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We study a system in which a common delivery fleet provides service to both same-day delivery (SDD) and next-day

delivery (NDD) orders placed by e-retail customers who are sensitive to delivery prices. We develop a model of the

system and optimize with respect to two separate objectives. First, empirical research suggests that fulfilling e-retail

orders ahead of promised delivery days increases a firm’s long-run market share. Motivated by this phenomenon, we

optimize for customer satisfaction by maximizing the quantity of NDD orders fulfilled one day early given fixed prices.

Next, we optimize for total profit; we optimize for a single SDD price, and we then set SDD prices in a two-level scheme

with discounts for early-ordering customers. Our analysis relies on continuous approximation techniques to capture the

interplay between NDD and SDD orders, and particularly the effect one day’s operations have on the next, a novel

modeling component not present in SDD-only models; a key technical result is establishing the model’s convergence to a

steady state using dynamical systems theory. We derive structural insights and efficient algorithms for both objectives. In

particular, we show that, under certain conditions, the total profit is a piecewise-convex function with polynomially-many

breakpoints that can be efficiently enumerated. In a case study set in metropolitan Denver, approximately 10% of NDD

orders can be fulfilled one day early at optimality, and profit is increased by 1-3% in a two-level pricing scheme versus a

one-level scheme. We conduct operational simulations for validation of solutions and analysis of initial conditions.
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1. Introduction
Empirical evidence suggests that fulfillment speed is a key factor in e-retail sales (Deshpande and Pen-

dem 2023). In response to increased customer fulfillment speed expectations, e-retail firms now commonly

offer same-day delivery (SDD) and next-day delivery (NDD) options. Historically, e-retail giant Amazon

has been a leader in providing shorter fulfillment time guarantees (Amazon 2009). In recent years, a wide

variety of specialized e-retailers have also expanded their SDD and/or NDD offerings, such as sports mer-

chandise retailer Fanatics (Salgado 2022) and pharmaceutical delivery firm TRxADE (TRxADE Health

2022), among others. In this paper, we consider last-mile delivery design and planning decisions for firms

that offer both SDD and NDD fulfillment options.

E-retail systems with SDD and NDD options require intelligent design and management to ensure that

target customer service levels are met while controlling delivery costs. A particular operational challenge

for rapid e-retail fulfillment is one of information dynamics: to provide the fastest service, it is sometimes
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necessary to begin dispatching orders on some delivery routes before all orders and delivery locations are

known and before all routes have been planned. This is in contrast to more traditional last-mile delivery

settings, in which all of a day’s delivery locations are known at the beginning of the day. Additionally,

tactical planning of systems that provide both same-day and next-day delivery requires a clear understanding

of how decisions made on a particular day impact the following day’s operation. For example, how does the

time at which we choose to stop accepting orders for SDD today impact the quantity of NDD orders to be

fulfilled tomorrow? Similarly, if we choose to fulfill some of today’s NDD orders one day early, how are

tomorrow’s operations affected?

Recent work on system design for e-retail fulfillment (e.g., Snoeck and Winkenbach 2022, Stroh et al.

2022) has focused solely on SDD. Allocating order demand to delivery vehicles in SDD systems is chal-

lenging for two primary reasons. First, delivery deadlines create a time capacity for each vehicle, and this

capacity is depleted over the course of the operating day whether the vehicle is performing productive deliv-

ery work or not (i.e., waiting or returning empty to a stocking location). Second, batching scale economies

favor consolidated delivery routes serving more customers; such routes use less time per individual deliv-

ery, but vehicles must wait (and deplete capacity) to build a batch of deliveries. In SDD studies to date,

the optimization of SDD system design is considered in isolation, assuming that customers are not offered

delivery options with longer lead times or that the SDD system operates independently from other systems

used to deliver the longer lead-time orders. In practice, however, non-SDD options are usually available

to customers, typically at lower cost. Thus, it is important to understand how potential customers choose

between fulfillment options and how those choices create demand for transportation resources; this is par-

ticularly important when the same resources may be used to serve demand arising from both fulfillment

options.

Some prior research has studied multi-day vehicle routing problems (e.g., Angelelli et al. 2007a,b). In

general, these studies focus on short-term optimization of operations and do not consider system design

questions. Recent work integrating routing and pricing is similarly focused on detailed optimization of

operations in a given day (e.g., Afsar et al. 2021, Afsar 2022, Ulmer 2020). Alternatively, in this paper

we combine aspects of these areas of research; we study the design of an e-retail delivery system that

incorporates price-driven choice of fulfillment options, and that considers concurrent fulfillment of orders

with different delivery day guarantees using common transportation resources.

Specifically, we consider a setting where an e-retailer manages a single fleet of delivery vehicles and

uses them to fulfill both same-day and next-day delivery orders in a local region. Our focus is on tacti-

cal, medium-term decision-making and management. That is, we are not concerned with optimizing long-

term physical investments (such as fulfillment center location) nor day-to-day operational issues (such as

sequencing customers on vehicle routes). Rather, we focus on aspects of the system that can be revisited

periodically every few weeks or months, such as determining prices and order deadlines. To gain transparent
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insights and better understand trade-offs, we use continuous approximation and fluid relaxation techniques,

which are often applied in logistics system design.

1.1 Contributions

Our specific contributions are as follows.

1. We study an e-retail fulfillment system with price-differentiated SDD and NDD options serviced by a

common fleet; to the best of our knowledge, this work is the first to study the design of such delivery

systems. To facilitate system design and transparent managerial insights, we propose a deterministic,

steady-state model of the system that uses fluid approximations of stochastic customer arrivals and

continuous approximations for vehicle tour durations.

2. Empirical evidence shows that exceeding customer delivery time expectations can grow market share

(Fisher et al. 2019). Motivated by this research, we use the model to analyze a customer satisfaction

objective of maximizing the average daily quantity of NDD orders delivered one day early. We show

that, under certain conditions, some orders can be delivered early even when full utilization of vehicles

is required to deliver all orders on the day of their fulfillment guarantee. We then derive an optimal

temporal structure of the system and an associated solution procedure. We use the model to assess

whether a system can feasibly operate in the long run under a given fleet size and pricing scheme.

3. We next use the model to study static pricing schemes that maximize system profit. We first consider

the problem of choosing a single SDD price. To incentivize early-arriving customers to choose SDD,

thereby improving the efficiency of fulfillment operations, we also propose a two-level SDD pricing

scheme in which early-ordering customers receive a discounted price. For this latter scheme, we derive

structural insights and an efficient solution approach under mild assumptions.

4. Finally, we test our model on a system with real-world road network data, and we compare our model

outputs to simulations. We find that our model’s predictions align with operational realities; in partic-

ular, the system is insensitive to initial conditions.

This section concludes with a brief review of the relevant literature. Section 2 introduces the e-retail

system under consideration, and Section 3 details the deterministic approximation. Section 4 studies the

convergence of the model to a steady state. Section 5 analyzes the customer satisfaction objective, while

Section 6 analyzes static pricing schemes for profit maximization. Section 7 presents computational stud-

ies of both objectives. Section 8 provides concluding remarks. Supplementary appendices contain proofs,

technical details, and data omitted from the main body.
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1.2 Literature Review

1.2.1 Last-Mile Delivery Optimization. Much of the ongoing research on vehicle routing problems

(VRPs) is motivated by the unique challenges of last-mile delivery for e-commerce. The literature in this

area is vast; we refer to Archetti and Bertazzi (2021) for a thorough review of recent work and instead focus

on models relevant to this paper, specifically those concerning SDD and NDD routing.

To our knowledge, only one SDD-focused study explicitly offers NDD as a fulfillment option in its

optimization model: Ulmer (2020) offers NDD to customers for free, but NDD routing is handled separately

from SDD by an independent third-party delivery company. In most other SDD studies, there is no explicitly

stated NDD option. Among these studies, a customer request for which the delivery system operator cannot

(or wishes not to) offer SDD is usually either rejected (e.g., Chen et al. 2022, Klapp et al. 2020) or assigned

to an independent third-party delivery company (e.g., Voccia et al. 2019). Other studies provide SDD to all

incoming customer requests — without a NDD option — and seek to minimize a temporal objective, such

as total customer waiting time (Ulmer and Streng 2019).

In the literature, the term ‘SDD’ is generally used to refer to one of two different types of fulfillment

time guarantees. In the first type, every customer delivery request is associated with its own fulfillment

time guarantee based on when the order was placed. For example, Ulmer and Thomas (2018) study a

setting in which each order must be fulfilled no later than four hours after it is placed. In the second type,

every customer who submits a SDD request prior to a daily order deadline faces the same fulfillment time

guarantee. For example, Stroh et al. (2022) aim to fulfill every order placed between 9 AM and 2 PM by

6 PM of the same day. Henceforth in this paper, ‘SDD’ refers to guarantees of the latter type. We also

differentiate the context of our work from that of attended home delivery (AHD), in which customers are

assigned a specific delivery time slot to facilitate physical transfer of goods. We instead assume that orders

may be delivered at any time during the service day.

1.2.2 Multi-Period Routing. Outside of the specific SDD context, a class of routing problems related

to our work is that of multi-period VRPs. Such problems consider a time horizon of multiple consecutive

periods (i.e., days) during which customer delivery requests arrive and must be fulfilled. Some works in this

area (Angelelli et al. 2007a,b, Bülbül 2022, Ulmer et al. 2018) allow the delivery service provider to choose

which orders are fulfilled on a particular day. In other studies (Albareda-Sambola et al. 2014, Andreatta and

Lulli 2008, Angelelli et al. 2009, 2010, Wen et al. 2010), certain requests must be fulfilled on a particular

day or within a particular set of days. These studies focus on short-term routing optimization rather than on

the design of broader aspects of the system. Additionally, these studies do not leverage pricing to manage

the inflow of customer delivery requests; rather, the request arrival processes are exogenous.

Three recent multi-period routing studies share greater similarities with some aspects of our work.

Estrada-Moreno et al. (2019) and Yıldız and Savelsbergh (2020) offer discounts to incentivize certain cus-

tomers to change their preferred delivery day. Avraham and Raviv (2021) seek an optimal assortment opti-

mization policy in a multi-period AHD routing context. The time horizon is assumed indefinite, so the



Banerjee, Erera, and Toriello: E-Retail Pricing and Demand Management
5

objective is to maximize the steady-state proportion of accepted orders. The authors take an “approach in

which the conditions under which the system is working are assumed stationary over time, and thus, a sim-

pler stationary policy is searched.” This is philosophically similar to our approach in this paper. Our model

also assumes that the system is operating in a steady state, and thus our tactical design decisions, such as

the choice of SDD price, are stationary over time.

1.2.3 Pricing in Last-Mile Delivery. In addition to Estrada-Moreno et al. (2019), Ulmer (2020), and

Yıldız and Savelsbergh (2020) discussed above, several other studies in recent years have analyzed last-mile

delivery systems that seek to manage customer demand via pricing or monetary incentives. We next present

a representative sample of such studies.

Afsar (2022) studies a profit maximization problem in which a single delivery price is offered to a set

of known potential customers, each of which has a maximum price that they are willing to accept; this

maximum price is unknown but distributed independently and uniformly at random. A single vehicle tour

services all customers who accept the offered price. Afsar et al. (2021) study a similar problem with multiple

vehicles in which all customer information is known in advance; in this variant, each geographical subset

within the region may have a different delivery price. Klein and Steinhardt (2023) dynamically decide what

delivery time guarantees to offer incoming customers and at what prices. All of the guarantees are assumed

to be within the same day; the computational studies specifically test delivery guarantees of 90 and 300

minutes after order placement. Galiullina et al. (2024) optimize the operation of a system in which a subset

of customers are offered incentives to have their orders delivered to a shared pickup point (i.e., parcel

locker) instead of their homes. Other works use pricing to control the demand for delivery time windows in

the AHD context (e.g., Köhler et al. 2023). Fleckenstein et al. (2023), Snoeck et al. (2020), and Waßmuth

et al. (2023) provide comprehensive reviews of routing problems with pricing decisions. A related stream

of literature controls the availability of crowdsourced delivery drivers via the compensation paid to drivers;

we refer to Yıldız and Savelsbergh (2019), Behrendt et al. (2024), and the references therein for examples

and discussion of such work.

The pricing component of this work addresses decision-making in a different context than the existing

literature on routing and pricing. Unlike prior studies, we study pricing decisions at the tactical level by

setting static prices that ensure that the system can meet operational targets on average. Instead of explicitly

constructing individual vehicle routes, we use continuous approximations, discussed next, to model cus-

tomer arrivals and route durations. Finally, as mentioned previously, we believe this work to be the first

to study the design of systems where price-differentiated SDD and NDD options are fulfilled by the same

delivery fleet.



Banerjee, Erera, and Toriello: E-Retail Pricing and Demand Management
6

1.2.4 Continuous Approximations. In logistics system design, the use of deterministic continuous

approximation (CA) techniques is a common approach for deriving structural insights and understanding

parameter relationships. CA models — the logistical counterpart to fluid models in queuing systems —

generally incorporate at least one of the following two features: (i) stochastic customer locations and arrivals

are replaced with deterministic, continuous fluid accumulations in space and time; and (ii) routing cost or

time calculations are replaced with deterministic, continuous expressions characterizing expected routing

time as a function of the number of customers on a delivery route. The latter relies on the classical result

that the expected traveling salesperson problem (TSP) route duration grows proportionally to the square

root of the number of stops on the route (Beardwood et al. 1959), commonly known as the Beardwood-

Halton-Hammersely (BHH) Theorem. Recent applications of CA methods to e-commerce systems include

expected cost minimization (Stroh et al. 2022), retail channel selection (Ge et al. 2021), and geographical

service region design for last-mile delivery (Banerjee et al. 2022, 2023, Carlsson et al. 2024). We refer to

Ansari et al. (2018) and Franceschetti et al. (2017) for a broader review of CA methods and applications.

2. System Setting
In this section, we describe the operational details of the system. An e-retailer of non-perishable, physically

small products (in contrast to restaurant meals, groceries, or bulky items, such as furniture and appliances)

provides NDD and SDD to customers located in a fixed geographical region. We assume that the service

region has been geographically partitioned a priori into small, independent, fixed delivery zones. We further

assume that no additional geographical discrimination occurs within each zone; for example, a customer’s

exact location within a zone does not affect the price they must pay for SDD. We focus our attention on one

of these zones; henceforth, “system” refers to the management and operation of this zone. The system is

served by a single nearby depot from which vehicles dispatch with orders for delivery. We assume all items

are available for delivery from the depot when the customer places the corresponding order, and we assume

that unsuccessful delivery attempts do not occur.

2.1 Timeline, Order Types, and Vehicles

The system operates on a daily basis in a repeating fashion. Within each full day, a portion is the service

day. The service day is the fixed daily interval during which the system is fully active: during the service

day, vehicles may be active and real-time decisions may need to be made. Each day i begins at the start of

its corresponding service day, at time t = Ri. The start time of each service day is consistent, e.g., each day

begins at 9 AM.

The fixed end of the service day is Ti for a given day i and is also consistent from day to day,
∣∣[Ri,Ti]

∣∣=∣∣[R j,Tj]
∣∣ = T for all days i, j. Let Ri+1−Ri = R for all days i. All orders placed after t = Ti on a day i and

before t = Ri+1 are overnight orders to be served by t = Ti+1. On each day i, the system operator offers SDD

as a delivery option starting from the beginning of the service day until an SDD order deadline Ci. That is,
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SDD is available as a potential delivery option alongside NDD during the interval [Ri,Ci], and all customers

who select this SDD option are guaranteed to receive their orders by Ti. Because customer order times and

locations are uncertain but the available delivery fleet is fixed, this order deadline is adjusted by the system

operator on a daily basis to ensure that the service day constraints are satisfied.

Figure 1 illustrates two consecutive days (i and i+1); the overnight intervals are not presented to scale.

NDD order availability, marked with a hatched blue line, is always present. On the other hand, SDD order

availability, marked with a solid red line, is only present prior to the order deadline on each day. Notice also

that the SDD availability window is slightly longer on day i+1 than on day i, illustrating the potential daily

variability of the SDD order deadline.

Figure 1 Consecutive service days with concurrent SDD and NDD order windows

Ri Ci Ti Ri+1 Ci+1 Ti+1 Ri+2

Delivery deadline: Ti Delivery deadline: Ti+1

Delivery deadline: Ti+1
Delivery deadline: Ti+2

The system operates a fleet of m homogeneous vehicles to deliver orders. Since the constraining factors

in modern urban last-mile contexts are generally tight delivery deadlines, we assume vehicles are physi-

cally uncapacitated; our personal communications indicate that industry practitioners assume vehicles to be

uncapacitated when developing models to solve problems in similar contexts. Each vehicle may dispatch

from the depot once per service day. The technical results presented in Sections 3–6 are valid for any choice

of m. Practically, however, our work is most useful for small delivery fleets; our computational studies use

m≤ 3. Large delivery fleets would likely see significant benefits from geographical discrimination or further

partitioning of the zone.

2.2 Prices and Customer Behavior

As in Ulmer (2020), we assume NDD is the default, free fulfillment option. The SDD price — the cost to

a customer and the delivery revenue gained by the firm — is denoted as p0 > 0. The number of overnight

orders is distributed as Poisson(µ), where µ > 0. During each service day, e-retail customers arrive accord-

ing to a stochastic process and individually choose to either purchase SDD, default to NDD, or abandon

the system entirely. This decision depends both on the characteristics of the system (SDD price and SDD

availability) at the time of arrival and on characteristics of the individual customer. There are two distinct

types of customers placing orders during the service day, and each chooses between two alternatives.

Type A customers purchase products only through the system. That is, a Type A customer either chooses

the SDD delivery option or the NDD delivery option. A randomly selected customer k of Type A has a

threshold price Yk ≥ 0: if p0 ≤ Yk, the customer chooses the SDD option if it is available. If p0 > Yk or if



Banerjee, Erera, and Toriello: E-Retail Pricing and Demand Management
8

the SDD option is not available, customer k instead selects NDD. Threshold prices Y1,Y2,Y3, . . . of Type A

customers are independent and identically distributed (i.i.d.) and are characterized by a known cumulative

distribution function FA satisfying FA(p) = 0 for all p < 0 and FA(p) < 1 for all p ≥ 0. If SDD itself is

viewed as the product, threshold prices in our setting are analogous to “willingness-to-pay” values (e.g.,

Ulmer 2020) or “reservation prices” (e.g., Song and Li 2018) in similar contexts. Type A customers arrive

to the system via a potentially non-stationary Poisson process; the arrival rate of Type A customers at time

t ∈ [0,T ] is given by a continuous function λA(t)> 0.

Type B customers require their products urgently. If the SDD price is too high, an arriving Type B cus-

tomer will abandon and purchase their desired products via a different channel, for example from a different

SDD provider or by visiting a retail store. In contrast to Type A customers, who are flexible with respect

to fulfillment time guarantees, Type B customers are relatively impatient. The formal characterization of

Type B customers is similar to that of Type A customers. A randomly selected customer ℓ of Type B has a

threshold price Zℓ ≥ 0: if p0 ≤ Zℓ, the customer will choose the SDD option if it is available. If p0 > Zℓ or

if the SDD option is not available, customer ℓ will instead abandon without a purchase. Threshold prices

Z1,Z2,Z3, . . . of Type B customers are i.i.d. and are characterized by a known cumulative distribution func-

tion FB satisfying FB(p) = 0 for all p < 0 and FB(p)< 1 for all p≥ 0. Type B customers arrive to the system

via a potentially non-stationary Poisson process; the arrival rate of Type B customers at time t ∈ [0,T ] is

given by a continuous function λB(t) ≥ 0. With respect to delivery locations, arriving customers of both

types are assumed to have a common geographic distribution, and customer locations are i.i.d.

We define willing proportion (WP) functions wA,wB for each customer type as wA(p) = 1−FA(p) and

wB(p) = 1− FB(p). For a given SDD price p0, these functions indicate the proportion of customers of

each type who are willing to pay p0 for SDD. That is, the probability that a random customer of Type A

chooses SDD over NDD is wA(p0), and the probability that a random customer of Type B chooses SDD

over the abandonment option is wB(p0). Note that our descriptions are general and do not restrict customer

behavior to a specific class of binomial choice model (e.g., logit). When SDD is available, the arrival of all

SDD-purchasing customers is given by a Poisson process with rate wA(p0)λA(t)+wB(p0)λB(t).

From the perspective of discrete choice theory, this characterization of customer purchasing behavior

represents a mixture of two binomial choice models. This behavior can be equivalently characterized by

a single random utility model without initially separating customers into two types. Specifically, such a

model would assume that each incoming customer has utilities denoted by the random variables U0 and

U1 for SDD and NDD, respectively, that satisfy U0 > U1. Customers for whom U0 > U1 ≥ 0 are Type A

customers with threshold price U0−U1. Customers for whom U0 ≥ 0 > U1 are Type B customers with

threshold price U0. Therefore, the analysis in this paper does not depend on the segmentation of customers

into two types. Given that NDD is free, our segmentation is mathematically equivalent to a single customer

stream that chooses between three options (SDD, NDD, and abandonment) under the mild assumption that
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customers always choose SDD if it is available and free. We henceforth use our original characterization of

separate Type A and Type B customer streams for clarity in exposition; see Gallego and Topaloglu (2019)

and Strauss et al. (2018) for further discussion on discrete choice models in similar settings.

3. Modeling Details
In this section, we motivate and detail an approximate model of the system. We then consider the funda-

mental problem of long-run system feasibility.

3.1 Vehicle Dispatching in an Asymptotic Regime

Traditional applications of CA techniques generally assume a known number of random points to be visited

on each vehicle tour. Corollary 1 slightly extends the usual statement of the BHH Theorem to a setting in

which the number of points in the TSP tour is itself a random variable. This result motivates the use of the

square-root functional form approximation of vehicle tour durations even when the number of stops on the

tour is unknown.

COROLLARY 1. Let R be a compact planar region equipped with a distance metric d. Let N1,N2, . . .

be non-negative integer-valued i.i.d. random variables with mean ν < ∞, and let N = ∑
k
i=1 Ni. Note that N

has mean kν . Let X1,X2, . . . denote points chosen i.i.d. from an absolutely continuous distribution having

supportR. Suppose that the speed of travel inR is
√

k; i.e., the travel time between x,y ∈R is d(x,y)/
√

k.

Then, there exists a finite β > 0 such that the duration of the TSP tour through {X1,X2, . . . ,XN} converges

almost surely to β
√

ν as k→ ∞.

The proof, formalized briefly for completeness in Appendix A.1, applies the Strong Law of Large Num-

bers (SLLN) to the BHH Theorem. In particular, Corollary 1 implies almost sure convergence to β
√

ν

when N ∼ Poisson(kν). This specific Poisson case is in fact an intermediate result within classical proofs of

the BHH Theorem that use Poissonization techniques (e.g., Beardwood et al. 1959, Karp and Steele 1985,

Steele 1997).

The asymptotic regime of Corollary 1 is analogous to commonly studied regimes in which arrival and

service rates are scaled by the same factor (e.g., Varma et al. 2023). Here, our scaling of the expected spatial

point density by k and the speed by
√

k is due to the dimensions of the corresponding units of measure (e.g.,

customers per square mile vs. miles per hour). Additionally, if the tour includes a setup time of α ≥ 0 and

a per-stop service time of γ/k ≥ 0, the same result holds with a limit of α +β
√

ν + γν by the SLLN.

3.2 Approximated System Model

In order to understand parameter relationships and gain managerial insights, we consider average-case

system behavior via CA. There are two facets to our CA approach: (i) replacing TSP tours over random

customer locations with expected tour durations, and (ii) replacing stochastic, discrete customer requests
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with continuous (i.e., fluid) order accumulations. Corollary 1 motivates a functional approximation of tour

durations when order accumulations are continuous.

In our model, the time taken for a single vehicle to dispatch from the depot, serve n ∈ R≥0 orders, and

return to the depot is given by a deterministic dispatch duration function denoted f (n). Our technical results

require f to be strictly concave, increasing, non-negative, and continuous. In light of Corollary 1, we par-

ticularly focus on a dispatch duration function of the form f (n) = α +β
√

n+ γn. The parameters α ≥ 0,

β > 0, and γ ≥ 0 can be estimated a priori by simulating TSP tours through the depot over customer sets

generated randomly via the known geographic distribution. In the function, α represents any potential setup

time and linehaul travel time to and from the depot, γ is a service time per order, and β
√

n is the routing

time approximation of Corollary 1.

Let C denote the target order deadline; i.e., the target average of Ci values over time. Then, we can focus

on one average-case day in the system by replacing stochastic order arrivals with continuous accumulations:

the day (and service day) begins at t = 0, SDD orders are accepted until a time C ≥ 0, the service day

ends at a given time t = T > C (equal to Ti−Ri for all i), and the day ends at a given time t = R ≥ T . To

avoid trivially infeasible systems, we assume C < T −α . Figure 2 illustrates this timeline. Since T and R

are fixed system parameters and µ orders accumulate during [T,R] in the deterministic model regardless of

SDD price, we henceforth disregard the dashed portion of the timeline and focus on the service day [0,T ].

0 C T R

Figure 2 Single-day timeline, deterministic model

Assume C and p0 are fixed. Orders accumulate at the rates implied by the customer arrival rates and SDD

price. Suppose for now that all NDD orders are served on the day of their delivery deadline. Then, on our

average-case day, there are two types of orders that we need to serve. At the beginning of the day, there is

an available time-zero accumulation of NDD orders (from the previous day) and overnight orders ready to

be delivered. The total size of this time-zero accumulation is equal to the sum of (i) all NDD orders placed

by Type A customers who arrived to the system during [0,C] on the previous day and found the SDD price

too high, (ii) all orders placed by Type A customers who arrived during [C,T ] on the previous day when

SDD was unavailable, and (iii) all overnight orders. During today’s interval [0,C], SDD orders accumulate

continuously and deterministically at a rate wA(p0)λA(t)+wB(p0)λB(t). Figure 3 illustrates these orders,

both those available at t = 0 (in blue, hatched) and those accumulating during the service day (in red,

solid). The time-zero accumulation is labeled with an expression for the total number of orders available at

t = 0; the first integral computes NDD orders placed during [0,C] on the previous day, the second integral

computes NDD orders placed during [C,T ] on the previous day, and µ is the quantity of overnight orders.

Observe that increasing p0 or decreasing C both increase the size of the time-zero accumulation.
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Figure 3 Time-zero accumulation quantity and SDD order rate

0 C T

wA(p0)λA(t)+wB(p0)λB(t)

∫ C
0

(
(1−wA(p0)

)
λA(t)dt +

∫ T
C λA(t)dt +µ

3.3 Vehicle Dispatch Policies and Feasibility

Our initial goal is to determine whether the system can serve these orders with m vehicles, each dispatching

once per day. We define an m-vehicle dispatching policy as an m-tuple of ordered pairs
(
(t1,q1), . . . ,(tm,qm)

)
with t1 ≤ t2 ≤ ·· · ≤ tm ≤ C and q1, . . . ,qm ≥ 0. For each vehicle d ∈ [m], td denotes the vehicle’s time

of departure and qd denotes the order quantity served by the vehicle. A dispatch policy is feasible if the

following conditions hold,

qd ≤ η +
∫ td

0

(
wA(p0)λA(t)+wB(p0)λB(t)

)
dt−

d−1

∑
j=1

q j ∀d ∈ [m], (1a)

td + f (qd)≤ T ∀d ∈ [m], (1b)
m

∑
d=1

qd = η +
∫ C

0

(
wA(p0)λA(t)+wB(p0)λB(t)

)
dt, (1c)

where η :=
∫ C

0

(
(1−wA(p0)

)
λA(t)dt+

∫ T
C λA(t)dt+µ is the size of the time-zero accumulation. Constraints

(1a) ensure that vehicles do not dispatch to serve orders which have not yet accumulated. Constraints (1b)

ensure that all vehicles return to the depot by the end of the service day. Constraint (1c) ensures that all

SDD and NDD orders are served. As implied by Figure 3, these conditions assume all orders are served on

the day of their delivery deadline – no NDD orders are served a day early.

For a setting defined by C, T , m, p0, λA(t), λB(t), and the WP functions, does a vehicle dispatching policy

exist that can feasibly fulfill all orders on the day of their delivery guarantee? If the answer is “yes,” then

a steady state exists, in the sense that this deterministic model of the system can operate feasibly in the

same manner every day. If the answer is “no,” then additional vehicles are required. Since feasibility is not

immediately clear by inspecting constraints (1a)–(1c), we now focus on constructing a vehicle dispatching

policy sufficient for establishing feasibility.

3.4 System Feasibility

For t ≤ T − f (0), define Q(t) = q such that t+ f (q) = T . In other words, Q(t) = f−1(T − t) is the maximum

number of orders a vehicle can serve when departing at t. We define the m-vehicle greedy policy as follows.

First, dispatch as many vehicles as possible at t = 0 with Q(0) orders each; these vehicles return at t = T .

Then, dispatch all but one of the remaining vehicles sequentially carrying as many orders as possible such
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that each of these vehicles (i) takes all unserved accumulated SDD orders at its time of departure, and (ii)

returns no later than time T . The last (m-th) vehicle dispatches at t =C with all remaining unserved orders.

By definition, the greedy policy is feasible if and only if the m-th vehicle returns by time T . Additionally,

if some vehicle ℓ < m returns to the depot prior to T , then all subsequent vehicles dispatch with zero orders

(or need not be dispatched); this implies that no more than ℓ vehicles are required.

Figure 4 illustrates the structure of the greedy policy. Suppose that m = 3. Arrows represent vehicle

dispatch departure and return times. The first vehicle serves all of the time-zero accumulation as well as

the SDD orders placed before its departure time. The second vehicle serves all SDD orders placed since

the departure time of the first vehicle. The third and final vehicle serves all of the remaining SDD orders.

Observe that the final vehicle returns to the depot prior to t = T , indicating that the system is feasible for

the chosen parameters.

Figure 4 Greedy policy illustration (order accumulations not to scale)

0 C T

Algorithm 1 in Appendix A.2 formalizes the computation of the greedy policy. The greedy policy can be

computed efficiently given the value of Q(0), requiring at most m calls to a univariate root-finding routine.

As we illustrate next, efficiency in computation is only one of several reasons why the greedy policy is

fundamental to the analysis of our system.

Let the greedy policy be denoted by P =
(
(t1,q1), . . . ,(tm,qm)

)
. We say that our system is m-saturated

(or simply saturated) if, for all d ∈ [m], td + f (qd) = T . That is, the system is m-saturated if all vehicles

return exactly at the end of the service day in the m-vehicle greedy policy. The following lemma, proved in

Appendix A, demonstrates the usefulness of the greedy policy when the system is saturated.

LEMMA 1. If a system is m-saturated, the m-vehicle greedy policy is the only m-vehicle policy that can

feasibly serve the system.

A natural question is whether there exist non-saturated scenarios in which the greedy policy is infeasible,

but there exists a different policy that can still serve the system. The answer to this question is negative, and

the proof (in Appendix A) is a direct application of the preceding lemma.

THEOREM 1. If the m-vehicle greedy policy is infeasible, no other m-vehicle policy can feasibly serve

the system.
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This result implies that checking whether the system is feasible is as simple as computing the greedy

policy. However, when the system is not saturated, there may still be many feasible policies to choose

from. Among these feasible policies, it can be shown that the greedy policy is also optimal from a cost-

minimization perspective, as we formalize in Theorem 2 and prove in Appendix A.6.

THEOREM 2. Suppose no m′-vehicle policy is feasible for m′ < m, but the m-vehicle greedy policy is

feasible. Then the m-vehicle greedy policy minimizes the total routing time across all feasible policies. More

generally, if the cost associated with a dispatch is a continuous, non-negative, strictly increasing, strictly

concave function of the dispatch quantity, then the m-vehicle greedy policy minimizes the total cost across

all feasible policies.

3.4.1 Vehicle Utilization and Fulfillment Difficulty. Even if m is the minimum fleet size required for

feasibility, if the system is not saturated the final vehicle may return to the depot prior to T in the greedy

policy, as in Figure 4. Intuitively, having the same quantity of orders accumulate earlier in the day tends to

make the system “easier” to serve, whereas having the same quantity of orders accumulate later in the day

tends to make the system more “difficult” to serve. This is because earlier realization of customer demand

improves the potential for batching on delivery vehicles (i.e., leveraging the economies of scale associated

with the concave function f ). As an example, consider a one-vehicle system in which 100 customers demand

SDD. If all of these customers place their orders by 11 AM, there is a greater likelihood that the vehicle can

feasibly deliver these orders, compared to a situation in which 50 of these customers delayed their orders

until 4 PM. In the extreme case, this principle is illustrated by the fact that NDD requests are significantly

easier to fulfill than SDD requests, since NDD requests can be batched into quantities of Q(0) the day after

the order is placed.

From a managerial perspective, a feasible system that is “too easy” to serve indicates potential unreal-

ized gains or underutilized delivery capacity. However, we have multiple levers at our disposal — such as

increasing C and/or decreasing p0 — that we can use in order to remedy these inefficiencies and optimize

various chosen system objectives while maintaining steady state feasibility. We next apply our model to the

optimization of two such objectives. We begin by leveraging the greedy policy to revisit the concept of the

system steady state.

4. Steady State Existence and Convergence
Our analysis until this point has assumed that we are operating in a steady state, yet we have disregarded

two subtle but important questions. First, does our system always reach a steady state? Second, are there

multiple steady states associated with the same set of system parameters? For the purposes of this analysis,

we assume a fixed SDD price and fleet size with our model’s usual deterministic order accumulations and

vehicle tour durations. On the other hand, we no longer assume that we are currently in a steady state (i.e.,

we may vary the dispatching policy and SDD order deadline each day).
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Assume our system has the capacity to serve some SDD orders; that is, µ +
∫ T

0 λA(t)dt < mQ(0). Given

p0 and m, suppose we choose a target SDD order deadline C so that the system is saturated; such a C ∈ (0,T )
exists by the continuity of f . Although we know how vehicles should optimally be dispatched in the steady

state, this steady state is associated with a time-zero accumulation of η orders at the beginning of each day.

If there are instead no orders requiring immediate/same-day fulfillment at t = 0 (time R0), will the system

converge such that η time-zero orders arise at each future time Ri for some sufficiently large i?

For a day with q orders accumulated at time zero, we want the SDD cutoff to be as late as possible while

maintaining feasibility with respect to the end-of-day deadline T . Since this SDD order deadline depends

on q, we use the function G(q) to denote the q-dependent deadline. To compute G(q), we solve the greedy

policy with a time-zero accumulation value of q and extend the SDD order deadline until vehicle m returns

exactly at t = T . By definition, G(η) =C. In the scenario faced by the system manager, the order cutoff on

day 0 will be G(0), and G(q) decreases as q increases.

Delaying the SDD order deadline induces some later-arriving Type A customers to purchase SDD when

they otherwise would have been obligated to select the NDD option. Therefore, a higher value of G(·) today

corresponds to a lower time-zero accumulation quantity tomorrow. Specifically, we define the function H(q)

as the quantity of tomorrow’s time-zero accumulation given a time-zero accumulation of q units today. The

value of H(q) is determined by G(q):

H(q) = µ +
∫ G(q)

0

(
(1−wA(p0)

)
λA(t)dt +

∫ T

G(q)
λA(t)dt. (2)

Because G is a decreasing function, H(q) increases as q increases. Just as G(η) =C, we also have H(η) =

η . In this scenario, the order cutoff on day 0 will be G(0).

Beginning at day 0, the system therefore evolves based on the initial accumulated quantity of orders. For

example, when there are no initial orders to be served, the system on day 3 has a time-zero accumulation of

H(H(H(0))) units and a SDD order deadline of G(H(H(H(0)))). For notational purposes, we denote the

time-zero accumulation on day j given q initial orders as H( j)(q), the j-th composition of H. The system’s

SDD order deadline on day j is then G
(
H( j)(q)

)
, which we denote G( j)(q). Note, however, that G( j) does

not represent a function composition in the same manner as H( j).

As measured by the daily time-zero accumulation H( j) and SDD order deadline G( j), the system indeed

converges to the chosen steady state when there are zero orders requiring delivery at t = 0 on day 0. More

generally, we can show that the system converges to the chosen steady state for any initial accumulated

quantity satisfying mQ(0)≥ q, i.e., the vehicles are able to serve the q orders on day 0. Theorem 3, proved

in Appendix A.8, formalizes this result. From a dynamical system perspective, the saturated steady state

represents a Lyapunov-stable attracting fixed point.

THEOREM 3. Let η and C denote the time-zero accumulation and SDD order deadline, respectively,

associated with the saturated steady state. For any starting quantity q ∈ [0,mQ(0)] of orders at time t = 0

on day 0, lim j→∞ G( j)(q) =C and lim j→∞ H( j)(q) = η . Additionally, the convergence is monotonic.
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5. Early Next-Day Delivery Maximization
Empirical evidence suggests that fulfilling e-commerce orders earlier than the promised delivery day leads

to increased sales in the long run (Fisher et al. 2019). Driven by these findings, we introduce the concept of

NDD+ orders: NDD orders that are fulfilled on the same day they are placed (i.e., one day early). In other

words, NDD+ orders receive the same treatment as SDD orders without incurring the higher delivery fee.

Assuming a fixed SDD price p0 and deadline C, we view the quantity of NDD+ orders as a measurement

of customer satisfaction; thus motivated, we seek to maximize the quantity of NDD orders served as NDD+

orders with the intent of capturing a greater market share by exceeding customer expectations.

5.1 Structural Analysis

We again assume that the system is operating in steady state, and that C has been chosen so that the system

is feasible when all orders are fulfilled on their due date, but not necessarily saturated. We seek to convert

NDD orders to NDD+ orders while maintaining system feasibility. Note that every order served as NDD+

today entails one fewer NDD order to be served tomorrow. Thus, in steady state, treating some quantity of

NDD orders during the day as NDD+ orders leads to a corresponding reduction in the size of the time-zero

accumulation. This idea is illustrated in Figure 5: some NDD orders in the middle of the day are converted to

NDD+ (depicted in striped gold), so the size of the time-zero accumulation is reduced by the same amount

(not to scale).

Figure 5 Conversion of NDD orders to NDD+ orders

0 C T

Assuming system feasibility, let q+ ∈R≥0 denote the maximum number of NDD orders that we can con-

vert to NDD+ orders. In order to gain insight into the optimization problem at hand, we begin by considering

a simple question: when can we serve at least some NDD+ orders? In other words, when is q+ > 0? It is

clear that, if the final vehicle in the greedy policy returns before t = T as in Figure 4, the “slack” allows us to

serve a positive quantity of NDD orders as NDD+. This scenario is illustrated in Figure 6 with some NDD

orders placed just before C being converted to NDD+ orders; the first vehicle now returns before t = T due

to some of its quantity being reassigned to the final vehicle.

Perhaps counterintuitively, however, this is not a necessary condition to be able to fulfill some NDD+

orders. Consider a saturated system in which the last vehicle to serve any orders from the time-zero accu-

mulation — let us denote this as the k-th vehicle — also serves some SDD orders (i.e., tk > 0); this occurs
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Figure 6 Feasibly fulfilling NDD+ orders when tm + f (qm)< T , cf. Figure 4

0 C T

if the size of the time-zero accumulation is not an integer multiple of Q(0). Then, we can convert a small

quantity of the NDD orders placed prior to tk into NDD+ orders. This conversion will slightly reduce the

size of the time-zero accumulation by the same small quantity. As illustrated in Figure 7, the original greedy

policy can still feasibly serve this new system that features a small positive quantity of NDD+ orders at the

beginning of the day. Therefore, even when the system is saturated we can convert some NDD orders into

NDD+ orders without changing the dispatching policy at all.

Figure 7 Feasibly fulfilling NDD+ orders when tk > 0 (k = 1)

0 C T

We can show that these two conditions represent the only two scenarios in which q+ > 0. Theorem 4,

proved in Appendix A.9, formalizes this result.

THEOREM 4. Assume that the system is feasible when all orders are fulfilled on their due date; denote

the associated greedy policy as P =
(
(t1,q1), . . . ,(tm,qm)

)
and denote the associated total quantity of orders

available at t = 0 as η . The system can serve a positive number of NDD orders a day early (q+ > 0) if and

only if at least one of the following conditions hold: (i) tm + f (qm)< T , or (ii) η/Q(0) /∈ Z.

This result informs whether we have the ability to provide any NDD+ service, but it does not indicate which

NDD orders to fulfill early. We must still determine the time interval(s) during which NDD orders should

be treated as NDD+.

Consider a solution in which some amount of NDD orders placed during time interval [t, t + ε] are con-

verted to NDD+, while some NDD orders placed earlier than t are not converted. Without loss of feasibility,
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the same solution can convert earlier orders instead of the later ones. It follows that there is no benefit to

converting NDD orders placed during some time interval unless all NDD orders placed earlier in the day are

also designated as NDD+ orders. Therefore, the optimal solution to our problem must adhere to the follow-

ing structure: for some “early deadline” Ĉ, all NDD orders placed during the interval [0,Ĉ] are designated

as NDD+ orders, while remaining NDD orders are fulfilled normally, on the day of their delivery guarantee.

Figure 8 illustrates this structure; the labeled NDD+ accumulation rate prior to Ĉ is in addition to the usual

SDD accumulation rate labeled separately.

Figure 8 Time-zero accumulation quantity, NDD+ order rate, and SDD order rate

0 Ĉ C T

∫ C
Ĉ

(
(1−wA(p0)

)
λA(t)dt +

∫ T
C λA(t)dt

wA(p0)λA(t)+wB(p0)λB(t)

(
1−wA(p0)

)
λA(t)

5.2 Computational and Managerial Implications

The key consequence of this structure is that the problem of optimizing the quantity of NDD+ orders is

equivalent to maximizing Ĉ while maintaining feasibility of the greedy policy (and thereby maintaining

feasibility of the system). We also know that if a particular value of Ĉ is feasible, then all earlier values of

Ĉ are also feasible. Therefore, assuming that the system is feasible for Ĉ = 0, we can solve for the optimal

NDD+ deadline Ĉ∗ (within a given tolerance) by bisection search over the interval [0,T ].

However, because we do not immediately gain any additional revenue from fulfilling NDD orders early,

in a typical system we should expect Ĉ∗ to be much earlier than C. If the system is feasible even with Ĉ≥C,

as an extreme case, every customer who places an order prior to C receives SDD. This indicates the system

is operating inefficiently, and other parameters should be reevaluated. For example, the system’s fleet size

should be reduced, or C should be delayed.

To improve on the efficiency of naı̈ve bisection, we introduce an auxiliary function F(Ĉ), which we

define as the return time of the final vehicle in the greedy policy when the NDD+ deadline is set to Ĉ.

Because we seek a value of Ĉ that induces saturation, the problem of maximizing Ĉ is reduced to solving

max{Ĉ|F(Ĉ) = T}. Fortunately, we can show that this set usually contains only a single point and the

problem is thus amenable to univariate root-finding routines. Proposition 1, proved in Appendix A.10,

formalizes this property.

PROPOSITION 1. The function F(Ĉ) is non-decreasing for Ĉ ∈ [0,C). Additionally, if F(0) < T and

F(C)> T , then F(Ĉ) = T has a unique solution Ĉ∗ in the interval (0,C).
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This result allows us to leverage sophisticated root-finding routines, such as Brent’s method, that use the

value of F(Ĉ)− T to calculate Ĉ∗ more efficiently than bisection search. In our experience, using this

approach (instead of bisection search) reduces computation time by 30–40%. While this improvement may

not be necessary for a single instance, the effect is noticeable when optimizing hundreds or thousands of

instances sequentially, perhaps in order to compare various combinations of parameter settings.

The analysis in this section motivates a simple set of guidelines for managing the system: (i) all NDD

orders placed before the optimal NDD+ deadline Ĉ∗ are fulfilled on the same day, (ii) all SDD orders are

fulfilled on the same day, and (iii) all other orders are fulfilled on the following day. Our analysis assumes

the chosen NDD+ deadline is not advertised, to prevent early-arriving customers from acting strategically

and selecting the free NDD option when they otherwise would have paid for the SDD guarantee.

5.3 Mitigating Customers’ Strategic Behavior

Despite the lack of advertisement, a few customers may slowly learn from experience about the NDD+

deadline, particularly if some customers are placing orders frequently. This may potentially lead to a small

loss in the firm’s profit over long time scales because such customers would eventually be less willing to

pay for SDD prior to Ĉ∗. An e-retail firm may wish to proactively prevent such strategic behavior while still

occasionally exceeding customers’ expectations.

We propose one potential approach to mitigate customer learning: introduce randomization when choos-

ing which customers to upgrade to NDD+. That is, instead of providing NDD+ to all customers within a

particular time window, thereby risking some customers learning the structure of the e-retailer’s manage-

ment guidelines, we upgrade only a random subset of the incoming NDD+ orders during a longer time

window. The relative size of this random subset should be chosen to be low enough that customers cannot

effectively learn strategic behavior quickly enough to affect the e-retailer’s tactical planning.

Formally, suppose that the e-retailer determines that upgrading only ξ proportion of NDD orders during

[0,C] is sufficient to effectively nullify customer learning. In the stochastic system, this means that every

incoming NDD order during [0,C] is randomly upgraded to NDD+ with probability ξ (independently of any

other upgrade decision). In the deterministic approximation, this corresponds to an effective NDD+ arrival

rate of ξ λA(t) for t ∈ [0,C]. Figure 9 illustrates this structure.

It remains to find the value of C that maximizes the number of NDD+ orders while maintaining system

feasibility. As before, if a particular value of Ĉ is feasible, then all earlier values of Ĉ are also feasible.

Therefore, bisection search can again be employed to solve for Ĉ∗ in this context.

The underlying hypothesis of this approach is that, by introducing randomness, the customers can no

longer rely on guaranteed upgrades during an early time window, thereby making it difficult for them to

learn and adapt to the firm’s strategy. Unfortunately, we are not aware of any prior research that studies this

hypothesis in the context of e-retail delivery. In a different environment, however, Sriram et al. (2015) find
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Figure 9 Time-zero accumulation quantity, effective NDD+ order rate, and SDD order rate

0 Ĉ C T

∫ Ĉ
0

(
1−ξ

)(
(1−wA(p0)

)
λA(t)dt +

∫ C
Ĉ

(
(1−wA(p0)

)
λA(t)dt +

∫ T
C λA(t)dt

wA(p0)λA(t)+wB(p0)λB(t)

(
1−wA(p0)

)
ξ λA(t)

“a slower rate of learning among households that experience high variability” in the service quality of a

video-on-demand company. Future empirical work may seek to extend these findings to the e-retail delivery

sector and inform a data-driven method for choosing an appropriate value of ξ for our proposed strategy.

To conclude this section, we stress again that the percentage of all NDD orders during [0,C] given an

upgrade should be small. If a significant number of NDD+ orders are being fulfilled daily, it may indicate

that the vehicle fleet is not being utilized to its full earning potential. In such a case, it may be prudent to

forgo these NDD+ strategies and instead re-optimize the SDD order deadline and price, as we do next.

6. Static Pricing and Temporal Discounting
The customer satisfaction objective studied in the preceding section is useful for firms attempting to better

establish themselves in a market at the expense of optimizing short-term profit. A well-established firm, on

the other hand, may wish to instead design the system purely for profit maximization; we now apply our

model to this objective. Instead of serving NDD+ orders, we choose the SDD price p0 and order deadline C

— previously assumed to be fixed — in order to maximize daily profit in the system.

6.1 Single SDD Price

We wish to design our system by selecting a static SDD price p0 and SDD order deadline C. The price

must be selected from a given discrete, fixed price menu (e.g., {1,2, . . . ,10}), while the SDD order deadline

may take any value in the interval (0,T ). Because the current focus is the system’s profit, we also consider

potential fulfillment costs under two different cost structures.

6.1.1 Flat per-vehicle costs. Suppose that we may use at most mmax vehicles, but the daily cost per

vehicle is ϕ > 0. Therefore, the total daily profit in our model is p0
∫ C

0

(
λA(t)wA(p0)+λB(t)wB(p0)

)
dt−ϕm.

Our goal is to maximize this profit.

Fix a particular SDD price p0 and fleet size m. Because the costs are fixed at ϕm, we seek the revenue-

maximizing SDD order deadline. Observe that we may assume full utilization of vehicles without loss of

optimality. Thus, the revenue-maximizing SDD order deadline is the unique value C for which all vehicles

return at T in the associated feasible greedy policy. Applying a similar approach as in Section 5 allows us
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to calculate this value of C, because increasing the time of the SDD order deadline progressively increases

the fleet’s utilization. Repeating this procedure for every p0 in the price menu produces the optimal solution

for a given m. Finally, optimizing the revenue for each m≤mmax and comparing the associated profits gives

the optimal fleet size.

6.1.2 Dispatch-duration costs. Suppose instead that costs are incurred proportional to the fleet’s

total dispatch duration. Under this alternate cost structure, the total daily profit in the model is

p0
∫ C

0

(
λA(t)wA(p0)+λB(t)wB(p0)

)
dt−ψ ∑

m
i=1 f (qi) for any m≤ mmax and a positive scaling constant ψ .

Recall that the greedy policy minimizes total dispatch duration for any feasible combination of m, C, and

p0. The profit’s dependence on total dispatch duration implies that it is no longer necessarily optimal to

choose the value of C that fully utilizes the fleet’s temporal capacity for a given choice of m and p0. When

arrival rates are time-homogeneous, however, we can show that the profit-maximizing solution admits a

convenient structure.

PROPOSITION 2. Assuming costs proportional to total dispatch duration, constant customer arrival

rates, and a fixed SDD price p0, the total profit is a piecewise-convex function of C. Additionally, the break-

points of this function correspond to values of C for which either (i) all utilized vehicles in the associated

greedy policy return exactly at time t = T , or (ii) the quantity of the associated time-zero accumulation is

an integer multiple of Q(0).

The result is proved in Appendix A.11. In other words, condition (i) means that any vehicle that is

responsible for a positive quantity of orders must be fully utilized at optimality. Condition (ii) means that

any vehicle that serves NDD orders must dispatch at t = 0.

Finding the optimal solution simply requires finding and comparing these candidate optimal values of C

(i.e., the breakpoints). For a given value of m and for each vehicle i ≤ m, there exists at most one value of

C such that vehicle i is the last vehicle to be utilized and vehicle i returns at t = T . Similarly, there exists at

most one value of C such that vehicle i is the last vehicle to serve any NDD orders and vehicle i departs at

t = 0. Thus, there are O(m) candidate optimal values of C that can be enumerated by bisection search over

C ∈ [0,T ). Repeating this process for all prices in the menu and all m ≤ mmax gives the profit-maximizing

combination of C, p0, and m.

6.2 Temporal Discounting

Because orders placed earlier in the day can be served more efficiently than orders placed later in the day,

we now consider a slightly more sophisticated pricing scheme. We choose a base SDD price p0 and a

discounted SDD price p̂0 ≤ p0 from the menu. The discounted SDD price p̂0 is offered to all customers

prior to a discounted SDD order deadline Ĉ. The base SDD price is offered to all customers after Ĉ but prior

to the final SDD order deadline C, where C ≥ Ĉ. Figure 10 illustrates this system design; compare this to

the simpler design in Figure 3.
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Figure 10 Two-level static SDD pricing

0 Ĉ C T

wA(p̂0)λA(t)+wB(p̂0)λB(t)

wA(p0)λA(t)+wB(p0)λB(t)

∫ Ĉ
0

(
(1−wA(p̂0)

)
λA(t)dt +

∫ C
Ĉ

(
(1−wA(p0)

)
λA(t)dt +

∫ T
C λA(t)dt +µ

Analogous to our approach in the single-price problem with per-vehicle costs, consider maximizing rev-

enue given a fixed price combination {p̂0, p0} and fleet size m. In the single-price problem, there were no

degrees of freedom given a fixed SDD price; any chosen p0 directly determined the associated SDD order

deadline due to the necessity for vehicles to be fully utilized at optimality. In this two-level pricing scheme,

however, fixing the prices still requires us to make one decision. We must choose the discounted deadline

Ĉ, which then implies a single value of C that ensures all vehicles are fully utilized.

The resulting combination of Ĉ and C generates a total revenue of p̂0
∫ Ĉ

0

(
λA(t)wA(p̂0)+λB(t)wB(p̂0)

)
dt+

p0
∫ C

Ĉ

(
λA(t)wA(p0)+λB(t)wB(p0)

)
dt. In general, even this univariate problem of maximizing revenue as

a function of Ĉ displays no particular structural properties. However, if the arrival rates of each type of

customer are modeled as constant over time (but potentially distinct), we can derive a structural insight that

is important for optimization under the per-vehicle cost structure.

THEOREM 5. Suppose that the arrival rates λA(t) and λB(t) are constant over time. For a fixed price

combination {p̂0, p0} and fleet size m, the total revenue is a continuous, piecewise convex function of Ĉ. The

breakpoints of this function correspond to values of Ĉ that satisfy at least one of the following conditions: (i)

a vehicle departs exactly at Ĉ in the associated greedy policy, or (ii) the quantity of the associated time-zero

accumulation is an integer multiple of Q(0).

The proof of this result, deferred to Appendix A.12, is lengthy and requires analyzing several cases. Figure

11 illustrates a solution that satisfies both conditions.

With respect to optimization, this result significantly reduces the search space for potential global optimal

solutions to these breakpoints. In two practical cases, the number of breakpoints for each price combination

is bounded by a polynomial function of the fleet size m: (1) when all overnight and potential NDD orders can

be served by a single vehicle, or (2) when all customers are of Type A. The former case tends to occur when

the zone is chosen to be sufficiently small and Type B customers represent the majority of the customer

base. The latter represents a reasonable modeling assumption when the product(s) sold by our e-retail firm

cannot be purchased nor substituted via a different e-retail firm or brick-and-mortar retailer. In both cases,

the potential optimal solutions can be efficiently enumerated; we provide details in Appendix A.13.
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Figure 11 Potential optimal two-level SDD pricing solution with associated dispatching policy
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7. Computational Study
In this section, we apply our models to a case study in the Denver metropolitan area. We first describe

geographical aspects of the system and build the corresponding CA model. Then, we optimize the system

with respect to the objectives from Sections 5 and 6. Finally, we perform operational simulations in order

to validate our model predictions in an operational setting.

We query population values via the open-access Population Estimation Service (NASA SEDAC and

Columbia University CIESIN 2018), which uses United States census data. We generate customer locations

and travel time matrices with the open-source tools Openrouteservice (HeiGIT 2022) and VeRoViz (Peng

and Murray 2022). Optimization, including the computation of TSP tours, is implemented in Python 3.7.3

via Gurobi and SciPy.

7.1 System Details and Model Parameters

7.1.1 Geography and Vehicle Routing. Our study is set in the suburbs of Denver, Colorado, USA.

Specifically, we are focused on the management and operation of a roughly rectangular delivery zone mea-

suring approximately 4 miles east-to-west and 3 miles north-to-south. The total population of this zone is

roughly 81,000. In order to capture the geographical inhomogeneity of customer locations in practice, we

discretize the zone into 12 one mile-by-one mile tracts, with populations ranging from roughly 4,100 to

11,600. We assume the probability that a random customer is located within a tract is proportional to the

tract’s population. Within a selected tract, the location of the customer is chosen uniformly at random along

the road network. The zone is served by a depot located to the northwest; the driving distance between the

zone and depot is approximately five miles, corresponding to a driving time of approximately ten minutes.

Figure 12 depicts the location of the depot, marked with a flag, and the zone relative to downtown Denver.

Each service day begins at 9 AM, and deliveries must be completed and all vehicles must return to the depot

by 6 PM.

In order to build the system model, we empirically estimate a routing time approximation suitable for

our particular system’s road network, driving speed limits, depot location, and customers’ geographical

distribution. For each n ∈ {15,30,45, . . . ,105}, we randomly generate 50 sets of n customers within the
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Figure 12 System geography for computational study (generated in Leaflet via VeRoViz)

zone. For each set, we solve for the fastest TSP tour through the n points and the depot, where the travel time

between two locations depends on the road network and may be asymmetric. We then fit the functional form

α +β
√

n+ γn to these 350 tour durations. We approximate the duration of a TSP tour visiting n randomly

generated customer locations in the zone from the depot as 15.83+13.61
√

n+0.33n minutes.

In a recent case study in London, Allen et al. (2018) empirically estimate 4.1 minutes of non-driving ser-

vice time per customer in a last-mile delivery context. This includes unloading packages, walking between

the delivery vehicle and the customers’ residence, and “gaining proof-of-delivery” (e.g., taking a picture

of the delivered package or obtaining a signature). Because finding parking close to customer residences is

easier in our suburban setting relative to the urban environment of London, we assume a slightly lower ser-

vice time of 3 minutes per delivery in our study. Additionally, we include 5 minutes per dispatch to account

for any setup time, such as traveling from the depot’s loading bay to the actual road. Combining all of these

components produces the dispatch time function f (n) = 20.83+ 13.61
√

n+ 3.33n, which we use in our

model.

7.1.2 Prices and Customer Behavior. We model behavior of each customer type with a logit-type

sigmoid function, rescaled so that all customers choose SDD when p0 = 0:

wA(p0) =
1− (1+ e3−0.7p0)−1

1− (1+ e3)−1
and wB(p0) =

1− (1+ e5−0.5p0)−1

1− (1+ e5)−1
. (3)

Figure 13 illustrates the WP functions for each customer type. Type A customers are less willing to pay

for SDD than Type B customers at every price point, as evidenced by wB dominating wA in Figure 13. For
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Figure 13 Proportion of customers choosing SDD as a function of SDD price
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example, at a SDD price of p0 = 5 dollars, approximately 40% of arriving Type A customers and 93% of

arriving Type B customers choose the SDD option if available.

We assume a total customer arrival rate that corresponds to 7.5% of the residents of our zone attempting

to place an order once per month (28 days) on average,

µ +
∫ T

0

(
λA(t)+λB(t)

)
dt = (0.075×81116)/28≈ 217.28. (4)

The daily quantity of orders will be lower than this value due to some Type B customers abandoning the

system upon encountering either an excessive SDD price or a closed SDD ordering window. The actual

arrival rates λA(t) and λB(t) we use are different for each objective and are specified in the following

subsection.

7.2 System Optimization

7.2.1 Customer Satisfaction. We first consider the objective of maximizing the quantity of NDD+

orders. Customer arrivals are assumed to be time-varying; Type A customers’ arrivals peak around noon,

while Type B customers’ arrivals increase over the course of the day. Figure 14 illustrates the specific arrival

rate of each type of customer. We assume that the quantity of overnight orders is µ = 30. This corresponds

to an average of two Type A customer arrivals per hour between 6 PM and 9 AM, approximately 67% of the

Type A arrival rate at 6 PM. In this experiment, the SDD price is p0 = 5 dollars and the SDD order deadline

is 3 PM (C = 360 minutes). There are m = 3 vehicles assigned to the zone, each dispatching once daily.

Applying the greedy policy to the deterministic model produces the following solution. Vehicle #1 departs

from the depot at 9:56 AM (t = 55.88) to serve 98.52 orders (55.54 NDD, 30 overnight, and 12.99 SDD)

and returns at 6 PM (t = 540). Vehicle #2 departs from the depot at 1:17 PM (t = 256.85) to serve 49.89

orders (all SDD) and returns at 6 PM (t = 540). Finally, vehicle #3 departs from the depot at 3 PM (t = 360)

to serve 26.02 orders (all SDD) and returns at 5:57 PM (t = 536.92). It is immediately clear that both

conditions of Theorem 4 are satisfied, since the system is in an unsaturated steady state (t3 + f (q3) < T ),

and no vehicles depart at t = 0. Therefore, we expect that it is feasible to convert some NDD orders into

NDD+ orders.
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Figure 14 Customer arrival rates, NDD+ objective
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This is indeed the case; the optimal NDD+ quantity in this system is q+ = 8.28 orders per day. The optimal

solution is to fulfill all NDD orders placed by 10:25 AM (Ĉ = 85.25) on the same day. When compared

with the minuscule temporal slack in the original system — the final vehicle returns to the depot just three

minutes prior to the end of the service day — it may initially seem that this optimal value of Ĉ is too high.

However, recall that tk = t1 = 55.88 > 0 implies that we can increase the NDD+ deadline to some extent

without needing to modify the dispatching policy at all. Indeed, in this case, we can increase the NDD+

deadline until t = 55.88 without changing any departure times, return times, or dispatch quantities in the

original greedy policy. Increasing the deadline by an additional half-hour to Ĉ = 85.25 saturates the system.

The concave nature of f implies that economies of scale can be leveraged more effectively earlier in the

day; thus, it is unsurprising that this half-hour delay towards the beginning of the day entails a three-minute

delay in the return time of the final vehicle at the end of the day.

The associated optimal vehicle dispatching policy is as follows. Vehicle #1 departs from the depot at

10:01 AM (t = 60.98) to serve 97.25 orders (47.25 NDD, 30 overnight, 5.81 NDD+, and 12.99 SDD),

vehicle #2 departs from the depot at 1:14 PM (t = 254.25) to serve 50.50 orders (2.48 NDD+ and 48.02

SDD), and vehicle #3 departs from the depot at 3 PM (t = 360) to serve 26.68 orders (all SDD). All vehicles

return at 6 PM (t = 540).

A benefit of CA methods is computationally efficient sensitivity analysis. As an example, system man-

agers may be interested in the effect of varying the upgrade proportion ξ in the randomized NDD+ extension

studied in Section 5.3. The solution detailed in the preceding paragraphs is equivalent to the randomized

policy with ξ = 1, but how many fewer NDD customers can we upgrade to NDD+ if we choose a lower

value of ξ ? To answer this question, we maximize the NDD+ deadline, thereby maximizing the quantity

of NDD+ orders fulfilled, for each ξ ∈ {0.05,0.051, . . . ,0.999,1}. Figure 15a plots the optimal NDD+

deadline for each value of ξ , and Figure 15b plots the corresponding quantity of NDD+ orders.

Both plots depict a continuous, piecewise relationship with a single breakpoint. The breakpoint occurs at

the value of ξ for which the types of orders fulfilled by the third vehicle changes: the third vehicle fulfills

some NDD+ orders for values of ξ to the left of the breakpoint, and the third vehicle fulfills no NDD+ orders
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Figure 15 Sensitivity analysis of randomized NDD+ strategy
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for values of ξ to the left of the breakpoint. Each of the components of the piecewise graph in Figure 15b

is slightly nonlinear despite the curve’s appearance in the plot. These figures provide managerial insights

for a potential implementation of the randomized NDD+ policy. For example, it is interesting to observe

that upgrading only half of the incoming NDD orders during the designated time window still allows for

5.38 NDD+ orders fulfilled per day – just 35% lower than the 8.28 NDD+ orders fulfilled under the original

optimal policy with ξ = 1.

7.2.2 Profit Maximization. We next turn our focus to maximizing delivery profit via our system model

under the two-level SDD pricing scheme with per-vehicle costs. We assume here that the overnight accu-

mulation remains at µ = 30 orders, but the arrival rates of Type A and Type B customers are constant over

time. Specifically, λA(t)≈ 0.09 and λB(t)≈ 0.26 arrivals per minute for all t ∈ [0,T ].

We optimize over the discrete price menu {0.5,1,1.5, . . . ,14.5,15} dollars; thus, there are 465 potential

price combinations to analyze. Up to three vehicles may be used. For each m ∈ {1,2,3}, recall that we seek

the combination of base (late) SDD price p0, discounted (early) price p̂0, discounted SDD order deadline

Ĉ, and final SDD order deadline C that entails the maximum total daily delivery revenue. The total deliv-

ery profit is equal to the delivery revenue minus mϕ , where ϕ represents the daily cost per vehicle. For

sensitivity purposes, we are also interested in understanding how the optimal fleet size varies with ϕ .

Table 1 Optimal revenues, SDD prices, and SDD deadlines

Fleet size m
Discounted SDD
price p̂0

Discounted SDD
order deadline Ĉ

Base SDD
price p0

Final SDD
order deadline C Total Revenue

1 - - $9 10:27 AM $129.44
2 $8 10:23 AM $9 2:10 PM $470.50
3 $8 1:54 PM $9 3:42 PM $626.30

For each price combination, we observe that at most one vehicle is required to service all NDD and

overnight orders. Thus, for each price combination, the optimal choice of deadlines is one of polynomially
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many options. For each m ∈ {1,2,3}, the computational time required to enumerate and check the revenue

of each of the potential optimal solutions (see Appendix A.13 for computational details) for all price com-

binations is less than three minutes in total. Table 1 summarizes the optimal solution and associated optimal

delivery revenue for each potential fleet size; there is no benefit to using a two-level pricing scheme for

a fleet size of m = 1 because the associated optimal solution sets the discounted deadline to t = 0. Based

on these results, we observe that using m = 3 vehicles is optimal for ϕ ≤ $156.80, using m = 2 vehicles

is optimal for $156.80 ≤ ϕ ≤ $341.06, and using m = 1 vehicle is optimal for ϕ ≥ 341.06. However, we

operate at a loss for any ϕ > $235.25.

Examining the list of feasible solutions, we observe that price combinations similar to the optimal com-

bination entail near-optimal total revenues, while less-similar price combinations entail clearly suboptimal

total revenues. As an example for m = 3, the discounted/base SDD price combination of $7.50 and $8.50

entails a total daily revenue of $624.08, while the discounted/base SDD price combination of $3 and $12

entails a total daily revenue of $403.77. This implies that the total revenue function is fairly “flat” around

the optimum, so managers can slightly adjust the optimal prices without fear of significant lost revenue. We

include the five best solutions for each m in Appendix B to further illustrate this point.

As with the NDD+ objective, we can also perform a sensitivity analysis for the two-level pricing model.

To illustrate, suppose we seek to understand how the composition of the customer base (i.e., the relative

proportion of overnight, Type A, and Type B orders) affects the optimal revenue and pricing solutions. The

original solutions assumed that Type B customers make up approximately 64.6% of all arrivals. Assuming

that the expected total number of daily customer arrivals remains fixed, how does varying this percentage

affect the optimal solution? We analyze this question by re-solving for the optimal prices and deadlines

while varying the proportion of Type B orders between 50% and 80% by 0.5% increments.

Figure 16a plots the maximum revenue across this range for m ∈ {1,2,3}. We observe that revenue

increases nonlinearly with the Type B proportion. The positive correlation is as expected because relatively

impatient Type B customers are willing to pay higher prices for SDD. Next, we observe that there is no

value of ϕ for which using m = 1 vehicle is optimal and profitable. Thus, we must choose between using

m = 2 or m = 3 vehicles; the decision depends on both the proportion of Type B customers and the value of

ϕ . The additional revenue associated with using the third vehicle increases as we increase the proportion of

Type B orders, from $143.47 at one end of the range to $159.06 at the other end.

Figure 16b plots the early and late SDD deadlines as a function of the proportion of Type B customers for

m = 2. We observe a piecewise function with four apparent breakpoints. Unsurprisingly, these four break-

points (marked with dashed vertical lines) are also where the optimal price combination changes. Specifi-

cally, an increase in Type B customers tends to increase the prices in the optimal combination. From left to

right in Figure 16b, the four optimal price combinations are (p̂0, p0)= ($7.50, $8.50), ($8, $8.50), ($8, $9),

and ($8.50, $9). However, we again observe that the total revenue is fairly flat around the optimum, so
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Figure 16 Sensitivity analysis of customer type composition
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multiple price combinations are almost optimal. Specifically, the best solution with (p̂0, p0) = ($8, $9) —

the original price combinations from Table 1 — achieves at least 99.5% of the optimal revenue in every case

analyzed here. In Appendix B, we conduct a similar sensitivity analysis of customers’ threshold prices.

Finally, it is worthwhile for system managers to quantify the benefit of a two-level SDD pricing scheme

versus a simpler design with a single SDD price. In our zone, the two-level scheme entails an additional

$2.02 in daily revenue for m = 2 and an additional $3.91 for m = 3 when compared to the best solution with

a single SDD price, assuming our original parameter settings. The associated relative increase in profit is

1.2% for ϕ = $100 and 2.9% for ϕ = $200; this is a significant margin if a firm operates dozens of zones

daily in a metropolitan region. It is ultimately the decision of system managers to determine on a zone-by-

zone basis whether the monetary benefits of the two-level pricing scheme outweigh the slight increase in

the complexity of managing the system.

7.3 Operational Simulations and Convergence Analysis

As a final step, we assess the convergence of a stochastic operational model and compare its performance

to our predictions. Specifically, over a 12-week horizon, we simulate discrete customer arrivals and fulfill

orders by exactly computing optimal TSP tours over customers’ delivery locations. We compare the results

of our simulations with the system behavior predicted by the deterministic model and analyze the effect

of varying initial conditions. Specifically, this simulation study analyzes the optimal solution to the early

delivery maximization problem studied earlier in this section with NDD+ and SDD order deadlines of 10:25

AM (Ĉ = 85.25) and 3 PM (C = 360), respectively.

We generate daily stochastic customer arrivals as follows. Customers arrive via non-stationary Poisson

processes at rates depicted in Figure 14. A customer arriving into the system at a time t ∈ (0,T ) is associated
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with a type and threshold price. If the customer’s threshold price does not exceed the SDD price (p0 = $5),

the customer places a SDD order. Otherwise, the customer places a NDD order (Type A) or abandons the

system (Type B). Customers’ threshold prices are i.i.d. for each type, with distributions given by the WP

functions (3). Excluding the first day of the horizon, the quantity of overnight orders prior to each day is

distributed as Poisson(30). The delivery location associated with each customer is randomly generated by

the same procedure used to empirically estimate the function f .

The daily operation broadly proceeds as follows, beginning at t = 0 and assuming some quantity of time-

zero accumulation. As orders arrive into the system, they are classified based on their fulfillment date: if

a customer places a SDD order at any time or a NDD order prior to the NDD+ deadline, it is designated

for delivery today; otherwise, it is relegated for fulfillment tomorrow. When an order is designated for

delivery today, it is added to the set of unserved orders; this set may also contain yesterday’s NDD orders

and overnight orders. At all times, the system operator maintains the current dispatch duration, calculated

as the fastest TSP tour — including setup and per-order service times — through the depot and the delivery

locations associated with all of the orders in the unserved set. The first vehicle departs to fulfill all orders

when the current time plus the current dispatch duration equals T . At this time, the unserved set is reset and

the same procedure repeats for the second and third vehicles. Among all orders designated for fulfillment on

a particular day, orders are batched into dispatches based on their arrival time; no geographic discrimination

occurs. Occasionally, an arriving order may push a vehicle’s return time past T . In such cases, that order is

not served by the current vehicle, and the current vehicle dispatches immediately. The departure time of the

third vehicle also constitutes that day’s recorded SDD order deadline. The NDD+ deadline of 10:25 AM

remains unchanged from day to day.

For each of 25 trials, we simulate the system for a 12-week (84-day) time horizon. In our model’s steady

state solution, the daily time-zero accumulation is η ≈ 77.25. Therefore, for each trial, the time-zero accu-

mulation on day 1 is chosen as Poisson(77.25). For each trial and day, we record representative data about

the system, including the SDD order deadline, the fulfilled quantity of each type of order, and information

about each of the three dispatches. In aggregate, we expect this data to align closely with the values pre-

dicted by our deterministic model. Table 2 lists the averages and standard deviations (over all trials and

days) of some representative values. For comparison, the table also lists the corresponding values associated

with the optimal solution to the deterministic model (labeled ‘predicted’).

Table 2 Representative daily system values: stochastic simulations vs. deterministic model predictions

SDD order deadline
(min. after 9 AM)

Total dispatch
duration (min.)

SDD orders
fulfilled

NDD+ orders
fulfilled

Simulated,
mean (± st. dev.) 359.66 (± 15.66) 941.60 (± 44.03) 88.13 (± 6.38) 8.31 (± 2.95)

Predicted 360 944.77 88.90 8.28
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All of the simulated averages are within 1% of the values predicted by the deterministic model. This

is in line with existing studies that use CA methods in the last-mile delivery context. Because this data

is aggregated across days, it is natural to ask whether the behavior of the system changes as the system

evolves. Specifically, does the system exhibit greater deviation from the steady state as time goes on? Figure

17 records the mean, minimum, and maximum SDD order deadline across all trials for each day in the

horizon. The chart also displays the mean plus/minus one standard deviation across all trials for each day.

Observe that no trend is evident over time for any of the summary statistics. Additionally, an analysis of

each individual simulation trial reveals that SDD order deadlines never stray outside of the 2:30–3:30 PM

time window for more than two consecutive days. This data shows that the system tends to stay near the

steady state over time and does not deviate in either direction.

Figure 17 Daily SDD order deadline (minutes after 9 AM) summary statistics across trials
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In these simulations, we intentionally set up our system’s initial condition to mimic the steady state. We

showed previously that the deterministic model converges to the saturated steady state. It is natural to ask

whether the stochastic system exhibits similar behavior when the quantity of orders at t = 0 on the first

day differs from the expected steady-state daily time-zero accumulation η . To answer this question, we

re-simulate each of the 25 trials over the entire 84-day horizon twice more. In the first case, we begin the

simulation with zero orders accumulated at t = 0 on day 1. In the second case, we begin the simulation with

Poisson(3η) orders accumulated at t = 0 on day 1; the value of 3η is chosen to ensure all initial orders can

be served on day 1. In both cases, every other customer arrival remains unchanged (with respect to customer

type, location, arrival time, and threshold price) from the initial simulations.

The results suggest that the system rapidly converges towards the steady state. In each of the 25 trials

and for both of the new initial conditions, the evolution of the system coincides with that of the original

simulation no later than day 4. That is, for any chosen trial, the dispatching and fulfillment data are identical

to those of the original simulation from day 4 onward (and usually earlier) for both new initial conditions.
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Table 3 Simulated effects of initial conditions

Mean SDD order deadline (minutes after 9 AM)
Initial time-zero accumulation Day 1 Day 2 Day 3 Day 4 Day 5
0 405.56 361.16 355.25 355.52 357.62
Poisson(η) 356.34 359.67 355.25 355.52 357.62
Poisson(3η) 182.32 353.25 355.08 355.52 357.62

For each of the three initial conditions, Table 3 records the average simulated SDD order deadline for the

first five days across all trials.

The largest changes take place within the first two days, suggesting that the system rapidly adjusts itself

— by way of varying the SDD order deadline as necessary — to return to the steady state. These results

illustrate that the idea of a system steady state, which we assumed to exist when building our deterministic

model, is indeed reflected in practice. Our analysis of initial conditions can be generalized to an additional

managerial insight: the system is robust in the sense that it can recover fairly quickly from unexpected, brief

demand shocks — positive or negative — to return to steady-state operation.

8. Concluding Remarks
We studied an e-retail system in which price-sensitive customers choose between price-differentiated SDD

and NDD fulfillment options; both types of orders are fulfilled concurrently by the same delivery fleet. We

proposed a deterministic model, in which stochastic order arrivals are replaced with fluid order accumula-

tions, in order to facilitate system design and analysis. We began by showing that the feasibility of serving

all orders in the model directly corresponds to the feasibility of a specific greedy vehicle dispatching policy.

We then showed that the system model converges to a steady state over time.

We then analyzed two design objectives. First, we sought to improve customer satisfaction by maximizing

the daily quantity of orders fulfilled a day early. Second, we aimed to maximize profit via a two-level

static SDD pricing scheme in which early-ordering customers face a potentially-discounted SDD price

compared to late-ordering customers. For both objectives, we derived structural managerial insights and

efficient solution approaches. Finally, we applied our model to a case study set in suburban Denver and

validated our deterministic approach via stochastic simulations with exactly computed vehicle routes. Our

simulations suggest that the system designs produced by our deterministic model are reflected in the day-

to-day stochastic realities of the system, regardless of initial conditions.

The effectiveness of the greedy policy was shown to be a consequence of the constraints of the system

(m vehicles dispatching once daily). The results related to feasibility, convergence, and pricing in this paper

therefore depend directly on these constraints. Future work may derive analogous structural results under

different constraints on the vehicle fleet (e.g., m vehicles dispatching twice daily, one vehicle dispatching m

times daily, etc.) for which greedy-type policies may or may not be optimal.

For tactical planning purposes, an underlying assumption of the model is that no geographical discrim-

ination or geographical batching occurs within the zone. As a result, delivery locations are not taken into
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account when deciding which NDD customers to upgrade to NDD+ or which SDD customers pay the

cheaper price p̂0. This allows for fair customer service across the zone and streamlined decision-making at

the operational level. However, future work may seek to slightly improve system performance by relaxing

this assumption to allow for geographical discrimination. For example, potential NDD+ upgrades could be

restricted to customers in certain locations closer to the depot. Similarly, the operational work of Afsar et al.

(2021), in which different parts of a service area are offered different delivery prices, could be applied to

tactical decision-making. Such an approach may seek a set of location-dependent SDD prices that induce

a feasible steady-state system model. As discussed earlier, these strategies for geographical discrimination

would be especially valuable for delivery fleets larger than the ones considered in this paper.

We anticipate other potential extensions of the modeling framework proposed in this paper. For exam-

ple, we could consider incorporating customer arrival rates that are dependent on the day of the week

or other seasonal variations, dynamic pricing guided by optimal static prices, and integrating other price-

differentiated fulfillment options (like two-day delivery). Future empirical research on customer behavior in

rapid e-retail systems would be valuable for motivating and analyzing extensions to our model. In particular,

understanding how customers’ ordering strategies change in the presence of random free delivery upgrades

would be instrumental for empirically validating our randomized NDD+ strategy proposed in Section 5.3.
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Appendix A Omitted Technical Details
A.1 Proof of Corollary 1

Let Pi = X1+∑
i−1
j=1 N j

, . . . ,X
∑

i
j=1 N j

for all i; note that {X1,X2, . . . ,XN}=
⋃k

i=1 Pi. Let ε > 0. By the SLLN, it holds

with probability (w.p.) 1 that, for all sufficiently large k,

∣∣∣∣∣ k

∑
i=1

Ni−νk

∣∣∣∣∣≤ νk =⇒
k
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i=1
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2νk (A1)

and ∣∣∣∣∣ k

∑
i=1

Ni−νk

∣∣∣∣∣≤ νk
2

=⇒
k
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i=1
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νk
2
. (A2)

Next, the BHH (1959) Theorem and (A2) imply the existence of a finite β > 0 such that, w.p. 1,
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for all sufficiently large k. By the SLLN, it then holds w.p. 1 that, for all sufficiently large k,
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i=1 Ni−νk
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ε2k/4β 2. It then holds w.p. 1 that, for all sufficiently large k,
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Rearranging gives
∣∣∣ 1√

k
TSP

(⋃k
i=1 Pi

)
−β
√

ν

∣∣∣≤ ε as desired. □

In the following proofs and algorithms, we deal solely with the deterministic approximation of the system.

Therefore, in the remainder of this appendix, the term “system” is used to mean “approximated model of

the system” unless stated otherwise.
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A.2 Algorithmic Details of Greedy Policy

For all t ∈ [0,T ], define λ0(t) as the accumulation rate of orders that are to be served today; specifically,

λ0(t) = wA(p0)λA(t)+wB(p0)λB(t)> 0 for all t ∈ [0,C] and λ0(t) = 0 for all t ∈ (C,T ].

Algorithm 1: Computing the greedy policy
Input : parameters C, T , m, η and functions λ0(t), f (n), Q(t)

Output : m-vehicle greedy policy
(
(t1,q1), . . . ,(tm,qm)

)
1 set k = min{⌊η/Q(0)⌋,m−1}

2 for d = 1,2, . . . ,k do
3 set td ← 0, qd ← Q(0)

4 set d← k+1

5 while d < m do
6 if d = k+1 then
7 set td s.t. td + f

(
η−∑

k
j=1 q j +

∫ td
0 λ0(t)dt

)
= T

8 set qd ← η−∑
k
j=1 q j +

∫ td
0 λ0(t)dt

9 else
10 set td s.t. td + f

(∫ td
td−1

λ0(t)dt
)
= T

11 set qd ←
∫ td

td−1
λ0(t)dt

12 if td >C then
13 set td ←C

14 set d← d +1

15 set tm←C and qm← η +
∫ C

0 λ0(t)dt−∑
m−1
j=1 q j

16 return
(
(t1,q1), . . . ,(tm,qm)

)

A.3 Preliminaries

LEMMA 2. Q(t) is continuous, convex, and decreasing.

Proof. Because Q = f−1(T − t), Q is continuous on account of being the composition of continuous func-

tions. Because f is increasing and f (Q(t)) = T − t by definition for all t, Q is decreasing. Since f is

increasing and concave, f−1 is increasing and convex. Additionally, T − t is a convex function of t, so

Q(t) = f−1(T − t) is convex. □

A.4 Proof of Lemma 1

Proof. Denote the greedy policy by P=
(
(t1,q1), . . . ,(tm,qm)

)
. Suppose that the system is saturated, and there

exists some other m-vehicle policy P̂ =
(
(t̂1, q̂1), . . . ,(t̂m, q̂m)

)
feasible for the system. Define d′ = max{d |

q̂d > qd}. Such a d′ must exist because P and P̂ are different policies, so at least one element must differ.

Since the instance is saturated, it must hold that td′+ f (qd′) = T . Observe that d′ ̸= m because the policy P̂

would be infeasible otherwise, since q̂m > qm and C+ f (qm)= T together imply t̂m+ f (q̂m)=C+ f (q̂m)> T .
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Together, td′ + f (qd′) = T and q̂d′ > qd′ imply t̂d′ < td′ because f is an increasing function (equivalently,

because Q is a decreasing function). If t̂d′ < 0, then we have a trivial contradiction to the feasibility of P̂;

suppose that this is not the case. Because dispatches in the greedy policy depart immediately upon their

corresponding quantity being accumulated, t̂d′ < td′ further implies

d′

∑
d=1

q̂d <
d′

∑
d=1

qd. (A3)

As a result,
m

∑
d=d′+1

q̂d >
m

∑
d=d′+1

qd. (A4)

Then, there must exist some d ∈ {d′+ 1, . . . ,m} such that q̂d > qd , which contradicts the definition of d′.

Therefore, P is the only policy which can feasibly serve the system. □

A.5 Proof of Theorem 1

Proof. Denote the greedy policy by P =
(
(t1,q1), . . . ,(tm,qm)

)
. To avoid triviality, assume tm > 0. Suppose

that the greedy policy is infeasible, and there exists some other m-vehicle policy P̂ =
(
(t̂1, q̂1), . . . ,(t̂m, q̂m)

)
feasible for the system. Consider a modified system in which all of the parameters are identical, except

that C is replaced with tm <C and λ0(t) = 0 for all t > tm. This modified system is saturated by definition.

However, P̂ is still feasible for the modified system. This contradicts Lemma 1; thus, no m-vehicle policy

can serve the original system. □

A.6 Proof of Theorem 2

We first show that the greedy policy minimizes total routing time. This result and its proof are generaliza-

tions of Theorem 1 of Stroh et al. (2022).

Proof. If the system is saturated, then the greedy policy is the only feasible policy, so it must necessarily

be optimal. Assume instead that the system is not saturated, and there exists an optimal non-greedy policy

P1 =
(
(t1

1 ,q
1
1), . . . ,(t

1
m,q

1
m)
)
. We aim to show that P1 can be transformed into either the greedy policy with

the same total dispatch time, or into a policy with a strictly lower total dispatch time.

First, shift the dispatch departure times of P1 earlier such that each vehicle dispatches as soon as its

corresponding quantity is accumulated. Denote this new policy P2 =
(
(t2

1 ,q
2
1), . . . ,(t

2
m,q

2
m)
)
. Observe that

the total dispatch times associated with P1 and P2 are equal since each dispatch in both policies serves the

same quantity.

Now, considering P2, we wish to modify the dispatches such that the dispatch quantities are non-

increasing. If the dispatch quantities of P2 are already non-increasing, set P3 = P2; if not, let d ∈ [m−1] be

the smallest dispatch index such that q2
d < q2

d+1. Swap the quantities of dispatches d and d +1 and modify

their departure times so that they depart as soon as their quantity is accumulated. This preserves feasibility

for the following reasons.
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• t2
d+1+ f (q2

d+1)≤ T implies that the new d-th dispatch returns to the depot by T , since the new departure

time of the new d-th dispatch serves q2
d+1 and departs no later than t2

d+1 by construction.

• t2
d+1 + f (q2

d+1) ≤ T implies that the new (d + 1)-th dispatch returns to the depot by T , since the new

(d +1)-th dispatch serves a quantity less than q2
d+1 and departs no later than t2

d+1 by construction.

Observe that this swapping does not change the total dispatch duration. Continue to perform this pairwise

swapping procedure between consecutive dispatches until dispatch quantities are non-increasing. Denote

the resulting policy P3. (⋆)

In the policy P3, each dispatch departs as soon as its corresponding quantity is accumulated, and dispatch

quantities are non-increasing. Additionally, all dispatch quantities are strictly positive, as otherwise we

could remove all zero-quantity dispatches and serve I with fewer than m vehicles. If P3 is the greedy policy,

the greedy policy is optimal and we are done. Suppose instead that P3 is not the greedy policy. Then, there

is some dispatch d ∈ [m−1] such that t3
d + f (q3

d) < T . There must exist some sufficiently small δ > 0 and

ε ∈ [0, t3
d+1− t3

d ] such that the following dispatch updates preserve the policy’s feasibility:

(t3
d ,q

3
d)→ (t3

d + ε,q3
d +δ ),

(t3
d+1,q

3
d+1)→ (t3

d+1,q
3
d+1−δ ).

Because q3
d ≥ q3

d+1 and f is strictly concave and increasing, f (q3
d + δ )+ f (q3

d+1− δ ) < f (q3
d)+ f (q3

d+1).

Therefore, this updated policy has a strictly lower total dispatch duration than P1, a contradiction. As a

result, the greedy policy is optimal with respect to total dispatch duration. □

Next, suppose that the cost associated with a dispatch (with quantity q) is not necessarily f (q) but rather

a continuous, non-negative, strictly increasing, strictly concave function κ(q). We prove that the greedy

policy remains cost-optimal in this case.

Proof. The proof is identical up to (⋆), since moving dispatch departure times and swapping dispatch

quantities does not affect the total cost over all dispatches.

In the policy P3, each dispatch departs as soon as its corresponding quantity is accumulated, and dispatch

quantities are non-increasing. Additionally, all dispatch quantities are strictly positive, as otherwise we

could remove all zero-quantity dispatches and serve I with fewer than m vehicles. If P3 is the greedy policy,

the greedy policy is optimal and we are done. Suppose instead that P3 is not the greedy policy. Then, there

is some dispatch d ∈ [m−1] such that t3
d + f (q3

d) < T . There must exist some sufficiently small δ > 0 and

ε ∈ [0, t3
d+1− t3

d ] such that the following dispatch updates preserve the policy’s feasibility:

(t3
d ,q

3
d)→ (t3

d + ε,q3
d +δ ),

(t3
d+1,q

3
d+1)→ (t3

d+1,q
3
d+1−δ ).

Because q3
d ≥ q3

d+1 and κ is strictly concave and increasing, κ(q3
d + δ )+κ(q3

d+1− δ ) < κ(q3
d)+κ(q3

d+1).

Therefore, this updated policy has a strictly lower total cost than P1, a contradiction. As a result, the greedy

policy is optimal with respect to total cost as defined via κ(·). □
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A.7 Technical Details: Partial Ordering and Induced Subsystems

Let the function λ (t) denote the total accumulation rate of orders that must be served by the end of the

service day; this includes both SDD orders and any NDD+ orders (see Section 5). Modifying prices and

cutoffs in our CA system model changes the size of the time-zero accumulation η as well as λ (t). Assuming

a fixed region, m, f , and T , we consider two systems I (defined by the parameters η I,CI and function λ I(t))

and J (defined by the parameters η J,CJ and function λ J(t)). We seek to formally compare the difficulty of

feasibly serving system I and system J.

We say that I is at least as difficult as J (denoted as I ⪰ J) if both of the following conditions hold:

(i) CJ ≤CI ,

(ii) η J +
∫ T

0 λ J(t) dt ≤ η I +
∫ T

0 λ I(t) dt, and

(iii) η J +
∫ t

0 λ J(s) ds≥ η I +
∫ t

0 λ I(s) ds for all t ∈ [0,CJ].

Condition (i) states that SDD and NDD+ orders continue to accumulate at least as late in system I versus

system J. Condition (ii) states that the total quantity of orders in system I is at least that of system J.

Condition (iii) implies that orders are available earlier in system J than in system I. We also say that I ⪰ J

if, instead of the above conditions, I and J satisfy

(iv) η J ≤ η I , and

(v) λ J(t)≤ λ I(t) for all t ∈ [0,T ].

These conditions state that the accumulation in system I always “dominates” that of J. Note that “⪰”

represents a partial order and not a total order, since two systems are not necessarily comparable via these

conditions. This formalism implies that if I can feasibly be served by a policy P0 =
(
(t0

1 ,q
0
1), . . . ,(t

0
m,q

0
m)
)

and I⪰ J, then J can be feasibly served by a policy P1 =
(
(t0

1 ,q
1
1), . . . ,(t

0
m,q

1
m)
)

with departure times identical

to those of P0 and with q1
i ≤ q0

i for all i ∈ [m].

In later proofs, it will occasionally be useful to consider a subsystem with a reduced total quantity relative

to the entire system. Given a base system I and a quantity χ that is no greater than the total quantity in I

(not including Type B customers who abandon the system), we say that J is a χ-induced subsystem of I if

η
J +
∫ CJ

0
λ

J(t) dt = χ, (A5)

where η J = η I and λ J = λ I , assuming η I ≤ χ . If instead η I > χ , then CJ = 0 and η J = χ . Given a policy

P =
(
(t1,q1), . . . ,(tm,qm)

)
applied to I, we occasionally refer to the

(
∑

d
i=1 qi

)
-induced subsystem as “the

subsystem induced by the first d dispatches of policy P.” These ideas, which formalize the concept of system

difficulty, are used extensively in subsequent proofs.

A.8 Proof of Theorem 3

A.8.1 Supporting Results

LEMMA 3. The function G(q) is decreasing and continuous for all q≥ 0.
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Proof. The decreasing nature of G follows directly from the prior discussion on partial orders. We show that

G is Lipschitz continuous, which implies that G is continuous. Let q≥ 0.

Let 1/K = mint∈[0,T ] λ0(t); such a value exists by the continuity of λ0 and the Extreme Value Theorem.

Let δ > 0 be small. Consider two independent service days: day i with q orders available at t = 0 and day

j with q+ δ orders available at t = 0; assume that we serve both days with the greedy policy and extend

the SDD cutoff so that all vehicles return at t = T on both days. Now, suppose that the SDD cutoff on day

j (i.e., G(q+ δ )) is earlier than G(q)−Kδ . Then, the total quantity served on day j is strictly less than

the total quantity served on day i. By the structure of the greedy policy and the fact that q+ δ > q orders

are available at t = 0 on day j, this implies that the final vehicle returns before t = T on day j. This is a

contradiction, so we must have that |G(q+δ )−G(q)| ≤ Kδ . Therefore, G is Lipschitz continuous. □

LEMMA 4. The function H(q) is increasing and continuous for all q≥ 0.

Proof. By definition,

H(q) = µ +
∫ G(q)

0

(
(1−wA(p0)

)
λA(t)dt +

∫ T

G(q)
λA(t)dt. (A6)

Because G(q) is decreasing in q and 1−wA(p0) < 1, this expression implies H(q) is increasing in q.

Additionally, since G(q) is continuous, this expression also implies that H(q) is continuous. □

We also make use of the following known result.

LEMMA 5. If a function g is continuous at a point x, then for any sequence (x0,x1,x2, . . .) with

limn→∞ xn = x, it must also hold that limn→∞ g(xn) = g(x).

A.8.2 Proof of Theorem 3

Proof. We first aim to show that, for any non-negative q < η , lim j→∞ H( j)(q) = η , and the convergence is

monotonically increasing.

Because H is an increasing function, H(0)< H(η) = η . Also, H(0)≥ µ > 0; in other words, H(1)(0)>

H(0)(0). The increasing nature of H implies H
(
H(1)(0)

)
> H

(
H(0)(0)

)
; equivalently, H(2)(0) > H(1)(0).

Repeating this process indefinitely implies

H(0)(0)< H(1)(0)< H(2)(0)< H(3)(0)< · · · (A7)

Additionally, induction implies that, for every j ∈ N, H( j)(0)< H(η) = η . By the Monotone Convergence

Theorem, the sequence
(
H(0)(0),H(1)(0),H(2)(0),H(3)(0), . . .

)
must therefore converge to some q̂≤ η .

Suppose for the purposes of contradiction that q̂ < η . Given this assumption, further suppose for the

purposes of contradiction that H(q̂) = q̂; then, there is a saturated system steady state associated with a daily

time-zero accumulation of quantity q̂ and a daily SDD order deadline of G(q̂)> G(η) =C. Note, however,

that this G(q̂)-cutoff saturated system is more difficult and serves a greater total daily quantity than the
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C-cutoff system. This implies that the greedy policy used to serve the G(q̂)-cutoff system is also feasible to

serve the C-cutoff system. This is a contradiction, since C was chosen so that the system is saturated. Thus,

if q̂ < η , then H(q̂) ̸= q̂.

Furthermore, (
H(0)(0),H(1)(0),H(2)(0),H(3)(0), . . .

)
→ q̂ (A8)

implies (
H(H(0)(0)),H(H(1)(0)),H(H(2)(0)),(H(3)(0)), . . .

)
→ H(q̂) (A9)

by Lemma 5. However, the latter sequence is simply
(
H(1)(0),H(2)(0),H(3)(0),H(4)(0), . . .

)
, and hence it

converges to q̂. This implies H(q̂) = q̂, a further contradiction. Therefore, q̂ = η ; equivalently,(
H(0)(0),H(1)(0),H(2)(0),H(3)(0), . . .

)
→ η (A10)

in a monotonically increasing fashion. By using the fact that H is increasing, we can generalize this result

to say (
H(0)(q),H(1)(q),H(2)(q),H(3)(q), . . .

)
→ η (A11)

in a monotonically increasing fashion for any q ∈ [0,η).

Let us denote qmax = mQ(0) for clarity. We next aim to show that, for any q ∈ (η ,qmax], lim j→∞ H( j)(q) =

η , and the convergence is monotonically decreasing. Because H is an increasing function, H(qmax) >

H(η) = η . Also,

H(qmax)≤ µ +
∫ T

0

(
(1−wA(p0)

)
λA(t)dt +

∫ T

0
λA(t)dt < qmax; (A12)

in other words, H(1)(qmax)<H(0)(qmax). The increasing nature of H implies H
(
H(1)(qmax)

)
<H

(
H(0)(qmax)

)
;

equivalently, H(2)(qmax)< H(1)(qmax). Repeating this process indefinitely implies

H(0)(qmax)> H(1)(qmax)> H(2)(qmax)> H(3)(qmax)> · · · (A13)

Additionally, induction implies that, for every j ∈ N, H( j)(qmax) > H(η) = η . By the Monotone Conver-

gence Theorem, the sequence
(
H(0)(0),H(1)(qmax),H(2)(qmax),H(3)(qmax), . . .

)
must therefore converge to

some q̂≥ η . An analogous argument as above, omitted to avoid redundancy, implies that q̂ = η . Therefore,(
H(0)(qmax),H(1)(qmax),H(2)(qmax),H(3)(qmax), . . .

)
→ η (A14)

in a monotonically decreasing fashion. By using the fact that H is increasing, we can generalize this result

to say (
H(0)(q),H(1)(q),H(2)(q),H(3)(q), . . .

)
→ η (A15)

in a monotonically decreasing fashion for any q ∈ (η ,qmax]. Therefore, lim j→∞ H( j)(q) = η for all q ∈
[0,qmax] and the convergence is monotonic. Because G is continuously decreasing and G(η) =C, the rela-

tionship between G and H implies that lim j→∞ G( j)(q) = C for all q ∈ [0,qmax] and the convergence is

monotonic. □
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A.9 Proof of Theorem 4

Proof. Denote the associated greedy policy as P =
(
(t1,q1), . . . ,(tm,qm)

)
and denote the total quantity of

orders available at t = 0 as η . First, suppose that tm + f (qm) < T . By definition, tm = C. Then, by the

continuity of f , there must exist some small quantity δ ∈ (0,q1) and duration ε ∈ (0,C) such that tm+ f (qm+

δ ) ≤ T and δ =
∫ C

C−ε

(
(1−wA(p0)

)
λA(t)dt. Therefore, we can convert all δ of the NDD orders placed

during the time interval [C−ε,C] as NDD+ orders to be feasibly served by the final vehicle in addition to qm.

Because this conversion does not increase the total quantity of orders to be served across all dispatches, the

new system with some NDD+ fulfillment can be feasibly served by the policy
(
(t1,q1−δ ), . . . ,(tm,qm+δ )

)
.

Thus, condition (i) of Theorem 4 is sufficient.

Next, suppose that η/Q(0) /∈ Z (equivalently, η mod Q(0) > 0). Let k denote the index of the latest

dispatch that serves some orders from the time-zero accumulation; the quantity of orders from the time-zero

accumulation that dispatch k serves is η mod Q(0). Define

δ = min
{

η mod Q(0),
∫ tk

0

(
(1−wA(p0)

)
λA(t)dt

}
(A16)

and ε > 0 satisfying
∫

ε

0

(
(1−wA(p0)

)
λA(t)dt = δ . If we convert all δ of the NDD orders placed during

the time interval [0,ε] to NDD+ orders to be served by the k-th vehicle (and make no other changes to the

system), then the unchanged policy P remains feasible. Thus, condition (ii) of Theorem 4 is also sufficient.

Finally, suppose for the purposes of contradiction that neither condition holds; that is, tm+ f (qm) = T and

η/Q(0)∈Z. If we were to convert q+ > 0 NDD orders to NDD+ orders, then the resulting system is at least

as difficult as the original system (let us denote this as J ⪰ I). However, because neither condition holds, at

least one of the first k vehicles (where k is defined as above) departs after t = 0 in the greedy policy used

to serve J. Because t1 = t2 = · · ·= tk = 0, the greedy policies used to serve I and J are different. Therefore,

the greedy policy used to serve J cannot be feasible, as otherwise it would also be feasible for the original

system I, a contradiction. Thus, at least one of the two conditions is necessary for q+ > 0 to hold. □

A.10 Proof of Proposition 1

Proof. Let P0 =
(
(t0

1 ,q
0
1), . . . ,(t

0
m,q

0
m)
)

denote the greedy policy applied to the system with no NDD+ orders

(that is, Ĉ = 0). Let dispatch k denote the last dispatch that serves any orders from the time-zero accumula-

tion, i.e., k = max j∈[m]

{
j | ∑ j−1

i=1 q0
i < η

}
. As discussed previously, we know that the greedy policy remains

unchanged if we increase Ĉ until a value C̄ ∈ [0,T ]. Thus, F(Ĉ) = F(0) for all Ĉ ∈ [0,C̄].

Next, we aim to show that F(·) is increasing if we increase Ĉ beyond C̄. Let Ĉ ∈ [C̄,C) and ε ∈ (0,C−Ĉ).

Since Ĉ ≥ C̄, we know that k < m. Let P1 =
(
(t1

1 ,q
1
1), . . . ,(t

1
m,q

1
m)
)

denote the the greedy policy applied

to the system with a NDD+ deadline of Ĉ. By definition, the subsystem J1 (relative to the system with

a NDD+ deadline of Ĉ) induced by the first m− 1 dispatches of P1 is (m− 1)-saturated. Similarly, let

P2 =
(
(t2

1 ,q
2
1), . . . ,(t

2
m,q

2
m)
)

denote the the greedy policy applied to the system with a NDD+ deadline of
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Ĉ+ε . Note that t1
k < t2

k because (i) the time-zero accumulation shrinks as the NDD+ deadline increases and

(ii) Ĉ ≥ C̄.

For the purposes of contradiction, suppose that F(C̄) ≥ F(Ĉ). Then, q1
m ≥ q2

m, implying that ∑
m−1
i=1 q1

i ≤

∑
m−1
i=1 q2

i . Let J2 denote the subsystem (relative to the system with a NDD+ deadline of Ĉ+ ε) induced by

the quantity ∑
m−1
i=1 q2

i . By definition, J2 ⪰ J1 and J2 is also (m−1)-saturated. This implies that the first m−1

dispatches of P2 can feasibly serve both J2 and J1. However, since t1
k < t2

k , the first m− 1 dispatches of P2

constitute a different policy than the first m− 1 dispatches of P1. Therefore, the (m− 1)-dispatch greedy

policy is not the only (m−1)-dispatch policy that can serve J2. This is a contradiction, since J2 is saturated.

Therefore, F(C̄) < F(Ĉ). It follows that if F(C̄) = F(0) < T and F(C) > T , then F(Ĉ) = T has a unique

solution in the interval (0,C). □

A.11 Proof of Proposition 2

Throughout this section, assume that λA and λB represent fixed scalar quantities and not functions.

Proof. Let (Cmin,Cmax] denote the interval for which C ∈ (Cmin,Cmax] implies that, in the associated feasible

greedy policy, k vehicles serve a positive quantity of NDD orders and ℓ vehicles serve a positive quantity

of orders. Without loss of generality, assume that k = 1 and ℓ = m. Because the total revenue is a linear

function of C, it suffices to show that the greedy policy’s total dispatch duration as a function of C is concave

over the interval (Cmin,Cmax].

Let λ0 = wA(p0)λA +wB(p0)λB for notational convenience. Define the function R(y) to take the value

of t that satisfies t + f (λ0t− y) = T . That is, R(y) is the time t at which a vehicle serving λ0t− y quantity

should dispatch in order to return exactly at time T . It is clear that R(·) is continuous and strictly increasing

in y. Fix some ŷ≥ 0 and let R(ŷ) = t̂. Let δ > 0 be small, and let ε > 0 be such that R(ŷ+δ ) = t̂ + ε; that

is, (t̂ + ε)+ f
(
(t̂ + ε)λ0− (ŷ+δ )

)
= T . Because f (·) is strictly concave and increasing, we then have that

(t̂ +2ε)+ f
(
(t̂ +2ε)λ0− (ŷ+2δ )

)
< T . This implies that R(·) is a midpoint-convex function of y and thus

a convex function of y.

Returning to the feasible greedy policy, the first dispatch time t1 solves

t1 + f
(
λ0t1 +µ +λAT −λAwA(p0)C

)
= T. (A17)

By the strictly increasing and convex nature of R(·), we can conclude that t1 is a strictly increasing and

convex function of C. Similarly, the second dispatch time (assuming m≥ 3) t2 solves t2+ f
(
λ0t2−λ0t1

)
= T .

Therefore, t2 is a strictly convex, increasing function of t1, further implying that t2 is a strictly convex,

increasing function of C. Continuing this argument shows that the i-th dispatch time ti is a convex, increasing

function of C for all i < m. By the structure of the greedy policy, the dispatch durations f (qi) = T − ti are

strictly decreasing, concave functions of C for all i < m.

The penultimate dispatch time tm−1 is a convex, increasing function of C, and qm = (C− tm−1)λ0. Thus,

qm is a concave function of C. It follows that the final dispatch duration f (qm) is also a concave function of

C. Thus, the greedy policy’s total dispatch duration ∑
m
i=1 f (qi) is a concave function of C, as desired. □
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A.12 Proof of Theorem 5

Throughout this section, assume that λA and λB represent fixed scalar quantities and not functions.

LEMMA 6. Let the early SDD price p̂0, late SDD price p0, and number of vehicles m be fixed. With

some abuse of notation, let the function C(Ĉ) denote the time of the final SDD order deadline, given the

discounted SDD order deadline Ĉ, that induces saturation. Choose Ĉmin and Ĉmax satisfying Ĉmin < Ĉmax <C

such that for all Ĉ ∈ [Ĉmin,Ĉmax), the greedy policy applied to the associated saturated system (induced by

appropriately varying C) has: (i) k dispatches serving a positive quantity of NDD orders and (ii) ℓ vehicles

departing by Ĉ. Then, the function C(Ĉ) is convex over the interval Ĉ ∈ [Ĉmin,Ĉmax).

Proof. The function C(Ĉ) is decreasing and continuous. The former property follows from the discussion

on partial orders (Appendix A.7), and the latter property is implied by the continuity of Q and the customer

arrival rates. It follows that the function is bijective and invertible. Assume that k = 1 without loss of

generality. We will show that C(Ĉ) is midpoint convex for all Ĉ ∈ [Ĉmin,Ĉmax).

Fix some Ĉ1 ∈ [Ĉmin,Ĉmax), and choose some Ĉ3 ∈ (Ĉ,Ĉmax). Define Ĉ2 = (Ĉ1 +Ĉ3)/2. Let τ = Ĉ2−Ĉ1 =

Ĉ3−Ĉ2 > 0. Next, define C1 =C(Ĉ1), C2 =C(Ĉ2), and ε =C1−C2. Set C3 =C2− ε =C1−2ε . For each

i ∈ {1,2,3}, denote the instance induced by Ĉi and Ci by Ii. For each i ∈ {1,2,3}, let the policy Pi =(
(t i

1,q
i
1), . . . ,(t

i
m,q

i
m)
)

denote the feasible greedy policy applied to Ii. We know that I1 and I2 are saturated

by construction. For the purposes of contradiction, let us assume that q3
m > Q(C3).

Let η1,η2,η3 denote the corresponding quantities of the time-zero accumulations. By construction, η3−

η2 = η2−η1; let the value of this expression be δ ∈ R.

Because the final vehicle always departs at the final SDD order deadline, observe that t3
m < t2

m < t1
m and

t2
m− t3

m = t1
m− t2

m = ε . Assume for now that m > ℓ+ 1. Because Q(t) is decreasing and convex, Q(t3
m) >

Q(t2
m) > Q(t1

m) with Q(t3
m)−Q(t2

m) > Q(t2
m)−Q(t1

m). Therefore, because the customer arrival rates are con-

stant and m−1 > ℓ, it follows that t3
m−1 < t2

m−1 < t1
m−1 and t2

m−1− t3
m−1 > t1

m−1− t2
m−1. Repeating this argument

demonstrates that this effect “propagates” sequentially to earlier dispatches, implying that t3
ℓ+1 < t2

ℓ+1 < t1
ℓ+1

and t2
ℓ+1− t3

ℓ+1 > t1
ℓ+1− t2

ℓ+1. More generally, we have that t3
ℓ+1 < t2

ℓ+1 < t1
ℓ+1 and t2

ℓ+1− t3
ℓ+1 ≥ t1

ℓ+1− t2
ℓ+1 once

we relax the assumption that m > ℓ+1. We proceed next by cases, each beginning at this point in the proof,

labeled (†††) for convenience. (†††)

Case I: mmm >>> 111 and ℓℓℓ+++ 111 >>> kkk. By definition, the discounted SDD order deadline falls between the ℓ-th

and (ℓ+1)-th vehicle departure times in all three of the policies being considered. However, recall that this

discounted deadline is delayed by τ when moving from Ĉ1 to Ĉ2, and then delayed again by τ when moving

from Ĉ2 to Ĉ3.

Because Q(t) is decreasing and convex, Q(t3
ℓ+1) > Q(t2

ℓ+1) > Q(t1
ℓ+1) with Q(t3

ℓ+1)−Q(t2
ℓ+1) > Q(t2

ℓ+1)−

Q(t1
ℓ+1). Therefore, t2

ℓ −t3
ℓ > t1

ℓ −t2
ℓ . However, because the discounted deadline is varying, it is not guaranteed

that t3
ℓ < t2

ℓ < t1
ℓ . Consider two sub-cases.



Banerjee, Erera, and Toriello: E-Retail Pricing and Demand Management
46

Case Ia: δδδ ≥≥≥ 000. In other words, this condition states that the time-zero accumulation quantity increases

by the same amount (or remains unchanged) as the discounted deadline is delayed by τ twice. By the

decreasing structure of Q(t), this condition implies that t3
1 ≤ t2

1 ≤ t1
1 . Following the greedy policy, this

inequality implies t3
ℓ ≤ t2

ℓ ≤ t1
ℓ . Similarly, by tracking the greedy policy in the reverse order, we see that

t3
ℓ ≤ t2

ℓ ≤ t1
ℓ implies t3

1 ≤ t2
1 ≤ t1

1 and therefore δ ≥ 0. Thus, the condition “δ ≥ 0” must be equivalent to the

condition “t3
ℓ ≤ t2

ℓ ≤ t1
ℓ ”.

Beginning at dispatch ℓ and following the propagation argument used prior to (†††), the relationships t3
ℓ ≤

t2
ℓ ≤ t1

ℓ and t2
ℓ −t3

ℓ > t1
ℓ −t2

ℓ imply t2
1−t3

1 > t1
1−t2

1 . However, the decreasing and convex nature of Q(t) instead

implies that t2
1 − t3

1 ≤ t1
1 − t2

1 , a contradiction. Thus, in Case Ia, we must have q3
m ≤ Q(C3).

Case Ib: δδδ <<< 000. In other words, this condition states that the time-zero accumulation quantity decreases

by the same amount (or remains unchanged) as the discounted deadline is delayed by τ twice. By the

decreasing structure of Q(t), this condition implies that t3
1 > t2

1 > t1
1 . Following the greedy policy, this

inequality implies t3
ℓ > t2

ℓ > t1
ℓ . Similarly, by tracking the greedy policy in the reverse order, we see that

t3
ℓ > t2

ℓ > t1
ℓ implies t3

1 > t2
1 > t1

1 and therefore δ < 0. Thus, the condition “δ < 0” must be equivalent to the

condition “t3
ℓ > t2

ℓ > t1
ℓ ”.

Therefore, we can write 0 < t3
ℓ − t2

ℓ < t2
ℓ − t1

ℓ . Beginning at dispatch ℓ and following the propagation

argument used prior to (†††), it follows that t2
1 − t1

1 > t3
1 − t2

1 . However, the decreasing and convex nature of

Q(t) instead implies that t1
1 − t2

1 < t2
1 − t3

1 , a contradiction. Thus, in Case Ib, we must have q3
m ≤ Q(C3).

Case II: ℓℓℓ+++ 111 === kkk. Returning to (†††), recall that t3
ℓ+1 < t2

ℓ+1 < t1
ℓ+1 and t2

ℓ+1− t3
ℓ+1 ≥ t1

ℓ+1− t2
ℓ+1. Hence, it

must hold that Q(t3
ℓ+1)> Q(t2

ℓ+1)> Q(t1
ℓ+1) and Q(t3

ℓ+1)−Q(t2
ℓ+1)> Q(t2

ℓ+1)−Q(t1
ℓ+1).

By direct calculation of order accumulations, we have

Q(t3
ℓ+1)−Q(t2

ℓ+1) =δ + τ×
(
wA(p̂0)−wA(p0)

)
×λA + τ×

(
wB(p̂0)−wB(p0)

)
×λB

−
(
t2
ℓ+1− t3

ℓ+1

)
×wA(p0)×λA (A18)

and

Q(t2
ℓ+1)−Q(t1

ℓ+1) =δ + τ×
(
wA(p̂0)−wA(p0)

)
×λA + τ×

(
wB(p̂0)−wB(p0)

)
×λB

−
(
t1
ℓ+1− t2

ℓ+1

)
×wA(p0)×λA. (A19)

Then,

[
Q(t3

ℓ+1)−Q(t2
ℓ+1)
]
−
[
Q(t2

ℓ+1)−Q(t1
ℓ+1)
]
=
[(

t3
ℓ+1− t2

ℓ+1

)
−
(
t2
ℓ+1− t1

ℓ+1

)]
×wA(p0)×λA ≤ 0. (A20)

This implies Q(t3
ℓ+1) − Q(t2

ℓ+1) ≤ Q(t2
ℓ+1) − Q(t1

ℓ+1), contradicting the previously derived inequality

Q(t3
ℓ+1)−Q(t2

ℓ+1)> Q(t2
ℓ+1)−Q(t1

ℓ+1). Thus, in Case II, we must also have q3
m ≤ Q(C3).
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These cases are exhaustive; therefore, we can conclude that q3
m ≤ Q(C3). In other words, P3 is feasible.

Because extending the final SDD order deadline (without modifying the discounted deadline) can only

make the system more difficult to serve, it follows that C(Ĉ3)≥C3. By generalization, the function C(Ĉ) is

midpoint convex and thus convex on the chosen interval. □

LEMMA 7. Suppose that the conditions and assumptions from the statement of Lemma 6 hold. Then, the

total profit is a convex function of Ĉ over the interval Ĉ ∈ [Ĉmin,Ĉmax).

Proof. The total revenue as a function of Ĉ can be written as[
p̂0×Ĉ×

(
λA×wA(p̂0)+λB×wB(p̂0)

)]
+
[

p0×
(
C(Ĉ)−Ĉ

)
×
(
λA×wA(p0)+λB×wB(p0)

)]
.

Because the prices are fixed, the first bracketed expression is a linear function of Ĉ, and the second bracketed

expression is a convex function of Ĉ over the interval (by Lemma 6). Thus, the total revenue is a convex

function of Ĉ over the interval. □

Because dispatch times are continuous functions of Ĉ, this result directly implies Theorem 5.

A.13 Computational Details for Pricing Optimization

In this section, we detail the efficient optimization of SDD deadlines given a fixed price combination

{p̂0, p0}. We discuss two cases in which the number of breakpoints is bounded by a polynomial function of

the fleet size m: (i) when the total time-zero accumulation quantity η (overnight plus NDD) can be served

by a single vehicle, or (ii) when all customers are of Type A. Throughout this section, assume that λA and

λB represent positive scalars and not functions. For notational convenience, let the “early” SDD order accu-

mulation rate (prior to Ĉ) be denoted as λE = wA(p̂0)× λA +wB(p̂0)× λB, and let the “late” SDD order

accumulation rate (between Ĉ and C) be denoted as λL = wA(p0)×λA +wB(p0)×λB.

A.13.1 Case 1. We first assume that the order arrivals satisfy µ +λA×
(
1−wA(p0)

)
×T < Q(0). That

is, even if the higher SDD price is offered for the entire service day, the entire time-zero accumulation can

be served by a single vehicle dispatching at t = 0 with some slack remaining. This condition implies that

— regardless of the values of Ĉ and C chosen (as long as saturation is maintained) — no vehicles depart

at t = 0. Therefore, the optimal solution to the profit-maximization problem must correspond to a feasible

solution wherein a vehicle departs exactly at Ĉ. We show that there are at most m such feasible solutions.

PROPOSITION 3. Assume the conditions stated above. For each ℓ ∈ {1,2, . . . ,m}, there is at most one

feasible solution in which the ℓ-th vehicle departs at Ĉ.

Proof. Fix ℓ ∈ {1,2, . . . ,m}. As usual, we assume the usage of the greedy policy without loss of optimality.

Suppose that there exists at least one discounted (early) deadline that induces a saturated system wherein

the dispatch time of the ℓ-th vehicle is equal to the early deadline. Select one such discounted deadline

arbitrarily; label is Ĉ′. Denote the associated greedy policy as P′ =
(
(t ′1,q

′
1), . . . ,(t

′
m,q

′
m)
)
. The total quantity
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of Type A customers served by the policy is trivially equal to the total daily number of Type A customers

in the system λA×T . Let ε > 0.

We will now perform the following adjustment. Consider increasing t ′ℓ and Ĉ′ by ε to t ′′ℓ and Ĉ′′ while

adjusting the dispatches’ departure times and quantities to ensure that all dispatches still return at T . For

example, t ′′ℓ−1 = t ′′ℓ −
Q(t′′ℓ )

λE
> t ′ℓ−

Q(t′ℓ)
λE

= t ′ℓ−1. Similarly, t ′′ℓ+1 is the unique time that satisfies λL× (t ′′ℓ+1− t ′′ℓ ) =

Q(t ′′ℓ+1); thus, t ′′ℓ+1 > t ′ℓ+1 with q′′ℓ+1 < q′ℓ+1.

Now, observe that in this resulting policy, all departure times are shifted forward. Therefore, all dispatch

quantities have been reduced. Because λA is constant over time, this implies that the quantity of Type A

customers served by each dispatch is also reduced, so the total quantity of Type A customers served by the

new policy is less than λA×T . Similarly, performing the analogous adjustment for some ε < 0 would entail

a policy in which the total quantity of Type A customers served is greater than λA×T .

It is clear that the total quantity of Type A customers served is a continuous function of ε . It follows that,

in some neighborhood around 0, the total quantity of Type A customers served is a decreasing function of ε .

In a saturated solution, however, it must hold that the total quantity of Type A customers served is λA×T .

Because Ĉ′ was chosen arbitrarily among all feasible choices of discounted deadlines for which the ℓ-th

vehicle departs at the discounted deadline in the associated greedy policy, it must then be true that Ĉ′ is the

only such discounted deadline. □

Fix ℓ ∈ {1,2, . . . ,m}. This result and its proof imply a straightforward procedure for calculating the

unique value of Ĉ′ associated with the solution wherein the ℓ-th vehicle dispatches exactly at Ĉ′. We will

define an auxiliary function gℓ(Ĉ) as follows.

• Define tℓ = Ĉ. Define tℓ−1 = tℓ− Q(tℓ)
λE

, then tℓ−2 = tℓ−1− Q(tℓ−1)

λE
, and so on until t1; assume that Ĉ was

chosen so that t1 > 0. For all d ∈ {1,2, . . . , ℓ}, let qd = Q(td).

• Define tℓ+1 as the unique time that satisfies λL× (tℓ+1− tℓ) = Q(tℓ+1). Then, define tℓ+2 as the unique

time that satisfies λL× (tℓ+2− tℓ+1) = Q(tℓ+2), and so on until tm. For all d ∈ {ℓ+ 1, . . . ,m}, let qd =

Q(td).

• Define the total quantity of Type A customers served by the first dispatch as A1 = q1−µ− t1×
(
λB×

wB(p̂0)
)
. For all other d ≤ ℓ, define the total quantity of Type A customers served by dispatch d as

Ad = qd − (td − td−1)×
(
λB×wB(p̂0)

)
. Similarly, for all d > ℓ, define the total quantity of Type A

customers served by dispatch d as Ad = qd− (td− td−1)×
(
λB×wB(p0)

)
.

Let the total quantity of Type A customers served by this policy be gℓ(Ĉ) = ∑
m
d=1 Ad . By our proof above,

the unique solution to the equation gℓ(Ĉ) = λA×T corresponds to the desired value of Ĉ′ for which the ℓ-th

vehicle dispatches at Ĉ′ and the system is saturated. We know that gℓ is continuous, gℓ(Ĉ)> λA×T for all

Ĉ < Ĉ′, and gℓ(Ĉ) < λA×T for all Ĉ > Ĉ′. Thus, any general-purpose root finding method (e.g., bisection

search) can solve the equation if a solution exists. This can be repeated for all ℓ ∈ {1,2, . . . ,m} to find all

desired breakpoints. The total profit can be calculated for the solution corresponding to each breakpoint; the
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breakpoint with the highest profit is chosen as the best solution for the given prices. Finally, this procedure

can be repeated for every price combination to calculate the greatest profit across all price combinations.

A.13.2 Case 2. Suppose now that the number of vehicles required to serve the time-zero accumulation

is arbitrary, but that all customers in the system are of Type A. In this case, we will show that there are at

most m solutions for which η is an integer. We will do this by showing that η is a decreasing function of Ĉ

when C is adjusted to maintain saturation.

PROPOSITION 4. Assume that all customers in the system are of Type A. With some abuse of notation, let

η(Ĉ) represent the quantity of the time-zero accumulation as a (continuous) function of Ĉ, assuming that C

is adjusted to maintain saturation. Then, η(Ĉ) is a decreasing function.

Proof. Recall that C(Ĉ) is a decreasing function. Suppose instead for the purposes of contradiction that

η(Ĉ) is a non-decreasing function. Then, when Ĉ is increased, every order is available no later than it was

originally; because all customers are of Type A, the total daily quantity of orders does not change, so the

new system is no more difficult to solve than it was previously. However, because C(Ĉ) is a decreasing

function, the final vehicle’s departure time is earlier than it was previously. Thus, the system is no longer

saturated, a contradiction. Therefore, η is a decreasing function of Ĉ. □

This result implies that, for each k ∈ {1,2, . . . ,m}, the equation η(Ĉ) = kQ(0) can solved efficiently

by any general-purpose root-finding method. The solution to this equation, when it exists, is therefore the

unique discounted deadline associated with the dispatching policy in which k vehicles dispatching at t = 0

together serve all of the time-zero accumulation. Via this result, we can also identify the interval of values

of Ĉ for which k vehicles are required to the serve the time-zero accumulation. Within this interval, we can

then disregard the first k− 1 vehicles and apply the method from Case 1 to identify all of the values of Ĉ

associated with a vehicle dispatching exactly at Ĉ. Hence, the total number of breakpoints for a fixed price

combination is no more than m2, all of which can be efficiently computed via univariate root-finding.
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Appendix B Additional Computational Data
B.1 Omitted Solution Details

Table B1 Feasible pricing solutions with highest revenue for m ∈ {1,2,3}

Fleet size m
Discounted SDD
price p̂0

Discounted SDD
order deadline Ĉ

Base SDD
price p0

Final SDD
order deadline C Total Revenue

1 - - $9 10:27 AM $129.44
- - $8.50 10:23 AM $129.44
- - $8 10:21 AM $127.99
- - $9.50 10:30 AM $127.81
- - $7.50 10:19 AM $125.33

2 $8 10:23 AM $9 2:10 PM $470.50
$7.50 10:20 AM $9 2:09 PM $469.70
$8.50 10:25 AM $9 2:11 PM $469.70
$8 10:23 AM $8.50 2:01 PM $469.28
- - $8.50 2:02 PM $468.48

3 $8 1:54 PM $9 3:42 PM $626.30
$8 1:54 PM $9.50 3:47 PM $625.36
$8 1:54 PM $8.50 3:37 PM $625.23
$7.50 10:22 AM $8.50 3:40 PM $624.08
$7.50 1:46 PM $9 3:38 PM $623.43

B.2 Omitted Sensitivity Analysis

This sensitivity analysis studies the effect of customers’ threshold prices on the optimal pricing solutions. In

relation to the original threshold prices given in Figure 13, we change all customers’ threshold prices by a

certain percentage, ranging from -15% to +15% by 0.5% increments. Figure B1 plots the results in the same

manner as Figure 16. Of note in Figure B1b are the frequent changes in the optimal pricing combinations.

From left to right, these combinations increase from (p̂0, p0) = ($7, $7.50) to ($9, $10). However, the best

solution with (p̂0, p0) = ($8, $9) achieves at least 98% of the optimal revenue in every case analyzed here.

Figure B1 Sensitivity analysis of threshold prices
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Ĉ

C

(a) Delivery revenue vs. threshold prices (b) SDD deadlines vs. threshold prices, m = 2



Banerjee, Erera, and Toriello: E-Retail Pricing and Demand Management
51

B.3 Impact of Depot Location

The depot location was located outside the zone in the original computational study. We now place the depot

at an intersection near the center of the zone and briefly summarize the impact of this new depot location.

Assuming the same setup time of five minutes and per-order service time of three minutes, we re-estimate

the dispatch duration function and re-solve the NDD+ maximization problem. With m = 3, p0 = 5, and

C = 360 (3 PM), the optimal early cutoff time is Ĉ = 324.44 (2:24 PM). From the managerial perspective

discussed previously, this value of Ĉ is quite late, indicating that increasing C in conjunction with using the

NDD+ strategy may be a better use of resources. For example, a late deadline of C = 375 (3:15 PM) entails

a more practical NDD+ deadline of Ĉ = 162.69 (11:43 AM). In this (Ĉ, C) = (162.69, 375) optimal NDD+

solution, the order quantities fulfilled by each of the three vehicles are 95.97, 53.21, and 28.12 orders,

respectively. We validate this solution via simulation in the same manner described in Section 7. As before,

25 trials are each simulated over 84 days. Table B2 summarizes the results of these simulations.

Table B2 Stochastic simulations vs. deterministic model predictions, centrally located depot

SDD order deadline
(min. after 9 AM)

Total dispatch
duration (min.)

SDD orders
fulfilled

NDD+ orders
fulfilled

Simulated,
mean (± st. dev.) 374.79 (± 15.88) 892.41 (± 44.39) 91.91 (± 6.59) 16.56 (± 4.07)

Predicted 375 897.74 92.63 16.57

The simulation results relative to the predicted values are very similar to those displayed in Table 2 in the

paper, suggesting that the placement of the depot inside or outside the zone does not affect the validity of

the tactical model in this operational setting. Of note is that the average simulated SDD deadline is 374.79

minutes after 9 AM. That is, on average, we stop accepting SDD orders just 13 seconds before our target

deadline of 3:15 PM — a very slight improvement over the analogous statistic in Table 2.

B.4 Impact of Zone Size and Customer Density

As previously discussed, our model is intended to be used for tactical planning of small delivery fleets in

small geographical areas. This section briefly summarizes the impact of increasing the size of the zone.

First, we dilate the dimensions of the original zone by a factor of two, thereby increasing the zone’s area

by a factor of four from 12 square miles to 48 square miles. We reduce customers’ geographical density

by a factor of four to maintain the same total expected customer arrivals. As in the previous section, the

depot is located centrally, the SDD price is p0 = 5, the setup time is five minutes, and each delivery incurs

a per-order service time of three minutes.

With the resulting increase in driving distances, the previous fleet size of m = 3 is infeasible for C = 360

(even when no NDD orders are upgraded to NDD+). If the fleet size is increased to m = 4, the final vehicle

returns ten minutes before the end of the service day when no NDD orders are upgraded, indicating that
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some NDD+ service is possible. Indeed, the optimal NDD+ solution is (Ĉ, C) = (185.27, 360), implying

that all NDD orders placed by 12:05 PM should be upgraded for free. The order quantities fulfilled by each

of the four vehicles are 75.62, 49.66, 30.36, and 18.79 orders, respectively, in this optimal NDD+ solution.

For validation, 25 trials are again simulated over 84 days. Table B3 summarizes these results.

Table B3 Stochastic simulations vs. deterministic model predictions, centrally located depot and larger zone

SDD order deadline
(min. after 9 AM)

Total dispatch
duration (min.)

SDD orders
fulfilled

NDD+ orders
fulfilled

Simulated,
mean (± st. dev.) 358.68 (± 17.59) 1306.74 (± 60.64) 87.78 (± 6.32) 19.04 (± 4.40)

Predicted 360 1314.99 88.90 19.04

In this experiment, the average simulated SDD order deadline is approximately 1.32 minutes before the

predicted deadline of C = 360 (3 PM), a difference of only 0.37%. This gap, although very small relative

to the length of the day, is slightly larger than the analogous gaps between predicted and simulated SDD

deadlines in Tables 2 and B2. Continuous approximation methods are known to perform better as the number

of stops on a route grows larger; the slightly larger gap in this setting is likely therefore caused by the lower

quantity fulfilled by the final dispatch (18.79 orders).

As the area grows further, the zone may be too large to be efficiently served and may benefit instead by a

partitioning. A large service zone will require a larger vehicle fleet where some vehicles may make very few

deliveries. To illustrate with an extreme case, we dilate the dimensions of the original zone by a factor of

four, resulting in a sixteen-fold increase of its area to 192 square miles. We reduce customers’ geographical

density by a factor of sixteen to maintain the same total expected quantity of customer arrivals. With the

other parameters remaining the same, this new setting requires m = 8 vehicles for feasibility. The optimal

NDD+ solution of (Ĉ, C) = (351, 360) specifies a final dispatch requiring three hours to deliver only 8.21

orders. Although such a solution seems likely to be impractical, we simulate it for completeness. Table B4

summarizes the results; note the 1.33% gap between the simulated and predicted SDD deadlines. Despite

the vehicle routes having fewer stops, these results suggest that the model remains a useful approximation

even in this extreme setting. However, we reiterate that our model is most useful for small delivery fleets,

and large fleets serving large zones would benefit from smarter allocation of orders to vehicles based on

geographic proximity.

Table B4 Stochastic simulations vs. deterministic model predictions, centrally located depot and much larger zone

SDD order deadline
(min. after 9 AM)

Total dispatch
duration (min.)

SDD orders
fulfilled

NDD+ orders
fulfilled

Simulated,
mean (± st. dev.) 355.23 (± 17.99) 2559.91 (± 110.22) 86.92 (± 7.08) 35.55 (± 5.83)

Predicted 360 2577.90 88.90 36.11
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