 1} it holds

E =
{
x ∈ [−4, 4]n

∣∣∣ x1 = x2 = . . . = xn ∈
[
− 1√

n
, 1√

n

]}
×{x ∈ ([−1, 1]m−1 × [0, 1]) ∩ Zm | xi = −1 for all i+ n ∈ J } ,

N = {(α1(1− exp(−4(t− 1)2)), α2(1− exp(−4t2)))| t ∈ [0, 1]}+ (N1 ∪N2) ,

N1 = {(−(m− 1) + δ,m− 1− 2|J | − δ) ∈ Z2 | δ ∈ Ξ},

N2 = {(−(m− 1) + 0.75 + δ,m− 1− 2|J | − 0.25− δ) ∈ Z2| δ ∈ Ξ} ,

Ξ = {0} ∪ [2(m− 1− |J |)], and

EI = {x ∈ ([−1, 1]m−1 × [0, 1]) ∩ Zm | xi = −1 for all i+ n ∈ J } .

Consequently, we obtain |XI | = |SI | = 2 · 3m−1 and |EI | = 2 · 3m−1−|J |. Hence, as
for (TI12), the number of efficient integer assignments is controllable by the choice of
m and J , respectively. As for the test instances (TI12) and (TI19), the test instance
(TI21) is obtained by the test instance generator introduced in [6] (see [6, Example
4.8 (iii)]). For an illustration of the nonconnected nondominated set of (TI21) in the
case m = 4, J = {n+ 1}, and α1 = α2 = 0.2 we refer to [6, Figure 6].

Test instance 22 [7, (P2)]:

min
x

 x1 + x4
x2 − x4

x3 − exp(x4)− 3


s.t. x2

1 + x2
2 ≤ 1,

exp(x3) ≤ 1,
x1x2(1− x3) ≤ 1,
x ∈ X = [−2, 2]3 × ([−2, 2] ∩ Z)

(TI22)

We continue with the separable triobjective mixed-integer nonconvex test instance
(TI22). Since the integer variable is only box-constrained, all possible integer as-
signments are feasible integer assignments. Moreover, it holds XI = SI = EI =
{−2,−1, 0, 1, 2} and thus |XI | = |SI | = |EI | = 5. For an illustration of an enclo-
sure of the nondominated set of (TI22) we refer to [7, Figure 3].

Test instance 23 [16, Example 3.13]:

min
x


x1
...
xn


s.t.

n+m∑
j=n+1

xj = 1,

xj
(
‖(x1, . . . , xn)− cj‖2

2 − r2
)

= 0 ∀j ∈ [n+m] \ [n],
xj
(
cji − xi

)
≤ 0 ∀j ∈ [n+m] \ [n] ∀i ∈ [n],

x ∈ X = Rn
+ × {0, 1}m

(TI23)
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Test instance (TI23) with m,n ∈ N, r > 0, cj ∈ Rn, and j ∈ [n + m] \ [n] has the
same structure as (TI15). It is scalable in the number of continuous variables and in
the number of binary variables. Thus, it is also scalable in the number of objective
functions by using the identity map for the continuous variables. Moreover, it follows
by the equality constraint that exactly one of the m binary variables takes the value 1.
Hence, for any x ∈ S there exists exactly one j ∈ [m+ n] \ [n] with xj = 1 and all the
remaining components of xI are zero. While it holdsXI = {0, 1}m, the set of all feasible
integer assignments SI (with a cardinality bounded from above by m) and the set of all
efficient integer assignments EI depend on the special choice of the parameters r > 0
and cj ∈ Rn, j ∈ [n+m] \ [n]. Note that, with regard to property (11), for all feasible
points x̂ ∈ S with j ∈ [m+ n] \ [n] as described above such that x̂j = 1 the image set
of the corresponding patch problem (P(x̂I)) is a subset of {cj}+ {y ∈ Rn

+ | ‖y‖2 = r}.
For instance, cf. [16], we obtain for the special choice n = 2, m = 3, r = 1, c3 =

(3, 0), c4 = (2, 1), and c5 = (0, 3) thatXI = {0, 1}3 and SI = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
with the corresponding patch problems

min
x

(
x1
x2

)
s.t. ‖(x1, x2)− (3, 0)‖2

2 = 1,
x1 ≥ 3,
x2 ≥ 0

for xI = (1, 0, 0),

min
x

(
x1
x2

)
s.t. ‖(x1, x2)− (2, 1)‖2

2 = 1,
x1 ≥ 2,
x2 ≥ 1

for xI = (0, 1, 0), and

min
x

(
x1
x2

)
s.t. ‖(x1, x2)− (0, 3)‖2

2 = 1,
x1 ≥ 0,
x2 ≥ 3

for xI = (0, 0, 1). Thus, we obtain here EI = SI and

E =
((
{x ∈ R2

+ | x2
1 + x2

2 = 1}+ {(3, 0)}
)
× {(1, 0, 0)}

)
∪
((
{x ∈ R2

+ | x2
1 + x2

2 = 1}+ {(2, 1)}
)
× {(0, 1, 0)}

)
∪
((
{x ∈ R2

+ | x2
1 + x2

2 = 1}+ {(0, 3)}
)
× {(1, 0, 0)}

)
and

N = {x ∈ R2
+ | x2

1 + x2
2 = 1}+ {(3, 0), (2, 1), (0, 3)}.

For an illustration of the image set and the nonconnected nondominated set of (TI23)
with this special choice see Figure 11.
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Figure 11: Image set and nondominated set of (TI23) with n = 2, m = 3, r = 1,
c3 = (3, 0), c4 = (2, 1), and c5 = (0, 3)

Table 1 provides a comprehensive overview of all the considered test instances for
multiobjective mixed-integer convex and nonconvex optimization problems in Section 4.
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