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We investigate how crowdsourced delivery platforms with both contracted and ad-hoc couriers can effec-

tively manage their workforce to meet delivery demands amidst uncertainties. Our objective is to minimize

the hiring costs of contracted couriers and the crowdsourcing costs of ad-hoc couriers while considering the

uncertain availability and behavior of the latter. Due to the complication of calibrating these uncertainties

through data-driven approaches, we instead introduce a basic reduced information model to estimate the

upper bound of the crowdsourcing cost and a generalized reduced information model to obtain a tighter

bound. Subsequently, we formulate a robust satisficing model associated with the generalized reduced infor-

mation model and show that a binary search algorithm can tackle the model exactly by solving a modest

number of convex optimization problems. Our numerical tests using Solomon’s data sets show that reduced

information models provide decent approximations for practical delivery scenarios. Simulation tests further

demonstrate that the robust satisficing model has better out-of-sample performance than the empirical opti-

mization model that minimizes the total cost under historical scenarios.

Key words : Workforce management, crowdsourced delivery, uncertain ad-hoc couriers, data-driven robust

satisficing

1. Introduction

The rapid expansion of e-commerce has stimulated e-retailers and local businesses to enhance

their logistics operations and deliver goods promptly and reliably in a cost-effective way. As a

result, many have turned to crowdsourced delivery, which involves independent individuals using

their own vehicles to deliver goods. For instance, Amazon launched the Amazon Flex program

in 2015, which utilizes crowdsourced couriers for last-mile deliveries. Similarly, Walmart piloted

crowdsourced delivery in two US cities in 2018 under the name Spark Delivery. Many third-party

logistics companies that rely on crowdsourced delivery have also emerged, such as Postmates, Uber
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Eats, and Deliv. These platforms vary in terms of payment methods, target markets, and the types

of items delivered. Leveraging crowdsourced delivery resources allows platforms to swiftly adjust

their delivery capacity to cope with fluctuating demand while also providing cost advantages.

The use of independent couriers for crowdsourced delivery poses challenges due to their unknown

availability and job bidding behavior. To mitigate the adverse effects caused by this type of uncer-

tainty, many platforms have opted for a hybrid workforce model that combines ad-hoc crowdsourced

couriers with pre-hired couriers, such as employees or crowdsourced couriers who agree to work for

a certain period with a guaranteed minimum payment (Yildiz and Savelsbergh 2019, Ulmer and

Savelsbergh 2020). In the Amazon Flex program, for instance, deliveries are organized into blocks

lasting from 2 to 6 hours, and crowdsourced couriers search for available delivery blocks through

the platform’s app, make requests for interested offers, and receive confirmation from Amazon.

When couriers’ block times are approaching, they go to the pick-up sites, load packages, and deliver

them to customers. A hybrid model enables platforms to manage their workforce more effectively

to provide reliable customer service.

Nevertheless, the employment decision of pre-hired couriers presents a challenge as future cus-

tomer orders remain uncertain to the platform. Over-hiring couriers incur unnecessary costs for

the platform, while under-hiring may require the hiring of ad-hoc couriers at premium prices to

ensure timely delivery.

In this study, we present a robust satisficing framework for addressing delivery platforms’ work-

force management problem, with the aim of maximizing the robustness of achieving cost targets

under uncertainty. Our approach distinguishes between two types of couriers: contracted couriers,

who are hired before the planning horizon, and ad-hoc couriers, who are hired during the opera-

tional stage. The proposed framework accounts for the uncertainty of ad-hoc couriers’ availability

and job bidding behavior, as well as the cost associated with hiring ad-hoc couriers when necessary.

By formulating the problem as a robust optimization model, our framework provides a tool for

decision-making that enables platforms to effectively manage their workforce resources and balance

their cost objectives with service quality requirements.

The field of crowdsourced last-mile delivery has garnered increasing attention recently. Alnag-

gar et al. (2021) analyze the current industry status of crowdsourced delivery platforms based on

matching mechanisms, target markets, and compensation schemes. They indicate that for a cen-

tralized system with an hourly compensation scheme (e.g., Amazon Flex), a significant challenge is

forecasting delivery needs and the number of couriers required to fulfill them. Although platforms

can provide on-demand delivery blocks in case contracted couriers are insufficient, there is a higher

level of risk involved since the availability of on-demand couriers is not guaranteed. Savelsbergh

and Ulmer (2022) identify the challenges and opportunities in crowdsourced delivery planning and
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operations. The tactical challenge is ensuring that the required crowdsourced delivery capacity is

available, while the operational question is how to adjust delivery capacity if the anticipated capac-

ity is not materialized or if demand exceeds expectations. Besides uncertain availability, couriers’

behavior is also uncertain, as they may accept or reject a delivery task and deviate from planned

routes (Liu et al. 2021). To reduce uncertainties in delivery capacity, the authors suggest that

planners can determine a set of delivery shifts and offer them to couriers for commitment before

the operational period begins. Additionally, a dynamic compensation mechanism can be designed

to adjust the availability of ad-hoc couriers.

Behrendt et al. (2022a) study the crowdsourced same-day delivery problem, deciding the fleet

sizing of contracted couriers, pricing of ad-hoc couriers in the planning stage, and order alloca-

tion in the operational phase. They assume that order and ad-hoc courier arrivals follow Poisson

processes and focus on evaluating the benefits of utilizing a hybrid workforce and various order

allocation policies. Goyal et al. (2023) address a multistage problem involving the determination

of contracted courier fleet sizes at each warehouse in the first stage, followed by assignment and

routing decisions for both contracted and ad-hoc couriers once orders and ad-hoc couriers have

arrived. They formulate the problem as a multistage stochastic integer program and develop an

approximate dynamic programming method. These two studies assume that contracted couriers

are available for the entire planning horizon once hired. In contrast, our work determines fleet sizes

for each shift, accounting for varying uncertainty in each period.

The works of Ulmer and Savelsbergh (2020) and Behrendt et al. (2022b) are highly relevant to

our paper. Specifically, Ulmer and Savelsbergh (2020) address the workforce scheduling problem

for contracted couriers, determining the optimal number of shifts and their start time and dura-

tion. The authors consider stochastic arrivals of orders and ad-hoc couriers, as well as the duration

an ad-hoc courier is willing to work. Their objective is to minimize working hours while ensur-

ing a minimum percentage of orders are fulfilled. The authors employ continuous approximation

and value function approximation methods, utilizing scenarios to represent realizations of random

variables. Behrendt et al. (2022b) propose a prescriptive machine learning method for a similar

problem. They leverage the sample average approximation (SAA) method offline to generate solu-

tions for various instances, then use a machine learning model to produce online solutions for new

demand and ad-hoc courier arrival forecasts. Their objective is to minimize courier payments and

penalty costs for late deliveries. We note that besides the uncertain availability, our work also con-

siders ad-hoc couriers’ uncertain job bidding behavior. Moreover, we do not assume any probability

information of random variables and use a data-driven robust optimization method to mitigate the

impact of distributional ambiguity on the risk-based objective function.
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Many studies on crowdsourced delivery have focused solely on addressing operational-level allo-

cation and routing problems, without taking tactical decisions into account. For example, Archetti

et al. (2016) address the vehicle routing problem (VRP) with occasional drivers, referring to drivers

who are willing to make deliveries with a detour on their way to their destination. Dayarian and

Savelsbergh (2020) investigate a same-day delivery problem that involves dynamically arriving

online orders and in-store customers who, in addition to shopping, also deliver online orders as a

supplement to company drivers. The authors propose rolling horizon dispatching approaches, with

and without incorporating probabilistic information about future arrivals of orders and in-store

customers. Similarly, Torres et al. (2022) tackle the VRP with stochastic crowd vehicles and cus-

tomer presence, formulating the problem as a two-stage stochastic model and developing a column

generation heuristic for solving large-size instances.

To the best of our knowledge, we are the first to use a data-driven decision framework to make

tactical and operational planning decisions for the crowdsourced delivery problem with a hybrid

workforce, considering ad-hoc couriers’ uncertain availability and job bidding behavior. Our work

is built upon the recent development of data-driven robust optimization, which aims to address

issues in optimization under uncertainty. One prominent issue is the Optimizer’s curse (Smith and

Winkler 2006), a phenomenon that inferior results are always expected in the out-of-sample test if

one uses the empirical distribution from training data to solve an optimization problem. A similar

issue also appears in SAA (Birge and Louveaux 2011) through which the objective estimated

in stochastic optimization is optimistically biased. Although the bias can be reduced with more

samples, it would be prohibitive to do so in the data-driven setting where data is collected over

time.

Data-driven robust optimization approach has been developed recently to address this issue

(Bertsimas et al. 2018, Mohajerin Esfahani and Kuhn 2018, Gao and Kleywegt 2022). This method

can effectively mitigate the risk of uncertainty by optimizing the worst-case objective within an

ambiguity set that includes probability distributions of certain properties, such as having moment

information matching the empirical distribution or being close to it based on specific distance

metrics. Notably, Mohajerin Esfahani and Kuhn (2018) and Gao and Kleywegt (2022) propose

the ambiguity set based on the Wasserstein distance that enjoys statistical guarantee to capture

the true distribution. Nonetheless, the practical issue of determining the radius of the Wasserstein

ambiguity set has been acknowledged. Instead of relying on the theoretical value of the statistical

guarantee, cross-validation is often required to tune the radius parameter for better out-of-sample

performance.

More recently, Long et al. (2022) propose the robust satisficing model, which is based on target-

oriented optimization instead of conventional utility maximization. Contrary to robust optimization
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that specifies an ambiguity set of probability distributions, the robust satisficing model has no

restriction on the distributions and minimizes the uncertainty risk of not achieving a specific target.

Targets play an important role in the human decision process, especially in complex environments

full of uncertainty and risks (Simon 1955, Mao 1970, Chen and Tang 2022). In articulating prefer-

ences, the robust satisficing model requires the decision-maker to set performance targets, which

are more interpretable and practical to specify. The idea of robust satisficing has been emerging

recently in both theoretical developments (Chen et al. 2022, Liu et al. 2022, Sim et al. 2021) and

practical applications (Goh and Hall 2013, Zhang et al. 2021, Zhou et al. 2022).

We propose using the robust satisficing framework to address the workforce management prob-

lem, which involves the hiring of contracted couriers for each shift before the planning horizon.

Whenever the contracted couriers are insufficient during the operational stage, the platform hires

ad-hoc couriers based on their bidding for delivery jobs. Because the bidding strategy of ad-hoc

couriers is unknown, it would be prohibitive to precisely determine the expected crowdsourcing

costs associated with the delivery workforce in the planning horizon. The robust satisficing model

aims to meet the specified expected cost target and perform as well as possible under distributional

ambiguity. The contributions of our work are summarized as follows.

1. To characterize the empirical distribution of the crowdsourcing costs using historical bidding

records made by the ad-hoc couriers, we first propose a basic reduced information model

that evaluates the upper bound of the crowdsourcing cost. We prove that the bound is tight

under the single payment value bidding scheme. We further introduce a generalized reduced

information model to obtain a tighter bound on the crowdsourcing cost that would improve

with the number of breakpoints.

2. Based on the basic reduced information model, we propose a data-driven robust satisficing

model that incorporates a time additive Wasserstein metric to characterize distributional

ambiguity in the workforce management problem. We can reformulate the proposed robust

satisficing model as a single deterministic tractable convex optimization problem. We also

extend this to the generalized reduced information model and demonstrate that a binary

search algorithm can be applied to tackle the robust satisficing model exactly via solving a

modest number of convex optimization problems.

3. We provide statistical justifications for the robust satisficing model that are based on target

attainment. For small deviations from the target, we provide a target attainment confidence

guarantee based on the probability bound of the Wasserstein distance. For large shortfalls

from the target, we provide a concise expression of probability guarantee, which does not

depend on the number of breakpoints of the generalized reduced information model.
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4. Numerical tests on Solomon’s data sets show that the basic reduced information model can

provide decent approximations of the crowdsourcing costs for practical delivery problems

when multiple payment values are allowed. The generalized reduced information model further

improves the bounds, controlling all the gaps under 5%. Moreover, through simulated data,

we demonstrate that the proposed robust satisficing model provides better out-of-sample per-

formance than the empirical model, especially when dealing with high levels of uncertainty

and risk.

Notation. We use boldface lowercase letters for vectors (e.g., θ), and calligraphic letters for sets

(e.g., X ). We use | · | to denote the cardinality of a finite set. We use [N ] to denote the running

index {1,2, . . . ,N} for N ∈N, and [0] = ∅. A random variable ṽ is denoted with a tilde sign such as

ṽ ∼ P,P ∈ P0, where P0 represents the set of all possible distributions. For a multivariate random

variable, we use P0(Z) to represent the set of all distributions for the multivariate random variable

that has support Z ⊆Rn. Specifically, we use z̃ ∼ P, P∈P0(Z) to define z̃ as a multivariate random

variable with support Z and distribution P. We use EP [ṽ] to denote the expectation of a random

variable, ṽ ∼ P, over its distribution. Finally, 0 (1) denotes the vector of all zeros (ones) and ei

denotes the ith basis vector. The dimensions of these vectors should be clear from the context.

2. Workforce management with crowdsourced delivery

We are examining a delivery workforce management platform that operates over a planning horizon

consisting of T periods. The platform hires contracted couriers for each shift before the planning

horizon. During the operational stage, if the contracted couriers are insufficient to handle the

delivery jobs, the platform engages ad-hoc couriers based on their bidding for the available jobs.

Before the planning horizon, the platform creates shifts to offer to crowdsourced couriers. If a

courier signs up for a shift and the platform also confirms her/his enrollment, s/he becomes a

contracted courier and will be managed by the platform during the operational period.

Without loss of generality, we assume that a sufficient number of couriers are registered because

the platform can release the work shifts several days or weeks earlier than the start of the planning

horizon. The platform has created I different work shifts; for each shift, i ∈ [I], we define Si ⊆ [T ]

as the set of time periods within the time horizon covered by the shift. For each time period t∈ [T ],

we define the vector at ∈ {0,1}I , where ati = 1 if t ∈ Si, and ati = 0, otherwise, for all i ∈ [I]. We

let the decision variable x ∈ X ⊆ ZI
+, where xi represent the number of contracted couriers hired

to work at shift i ∈ [I], determined before the start of the time horizon. The feasible set X can

encapsulate the detailed constraints associated with individual contracted couriers. The number of

contracted workers at time t∈ [T ] is a⊤
t x. The compensation to the contracted courier in the ith,
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i∈ [I] work shift for the planning horizon is wi. Hence, the total compensation for hiring contracted

workers would be w⊤x.

Before the beginning of each period, t∈ [T ], the set of packages has arrived and must be delivered

by the end of the tth period. The delivery workforce management platform would lexicographically

minimize the number of couriers and then the total traveling distance while adhering to delivery

time windows and couriers’ capacity constraints. Hence, the solutions to the VRP provide the

number of jobs Jt ∈ Z+, where each job is a set of packages to be delivered by one courier by the

end of the time period. As the employment decision, x is made before customer orders are realized,

there may exist situations where the hired contracted couriers cannot complete all the delivery

tasks. Specifically, at the beginning of period t, there would be potential (Jt −a⊤
t x)

+
demands

that the contracted couriers could not fulfill.

To provide high-quality service to customers, the platform guarantees that all packages realized at

the beginning of a period will be delivered by the end of that period. Hence, the platform considers

another matching mechanism by hiring ad-hoc couriers. Specifically, the platform releases all the Jt

jobs to ad-hoc couriers who would bid for these jobs. In particular, the ad-hoc couriers specify their

desired compensations for each job from a given list of N possible payments, p1, p2, · · · , pN > 0,

with pn ≤ pn+1. Let Kt denote the number of ad-hoc couriers participating in bidding at period

t. We define the corresponding bidding set Bt as the set of tuples (k, j,n) ∈ [Kt]× [Jt]× [N ], with

each tuple (k, j,n) representing courier k has bidden for job j for payment pn. For convenience, we

also define the projection of Bt on the tuples (k, j)∈ [Kt]× [Jt] as follows

B̄t := {(k, j)∈ [Kt]× [Jt] | ∃n∈ [N ] : (k, j,n)∈Bt} .

Assumption 1. We assume that pN is high enough so that we can always find someone to take

up any delivery job for that price. Consequently, we can assume that every job j ∈ [Jt] can be

assigned to an unique bidder kj ∈ [Kt], so that (kj, j)∈ B̄t for all j ∈ [Jt] and |{kj | j ∈ [Jt]}|= Jt.

To ensure Assumption 1 always holds in practice, we can temporarily assign each job j ∈ [Jt]

to a phantom courier at payment pN , and whenever a phantom courier is assigned, we can always

replace it with someone who is willing to deliver at that price.

After the bids have been gathered, the platform would assign jobs to ad-hoc couriers. For a given

employment decision of contracted workers x∈X , and a realized bidding set Bt, we can obtain the
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information, Jt, Kt, and B̄t. Subsequently, the planner decides the employment of ad-hoc couriers

with the minimum crowdsourcing cost, ft(x,Bt), where

ft(x,Bt) = min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt −a⊤
t x

skj ≥ 0 ∀(k, j)∈ B̄t,

(1)

in which the first set of constraints ensures that job j ∈ [Jt] is assigned to at most one ad-hoc

courier, while the second set of constraints requires that each ad-courier k ∈ [Kt] is assigned to

at most one job. The third set of constraints demands that all jobs are assigned to contracted or

ad-hoc couriers. Since this is a network flow optimization problem, if a⊤
t x ∈ Z, then there exist

binary optimal solutions for the decision variables skj, (k, j) ∈ B̄t such that skj = 1 if courier k’s

bid for job j is accepted, and skj = 0 otherwise. All the remaining jobs are consequently assigned

to contracted couriers.

During the planning horizon, we do not know the future arrivals of packages and how ad-hoc

couriers would bid for the jobs. We can denote (B̃1, . . . , B̃T ) as the joint random bidding sets for all

time periods, and its true distribution Q⋆, (B̃1, . . . , B̃T )∼Q⋆ is unobservable to the decision maker.

Hence, it is impossible to determine the true optimum solution in the following ideal optimization

problem.

Z⋆ = min w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)


s.t. x∈X .

(2)

Nevertheless, we have access to Ω historical sample path records of the bidding sets Bω
t , for all

ω ∈ [Ω], t∈ [T ]. Accordingly, we denote Q̂ as the empirical distribution such that

EQ̂

[
B̃t =Bω

t ∀t∈ [T ]
]
=

1

Ω
∀ω ∈ [Ω].

To obtain the decisions for the contracted couriers, x, we can solve the empirical optimization

problem that minimizes the average cost for the planning horizon as follows

min w⊤x+EQ̂

∑
t∈[T ]

ft(x, B̃t)


s.t. x∈X ,

(3)
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which is equivalent to the following linear optimization problem,

Ẑ = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
(k,j,n)∈Bω

t

pns
ω
tkj

s.t.
∑

k:(k,j)∈B̄ω
t

sωtkj ≤ 1 ∀j ∈ [Jω
t ], t∈ [T ], ω ∈ [Ω],∑

j:(k,j)∈B̄ω
t

sωtkj ≤ 1 ∀k ∈ [Kω
t ], t∈ [T ], ω ∈ [Ω],∑

(k,j)∈B̄ω
t

sωtkj ≥ Jω
t −a⊤

t x ∀t∈ [T ], ω ∈ [Ω],

sωtkj ≥ 0 ∀(k, j)∈ B̄ω
t , t∈ [T ], ω ∈ [Ω],

x∈X .

(4)

3. Reduced information models

Apart from being a large-scale linear optimization problem, we are unable to extend Problem (4)

to a data-driven robust optimization model due to the difficulties of characterizing the statistics

associated with the random bidding sets, (B̃1, . . . , B̃T ). As such, we propose a reduced information

model that evaluates an upper bound of the crowdsourcing cost function. Specifically, after the

bids have been gathered at the tth period, we solve the following assignment problem,

min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj = 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],

skj ≥ 0 ∀(k, j)∈ B̄t,

(5)

and obtain its optimum binary solution, s∗kj ∈ {0,1}, (k, j)∈ B̄t. Observe that under Assumption 1,

Problem (5) is a feasible assignment problem. Subsequently, we determine the basic reduced infor-

mation vector, zt ∈RN where

ztn =
∑

(k,j):(k,j,n)∈Bt

s∗kj ∀n∈ [N ]. (6)

Speaking intuitively, ztn is the maximum number of ad-hoc couriers, based on the optimal assign-

ment solution of Problem (5), who could be assigned for the jobs for pn payment.

Theorem 1. The crowdsourcing cost function with basic reduced information,

gt(x,zt) = min p⊤y

s.t. 1⊤y≥ 1⊤zt −a⊤
t x

0≤ y≤ zt,

(7)
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is an upper bound of the crowdsourcing cost function, i.e.,

ft(x,Bt)≤ gt(x,zt).

Moreover, the bound is tight if there exists an optimal binary solution of Problem (1) such that

skj ≤ s∗kj for all (k, j)∈ B̄t.

Proof of Theorem 1. Observe that the value of gt(x,zt) corresponds to the allocation of Jt −a⊤
t x

ad-hoc couriers using the solution s∗, which has Jt assigned couriers, and then removing a⊤
t x of

the most expensive bidders. Such an assignment is a feasible solution to Problem (1). Hence,

ft(x,Bt)≤ gt(x,zt).

Now suppose there exists an optimal solution of Problem (1) such that s ≤ s∗. Then we can

construct the solution,

yn =
∑

(k,j):(k,j,n)∈Bt

skj ∀n∈ [N ],

which is feasible in Problem (7) and its objective

p⊤y=
∑

(k,j,n)∈Bt

pnskj

coincides with the optimum objective of Problem (1). Hence, in this case, we also have ft(x,Bt)≥

gt(x,zt). □

The bidding scheme mandated by the platform influences the accuracy of the reduced information

model in evaluating the crowdsourcing cost function. In a single payment value bidding, each ad-

hoc courier, k ∈ [Kt] can bid for any number of jobs but for one payment value rk ∈ {p1, . . . , pN}

for any job assigned by the platform.

Theorem 2 (Single payment value bidding). Under the single payment value bidding

scheme, the basic reduced information model evaluates the crowdsourcing cost exactly, i.e.,

gt(x,zt) = ft(x,Bt) for any number of assignments Jt −a⊤
t x∈ {0,1, · · · , Jt}.

Proof of Theorem 2. We first define the set,

F :=

K⊆ [Kt]

∣∣∣∣∣∣∣∣
∀k ∈K,∃jk ∈ [Jt] :

(k, jk)∈ B̄t,

|K|= |{jk|k ∈K}|

 ,

so that each element in F is a set of couriers in which every courier in the set could be assigned to

a unique job.
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Given a set of selected couriers K ∈ F , we consider the following assignment problem that

minimizes the total cost,

G(K) = min
∑

(k,j,n)∈Bt,k∈K

pnskj

s.t.
∑

k:(k,j)∈B̄t,k∈K

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj = 1 ∀k ∈K,∑
j:(k,j)∈B̄t

skj = 0 ∀k ∈ [Kt]\K,

skj ≥ 0 ∀(k, j)∈ B̄t,

where the second collection of constraints specifies that any courier in K must be assigned with one

job, and the third collection of constraints ensures that any courier outside K cannot be assigned

with any job. The above assignment problem is a minimum-cost network flow optimization problem.

From discrete convex analysis, the minimum-cost network flow problem is an M-convex problem,

i.e., G :F →R is an M-convex function (see example 2.3 in Murota 1998 or section 4.1 in Chen and

Li 2021). A feasible solution K is a local minimum in the sense that we cannot replace any courier

k1 ∈K with a courier k2 ∈ [Kt]\K such that rk2 < rk1 and (K∪{k2})\{k1} ∈F . By Theorem 4.6 in

Murota (1998), any local minimum of the M-convex function is also a global minimum. Note that

whenever referring to the local/global minimum of G, we assume the domain of G is contained in

a hyperplane {K ∈F : |K|= ω} for some ω ∈ {0,1, · · · , Jt}.

Next, we consider a sequence of optimal solutions for the following problems,

fw = min
∑

(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥w

skj ≥ 0 ∀(k, j)∈ B̄t,

(8)

for w ∈ {0,1, . . . , Jt}, and we use sw to denote the corresponding optimal solution. Obviously, we

have minK∈F,|F|=ω G(K) ≥ fω. For a given w ∈ [Jt], let Kw be the corresponding set of selected

couriers,

Kw = {k ∈ [Kt] | ∃j ∈ [Jt] : s
w
kj = 1},



Cheng et al.: Robust Delivery Workforce Management

12 Article submitted to ; manuscript no.

and each courier, k ∈ Kw is assigned to the job jk ∈ [Jt] so that swkjk = 1. Observe that Kw ∈ F ,

|Kw|=w, and the total payment,
∑

k∈Kw
rk does not depend on how the w jobs are being assigned

to the couriers in Kw. Hence,

fw = min
K∈F,|K|=ω

G(K) =G(Kω).

Now let Kw−1 =Kw\{k0} for some k0 ∈ argmaxk∈Kw{rk}. We claim the set Kw−1 is also a local

minimum of G (in domain {K ∈ F : |K| = ω − 1}). Suppose this is not the case, we can replace

some courier k1 ∈Kw−1 with a courier k2 ∈ [Kt]\Kw−1 such that rk2 < rk1 and K̄ ∪ {k2} ∈F , where

K̄=Kw\{k0, k1}. Observe that k2 ̸= k0 since rk0 ≥ rk for all k ∈Kw−1. To arrive at the contradiction

that Kw−1 is not a local minimum, we consider an assignment solution, s̄ for couriers in K̄ that

based on sw as follows

s̄kj =

 swkj if k /∈ {k0, k1}

0 otherwise
∀(k, j)∈ B̄t.

Since the assignment problem is a network flow problem, we can construct the residual network

associated with the solution s̄ (see, e.g., Ahuja et al. 1988). Moreover, because K̄ ∪ {k2} ∈ F , we

can find a feasible assignment solution using a max-flow algorithm by sending a unit of residual

flow from node k2, along an augmenting path on the residual network associated with s̄ (refer to

augmenting path algorithm for max-flow in Ahuja et al. 1988), that will terminate at one of the

unassigned jobs, ℓ∈ [Jt]\J̄ where J̄ is the set of jobs that assigned to couriers in K̄ based on s̄. If

ℓ ̸= jk0 , then we would have K̄∪{k0, k2} ∈F . However, it contradicts that Kw is the local minimum

since we can replace k1 ∈ Kw with k2 to achieve a lower total payment. On the other hand, if

ℓ= jk0 ̸= jk1 , then K̄ ∪ {k1, k2} ∈ F . However, this will also contradict that Kw is local minimum;

since rk0 ≥ rk1 > rk2 , we can replace k0 ∈Kw with k2 to achieve a lower total payment. Therefore,

by contradiction, we must have K̄ ∪ {k2} /∈ F , implying that the set Kw−1 is local minimum.

Consequently, it is also global minimum and we have fw−1 =minK∈F,|K|=ω−1G(K) =G(Kw−1).

Notice that the assignment optimization problem in G only uses couriers in Kw−1 which rules

out the courier with the highest cost from Kω. Therefore, if G(Kw) equals the optimal objec-

tive value of the basic reduced information model (7) with 1⊤zt − a⊤
t x = ω assignments, then

G(Kw−1) must equal the optimal objective value of the basic reduced information model with ω−1

assignments. Also, from previous analysis, if Kω ∈ argminK∈F,|K|=ω G(K) and fw = G(Kw), then

Kω−1 ∈ argminK∈F,|K|=ω−1G(K) and fw−1 =G(Kw−1). Obviously, G(KJt) equals the optimal objec-

tive value of the basic reduced information model with Jt assignments, KJt ∈ argminK∈F,|K|=Jt G(K)

and fJt =G(KJt). By mathematical induction, the basic reduced information model evaluates the

crowdsourcing cost exactly for any number of assignments w ∈ {0,1, · · · , Jt}. □
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Given the historical information Bω
t , for ω ∈ [Ω], t ∈ [T ], by solving Problem (5), we can obtain

the corresponding basic reduced information vector, zω
t , which is used to evaluate the upper bound

of the crowdsourcing cost function. The basic reduced information allows us to characterize the

underlying random variables associated with the delivery workforce management problem. For each

period, t ∈ [T ], the random variable z̃t represents the random basic reduced information vector

associated with the bidding sets. For convenience, we define z̃ := (z̃t)t∈[T ] and its support set is

Z := {(zt)t∈[T ]|zt ∈Zt ∀t∈ [T ]},

Zt = {z ∈RN
+ | 1⊤z ≤ z̄t},

where z̄t is the maximum number of jobs that would ever arrive at the time period t. We denote the

Ω historical realizations of the random variables by zω
t ∈ Zt, ω ∈ [Ω], t ∈ [T ]. Correspondingly, we

define the empirical distribution P̂∈P0(Z), z̃ ∼ P̂ such that for all ω ∈ [Ω], P̂ [z̃t = zω
t ∀t∈ [T ]] = 1

Ω
.

Specifically, with the basic reduced information, we solve the following empirical optimization

problem,

Z̄0 = min w⊤x+EP̂

∑
t∈[T ]

gt(x, z̃t)


s.t. x∈X .

(9)

which is an upper bound to the empirical optimization problem (3), and it is equivalent to the

following linear optimization problem,

Z̄0 = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

p⊤yω
t

s.t. 1⊤yω
t ≥ 1⊤zω

t −a⊤
t x ∀t∈ [T ], ω ∈ [Ω],

0≤ yω
t ≤ zω

t ∀t∈ [T ], ω ∈ [Ω],

x∈X .

For a bidding platform where multiple payment values are allowed, the basic reduced informa-

tion model may not be exact. Unfortunately, the relative performance gap can be unbounded.

Consider an instance with N = 3, Jt = Kt = 2, p = (ϵ,1,3), for some small ϵ > 0 and Bt =

{(1,1,1), (1,2,2), (2,1,2), (2,2,3)}. Hence, zt = (0,2,0). For a⊤
t x = 1, observe that ft(x,Bt) = ϵ,

while gt(x,zt) = 1, implying that the relative performance gap, gt(x,zt)/ft(x,Bt) = 1/ϵ can be

arbitrarily large. Nevertheless, we can narrow the gap through a more general reduced information

model, which will be discussed in the next section.
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Generalized reduced information model

We can further improve the basic reduced information model to obtain a tighter bound on the

crowdsourcing cost function. To do so, for each period t ∈ [T ], we consider Lt breakpoints utℓ ∈

[0, z̄t]∩Z+, ℓ ∈ [Lt], with ut1 = 0. Subsequently, we derive an approximation of the crowdsourcing

cost function that would be tight if a⊤
t x= utℓ for some ℓ ∈ [Lt]. In particular, given the bidding

information Bt, t ∈ [T ], we determine the set of generalized reduced information vectors, zℓ
t ∈RN ,

ℓ∈ [Lt] where

zℓtn =
∑

(k,j):(k,j,n)∈Bt

stℓkj ∀n∈ [N ], ℓ∈ [Lt]

and
stℓ ∈ arg min

∑
(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt −utℓ

skj ≥ 0 ∀(k, j)∈ B̄t.

Observe that since ut1 = 0, z1
t corresponds to the basic reduced information vector. We also note

that whenever utℓ ≥ Jt, we have zℓ
t = 0.

We now extend to a generalized reduced information model by first characterizing the underlying

random variable. As a generalization, we define z̃ := (z̃ℓ
t )t∈[T ],ℓ∈[Lt], where z̃

ℓ
t represents the random

reduced information vector associated with the breakpoint ℓ ∈ [Lt] at the tth period. We consider

breakpoints separable support sets

Z :=
{
(zℓ

t )t∈[T ],ℓ∈[Lt]|zℓ
t ∈Zℓ

t ∀t∈ [T ], ℓ∈ [Lt]
}
,

where

Zℓ
t = {z ∈RN

+ | 1⊤z ≤ z̄tℓ},

and z̄tℓ = z̄t−utℓ ≥ 1. Hence, noting that u1 = 0, with L= 1, the random variable z̃ is a generaliza-

tion over the random basic reduced information vector. Correspondingly, the empirical distribution

is P̂∈P0(Z), z̃ ∼ P̂ such that for all ω ∈ [Ω],

P̂
[
z̃ℓ
t = zℓω

t ∀t∈ [T ], ℓ∈ [Lt]
]
=

1

Ω
,

where zℓω
t ∈Zℓ

t , ℓ ∈ [Lt] is the historical realization of the generalized reduced information associ-

ated with the bidding set Bω
t at t∈ [T ].
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Theorem 3. For any x∈X , η,γ ∈RLt
+ such that 1⊤γ = 1 and 1⊤η= a⊤

t x, we have

ft(x,Bt)≤
∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t ), (10)

where
ht(γ, η,z) = min p⊤y

s.t. 1⊤y≥ 1⊤zγ− η

0≤ y≤ zγ.

(11)

Equality holds if γℓ∗ = 1, a⊤
t x= utℓ∗ for some ℓ∗ ∈ [Lt]. Moreover,

EP̂ [gt(x, z̃
1
t )]≥ min EP̂

 ∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ, z̃
ℓ
t )


s.t. 1⊤γ = 1

1⊤η= a⊤
t x

η,γ ∈RLt
+ .

(12)

Proof of Theorem 3. Observe that since ηℓ ≥ 0, we have ht(0, ηℓ, z
ℓ
t ) = 0. Moreover, for all γℓ > 0,

we have

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t ) = min

p⊤y

∣∣∣∣∣∣1
⊤y≥ 1⊤zℓ

tγℓ − (ηℓ −utℓγℓ)

0≤ y≤ zℓ
tγℓ


= γℓmin

p⊤y

∣∣∣∣∣∣1
⊤y≥ 1⊤zℓ

t − (ηℓ/γℓ −utℓ)

0≤ y≤ zℓ
t


= γℓht(1, ηℓ/γℓ −utℓ,z

ℓ
t ).

Moreover, following the same argument in the proof of Theorem 1, observe that for η≥ utℓ the value

of the function ht(1, η − utℓ,z
ℓ
t ) corresponds to the allocation of Jt − η ad-hoc couriers using the

solution stℓ, which has Jt−utℓ assigned couriers, and removing η−utℓ of the most expensive bidders,

with at most one partial removal if η is fractional. However, when η < utℓ, we have ht(1, η−utℓ,z
ℓ
t ) =

∞, since the underlying minimization problem would be infeasible. Hence, we have

ht(1, η−utℓ,z
ℓ
t )≥ f̄t(η,Bt),

where
f̄t(η,Bt) = min

∑
(k,j,n)∈Bt

pnskj

s.t.
∑

k:(k,j)∈B̄t

skj ≤ 1 ∀j ∈ [Jt],∑
j:(k,j)∈B̄t

skj ≤ 1 ∀k ∈ [Kt],∑
(k,j)∈B̄t

skj ≥ Jt − η

skj ≥ 0 ∀(k, j)∈ B̄t.

(13)
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Therefore, any feasible solution to Problem (10)

∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t )

=
∑

ℓ∈[Lt]:γℓ>0

γℓht(1, ηℓ/γℓ −utℓ,z
ℓ
t )

≥
∑

ℓ∈[Lt]:γℓ>0

γℓf̄t(ηℓ/γℓ,Bt)

≥ f̄t(1
⊤η,Bt)

= f̄t(a
⊤
t x,Bt)

= ft(x,Bt)

where the last inequality is due to the function f̄t(η,Bt) being convex in η, γ ≥ 0 and 1⊤γ = 1.

Suppose γℓ∗ = 1, a⊤
t x= utℓ∗ for some ℓ∗ ∈ [Lt], then we must have γℓ = ηℓ = 0 for ℓ∈ [Lt], ℓ ̸= ℓ∗,

so that ηℓ∗ = a⊤
t x and

ft(x,Bt) ≤
∑
ℓ∈[Lt]

ht(γℓ, ηℓ −utℓγℓ,z
ℓ
t )

= ht(γℓ∗ , ηℓ∗ −utℓ∗γℓ∗ ,z
ℓ∗

t )

= ht(1,0,z
ℓ∗

t )

= ft(x,Bt),

where the final equality follows from the same argument in Theorem 1, since the optimal solution

of Problem (1) is the same as sℓ∗ in which the reduced information zℓ∗
t is derived. To show the

bound (12), it suffices to note that

ht(1,a
⊤
t x−ut1,z

1
t ) = ht(1,a

⊤
t x,z

1
t ) = gt(x,z

1
t ).

□

In the same vein, we can also extend the generalized reduced information model, which solves

the following empirical optimization problem,

Z0 = min w⊤x+EP̂

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )


s.t. 1⊤ηt = a⊤

t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X ,
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or equivalently

Z0 = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

p⊤yℓω
t

s.t. 1⊤yℓω
t ≥ 1⊤zℓω

t γtℓ − ηtℓ +utℓγtℓ ∀t∈ [T ], ω ∈ [Ω], ℓ∈ [Lt],

0≤ yℓω
t ≤ zℓω

t γtℓ ∀t∈ [T ], ω ∈ [Ω], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

(14)

Moreover, as the result of Theorem 3, it provides an improvement over the basic information

model of Problem (9), i.e., Ẑ ≤Z0 ≤ Z̄0. The approximation of the empirical average crowdsourcing

cost is exact if there exists an optimal solution x of Problem (4) such that

a⊤
t x∈ {utℓ|ℓ∈ [Lt]} ∀t∈ [T ].

The reduced information model allows us to characterize the distribution of the underlying

random variable, which would enable us to formulate a robust model to mitigate the uncertainty

associated with the data-driven empirical optimization problem. The following section will show

how we can develop data-driven robust optimization models using the basic and generalized reduced

information models. Our numerical tests based on Solomon’s data sets for VRPs in Section 5 show

that the basic reduced information model performs quite well. Hence, because of its simplicity, we

will first focus on the basic reduced information approach for solving the robust delivery workforce

management problem under uncertainty. We will also discuss extending the result to the generalized

reduced information model.

4. Data-driven robust model

As we do not know how future uncertainty would evolve, the solution to the empirical optimization

problem may not necessarily perform as well when the actual uncertainty is realized in the future.

This overfitting phenomenon is known as the optimizer’s curse (Smith and Winkler 2006). To build

a data-driven robust model, we first focus on the basic reduced information model where the true

distribution of the random basic reduced information vector, z̃ ∼ P⋆, P⋆ ∈ P0(Z) is unobservable

to the decision maker.

Because the empirical distribution, P̂, is not the true distribution, P⋆, the empirical optimization

models would often yield inferior solutions in out-of-sample performance evaluations. To overcome

this issue, Mohajerin Esfahani and Kuhn (2018) and Gao and Kleywegt (2022) have proposed a

data-driven robust optimization model with an ambiguity set that is characterized by a type-1
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Wasserstein metric ∆(P, P̂), which evaluates the statistical distance between a candidate distri-

bution P from the empirical distribution, P̂. In particular, suppose PΩ denotes the distribution

that governs the distribution of the independent samples z̃1, . . . , z̃Ω drawn from P⋆ for which

the empirical distribution P̂ is constructed. Then under some light-tall distribution assumption,

PΩ
[
∆(P⋆, P̂)> r

]
would diminish rapidly to zero as the statistical distance r increases (Fournier

and Guillin 2015). The robust optimization problem for the basic reduced information model is as

follows,

Z̄r = min w⊤x+ sup
P∈P0(Z):

∆(P,P̂)≤r

EP

∑
t∈[T ]

gt(x, z̃t)


s.t. x∈X ,

where in practice, the size parameter r is determined via cross-validation to achieve better out-of-

sample performance than the non-robust optimization model.

Robust satisficing

Instead of restricting the distribution to within the vicinity of the empirical distribution, in address-

ing the issues of robustness in data-driven optimization problems, Long et al. (2022) propose a

robust satisficing model specified by a target τ ≥ Z̄0. In particular, the robust satisficing model for

the problem is as follows

κτ = min k

s.t. w⊤x+EP

∑
t∈[T ]

gt(x, z̃t)

≤ τ + k∆(P, P̂) ∀P∈P0(Z)

x∈X , k≥ 0.

(15)

To obtain a tractable model for our robust satisficing problem, we propose the following time

additive Wasserstein metric,

∆(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

1

z̄t
||z̃t − ξ̃t||∞

 ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 ,

where ∥ · ∥∞ is the L∞-norm.

Since the basic reduced information model is a conservative approximation of the actual problem,

the objective of the robust satisficing problem κτ can be associated with how well the actual

expected cost, when evaluated on the true unobservable distribution, would not excessively exceed

the threshold τ . More importantly, compared to specifying the size of the ambiguity set of the

robust optimization model, it is more interpretable and intuitive to specify the target parameter τ

of the robust satisficing model using Z̄0 as the reference that the target should exceed by.
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Proposition 1. Under the time additive Wasserstein metric, the robust satisficing problem (15)

is equivalent to the following robust optimization problem

κτ = min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
∥zt −zω

t ∥∞
}
≤ τ

x∈X , k≥ 0.

(16)

Proof of Proposition 1. Based on the definition of the Wasserstein metric, we can rewrite the first

group of constraints in Problem (15) as

w⊤x+EQ

∑
t∈[T ]

(
gt(x, z̃t)−

k

z̄t
||z̃t − ξ̃t||∞

)≤ τ ∀Q∈P0(Z2) : (z̃, ξ̃)∼Q, ξ̃∼ P̂,

or equivalently

w⊤x+
1

Ω

∑
ω∈[Ω]

EPω

∑
t∈[T ]

(
gt(x, z̃t)−

k

z̄t
||z̃t −zω

t ||∞
)≤ τ ∀Pω ∈P0(Z).

Since P0(Z) contains all Dirac distributions whose unit mass concentrates on any z ∈ Z, we can

also express this as a robust constraint as follows,

w⊤x+
1

Ω

∑
ω∈[Ω]

sup
z∈Z

∑
t∈[T ]

(
gt(x,zt)−

k

z̄t
||zt −zω

t ||∞
)≤ τ

⇐⇒ w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
||zt −zω

t ||∞
}
≤ τ.

□

Note that the basic reduced crowdsourcing cost function, gt(x,zt) for t ∈ [T ] is determined by

solving the linear optimization problem (7) after the realization of zt. Hence, its optimal recourse

yt is a mapping of zt, and we can model Problem (16) as an adaptive robust optimization problem

as follows:

min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

sup
zt∈Zt

{
p⊤yt(zt)−

k

z̄t
∥zt −zω

t ∥∞
}
≤ τ

1⊤yt(zt)≥ 1⊤zt −a⊤
t x ∀zt ∈Zt, t∈ [T ],

0≤ yt(zt)≤ zt ∀zt ∈Zt, t∈ [T ],

yt :RN →R ∀t∈ [T ],

x∈X , k≥ 0.

Adaptive robust optimization problems are generally computationally challenging problems. Hence,

these problems are often solved approximately by replacing the recourse decision yt with linear
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decision rules or affine recourse adaptations (Ben-Tal et al. 2004, Chen et al. 2020). However,

because the second stage optimization problem (7) does not have complete recourse, such an

approximation may not obtain a feasible solution of the robust satisficing problem (Long et al.

2022) for any reasonable chosen target, τ > Z̄0. Hence, it is surprising that we can model the robust

satisficing problem (16) exactly as the following deterministic optimization problem.

Theorem 4. The robust satisficing problem (16) is equivalent to the following deterministic

optimization problem

κτ = min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ,

rωt ≥ z̄tϕ
ω
tn +(θω

tn)
⊤
zω
t −a⊤

t xpn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

z̄t ∥θω
tn∥1 ≤ k ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

1ϕω
tn +θω

tn ≥ qn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

ϕω
tn ≥ 0,θω

tn ∈RN ∀ω ∈ [Ω], t∈ [T ], n∈ [N ],

rωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ],

x∈X , k≥ 0,

(17)

where the vector qn ∈RN , n∈ [N ] has elements

qnm =

 pm if m∈ [n− 1]

pn otherwise
∀m∈ [N ].

If the empirical optimization problem (9) is solvable, then the robust satisficing problem is also

feasible for all τ ≥ Z̄0, and κτ ∈ [0, κ̄], where

κ̄= (1⊤p)max
t∈[T ]

{z̄t}.

Proof of Theorem 4. From Proposition 1, we can express the robust satisficing model as

κτ = min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ

rωt ≥ sup
zt∈Zt

{
gt(x,zt)−

k

z̄t
∥zt −zω

t ∥∞
}

∀ω ∈ [Ω], t∈ [T ],

x∈X , k≥ 0.
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Recall that pn is non-decreasing in n∈ [N ], and let p0 = 0. By strong duality of linear optimization,

we have

gt(x,zt) = min
yt

{
p⊤yt | 1⊤yt ≥ 1⊤zt −a⊤

t x,0≤ yt ≤ zt

}
= max

λ≥0
min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}
= max

{
max

λ∈[0,pN ]
min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}
,

max
λ≥pN

min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}}

= max

{
max

λ∈[0,pN ]
min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}
,

max
λ≥pN

{
p⊤zt −λ(1⊤zt +a⊤

t x−1⊤zt)
}}

= max

{
max

λ∈[0,pN ]
min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}
,

max
λ=pN

{
p⊤zt −λ(a⊤

t x)
}}

(since a⊤
t x≥ 0)

= max
λ∈[0,pN ]

min
yt

{
(p−λ1)⊤yt +λ

(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt

}

= max
n∈[N ]

max
λ∈[pn−1,pn]

min
yt

 ∑
m∈[N ]

(pm −λ)ytm +λ
(
1⊤zt −a⊤

t x
)

| 0≤ yt ≤ zt


= max

n∈[N ]
max

λ∈[pn−1,pn]

 ∑
m∈[n−1]

(pm −λ)ztm +λ
(
1⊤zt −a⊤

t x
)

= max
n∈[N ]

max
λ∈{pn−1,pn}

 ∑
m∈[n−1]

(pm −λ)ztm +λ
(
1⊤zt −a⊤

t x
)

= max

0,max
n∈[N ]

 ∑
m∈[n−1]

(pm − pn)ztm +
(
1⊤zt −a⊤

t x
)
pn




= max

{
0,max

n∈[N ]

{
q⊤
n zt −a⊤

t xpn
}}

.

Hence,

rωt ≥ sup
zt∈Zt

{gt(x,zt)− k∥zt −zω
t ∥∞/z̄t}

⇐⇒

 rωt ≥ q⊤
n zt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt, n∈ [N ]

rωt ≥−k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt.

Observe that since zω
t ∈Zt, we have

rωt ≥−k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt

⇐⇒ rωt ≥ 0.
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We next show that for any q ∈RN ,

sup
zt∈Zt

{
q⊤zt − k∥zt −zω

t ∥∞/z̄t
}

= sup
zt≥0

1⊤zt≤z̄t

{
q⊤zt − k ∥zt −zω

t ∥∞ /z̄t
}

= sup
zt≥0

1⊤zt≤z̄t

inf
∥θ∥1≤k/z̄t

{
q⊤zt −θ⊤ (zt −zω

t )
}

= inf
∥θ∥1≤k/z̄t

sup
zt≥0

1⊤zt≤z̄t

{
q⊤zt −θ⊤ (zt −zω

t )
}

= inf
∥θ∥1≤k/z̄t

sup
zt≥0

1⊤zt≤z̄t

{
(q−θ)

⊤
zt +θ⊤zω

t

}
= inf

∥θ∥1≤k/z̄t
1ϕ+θ≥q,ϕ≥0

{
z̄tϕ+θ⊤zω

t

}
.

Therefore, for all t∈ [T ], ω ∈ [Ω], n∈ [N ],

rωt ≥ q⊤
tnzt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt

⇐⇒


rωt ≥ z̄tϕ

ω
tn +(θω

tn)
⊤
zω
t −a⊤

t xpn

z̄t ∥θω
tn∥1 ≤ k

1ϕω
tn +θω

tn ≥ qtn

for some ϕω
tn ∈R+,θ

ω
tn ∈RN .

Finally, to show feasibility for τ ≥ Z̄0, we consider a restricted feasible set of Problem (17) with

ϕω
tn = 0 and qn = θω

tn for all n ∈ [N ], ω ∈ [Ω], t ∈ [T ]. Hence, we can express the restricted feasible

set as

Q =

x∈X

∣∣∣∣∣∣∣∣∣∣
∃rωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ] :

w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

rωt ≤ τ

rωt ≥ q⊤
n z

ω
t −a⊤

t xpn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ]


=

{
x∈X

∣∣∣∣∣w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

max

{
0,max

n∈[N ]

{
q⊤
n z

ω
t −a⊤

t xpn
}}

≤ τ

}

=

x∈X

∣∣∣∣∣∣w⊤x+EP̂

∑
t∈[T ]

gt(x, z̃t)

≤ τ

 ,

so that any x ∈ Q would be feasible in Problem (17). Hence, if the empirical optimization prob-

lem (9) is solvable, then its solution would be feasible in the robust satisficing problem for all

τ ≥ Z̄0. Moreover, when k≥ κτ ≥ z̄t∥qn∥1,

q⊤
n z− k∥z−zω

t ∥∞/z̄t

= q⊤
n z

ω
t + q⊤

n (z−zω
t )− k∥z−zω

t ∥∞/z̄t

≤ q⊤
n z

ω
t + ∥qn∥1∥z−zω

t ∥∞ − k∥z−zω
t ∥∞/z̄t

≤ q⊤
n z

ω
t .
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On the other hand,

sup
zt∈Zt

{q⊤
n zt − k∥zt −zω

t ∥∞/z̄t} ≥ q⊤
n z

ω
t

since zω
t ∈Zt. Therefore, when k≥ κτ ,

rωt ≥ sup
zt∈Zt

{gt(x,zt)− k∥zt −zω
t ∥∞/z̄t}

⇐⇒

 rωt ≥ q⊤
n zt −a⊤

t xpn − k∥zt −zω
t ∥∞/z̄t ∀zt ∈Zt, n∈ [N ]

rωt ≥ 0

⇐⇒

 rωt ≥ q⊤
n z

ω
t −a⊤

t xpn ∀n∈ [N ]

rωt ≥ 0

⇐⇒ rωt ≥ gt(x, z̃
ω
t ),

indicating the robust satisficing problem (16) coincides with the empirical optimization problem (9),

thus the κτ can never be larger than κ̄ when for any τ ≥ Z̄0. □

Although the basic robust satisficing model is feasible for any τ ≥ Z̄0, since Z̄0 ≥ Ẑ, it would not

be feasible for τ ∈ [Ẑ, Z̄0), which can be an issue if Z̄0 is significantly larger than Ẑ. To reduce the

conservativeness, we have to consider solving the generalized reduced information model that would

achieve Z0 = Ẑ. A computationally viable approach is to use the optimal solution of Problem (4),

x and consider Lt = 2 breakpoints with ut2 = a⊤
t x ∀t∈ [T ]. Based on Theorem 3, we have Z0 = Ẑ.

Next, we show how to extend the robust satisficing model to incorporate the generalized reduced

information.

Robust model with generalized reduced information

We now extend to the generalized reduced information model with z̃ = (z̃ℓ
t )t∈[T ],ℓ∈[Lt]. To obtain a

computationally tractable model, we consider the following γ-weighted time-addictive Wasserstein

metric,

∆γ(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

∑
ℓ∈[Lt]

1

z̄tℓ
γtℓ||z̃ℓ

t − ξ̃ℓ
t ||∞

 ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 .

Accordingly, we propose the following robust satisficing model associated with the generalized

reduced information model,

κτ = min k

s.t. w⊤x+EP

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

≤ τ + k∆γ(P, P̂) ∀P∈P0(Z),

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

(18)
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Observe that when ηt1 = a⊤
t x, and γt1 = 1, Problem (18) will recover the solution of the basic

reduced information robust satisficing problem (15). Hence, Problem (18) has a lower objective

value, which leads to lower probabilities of violating the target at various levels in the following

result.

We note that, unlike the basic reduced information model, we cannot solve the generalized robust

satisficing model as a single convex optimization problem even if X is a convex set. Nevertheless,

the following result shows how we can solve the more general robust model via a binary search on

a bounded interval of k.

Theorem 5. The robust satisficing problem (18) is equivalent to the following deterministic

optimization problem

κτ = min k

s.t. ρ(k)≤ τ

k≥ 0,

(19)

where

ρ(k) = min w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

rℓωt

s.t. rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀ω ∈ [Ω], t∈ [T ], n∈ [N ], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt ∈RLt ,γt ∈RLt
+ ∀t∈ [T ],

rℓωt ≥ 0 ∀ω ∈ [Ω], t∈ [T ], ℓ∈ [Lt],

x∈X ,

(20)

and
αℓω

tn(k) = max q⊤
n z− k

z̄tℓ
∥z−zℓω

t ∥∞
s.t 1⊤z ≤ z̄tℓ

z ≥ 0.

Moreover, if the empirical optimization problem (14) is solvable, then for all τ ≥Z0, the robust

satisficing problem is also feasible, and κτ ∈ [0, κ̄] for the same κ̄ defined in Theorem 4.

Proof of Theorem 5. Observe that

w⊤x+EP

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

≤ τ + k∆γ(P, P̂) ∀P∈P0(Z)

is equivalent to

w⊤x+
1

Ω

∑
ω∈[Ω]

EPω

∑
t∈[T ]

∑
ℓ∈[Lt]

(
ht(γtℓ, ηtℓ −utℓγtℓ, z̃

ℓ
t )−

kγtℓ
z̄tℓ

||z̃ℓ
t −zℓω

t ||∞
)≤ τ ∀Pω ∈P0(Z).
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Since P0(Z) contains all Dirac distributions whose unit mass concentrates on any z ∈Z, and given

that the support set is breakpoints separable, we have the following equivalent constraint,

w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

sup
zℓ
t∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )−

kγtℓ
z̄tℓ

||zℓ
t −zℓω

t ||∞
}
≤ τ.

Therefore Problem (18) has the following equivalent formulation

min k

s.t. w⊤x+
1

Ω

∑
ω∈[Ω]

∑
t∈[T ]

∑
ℓ∈[Lt]

rℓωt ≤ τ

rℓωt ≥ sup
z∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )− kγtℓ∥z−zℓω

t ∥∞/z̄tℓ
}
∀ω ∈ [Ω], t∈ [T ], n∈ [N ], ℓ∈ [Lt],

1⊤ηt = a⊤
t x ∀t∈ [T ],

1⊤γt = 1 ∀t∈ [T ],

ηt ∈RLt ,γt ∈RLt
+ ∀t∈ [T ],

x∈X .

(21)

Consequently, following the similar analysis in Theorem 4, we have

rℓωt ≥ sup
zℓ
t∈Zℓ

t

{
ht(γtℓ, ηtℓ −utℓγtℓ,z

ℓ
t )− kγtℓ∥zℓ

t −zℓω
t ∥∞/z̄tℓ

}

⇐⇒


rℓωt ≥ sup

z∈Zℓ
t

{
q⊤
n z− k∥z−zω

t ∥∞/z̄tℓ
}
γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ sup
z∈Zℓ

t

{
−k∥z−zℓω

t ∥∞/z̄tℓ
}
γtℓ

⇐⇒

 rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0.

Observe that since zℓω
t ∈Zℓ

t , we have

αℓω
tn(k)≥ q⊤

n z
ℓω
t .

However, we note that if k≥ z̄tℓ∥qn∥1, then

q⊤
n z− k∥z−zω

t ∥∞/z̄tℓ

= q⊤
n z

ℓω
t + q⊤

n (z−zω
t )− k∥z−zω

t ∥∞/z̄tℓ

≤ q⊤
n z

ℓω
t + ∥qn∥1∥z−zω

t ∥∞ − k∥z−zω
t ∥∞/z̄tℓ

≤ q⊤
n z

ℓω
t ,
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which implies αℓω
tn(k) = q⊤

n z
ℓω
t . Hence, if k≥ κ̄≥ z̄tℓ(1

⊤p)≥ z̄tℓ∥qn∥1 for all t∈ [T ], ℓ∈ [Lt], then the

following holds  rℓωt ≥ αℓω
tn(k)γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0.

⇐⇒

 rℓωt ≥ q⊤
n z

ℓω
t γtℓ − (ηtℓ −utℓγtℓ)pn ∀n∈ [N ]

rℓωt ≥ 0.

⇐⇒ rℓωt ≥ ht(γtℓ, ηtℓ −utℓγtℓ,z
ℓω
t ).

Hence, when k ≥ κ̄, the empirical optimization problem (14) is the same as Problem (20) so that

ρ(k) =Z0. Therefore, the robust satisficing problem is feasible for τ ≥Z0, and κτ would not exceed

κ̄. □

Observe that if X is a polyhedron, then Problem (20) would be a linear optimization problem.

Consequently, using binary search, we can solve the generalized robust satisficing model via solving

a modest number of convex optimization problems.

Statistical justification

We now provide the statistical justification for the robust satisficing model.

Theorem 6. Consider the random bidding sets (B̃1, . . . , B̃t) ∼ Q⋆ which generate the random

variable associated with the generalized reduced information z̃ ∼ P⋆. Let PΩ be the distribution that

governs the distribution of independent samples z̃ω, ω ∈Ω drawn from P⋆. The following holds for

the optimal solution to Problem (18):

1. Confidence guarantee of Fournier and Guillin (2015). For any τ ≥Z0,

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤

 c1 exp(−c2Ωr
NL) ∀r ∈ [0,1]

0 ∀r > 1,

for some positive c1 and c2 that depend on EP⋆ [exp(||z̃||∞)] and NL, L=
∑

t∈[T ]Lt.

2. Confidence guarantee for significant target shortfalls. For given τ ≥Z0,

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤

 exp
(
−2Ω(r−µ)

2
)
∀r ∈ [µ,1]

0 ∀r > 1,

where

µ :=E(z̃,ξ̃)∼P⋆×P⋆

 1

T

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − ξ̃ℓ
t∥∞

} ,

noting that µ≤ 1.
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Proof of Theorem 6. For any optimal solution x,γ,η, κτ to Problem (18) given τ , we have from

Theorem 3,

EQ⋆

∑
t∈[T ]

ft(x, B̃t)

≤EP⋆

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

 .

Hence, for any r≥ 0

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ


≤ PΩ

w⊤x+EQ⋆

∑
t∈[T ]

∑
ℓ∈[Lt]

ht(γtℓ, ηtℓ −utℓγtℓ, z̃
ℓ
t )

> τ +Trκτ


≤ PΩ

[
∆γ(P⋆, P̂)>Tr

]
≤ PΩ

[
∆̄(P⋆, P̂)>Tr

]
,

where

∆̄(P, P̂) := inf
Q∈P0(Z2)

EQ

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
||z̃ℓ

t − ξ̃ℓ
t ||∞

} ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂

 ,

noting that ∆γ(P⋆, P̂)≤ ∆̄(P⋆, P̂) is due to 1⊤γt = 1 and γt ≥ 0. By the definition of ∆̄, we have

PΩ
[
∆̄(P⋆, P̂)>Tr

]
≤ PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}>Tr

 .

Since z̃ℓ
t , z̃

ℓω
t ∈Zt almost everywhere, we have

∥z̃ℓ
t − z̃ℓω

t ∥∞ ≤ max
x,y≥0

1⊤x≤z̄tℓ,1
⊤y≤z̄tℓ

max
n∈[N ]

{|e⊤
n (x−y)|}

≤ max
x,y≥0

∥x∥1≤z̄tℓ,∥y∥1≤z̄tℓ

max
n∈[N ]

{
max{e⊤

nx,e
⊤
ny}

}
(since x,y≥ 0)

≤ max
n∈[N ]

{
max

{
max

∥x∥1≤z̄tℓ

{e⊤
nx}, max

∥y∥1≤z̄tℓ

{e⊤
ny}

}}
= max

n∈[N ]
{max{z̄tℓ∥en∥∞, z̄tℓ∥en∥∞}}}= z̄tℓ,

where en is the nth unit basis vector. Therefore,

PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}≤ T

= 1.

Consequently, when r > 1, we must have

PΩ
[
∆̄(P⋆, P̂)>Tr

]
= 0.

1. We now complete the proof for the first probability bound. Before proving this result, we need

to recap the result on the probability bound of the Wasserstein distance in Fournier and Guillin

(2015) as follows.
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Suppose the actual data-generating distribution P⋆, z̃ ∼ P⋆ is a light-tailed distribution such that

EP⋆ [exp(∥z̃∥α)]<∞ (22)

for some α > 1 and PΩ is the distribution that governs the distribution of independent samples

ẑ1, . . . , ẑΩ drawn from P⋆, which constitutes the empirical distribution P̂. Then for any R ∈ (0,1),

PΩ
[
∆1(P⋆, P̂)>R

]
≤ c1 exp(−c2ΩR

max{nz ,2}) (23)

for some positive constants, c1 and c2 that only depend on α, EP⋆ [exp(∥z̃∥α)], nz being the dimension

of z̃, and ∆1 is the (type-1) Wasserstein metric defined by

∆1(P, P̂) := inf
Q∈P0(Z2)

{
EQ

[
||z̃− ξ̃||

] ∣∣∣ (z̃, ξ̃)∼Q, z̃ ∼ P, ξ̃∼ P̂
}
.

This result serves as a critical step to build the target attainment confidence guarantee since our

result eventually relies on the probability bound of the Wasserstein distance. It remains to derive

an upper bound for PΩ
[
∆̄(P⋆, P̂)>Tr

]
. Since z̃ ∈Z almost everywhere, it is easy to see

∥z̃∥∞ = max
t∈[T ],ℓ∈[Lt]

n∈[N ]

zℓtn ≤ max
t∈[T ],ℓ∈[Lt]

z̄tℓ = z̄ a.e.,

then

EP⋆ [exp(∥z̃∥α∞)]≤ exp(z̄α)<∞

for any α≥ 1. We can choose α= 1 to meet the assumption in inequality (22). Since mint∈[T ] z̄tℓ ≥ 1,

we have

T∥z̃− ξ̃∥∞ ≥
∑
t∈[T ]

max
ℓ∈[Lt]

[
1

z̄tℓ
||z̃ℓ

t − ξ̃ℓ
t ||∞

]
a.e.,

therefore

T∆1(P⋆, P̂)≥ ∆̄(P⋆, P̂) =⇒ PΩ
[
∆̄(P⋆, P̂)>Tr

]
≤ PΩ

[
∆1(P⋆, P̂)> r

]
∀r ∈ [0,1].

Further notice the dimension of z̃ is N(
∑

t∈[T ]Lt) ≥ 2, the following probability bound hold by

inequality (23)

PΩ

w⊤x+EQ⋆

∑
t∈[T ]

ft(x, B̃t)

> τ +Trκτ

≤ c1 exp(−c2Ωr
NL) ∀r ∈ [0,1],

where L=
∑

t∈[T ]Lt, c1 and c2 are constants that depend on EP⋆ [exp(||z̃||∞)] and NL.

2. We next prove the result for the second probability bound. For ease of expression, we can

define the random variables

ν̃ω :=Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

} ∀ω ∈ [Ω],
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then ν̃1, ν̃2, · · · , ν̃Ω are independent random variables and

0≤EPΩ [ν̃ω] = µ≤ ess sup ν̃ω ≤ 1

T

∑
t∈[T ]

z̄tℓ
z̄tℓ

= 1 ∀ω ∈ [Ω].

We have the following for any r ∈ [µ,1]

PΩ

 1

Ω

∑
ω∈[Ω]

Ez̃∼P⋆

∑
t∈[T ]

max
ℓ∈[Lt]

{
1

z̄tℓ
∥z̃ℓ

t − z̃ℓω
t ∥∞

}≥ Tr


= PΩ

 1

Ω

∑
ω∈[Ω]

ν̃ω ≥ r


≤ inf

θ≥0

exp (−θr)EPΩ

exp
θ

∑
ω∈[Ω]

ν̃ω/Ω


= inf

θ≥0

exp (−θr)EPΩ

 ∏
ω∈[Ω]

exp (θν̃ω/Ω)


= inf

θ≥0

exp (−θr)

 ∏
ω∈[Ω]

EPΩ [exp (θν̃ω/Ω)]


≤ inf

θ≥0

exp (−θr)

 ∏
ω∈[Ω]

exp
(θEPΩ [ν̃ω]

Ω
+

θ2

8Ω2

)
= inf

θ≥0

{
exp

( θ2

8Ω
− θr+

θ
∑

ω∈[Ω]EPΩ [ν̃ω]

Ω

)}
≤ inf

θ≥0

{
exp

( θ2

8Ω
− θ(r−µ)

)}
= exp

(
− 2Ω(r−µ)

2
)
,

where the first equation holds by the definition of ν̃ω, the second inequality holds by Markov

inequality, the third equation holds trivially, the fourth equation holds since ν̃1, ν̃2, · · · , ν̃Ω are

independent, the fifth inequality holds by Hoeffding’s lemma, the sixth equation and the seventh

inequality hold trivially, and the last equation holds by calculating the minimum of the quadratic

function. □

We present two probability bounds in this theorem. For the confidence bound of Fournier and

Guillin (2015) to dominate the second bound for r ∈ [0, µ], we would require enough samples such

that c1 exp(−c2Ωµ
NL)< 1. However, since data is collected over time in the workforce management

problem, we expect the number of data samples available to be far fewer than necessary for the

confidence guarantee to be practically useful; if the planning horizon is seven days, the weekly

demand data may only provide 52 samples per year. Hence, in practical situations, we expect the

deviation between in-sample and out-of-sample performance to be significant.
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Nevertheless, for justifying our robust satisficing model, the second probability bound provides

the assurance that, for a fixed number of samples Ω, the probability of target shortfalls exceeding

Trκτ decreases exponentially in (r − µ)2 and diminish to 0 when r > 1. Although this bound is

not useful when r < µ, it is indeed a better bound than the first one, especially when µ is a

small number. This also means that greater shortfalls may occur but with exponentially decreasing

probability. Minimizing the violation probability is consistent with the objective of the robust

satisficing model, which aims to achieve the lowest possible value of κτ . Notably, we provide a

simple expression specific to the robust satisficing model rather than using the results of Fournier

and Guillin (2015). More importantly, unlike the confidence guarantee of Fournier and Guillin

(2015), the second bound is independent of the number of breakpoints in the generalized reduced

information model. Additionally, introducing more breakpoints can result in a lower value of κτ

and a reduced violation probability bound, further motivating the use of the robust satisficing

model constructed from the γ-weighted time-addictive Wasserstein metric.

While Theorem 6 provides a useful theoretical framework for the robust satisficing model, it

does not show how the target should be set. In particular, a practical implementation may require

additional techniques, such as cross-validation on the target parameter to optimize out-of-sample

performance.

5. Numerical studies

In this section, our focus is on evaluating the performance of the basic and generalized reduced

information models across multiple payment values. We also compare the robust satisficing model

and the empirical model using simulated data.

Evaluation of the reduced information models using Solomon’s data sets

In Section 3, we demonstrate through a pathological example that the basic reduced information

model could have an arbitrarily large relative performance gap with respect to the true model when

multiple payment values are allowed. However, in practical delivery problems, the performance gap

is usually acceptable. To further investigate the impact of multiple payment values, we conduct

experiments using Solomon’s data sets (Solomon 1987) for the VRP with time windows, where

hierarchical objectives are considered, with the primary aim being to minimize the number of

vehicles and then the travel distance. The solutions are available at https://sun.aei.polsl.pl/

/~zjc/best-solutions-solomon.html. We only consider the C1, R1, and RC1 data sets, as these

contain instances where more than ten vehicles are used. We do not consider the R2, C2, and RC2

data sets because they only involve a small number of vehicles (2, 3, or 4). Thus, there are 29

instances in total.

https://sun.aei.polsl.pl//~zjc/best-solutions-solomon.html
https://sun.aei.polsl.pl//~zjc/best-solutions-solomon.html
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For each instance, we consider a list of N = 5 possible payments, with pn = ⌊0.8dmin + (n −
1) (1.2dmax−0.8dmin)

(N−1)
⌋, where dmin and dmax represent the minimal and maximal route lengths, respec-

tively. Note that the route length does not include the travel distance from the last customer to

the depot. We set Kt = 2Jt and consider four cases for bidding jobs. In each case, every ad-hoc

courier could provide N ′ ∈ {2, . . . ,5} payment values. For each courier j ∈ [Jt], we randomly gener-

ate their coordinates within the minimal and maximal coordinates of all nodes, then calculate the

travel distances required to complete each job, which is the sum of the distance between a courier’s

current location and the depot, and the route length associated with a job. Subsequently, we sort

the travel distances of each courier in non-decreasing order, denoting the resulting list as Dj. For

the first ⌊ |Jt|
N ′ ⌋ jobs in Dj, we calculate the average travel distance d̄ and set the courier’s payment

for each of these jobs as the one that has the minimal absolute deviation from d̄. We then follow

a similar procedure to set the payment for the second ⌊ |Jt|
N ′ ⌋ jobs until N ′ payments are specified.

We acknowledge that this bidding scheme is simplistic and intended for illustrative purposes only.

More complex bidding schemes can be developed by incorporating other influential factors, such

as the courier’s destination after finishing a job and the properties of the jobs (e.g., the number of

customers included in a job and package weights).

Subsequently, we solve Problems (1) and (7) for a⊤
t x ∈ {0, . . . , Jt − 1}. For a combination of

(N ′,a⊤
t x), we randomly generate 20 instances, where each instance differentiates from the other

in the payment values provided by a courier and the sets of bidding jobs under each payment.

The average percentage gaps are reported in Table 1, where gaps are calculated by gt(x,zt)−ft(x,Bt)

ft(x,Bt)
.

Moreover, we also present the results under N ′ = 1 to give some intuition of Theorem 2. To provide

insights into the differences among payment values, we give the price ratio between the maximal

value p5 and the minimal p1 in the table.

Table 1 Average gaps (in %) between gt(x,zt) and ft(x,Bt) under multiple payment values

Number Instance p5/p1 N ′ = 1 N ′ = 2 N ′ = 3 N ′ = 4 N ′ = 5 Number Instance p5/p1 N ′ = 1 N ′ = 2 N ′ = 3 N ′ = 4 N ′ = 5
1 C101 2.81 0.00 0.08 3.40 2.81 3.48 16 R107 3.00 0.00 0.00 0.07 3.35 2.77
2 C102 2.81 0.00 0.24 2.98 3.87 4.03 17 R108 2.02 0.00 0.62 0.47 0.85 1.38
3 C103 4.25 0.00 6.38 2.45 1.86 2.05 18 R109 2.42 0.00 5.04 2.34 4.37 2.77
4 C104 4.25 0.00 2.97 2.09 1.13 1.98 19 R110 2.05 0.00 0.00 0.57 1.32 1.36
5 C105 2.81 0.00 0.19 2.47 4.04 4.29 20 R111 2.67 0.00 1.01 2.50 0.74 1.58
6 C106 2.81 0.00 0.23 2.50 3.64 3.69 21 R112 2.02 0.00 1.89 0.90 1.31 2.61
7 C107 2.81 0.00 0.13 2.34 3.11 3.93 22 RC101 4.07 0.00 3.86 0.49 0.60 0.71
8 C108 2.81 0.00 0.31 3.05 3.14 4.04 23 RC102 2.62 0.00 1.11 0.17 0.78 0.41
9 C109 2.81 0.00 0.33 2.87 2.70 3.86 24 RC103 3.08 0.00 2.95 2.25 2.64 2.32
10 R101 6.42 0.00 0.23 6.03 1.77 1.91 25 RC104 2.53 0.00 5.30 4.49 6.22 7.54
11 R102 9.71 0.00 0.00 1.05 0.00 1.24 26 RC105 3.67 0.00 0.33 4.10 5.44 4.00
12 R103 5.70 0.00 0.49 4.54 1.00 0.75 27 RC106 2.87 0.00 1.41 6.68 8.34 7.59
13 R104 2.09 0.00 0.00 0.00 0.31 0.99 28 RC107 3.46 0.00 4.34 13.81 13.89 8.66
14 R105 4.23 0.00 0.04 8.02 3.11 3.48 29 RC108 2.69 0.00 0.97 1.34 1.66 1.61
15 R106 3.48 0.00 2.46 12.74 3.20 1.08

Table 1 indicates that the price ratio p5/p1 ranges from 2.02 to 9.71, relatively high values

compared to the average earnings of Amazon Flex drivers, which is stated to be between 18 to
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25 dollars per hour, resulting in a ratio of around 1.39. Despite this, our approximation model

performs well, with average performance gaps of less than 5% observed in 101 out of 116 cases

where multiple payment values are allowed. In 35 cases, the average gaps are less than 1%. When

the single payment value bidding scheme is employed, the reduced information model generates

exact solutions, as illustrated in columns N ′ = 1. Based on these results, we conclude that our

basic reduced information model can provide good approximations for Problem (1) when applied

to practical delivery problems.
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(d) N ′ = 5

Figure 1 Average gaps (in %) between the reduced information models and the crowdsourcing cost function

To provide a comparative analysis of the performance of the generalized information model, we

conduct further experiments using the same instances using L= 2 breakpoints, where u0 = 0 and

u2 = ⌊Jt/2⌋. Figure 1 plots the average percentage gaps between the basic/generalized reduced

information model and the crowdsourcing cost function. The results reveal that the generalized
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model provides tighter bounds than the basic model and sometimes significantly improves the

bounds. For example, when N ′ = 3, the average gap between the basic model and the crowdsourcing

cost function is approximately 14% in instance RC107 (i.e., instance number 28); however, the

generalized model reduces the gap to 0.5%. Moreover, we observe that the generalized model

produces solutions with performance gaps of less than 5% for all the instances. When N ′ = 2, the

average gap of the generalized model is less than 0.5% for all the instances. Therefore, we can

conclude that the generalized reduced information model can provide better approximations for

Problem (1) and be useful in tackling practical delivery problems.

Mitigating ambiguity via robust satisficing

In this numerical study, we simulate a delivery platform that makes workforce management deci-

sions for a planning horizon of 8 periods, representing a typical workday of 8 hours. There are a

total of 26 work shifts, each lasting between 1 to 4 periods. The compensation for each contracted

courier in the ith work shift is given by wi = 20σi × 0.9σi−1, where the basic compensation for

each period is 20 and σi is the number of periods that shift i covers. A discount factor of 0.9 is

used to distinguish shifts; otherwise, hiring a person for a shift of a certain number of periods is

equivalent to hiring that person for multiple continuous shifts, each lasting for one period. It is also

reasonable in real-world applications that shorter shift has higher compensation per hour since it

is more flexible.

For each period t∈ [T ], where T = 8, the number of jobs Jt has lower and upper bounds Jmin = 10

and Jmax = 50. We randomly generate Jt from a normal distribution with mean Jmin+Jmax

2
= 30 and

standard deviation being the same as the mean, and truncated within the interval [Jmin, Jmax] to

ensure that Jt is an integer in {Jmin, Jmin+1, . . . , Jmax}. Each courier k ∈ [Kt], where Kt = ⌊1.2Jt⌋,

has a travel cost denoted by c̄kt from their current location to the depot, which is a random number

between c̄l = 0 and c̄u = 20. The payment cjt for each job j ∈ [Jt] in period t ∈ [T ] is randomly

generated from the interval [cl, cu] = [20,50]. The delivery platform provides ad-hoc couriers with

N = 5 possible bidding prices. Let pmin = cl + 0.5(c̄l + c̄u), pmax = cu + 0.5(c̄l + c̄u), and ∆p =

(pmax−pmin)/(N −1). Then the bidding price is set to pn = pmin+(n−1)∆p for each n∈ [N ]. The

bidding price of each courier k ∈ [Kt] for job j ∈ [Jt] is set as the smallest value in {p1, . . . , pN} that

is higher than or equal to the courier’s expected payment for taking that job, which is calculated

as pkjt = c̄kt + cjt. To reflect the fluctuation of price in different time intervals, we let the courier’s

expected payment pkjt increase and decrease by 20% in periods t∈ {1,8} and t∈ {4,5} to simulate

the peak and off-peak periods, respectively. If all the provided prices are smaller than pkjt, the

bidding price is set to pN . To evaluate the performance of the proposed model, we generate 7

training samples and 200 testing samples for each instance.
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To compare the performance of the robust satisficing (RS) model and the empirical model (EMP)

associated with the generalized reduced information model, we begin by solving the assignment

problem to obtain the generalized reduced information vectors zℓω
t , for all t ∈ [T ], ℓ ∈ [Lt], and

ω ∈ [Ω]. We then solve the empirical model (14) and obtain its objective value Z0. Next, we consider

a target ratio r and set τ = rZ0. Using a binary search algorithm, we solve problem (19) to produce

the solution of the robust satisficing model (18). When solving the generalized reduced information

model, we consider three cases for setting the breakpoints in each period:

1. Lt = 1 with ut1 = 0. In this case, the generalized reduced information model coincides with

the basic reduced information model (7).

2. Lt = 2 with ut1 = 0 and ut2 =
⌊
0.5

∑
ω∈[Ω]

Jω
t /Ω

⌋
, where Jω

t is the number of jobs in period t∈ [T ]

under training sample ω ∈ [Ω].

3. Lt = 2 with ut1 = 0 and ut2 = a⊤
t x̂, where x̂ is the solution to the empirical optimization prob-

lem (3) with reformulation in (4). Note that if we set the breakpoint to be x̂, the generalized

reduced information model (14) solves exactly the empirical optimization problem (3).

For ease of notation, we use symbols B, G1, and G2 to denote the above three settings of break-

points and append them to EMP and RS to represent the empirical and robust satisficing models

associated with the breakpoints under these settings. Finally, we evaluate the performance of both

RS and EMP models in testing samples by solving problem (1) and obtain the second-stage crowd-

sourcing costs. To accelerate the resolution of models, we relax the feasible set X of the decision

variable x from ZI
+ to RI

+. Our preliminary results show that the differences in the out-of-sample

performance of integer solutions (round real-number solutions to the nearest integers) and real-

number solutions are negligible. Thus, we conduct the following experiments by setting x∈RI
+.

Figure 2 demonstrates the out-of-sample performance comparison between the RS and empirical

models. To mitigate the impact of randomness, we generate 30 instances and report the average

performance. The vertical axis of the figure represents the value (in %) of the difference in test

objective between MODEL and EMP G2, divided by the test objective of EMP G2, denoted by

MODEL−EMP G2
EMP G2

for short, where MODEL ∈ {RS B, RS G1, RS G2, EMP B, EMP G1, EMP G2}.

We observe that the performance of EMP B, EMP G1, and EMP G2 are comparable in the out-

of-sample test, and RS models produce better out-of-sample performance than the corresponding

EMP models when the target is set slightly higher than the objective of EMP models. Moreover,

RS G2 exhibits superior performance to RS B and RS G1 even though EMP G2 is marginally

worse than EMP B and EMP G1.

To further evaluate the performance of the RS model, we introduce more uncertainty in the

number of jobs in the testing samples. Specifically, we set the low and upper bounds to Jmin =
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Figure 2 Comparison of out-of-sample performance between the robust satisficing and the empirical models.
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Figure 3 Comparison of out-of-sample performance between the robust satisficing and the empirical models with

different deviations of job numbers in testing samples.

⌊10(1 − ζ)⌋ and Jmax = ⌊50(1 + ζ)⌋, where ζ ∈ {−20%,−10%,0%,+10%,+20%} represents the

percentage variations of job numbers, and generate Jt following the previous approach. We evaluate

the out-of-sample performance of the RS G2 and the EMP G2 models and report the average
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comparison over 30 random instances in Figure 3. When the testing samples have a more significant

variation in job numbers, the benefit of using the RS G2 model becomes more apparent. When the

variation is minor, the RS G2 model with a small target performs better than the EMP G2 model.

Thus, we advise that decision-makers adopt a modestly conservative target in the RS model, say,

1.02, which would be advantageous across almost all the scenarios, including low and high levels

of uncertainty and risk. Moreover, if a greater variation in the job numbers is expected in the

future, then a conservative target in the robust satisficing model could lead to a more significant

improvement in the actual performance.

In sum, our experiments using Solomon’s data sets suggest that the performance gap between

the reduced information models and the true model is usually acceptable for practical delivery

problems. More importantly, through simulated data, we show that the robust satisficing model

can produce better out-of-sample performance than the empirical model when the target is set

slightly higher than the objective of the empirical model.

6. Conclusion

To offer affordable and reliable delivery services, e-commerce platforms and local businesses are

increasingly turning to crowdsourced delivery resources. However, the uncertainties surrounding

ad-hoc couriers’ availability and job bidding behavior have presented a challenge to the manage-

ment of the workforce. In this study, we propose a robust satisficing framework that accounts for

the uncertainty of ad-hoc couriers and the cost associated with hiring them when necessary. Our

framework provides a practical tool for decision-making that enables platforms to effectively man-

age their workforce resources and balance their cost objectives with service quality requirements.

Future work in this area could explore the integration of predictive analytics into the robust sat-

isficing framework to provide better insights into future demand and couriers’ availability, which

could further enhance the platform’s decision-making capability.
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