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Abstract

More and more people are ordering products online, having their parcels delivered to their
homes. This leads to more congestion, which negatively impacts the environment as well as
public health and safety. To reduce these negative impacts, carriers can use parcel lockers to
consolidate and serve their customers. The implementation of a locker network can, however,
be financially challenging. To overcome this, carriers can decide to collaborate and invest
in parcel lockers together. In this paper, we introduce a stylized model in which a group
of carriers can decide to position parcel lockers collectively. In this model opening a locker
comes at a cost, while serving a customer via close-by lockers generates a customer-specific
profit. By introducing and studying the associated cooperative game, we then investigate
whether the carriers can allocate the joint profit in a stable way. For this game, we prove
that a stable allocation is guaranteed for a particular class of networks. Generating a large
set of instances, we furthermore conduct a number of numerical experiments, showing that
a stable profit allocation is possible in most situations.

Keywords— last-mile logistics; parcel lockers; facility location; cooperative game theory; stable
allocation

1 Introduction

Since 2007, more people have lived in cities than in rural areas and this trend is presumed to continue,
with an expected 68% of the world population living in urban areas by 2050 (Ritchie and Roser, 2018).
At the same time, more and more people in these cities are ordering products online (i.e., using e-
commerce), and getting their parcels delivered to their homes. Statista (2021) states in this context that
the revenue of the parcel industry in the Netherlands grew in 2020 from nearly 2,000 million euros in 2016
to 3,600 million euros. Consequently, more delivery vehicles are required to bridge the last mile towards
customers within city centers. This leads to more congestion, negatively impacting the environment as
well as public health and safety (Savelsbergh and Van Woensel, 2016). In addition, last-mile delivery is
often considered the most expensive part of the delivery process. Nabot and Omar (2016) showed, in
this context, that last-mile delivery accounts for more than 50% of the overall shipping costs of products
and more than 2/3 of the CO2 emissions associated with the delivery process.
Various novel last-mile logistics concepts have been proposed to overcome these issues in recent years. One
such concept is the integration of automated parcel lockers into city logistics systems, where automated
parcel lockers are package containers that allow autonomous parcel collection at the most convenient
moment for the consumer. These lockers are usually located in key locations where people frequently
pass by, such as grocery stores, public transport stops, gas stations, residential buildings, and offices.
By allowing customers to combine the parcel collection with their daily routine and consolidating the
deliveries of several customers in one location, parcel lockers have the potential to reduce urban traffic,
while at the same time preventing/reducing failed deliveries.

∗We would like to stress that the authors contributed equally to the development of this paper.
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Although parcel lockers already find application in practice (Iwan, Kijewska, and Lemke, 2016; van Duin
et al., 2020), various barriers remain, hindering implementation at a larger scale. One of these barriers
is the high cost associated with the lockers. Seghezzi, Siragusa, and Mangiaracina (2022) state, for
example, that the annual rental cost of one locker, including operating expenses, is around $5,000 per
year in urban areas ($3,000 in rural areas), while the investment cost of buying a locker is estimated at
around $20,000. Keeping in mind that carriers would need multiple lockers to achieve a certain level of
coverage, setting up such a network of lockers can be financially challenging.
One way to overcome this financial barrier is through horizontal collaboration among carriers. A pos-
sible example of such a collaboration could be a group of carriers deciding to buy lockers collectively.
This type of collaboration has already been proposed in some countries, e.g., in Poland, where multiple
carriers have access to the same “open access” parcel locker network (IPC, 2022). This paper aims to
investigate how this type of horizontal collaboration can be facilitated to promote the use of parcel lock-
ers in last-mile delivery. For this purpose, we introduce a stylized model in which a group of carriers can
decide collectively to position a finite set of parcel lockers. In this model opening a locker comes at a cost
while serving customers via close-by lockers generates a customer-specific profit. The carriers collectively
decide how many lockers to open and where to position them in order to maximize their profit (i.e., the
revenues from serving customers minus the costs of opening the lockers). The problem is formulated
as an integer linear programming problem which can be solved efficiently when the network has a tree
structure. To promote this horizontal collaboration, we investigate whether the carriers can allocate the
profit in a stable way, by introducing an associated cooperative game and studying its corresponding
core. In cooperative game theory the core represents the set of allocations which divide the profit among
the carriers in such a way that no group of carriers has an incentive to leave the collaboration. We
show mathematically that the core of our game can be empty, meaning that no stable allocation of the
joint profit exists, which may hinder collaboration. However, at the same time our numerical experi-
ments indicate that for most situations, the core is non-empty, so that a stable profit allocation does exist.

The contributions of this research are threefold:

1. Focusing on the location of parcel lockers, this paper studies a new practical application at the
interface of operations research and cooperative game theory within the context of last-mile de-
liveries. For this purpose, we first introduce the locker location problem and, subsequently, study
the associated cooperative game, where multiple carriers collaborate, facing a joint locker location
problem together.

2. We investigate the properties of the proposed cooperative game to identify patterns that may lead
to allocations inside the core. In this context, we prove that the core of the locker location game
is non-empty if the optimal value of the underlying decision problem corresponds to the optimal
value of its linear relaxation, i.e., opt(LLPN ) = opt(RLLPN ). We further show that this condition
holds for all games for which the induced graph has a tree structure.

3. We conduct an extensive numerical analysis to study the impact of different contexts on core
emptiness and the likelihood of opt(LLPN ) = opt(RLLPN ), considering a total of 403,200 instances
with different parameter settings. Based on this analysis, we derive valuable managerial insights
regarding the viability of collaboration.

Our paper contributes to the recent literature on the interface of cooperative game theory and facility
location problems. Examples of this stream can be found in Goemans and Skutella (2004), Schlicher,
Slikker, and van Houtum (2017), Schlicher (2018), and Osicka, Guajardo, and van Oost (2020). The
focus of these papers is mostly theoretical, studying sufficient (and necessary) conditions for core non-
emptiness based on the features of the underlying optimization problem. Considering a different type
of facility location problem, namely the locker location problem, we also study sufficient conditions for
core non-emptiness. However, in comparison to most of the other papers we also analyze how our game
performs in settings for which the derived conditions do not hold. For this purpose, we conduct an
extensive numerical analysis to explore the impact of different instance structures on core emptiness. We
show that even in the absence of our conditions, core non-emptiness is often preserved.
The paper is organized as follows. In Section 2, we provide a literature overview of the most relevant
contributions to the related research disciplines before introducing our locker location problem in Section
3. Section 4 then introduces the corresponding multi-carrier extension of the locker location problem,
called the locker location situation, based on which we introduce the associated cooperative game in
Section 5, studying its core theoretically. Presenting several numerical experiments, Section 6 studies
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the frequency of core non-emptiness for different instances. Finally, our conclusions are given in Section
7.

2 Literature review

In this section, we review the relevant literature. We identify two main streams of literature: (i) opera-
tions research models to improve parcel locker operations and (ii) cooperative game theory approaches
to achieve stable cost savings allocations in location types of problems.

2.1 Operations research models for parcel lockers

The growing interest in parcel lockers and their use within logistics applications over recent years can
also be observed within the scientific literature. In operations research, this has resulted in the study of
many decision problems arising in parcel locker systems (Rohmer and Gendron, 2020). In the following,
the focus will be predominantly on models and decision problems that aim to optimize the location
decisions relating to the placement of parcel lockers.
One of the first studies addressing this type of problem is the research of Deutsch and Golany (2018), in
which a delivery company needs to determine the amount and the location of the locker sites. The authors
show that their problem can be formulated as an uncapacitated facility location problem maximizing to-
tal profit, which is given by the revenue obtained from serving the customers minus a location-dependent
setup cost. In this research, the probability of a customer visiting the lockers and, thus, the correspond-
ing effect on the revenue is assumed to depend on the distance. At the same time, in other studies, this
choice is modeled more explicitly using discrete-choice theory. Examples of such problems are found in
Lin et al. (2020), Lin et al. (2022) and Lyu and Teo (2022). The research of Lin et al. (2020) integrates,
in this context, the location decisions within a multinomial logit model, which predicts customers’ pref-
erences and their probability of using a locker based on a distance parameter. In contrast, Lin et al.
(2022) predict the use of lockers by customers based on the threshold Luce model, considering sets of
selected locker locations for each customer. The research of Lyu and Teo (2022), on the other hand, uses
data from a commercial courier company in Singapore to calibrate a locker-choice model considering the
distance, location type, and time aspects. The model is combined with a facility location model and then
used to estimate the subsequent adoption of customers. For a more detailed overview of facility location
problems, not focusing on parcel lockers, we refer to the book of Laporte, Nickel, and Saldanha-da-Gama
(2019).

In addition to papers focusing on location decisions only, a few papers related to parcel lockers combine
location and routing decisions within a common framework. Focusing on minimizing costs, Zhou et al.
(2016), for instance, propose a location-routing problem that incorporates both home deliveries and pick-
up locations, assuming that customers accept to use lockers if their distance from the locker is within
a certain threshold. Another problem proposed by Zhou et al. (2019) is a location-routing model with
intermediate distribution centers. For each customer, it is decided whether to deliver at home or let the
customer collect the parcel at the distribution center. For a more detailed overview of location-routing
problems without focusing on parcel locker applications, we refer to the review of Prodhon and Prins
(2014).

2.2 Cooperative games on resource consolidation and facility location

The topic of collaboration between carriers to consolidate resources has been addressed in several studies,
applying cooperative game theory to various transportation settings. Examples of such applications can
be found in the research of Özener and Ergun (2008); Özener, Ergun, and Savelsbergh (2011); Hough-
talen, Ergun, and Sokol (2011); Özener, Ergun, and Savelsbergh (2013); Giudici et al. (2021); van Zon,
Spliet, and van den Heuvel (2021) and Lai, Cai, and Hall (2022). Given the focus of the application
in this research, the emphasis in the following will be predominantly on studies applying cooperative
game theory to location problems. Goemans and Skutella (2004) are among the first to study this type
of problem, considering a cooperative game based on the unconstrained facility location problem. The
authors show that checking whether an allocation belongs to the core (i.e., the set of cost allocations
for which no group of players has reasons to leave the collaboration) is an NP-hard problem. Moreover,
they observe that the core is non-empty if and only if there is no integrality gap for the optimal value of
a relaxed problem and explore graph patterns that can lead to such situations. The research on specific
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patterns for core non-emptiness in cooperative games on location problems links to the work of Schlicher,
Slikker, and van Houtum (2017), who define a cooperative game based on the maximal covering problem.
The authors study some properties of the cooperative game, discuss an example with an empty core, and
provide a sufficient condition for core non-emptiness in terms of a relaxation of the maximal covering
location problem. Inspired by a coast patrol context, Schlicher (2018) illustrate that maximal covering
location games have a non-empty core when the underlying graph structure is a line segment. Similarly
to the previous section, we observe cooperative games based on problems where location decisions are
integrated into a vehicle routing problem. Osicka, Guajardo, and van Oost (2020) investigate coopera-
tive games based on multiple variants of the location-routing problem. The authors make a theoretical
focus on subadditivity, core non-emptiness, and convexity for each variant, finding that the core can be
empty in all the proposed variants, but subadditivity is present in some of them. They also compute the
frequency of subadditive, non-empty core, and convex game instances with numerical simulations.

3 The locker location problem

We consider a delivery environment with a finite non-empty set of customers C ⊂ N and a carrier (e.g., a
parcel delivery company) that wants to serve these customers. We assume that, to save costs, the carrier
should consider introducing a locker network instead of visiting each potential customer directly. The
possible locations of these lockers are given by a finite non-empty set L ⊂ N, with L ∩ C = ∅, and the
cost of opening a locker in location j ∈ L is cj ∈ R+. The locker network will serve a customer k ∈ C
if at least one locker is located at a distance of at most Dk ∈ R+. In such a case, the carrier obtains
a profit of pk ∈ R+. This profit can be derived from possible cost savings, such as the consolidation of
deliveries and reduced failed deliveries. If no locker is located at a distance of at most Dk, the customer
will not be served by the locker network, and consequently, the carrier will not receive an additional
profit. We denote the distance between customer k and the locker location j by dkj ∈ R+, and define
Lk as the set of locker locations that can serve customer k, i.e., Lk = {j ∈ L| dkj ≤ Dk}.
The carrier aims to open those lockers for which the total profit, i.e., the sum of the customer-specific
profits of all the served customers minus the cost of opening the lockers, is maximized. We refer to
this problem as the strict locker location problem (shortly, SLLP). The SLLP can be defined with the
parameters and variables listed in Table 1.

Table 1: Sets, parameters, and variables

Sets

C Set of customers
L Set of locations

Parameters

pk Profit of customer k
cj Cost of locker in location j
dkj Distance between customer k and location j
Dk Maximum distance for customer k

Variables

xk 1 if customer k is served, otherwise 0
yj 1 if locker is opened at location j, otherwise 0

Formally, the SLLP is given by:

SLLP := max
∑
k∈C

pkxk −
∑
j∈L

cjyj (1a)

s.t. xk ≤
∑
j∈Lk

yj ∀k ∈ C (1b)

xk ∈ {0, 1} ∀k ∈ C (1c)

yj ∈ {0, 1} ∀j ∈ L (1d)
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The objective function (1a) maximizes the sum of the customer-specific revenues obtained from serving
customers minus the cost of opening the lockers. Constraints (1b) ensure that a customer can only be
served if at least one locker in its proximity is open while constraints (1c) and (1d) define the decision
variables as binary. Similarly to Deutsch and Golany (2018), the studied problem does not include
capacity constraints. This simplification allows us to exploit certain properties when dealing with the
cooperative game version of the problem. The lockers’ capacity could be partially integrated within the
considered cost-revenue structure. Also note that our optimization problem SLLP is upper-bounded by∑

k∈C pk and always has a feasible solution, namely xk = 0 for all k ∈ C and yj = 0 for all j ∈ L. As such,
the problem is well-defined. In the following, we use opt(SLLP ) to refer to the optimal value of the SLLP.

We propose a relaxed formulation of the SLLP, which turns out to be useful when studying the properties
of SLLP. In particular, this relaxed formulation will help identify a class of situations for which the
problem can be solved efficiently. We refer to this problem as the locker location problem (LLP), which
can be formally written as:

LLP := max
∑
k∈C

pkxk −
∑
j∈L

cjyj (2a)

s.t. xk ≤
∑
j∈Lk

yj ∀k ∈ C (2b)

xk ≤ 1 ∀k ∈ C (2c)

xk ∈ R+ ∀k ∈ C (2d)

yj ∈ N ∀j ∈ L (2e)

Like the SLLP, we use opt(LLP ) to refer to the optimal value of the LLP. Although LLP is a relaxation
of SLLP, both problems have the same optimal value. We formalize this result in Lemma 1.

Lemma 1. The optimal value of SLLP and LLP coincide, i.e., opt(SLLP) = opt(LLP).

Proof. Since the feasible set of SLLP is included in the feasible set of LLP, and (1a) and (2a) are the
same, it remains to show that for every feasible solution of LLP that is not feasible in SLLP, there exists
another solution that is feasible in both SLLP and LLP and has the same or higher objective value. Let(
(xk)k∈C , (yj)j∈L

)
be a feasible solution of LLP that is not feasible in SLLP.

We distinguish between two situations.

1. Case 1: ∃S ⊆ C, S ̸= ∅ with xk ∈ (0, 1) for all k ∈ S and xk ∈ {0, 1} for all C\S.
Let x̄k = 1 for all k ∈ S and x̄k = xk for all k ∈ C\S and ȳj = min{1, yj} for all j ∈ L. Clearly
x̄k ∈ {0, 1} for all k ∈ C and ȳj ∈ {0, 1} for all j ∈ L. Due to constraints (2b) and (2e), there
exists for all k ∈ S a j(k) ∈ Lk for which yj(k) ∈ {1, 2, ...} and so ȳj(k) = 1. Hence, for all k ∈ S,

x̄k ≤ 1 ≤ ȳj(k) ≤
∑
j∈Lk

ȳj . (3)

Since x̄k = 0 for all k ∈ C\S and ȳj ∈ {0, 1}, we have for all k ∈ C\S

x̄k ≤
∑
j∈Lk

ȳj .

Consequently,
(
(x̄k)k∈C , (ȳj)j∈L

)
is a feasible solution of LLP and SLLP. Moreover,∑

k∈C

pkxk −
∑
j∈L

cjyj ≤
∑
k∈C

pkx̄k −
∑
j∈L

cj ȳj , (4)

since xk ≤ x̄k for all k ∈ C and yj ≥ ȳj for all j ∈ L.

2. Case 2: xk ∈ {0, 1} for all k ∈ C.
By the case condition, there exists a S ⊆ L, S ̸= ∅, for which yj ∈ {2, 3, ...} for all j ∈ S and
yj ∈ {0, 1} for all L\S. Now, let x̄k = xk for all k ∈ C and ȳj = min{1, yj} for all j ∈ L. Then,
for every k ∈ C with x̄k = 1, we know that

∑
j∈Lk

yj ≥ 1 (since xk = 1) and so
∑

j∈Lk
ȳj ≥

1 = x̄k. Moreover, for every k ∈ C with x̄k = 0, we have x̄k ≤
∑

j∈Lk
ȳk since yk ∈ {0, 1}. So,(

(x̄k)k∈C , (ȳj)j∈L

)
is a feasible solution of LLP and SLLP and (4) applies.
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Thus,
(
(x̄k)k∈C , (ȳj)j∈L

)
is a feasible solution of both SLLP and LLP, and the corresponding objective

value is greater than or equal to the objective value of solution
(
(xk)k∈C , (yj)j∈L

)
.

We now present an example of our LLP. Note that parameters are chosen to keep the example calculations
easy to follow.

Example 1. Consider a setting with four customers, given by C = {4, 5, 6, 7}, and three locker locations,
given by L = {8, 9, 10}. The customer-specific profits are (pk)k∈C = (5, 4, 3, 4), the costs for opening

lockers are (cj)j∈L = (5, 9, 5), the distances are (dkj)k∈C,j∈L =


1 2 4
1 1 2
2 1 1
4 2 1

, and the maximal distances

are (Dk)k∈C = (2, 1, 2, 2). Consequently, L4 = {8, 9}, L5 = {8, 9}, L6 = {8, 9, 10}, L7 = {9, 10}. Figure
1 presents a graphical representation of this setting.

4 5 5 4 6 3 7 4

8 5 9 9 10 5

C

L

Figure 1: Graphical illustration of setting in Example 1. Circles represent the customers, and
rectangles the locations. The internal label is the name, and the external label is the profit or
cost. The edges represent whether the customer is willing to visit the locker location.

The optimal solution for this example is x4 = x5 = x6 = x7 = 1, y8 = y10 = 0 and y9 = 1. This means
we open a locker at location 9 (at a cost of 9) and serve all customers. Consequently, the corresponding
optimal total profit of the LLP equals (5 + 4 + 3 + 4) − 9 = 7. △

As illustrated in Example 1, we can visualize our setting by a bipartite graph. A formal definition of
such a graph, for a given LLP, is provided by an LLP-induced graph GLLP = (V,E), where V = C ∪ L
denotes the vertex set, consisting of customers and locations, and E = ((k, j))k∈C,j∈Lk

the edge set,
representing which customers can be served by a locker.

Our LLP is a mixed-integer linear programming problem. Typically, these problems can be hard to solve.
However, under certain conditions, our LLP can be solved quite efficiently. In particular, this holds if
the LLP-induced graph GLLP is a tree, i.e., a connected graph with no cycles. In that case, our LLP
problem can be tackled by solving a linear programming relaxation. We formalize this statement in the
following. For this purpose, we first introduce some definitions.

A square submatrix of a matrix A ∈ Rw×z (with w the number of rows and z the number of columns) is
a matrix A′ ∈ Rq×q formed by selecting q rows and q columns from A. Moreover, a matrix A is totally
unimodular if every square submatrix of A has a determinant equal to 1, -1, or 0.

Lemma 2. Let A be a totally unimodular w × z matrix and let b ∈ Zw and c ∈ Rz. Then the lin-
ear programming problem max {cx|x ≥ 0, Ax ≤ b} has integer optimal solutions whenever it has a finite
optimum.

Proof. See e.g. Wolsey (1998, p.40).

Lemma 3. Given a totally unimodular matrix, if we add a row or a column with a unique non-zero
element, that is -1 or 1, then the matrix is still totally unimodular.

Proof. See Schrijver (1998, p.280)
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We now introduce the corresponding linear programming relaxation RLLP by relaxing the integrality
constraint of (yj)j∈L. RLLP reads as follows:

RLLP := max
∑
k∈C

pkxk −
∑
j∈L

cjyj (5a)

s.t. xk ≤
∑
j∈Lk

yj ∀k ∈ C (5b)

xk ≤ 1 ∀k ∈ C (5c)

xk ∈ R+ ∀k ∈ C (5d)

yj ∈ R+ ∀j ∈ L (5e)

Please, note that in standard linear programming form, i.e., in the form Az ≤ b with z ≥ 0, our RLLP
can be represented by a matrix

ALLP =

[
I|C| MLLP

I|C| O

]
, (6)

where I|C| is the identity matrix of size |C|, O is the zero-matrix of size |C| × |L|, MLLP is a negative
binary matrix of size |C| × |L| whose entries are

mLLP
kj =

{
−1 if j ∈ Lk

0 otherwise
∀ k ∈ C, j ∈ L, (7)

and a vector bLLP = ((0)k∈C , (1)k∈C). Since matrix MLLP will play an important role later in various
proofs, we refer to this matrix as the connection matrix.

Lemma 2 provides a sufficient condition for linear programming problems to have integral optimal solu-
tions. Our RLLP meets this condition, given that the connection matrix M is totally unimodular. This
has an important consequence, which we prove in the next theorem.

Theorem 1. If the connection matrix MLLP of ALLP is totally unimodular, then RLLP finds an optimal
solution of LLP.

Proof. Let MLLP be totally unimodular. First, we show that ALLP is also totally unimodular. Please,
observe that [I|C| |MLLP ] can be constructed by adding columns of [I|C|] one-by-one. Please, note that
each column of [I|C|] is totally unimodular since it is a column with one unique non-zero element “1”.
By Lemma 3, these operations preserve the totally unimodular property. Consequently, matrix [I|C| |M ]
is totally unimodular. Now, observe that ALLP can be constructed by adding rows of [I|C| |O], one-
by-one. Please, note that each row of [I|C| |O] is totally unimodular since it is a row with one unique
non-zero element “1”. By Lemma 3, these operations also preserve the totally unimodular property. As
a consequence, ALLP is totally unimodular.

Second, observe that RLLP is bounded above by
∑

k∈C pk and has a feasible integral solution xk = 0
for all k ∈ C and yj = 0 for all j ∈ L. Hence, RLLP has a finite optimum. Vector bLLP has all integer
values (0 or 1). Now, by Lemma 2, we know that RLLP has an integral optimal solution, and so, it
solves the corresponding LLP.

By using Theorem 1 above, we will prove that every LLP, for which the induced LLP graph GLLP is a
tree, can be solved by the RLLP, i.e., efficiently.

Theorem 2. Every LLP for which the induced LLP graph GLLP is a tree can be solved by RLLP.

Proof. Let the LLP with induced LLP graph GLLP be a tree. Moreover, let Mp,q be the corresponding
connection matrix of LLP with p ∈ N+ the number of customers and q ∈ N+ the number of lockers.
Hence, our tree G consists of p + q nodes and p + q − 1 edges. Since L,C ̸= ∅, p + q ≥ 2, i.e., the tree
consists of at least two nodes. It is well known that every tree, with at least two nodes, has at least two
nodes with degree one (see, e.g., Deo (2017)). Consider such a node with degree one in our graph GLLP .
If we remove this node and its corresponding edge, we end up with a graph with p + q − 1 nodes and
p + q − 2 edges. This is a tree again, whose connection matrix can be constructed as follows:
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• i) The removing node is a customer
Remove the row corresponding to the node from matrix Mp,q. This row consists of zeros and exactly
one element “-1” since the node has degree one, i.e., it is connected to exactly one location. We
end up with matrix Mp−1,q, i.e., a matrix with p− 1 rows and q columns.

• ii) The removing node is a location
Remove the column corresponding to the node from matrix Mp,q. This column consists of zeros
and exactly one element “-1” since the node has degree one, i.e., it is connected to exactly one
customer. This leads to matrix Mp,q−1, i.e., a matrix with p rows and q − 1 columns.

We can repeat the process of removing a node with degree one until we end up with a graph tree with two
nodes and one linking edge. This is possible since, after each removal, we end up with a tree again. Sim-
ilarly, we can construct the corresponding connection matrix of each (intermediate) tree by removing a
row or column, as suggested in i) and (ii) one by one. Finally, we end up with the connection matrix M1,1.

A connection matrix with one row and one column, i.e., M1,1, is totally unimodular. By working
backward, we can rebuild Mp,q by adding the rows and columns oppositely to how we removed them,
according to i) and ii). Since these rows and columns consist of zeros and exactly one element “-1”,
adding them will preserve the totally unimodular property (Lemma 3). Hence, the connection matrix
Mp,q is totally unimodular, and by Theorem 1, LLP can be solved by RLLP.

We conclude this section with an example for which the induced LLP graph has a tree structure.

Example 2. Consider a setting with six customers, given by C = {1, 2, 3, 4, 5, 6}, and four locker lo-
cations, given by L = {7, 8, 9, 10}. The customer-specific profits are (pk)k∈C = (10)k∈C , the costs for
opening lockers are (cj)j∈L = (11, 20, 25, 12), the distances are

(dkj)k∈C,j∈L =


1 3 5 7
1 1 3 5
3 1 3 5
3 1 1 3
5 3 1 3
5 3 1 1

 ,

and the maximal distances are (Dk)k∈C = (2)k∈C . Consequently, L1 = {10}, L2 = {10, 11}, L3 = {11},
L4 = {11, 12}, L5 = {12}, L6 = {13}. In Figure 2, one can find the graphical representation of the
corresponding LLP-induced graph. Note that this graph has a tree structure.

1

10

2

10

310

4

10
5 10

6 10

7

11

8

20

9 25

10 12

Figure 2: Graphical illustration of the LLP-induced graph of Example 2.

Based on Theorem 2, an optimal solution of the LLP can be found by solving the RLLP, which reads
x4 = x5 = x7 = x8 = x9 = y10 = y12 = 1 and x6 = y11 = y13 = 0 with objective value 14. △

4 The locker location situation

Consider a context with a finite non-empty set of N ⊂ N carriers such that each faces an individual
locker location problem as introduced in Section 3. We denote the finite non-empty set of customers
by C, such that C ⊂ N, C ∩ N = ∅, and denote the customer set of carrier i ∈ N by Ci ⊂ C such
that Ci ∩ Cj = ∅ for all i, j ∈ N with i ̸= j, i.e., every customer is served by only one carrier, and
C =

⋃
i∈N Ci.
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We denote the finite non-empty set of possible locker locations by L ⊂ N, with C∩L = ∅ and L∩N = ∅,
and the cost of opening these lockers by c = (cj)j∈N . Note that these locations and costs are the same
for all carriers. Moreover, we introduce the distance matrix d = (dkj)j∈L,k∈C , with dkj ∈ R+ the dis-
tance between customer k ∈ C and location j ∈ L, and the vector of maximal customer distances by
D = (Dk)k∈C . Finally, the vector of profits is denoted by p = (pk)k∈C , with pk the profit of customer k,
obtained if at least one locker is located within distance Dk ∈ R+.
In this context, the carriers can also decide to collaborate instead of facing |N | individual locker location
problems. If they do so, they will face one single LLP. That means they need to decide together where
to open lockers while considering C as the set of customers, L as the set of locker locations, c as the
vector with costs for opening lockers, d as the distance matrix, D as the vector of maximal distances,
and p as the profit vector of customers. We refer to this setting as a locker location (LL) situation and
denote it by tuple θ = (N,L, (Ci)i∈N , p, c, d,D). Moreover, we define the set of all LL situations by Θ.

Example 3. Consider an LL situation θ ∈ Θ with N = {1, 2, 3}, C = {4, 5, 6, 7}, L = {8, 9, 10}

C1 = {4}, C2 = {5}, C3 = {6, 7}, p = (5, 4, 3, 4), c = (5, 9, 5), d =


1 2 4
1 1 2
2 1 1
4 2 1

, and D = (2, 1, 2, 2). A

graphical representation of this setting is given in Figure 3, where the customers of carrier 1 are shown
in orange, the customer of carrier 2 in blue, and the customers of carrier 3 in green.

4 5 5 4 6 3 7 4

8 5 9 9 10 5

C

L

Figure 3: Graphical representation of the LL situation of Example 3.

In this situation, each carrier can solve its locker location problem individually. For instance, for carrier
1 the solution is opening no locker (with profit 0), opening location 8 (with a profit of 5 − 5 = 0), or
opening Location 9 (with a profit of 5−9 = −4). As such, the best decision for carrier 1 would be to not
open a locker. Following the same reasoning, we can conclude that carrier 2 should not open a locker
either, while carrier 3 should open locker 10 and generate a profit of 7 − 5 = 2. Hence, the sum of the
individual profits equals 2. If the carriers decide to collaborate, they solve the joint LLP as presented in
Example 1 in Section 3, which resulted in a profit of 7(> 2). △

These examples show that carriers can indeed increase their overall profit by collaborating. However,
although this form of collaborating leads to a high overall profit, it is not clear a priori how to allocate
this additional profit of 5(= 7 − 2) to the three carriers. In the next section, we use cooperative game
theory to address this profit allocation problem.

5 The locker location game

We now introduce the locker location (LL) game. Formally, we can associate each LL situation θ ∈ Θ
to a transferable utility LL game given by (N, vθ). In this game, N denotes the set of carriers which
we refer to as players, and vθ : 2N → R the characteristic value function associating a real value to any
coalition S ⊆ N , i.e., a subset of carriers. This value function vθ(S) reflects the optimal profit that can
be achieved when the players in S decide to cooperate, i.e., the optimal value of the LLP restricted to
the customers that are served by coalition S. This problem is given by:
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LLP θ
S := max

∑
k∈CS

pkxk −
∑
j∈L

cjyj (8a)

s.t. xk ≤
∑
j∈Lk

yj ∀ k ∈ CS (8b)

xk ≤ 1 ∀ k ∈ CS (8c)

xk ∈ R+ ∀ k ∈ CS (8d)

yj ∈ N ∀ j ∈ L, (8e)

.

where CS =
⋃

i∈S Ci denotes the set of customers of coalition S. N is also called the grand coalition.
We now formalize the LL game.

Definition 1. For each LL situation θ ∈ Θ, the associated LL game is defined by:

vθ(S) =

{
opt(LLP θ

S) if S ⊆ N

0 if S = ∅.
(9)

Note that vθ(N) represents the profit of the grand coalition, i.e., when all players collaborate. The
central question in this section is whether vθ(N) can be allocated in a stable way amongst the players.
In the literature, it is common to address this question by investigating the core of the associated game,
as the core represents the set of allocations for which no individual player, nor a group of players (i.e.,
coalition) has incentives to break from the grand coalition (Guajardo and Rönnqvist, 2016). The core is
defined as the following:

C (N, vθ) =
{
u ∈ RN |

∑
i∈N

ui = vθ(N),
∑
i∈S

ui ≥ vθ(S) ∀S ⊆ N, S ̸= ∅
}
.

If such allocation exists, the core is considered to be non-empty. Otherwise, the core is empty. The
following example illustrates a case with a non-empty core.

Example 4. Reconsider the LL situation θ of Example 3. The values of the characteristic function vθ

are represented in Table 2.

Table 2: Coalitional values of the cooperative game

S {1} {2} {3} {1,2} {1,3} {2,3} N

vθ(S) 0 0 (3+4)-5 = 2 (5+4)-5 = 4 (5+3+4)-9 = 3 (4+3+4)-9 = 2 7

For this example, we can verify that x = (1, 3.5, 2.5) is a core allocation. Hence, the core is non-empty. △

There also exist LL games for which the core is empty, as illustrated in example 5.

Example 5. Let θ ∈ Θ with N = {1, 2, 3}, C = {4, 5, 6}, L = {7, 8, 9}, C1 = {4}, C2 = {5}, C3 =

{6}, p = (1, 1, 1), c = (1, 1, 1), d =

1 1 2
1 2 1
2 1 1

, and D = (1, 1, 1). A graphical representation of the

corresponding LLP-induced graph is presented in Figure 4.
The coalitional values for (N, vθ) are presented in Table 3.

Table 3: Coalitional values of the cooperative game of Figure 4.

S {1} {2} {3} {1,2} {1,3} {2,3} N

vθ(S) 0 0 0 1 1 1 1

Suppose C (N, vθ) ̸= ∅. Let u ∈ C (N, vθ). By stability and efficiency, we know that ui ≤ vθ(N) −
vθ(N\{i}) for all i ∈ N . Consequently, we have ui ≤ 0 for all i ∈ N . This conflicts with efficiency, i.e.,
u1 + u2 + u3 ≤ 0 < 1 = vθ(N). Hence, C (N, vθ) = ∅. △
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Figure 4: Graphical illustration of the LLP-induced graph of Example 5.

We now investigate under which conditions the core of our LL game is non-empty. As a first step, we
will explore in this context whether LL games are superadditive. Superadditivity states that two groups
of players together can always generate at least the profit they could generate without collaborating. For
2-player games, this property is a sufficient condition for core non-emptiness. The next proof shows that
this property holds for our LL game.

Theorem 3. LL games are superadditive.

Proof. Let θ = (N,L, (Ci)i∈N , p, c, d,D) be a LL situation and (N, vθ) be the associated LL game.
Moreover, let S, T ∈ 2N\{∅} be two coalitions such that S ∩ T = ∅. Finally, let (xS , yS) be an optimal
solution for LLPS , and (xT , yT ) be an optimal solution for LLPT . For coalition S ∪ T , we propose the
merged strategy (xS∪T , yS∪T ) where

xS∪T
k =

{
xS
k if k ∈ CS

xT
k if k ∈ CT

, yS∪T
j = max{ySj , yTj }.

We now show that
(
(xS∪T ), (yS∪T )

)
is a feasible solution of LLPS∪T . First, observe that

xS∪T
k = xS

k ≤
∑
j∈Lk

ySj ≤
∑
j∈Lk

yS∪T
j ∀ k ∈ CS , and xS∪T

k = xT
k ≤

∑
j∈Lk

yTj ≤
∑
j∈Lk

yS∪T
j ∀ k ∈ CT .

Consequently, we have

xS∪T
k ≤

∑
j∈Lk

yS∪T
j ∀ k ∈ CS∪T .

Secondly,
xS∪T
k = xS

k ≤ 1 ∀ k ∈ CS , and xS∪T
k = xT

k ≤ 1 ∀ k ∈ CT .

Consequently, we have
xS∪T
k ≤ 1 ∀ k ∈ CS∪T .

Thus, (xS∪T , yS∪T ) is a feasible solution of LLPS∪T . With
∑

k∈CS∪T
pkx

S∪T
k −

∑
j∈L cjy

S∪T
j being the

value of the merged solution (xS∪T , yS∪T ), we observe the following inequalities:

v(S) + v(T ) =
∑
k∈CS

pkx
S
k −

∑
j∈L

cjy
S
j +

∑
k∈CT

pkx
T
k −

∑
j∈L

cjy
T
j =

=
∑
k∈CS

pkx
S
k +

∑
k∈CT

pkx
T
k −

∑
j∈L

cj(y
S
j + yTj ) ≤

∑
k∈CS∪T

pkx
S∪T
k −

∑
j∈L

cj max{ySj , yTj } =

=
∑

k∈CS∪T

pkx
S∪T
k −

∑
j∈L

cjy
S∪T
j ≤ opt(LLPS∪T ) = v(S ∪ T ).

We conclude that the LL game is superadditive.

A sufficient condition for core non-emptiness is when LLPN can be solved efficiently. To prove this
result, we first need to introduce some new definitions. Let S ⊆ N,S ̸= ∅, and let RLLPS be the
linear relaxation of LLPS with yj ∈ R+ ∀ j ∈ L. We use RLLPS to prove that the core is non-empty if
opt(LLPN ) = opt(RLLPN ), i.e., LLPN can be solved efficiently.
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Theorem 4. LL games have a non-empty core if opt(LLPN ) = opt(RLLPN ).

Proof. Let θ = (N,L, (Ci)i∈N , p, c, d,D) be an LL situation for which opt(LLPN ) = opt(RLLPN ), and
(N, vθ) be the associated LL game. Let S ⊆ N, S ̸= ∅. Now, we introduce the dual of RLLPS , referred
to as DRLLPS , given by the following:

DRLLPS := min
∑
k∈CS

βk (10a)

s.t. αk + βk ≥ pk ∀k ∈ CS (10b)∑
k∈Ĉj∩CS

αk ≤ cj ∀j ∈ L (10c)

αk, βk ≥ 0 ∀k ∈ CS (10d)

where Ĉj = {k ∈ C | dkj ≤ Dk} is the set of customers that can be served by locker j ∈ L. We notice
that DRLLPS is feasible for αk = 0 and βk = pk for all k ∈ CS . The problem is also bounded from
below by 0. Hence, RLLPS and DRLLPS are both feasible and bounded. Then, by the strong duality
theorem (see, Schrijver (1998, p. 90)), we have opt(RLLPS) = opt(DRLLPS).
Let α = (αk)k∈C , β = (βk)k∈C be the variables such that (α, β) is an optimal solution of DRLLPN . For
coalition S and an optimal solution (α, β) of DRLLPN , we construct the restricted solution ((αS

k )k∈CS
, (βS

k )k∈CS
),

or, shortly, (αS , βS), such that

αS
k = αk ∀ k ∈ CS ,

βS
k = βk ∀ k ∈ CS .

We will prove that (αS , βS) is feasible for DRLLPS . Recall that for the DRLLPN , it holds that

αk + βk ≥ pk ∀ k ∈ C.

Consequently, for all k ∈ CS ⊆ C, we have

αS
k + βS

k = αk + βk ≥ pk.

Moreover, for all j ∈ L, ∑
k∈Ĉj∩CS

αS
k ≤

∑
k∈Ĉj

αS
k =

∑
k∈Ĉj

αk ≤ cj ∀j ∈ L,

where the inequality holds since αS
k ≥ 0 for all k ∈ S. Finally, αS

k , β
S
k ≥ 0 for all k ∈ CS , since αk, βk ≥ 0

for all k ∈ C. Hence, (αS , βS) is a feasible solution of DRLLPS .
Now, consider an allocation vector u = (ui)i∈N , with

ui =
∑
k∈Ci

βk ∀ i ∈ N.

We will show that vector u belongs to the core. Let coalition S ⊆ N,S ̸= ∅. Then,∑
i∈S

ui =
∑
i∈S

∑
k∈Ci

βk by definition of ui

=
∑
k∈CS

βk Ci being a partition of CS

=
∑
k∈CS

βS
k by definition of (αS , βS)

≥ opt(DRLLPS) by feasibility of (αS , βS) for DRLLPS

= opt(RLLPS) by strong duality theorem

≥ opt(LLPS) being RLLPS a relaxation of LLPS

= v(S) by definition of v.

(11)

Second,
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∑
i∈N

ui =
∑
i∈N

∑
k∈Ci

βk by definition of ui

=
∑
k∈C

βk Ci being a partition of C

= opt(DRLLPN ) by optimality of (α, β) for DRLLPN

= opt(RLLPN ) by strong duality theorem

= opt(LLPN ) by hypothesis

= v(N) by definition of v.

(12)

So, u is an efficient and stable vector. Hence, u ∈ C (N, vθ), which concludes the proof.

Recall from Theorem 1 that if the connection matrix MLLP of LLP is totally unimodular, then RLLP
finds an optimal solution of the LLP. Thus, an LL game for which LLPN has a totally unimodular
connection matrix has a non-empty core.

Corollary 1. LL games for which the connection matrix of LLPN is totally unimodular have a non-
empty core.

Also, recall from Theorem 2 that every LLP for which the induced graph GLLP is a tree can be solved
by RLLP. Thus, we also formulate the following corollary that merges Theorems 2 and 4.

Corollary 2. LL games for which the induced graph GLLP is a tree have a non-empty core.

6 Numerical experiment

In the previous section, we provided a sufficient condition for core non-emptiness. In particular, we
showed that if the optimal value of an LLP and its linear programming relaxation coincide, then the
core of the associated LL game is non-empty. By using Theorem 2, this condition applies to LL games
for which the induced graph of the grand coalition is a tree. This section will investigate how much
we can generalize core non-emptiness when we relax the tree structure. For this purpose, we conduct
several numerical experiments to study the effect of different LL situations on core non-emptiness. In
the following, we first explain how we construct the instances used for our experiments, specifying the
parameters and the related LL situations before presenting the results of these experiments in section
6.2.

6.1 Instance design

The instances for our experiments are generated considering a 100×100 square, in which we randomly
position customers, using two different types of probability distributions; a uniform distribution and a
triangular distribution. For the uniform distribution, each coordinate of the customer’s position follows
a uniform distribution between 0 and 100. This distribution reflects a Manhattan-style neighborhood,
where the population is equally distributed over the neighborhood. In contrast, in the case of the tri-
angular distribution, each coordinate of the customer’s position follows a triangular distribution from 0
to 100 with mode 50, representing a setting where the population is concentrated in the city center and
gets sparser around it. In Figure 5, we provide an example visualizing the difference between the two
distributions for instances of 20 customers.

After positioning the customers in the square, each customer is assigned to exactly one carrier. The
number of carriers is set to a value between three and six, as this seems reasonable for the number of
delivery companies working in a city. Two types of customer assignments to carriers are considered:

• Random assignment: In this case, every customer is assigned to one carrier randomly with
equal probability.

• Clustered assignment: Every customer gets assigned according to a clustering approach. For
this purpose, we run a K-means clustering algorithm (with the standard parameters proposed by
scikit-learn library in Python, without fine-tuning the parameters) splitting the square of 100×100
into sub-areas corresponding to the number of carriers, allocating each sub-area to one carrier. We
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Uniform Triangular

Figure 5: Two examples of distribution of customers: uniform to the left, triangular to the
right.

then assign customers to carriers according to a predefined cluster density. In doing so, each
customer gets a random integer between 0 and 100. If this number is less or equal to the cluster
density, the customer is assigned to the carrier of its sub-area. Otherwise, the customer is allocated
to one of the other carriers with equal probability. If the cluster density is 100%, all customers of
a certain sub-area are assigned to the same carrier. Note that a 0% clustered assignment is not
equal to a random assignment, as in the former the carrier associated with the sub-area is not
serving any customer.

The number of locker locations is then set proportional to the number of customers. For this purpose,
we consider proportions of 5%, 7.5%, or 10%, setting the number of locker locations equal to the closest
integer from the product of this proportion parameter and the number of customers. This results in five
locker locations for an instance with 100 customers and a proportion of 5%. These locker locations are
then positioned randomly in the square with uniform probability.
Distances between customers and locker locations are calculated based on the Manhattan distance, while
the customer-related maximum distance threshold, to identify whether the customer wants to use a locker
at a certain location, is randomly extracted from a uniform distribution between 0.75A and 1.25A, where
A denotes the mean of the distribution. For example, if A = 10, a customer gets a maximum distance
parameter with uniform probability in the [7.5, 12.5] range. If a customer uses a locker, we add an edge
between this customer and the specific locker. In Figure 6, we visualize the assignment of customers
to both carriers (using colors) and lockers (using connecting arcs) for a given instance. We present an
instance with 20 customers which have been located using a uniform distribution, three carriers, and five
locker locations. Note that each customer is assigned to only one carrier (indicated by blue, green, or
orange) and that customers are only connected to lockers in their neighborhood.

Customer locations Whole instance

Figure 6: Example of an instance after assigning carriers to customers and showing lockers
locations.

The profits for serving customers are randomly extracted for every customer from a normal distribution
with a mean of 10 and a standard deviation of 1. Similarly, the cost of locating a locker in a given position
follows a normal distribution, with mean 10rc/p and standard deviation rc/p, where rc/p represents the
cost-to-profit ratio. This cost-to-profit ratio corresponds to the average number of customers a locker
should serve to recover the cost of the locker, i.e. if the cost of the locker can be recovered by serving 20
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customers, this corresponds to a cost-to-profit ratio of 20.
Table 4 presents an overview of the configurations used to generate the instances for our experiments.
For each combination of these configurations, we generate 20 unique instances. The total number of
instances we consider in all experiments together is 403, 200.

Table 4: Parameter configurations used for our experiments.

Experimental Parameter Values

Customer distribution Triangular, Uniform

Number of customers 150, 300, 450

Number of carriers 3, 4, 5, 6

Proportion of lockers 5%, 7.5%,10%

Cost-to-profit ratio 1, 2, 5, 10, 15, 25, 35

Average maximal distance 30, 60, 90, 120, 150

Cluster density Random, 20%, 40%, 60%, 80%, 100%

6.2 Results

This section presents the results from our experiments using the instances described in Section 6.1,
focusing in particular on the impact of different cluster densities and cost-to-profit ratios on the emptiness
of the core. In this context, we also study the likelihood of opt(LLPN ) = opt(RLLPN ), i.e., the condition
for which we have proven that the core is non-empty as shown in Theorem 4.

6.2.1 General case

In this first experiment, we consider the 50,400 (i.e., 20× (2×3×4×3×7×5×1) instances with random
customer assignments. The results from these experiments are shown in Figure 7, where the white bars
represent the frequency of non-empty core instances, while the yellow bars represent the frequency of
opt(LLPN ) = opt(RLLPN ) instances.
The figure shows that almost all instances have a non-empty core, while only 20 out of the 50,400 in-
stances have an empty core. From a practical perspective, this is a positive sign for collaboration as it
indicates that it is possible to find a stable profit allocation amongst the carriers in most cases. Most of
these empty core instances relate to a cost-to-profit ratio of 1 or 2 (see Figure 7e), which suggests that
collaboration is less sensible in situations where the cost of lockers can be recovered easily, i.e., where
serving only a few customers is sufficient to open a locker.
Analyzing the results with regards to opt(LLPN ) = opt(RLLPN ), we can see that the frequency of
opt(LLPN ) = opt(RLLPN ) is lower for the uniform distribution. Moreover, we observe that the fre-
quency of opt(LLPN ) = opt(RLLPN ) instances decreases as the number of customers and locations
increases. This is logical as the likelihood of having only binary decision variables, which is a require-
ment for opt(LLPN ) = opt(RLLPN ), decreases as the number of variables (corresponding to customers
and lockers) increases. In addition, we observe that the frequency of opt(LLPN ) = opt(RLLPN ) gener-
ally increases with higher values of the maximal distance as well as the cost-to-profit ratio. A possible
explanation may be that in the case of a high maximal distance, opening only the cheapest locker to
cover all customers seems to suffice. In contrast, in the case of a high cost-to-profit ratio, it may be
best to open no locker at all. Overall, these findings indicate that a core allocation can be identified
(efficiently) for most instances.

6.2.2 Impact of clustered customer assignment

In practice, carriers may dominate certain areas, operating more or less locally. In this section, we conduct
several experiments with clustered customer assignment, varying the cluster density. In this context, we
compare the random assignment with multiple clustered assignments with different values for cluster den-
sity, namely 20%, 40%, 60%, 80%, and 100%. As a result, we analyze 20×(2×3×4×3×7×5×6) = 302, 400
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Figure 7: Results for instances with random customer assignment, where the white bar
represents the frequency of non-empty core instances, and the yellow bar the frequency of
opt(LLP )=opt(RLLP ) instances.

instances in this experiment. In Figure 8, we present the results for these instances, focusing again on
the frequencies of non-empty core instances and opt(LLPN ) = opt(RLLPN ).
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Figure 8: Results on the influence of cluster density in the second experiment.

The figure shows that a high cluster density leads to a lower frequency of non-empty core instances.
More specifically, we observe that for cluster density values lower than or equal to 40%, which includes
the random customer assignment, the frequency of non-empty core instances is equal to 100%, while
for a cluster density of 100%, the frequency of non-empty core instances reduces to 96.5%. This might
indicate that a geographically clustered assignment of customers to carriers may harm collaboration.
At the same time, the frequency of opt(LLPN ) = opt(RLLPN ) seems relatively stable over the various
cluster densities, suggesting that cluster density does not have a strong effect on the occurrence of this
condition.

6.2.3 Impact of high cluster density in combination with a low cost-to-profit ratio

In the first two experiments, we see that a high cluster density and a low cost-to-profit ratio may
negatively affect core non-emptiness. In this final part of our analysis, we aim to investigate this in
greater detail by focusing only on instances with 100% cluster density while still observing the values of
the cost-to-profit ratio proposed in the previous experiments. Having only 100% cluster density reduces
the number of instances again to 50, 400 instances, as in the first experiment.
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Figure 9: Results on cost-to-profit ratio and maximal distance with 100% cluster density.

The results from this analysis (shown in Figure 9) indicate that a combination of a 100% cluster density
and low cost-to-profit ratios reduces the number of instances with a non-empty core. For very low values
of the cost-to-profit ratio (i.e., 1 or 2), this results in around 7% of the instances having an empty core.
Analyzing the results for these instances for different values of the maximal distance, we can observe a
similar trend for maximal distance values between 90 and 120. In this case, about 8% of the instances
have an empty core. Despite this significant increase in empty core instances, these experiments indicate
that a stable profit allocation amongst carriers is still possible in more than 90% of the considered
instances. As such, our analysis demonstrates that a stable profit allocation is possible for instances
with an underlying tree structure, and in most instances violating the tree-structure property. This is a
promising indication for practice carriers with plans to jointly open lockers.

7 Conclusion

In this paper, we studied a context where carriers intend to collaborate and together position parcel
lockers to serve their customers. For this purpose, we introduced the locker location problem (LLP),
which involves positioning parcel lockers to generate a profit from serving the customers while facing
location-dependent opening costs. Studying the properties of this problem, we have observed that the
optimal value of the LLP coincides with a linear programming relaxation when the LLP-induced graph
is a tree.
Based on the LLP, we formulate the LL game using cooperative game theory, where multiple carriers
seek to collaborate to improve the total joint profit, i.e., the profits from the customers minus the costs
of opening lockers. Focusing on profit allocations in the core, representing the set of allocations for which
it is unprofitable for any group of carriers to leave the collaboration, we prove that the core is non-empty
when the optimal value of the LLP and a linear programming relaxation coincide.
In addition, we generate a large set of instances representing different LL situations to conduct a series of
numerical experiments, studying the frequency of LL games with a non-empty core. The results of these
experiments show that with generic parameter initialization, the core is non-empty in more than 99.9% of
the cases. Analyzing the impact of specific instance configurations, we see that a geographical separation
of the carriers, low locker costs, and the considered maximal distance interval can harm collaborations.
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