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Abstract

Gradient tracking methods have emerged as one of the most popular approaches for
solving decentralized optimization problems over networks. In this setting, each node in
the network has a portion of the global objective function, and the goal is to collectively
optimize this function. At every iteration, gradient tracking methods perform two
operations (steps): (1) compute local gradients, and (2) communicate information with
local neighbors in the network. The complexity of these two steps varies across different
applications. In this paper, we present a framework that unifies gradient tracking
methods and is endowed with flexibility with respect to the number of communication
and computation steps. We establish unified theoretical convergence results for the
algorithmic framework with any composition of communication and computation steps,
and quantify the improvements achieved as a result of this flexibility. The framework
recovers the results of popular gradient tracking methods as special cases, and allows
for a direct comparison of these methods. Finally, we illustrate the performance of the
proposed methods on quadratic functions and binary classification problems.

1 Introduction

We consider the problem of minimizing a function over a network. In this setting, each
node of the network has a portion of the global objective function and the edges represent
neighbor nodes that can exchange information, i.e., communicate. The goal is to collectively
minimize a finite sum of functions where each component is only known to one of the n
nodes (or agents) of the network. Such problems arise in many application areas such
as machine learning [12, 38], sensor networks [2, 29], multi-agent coordination [7, 43] and
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signal processing [9]. The problem, known as a decentralized optimization problem, can be
represented as follows:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where f : Rd → R is the global objective function, fi : Rd → R for each i ∈ {1, 2, ..., n} is
the local objective function known only to node i and x ∈ Rd is the decision variable.

To decouple the computation across different nodes, (1) is often reformulated as (see
e.g., [6, 27])

min
xi∈Rd

1

n

n∑
i=1

fi(xi)

s.t. xi = xj , ∀ (i, j) ∈ E ,
(2)

where xi ∈ Rd for each node i ∈ {1, 2, ..., n} is a local copy of the decision variable, and
E denotes the set of edges of the network. If the underlying network is connected, the
consensus constraint ensures that all local copies are equal, and, thus, problems (1) and
(2) are equivalent. For compactness, we express problem (2) as

min
xi∈Rd

f(x) =
1

n

n∑
i=1

fi(xi)

s.t. (W⊗ Id)x = x,

(3)

where x ∈ Rnd is a concatenation of local copies xi, W ∈ Rn×n is a matrix that captures
the connectivity of the underlying network, Id ∈ Rd×d is the identity matrix of dimension
d, and the operator ⊗ denotes the Kronecker product, W⊗ Id ∈ Rnd×nd. The matrix W,
known as the mixing matrix, is a symmetric, doubly-stochastic matrix with wii > 0 and
wij > 0 (i ̸= j) if and only if (i, j) ∈ E in the underlying network. This matrix ensures
that (W⊗ Id)x = x if and only if xi = xj ∀ (i, j) ∈ E in the connected network, thus, (2)
and (3) are equivalent.

In this paper, we focus on gradient tracking methods. These first-order methods update
and communicate the local decision variables, and also maintain, update and communi-
cate an additional auxiliary variable that estimates (tracks) the gradient of the global
objective function. We refer to the information shared by the methods as the communica-
tion strategy. When applied to the same decentralized setting, the theoretical convergence
guarantees and practical implementations of gradient tracking methods with different com-
munication strategies can vary significantly. We propose an algorithmic framework that
unifies communication strategies in gradient tracking methods and that allows for a direct
theoretical and empirical comparison. The framework recovers popular gradient tracking
methods as special cases.
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The update form of gradient tracking methods can be generalized and decomposed as:
(1) one computation step of calculating the local gradients, and (2) one communication step
of sharing information based on the communication strategy. In practice, the complexity
of these two steps can vary significantly across applications. For example, a large-scale
machine learning problem solved on a cluster of computers with shared memory access has
a higher cost of computation than communication [38]. On the other hand, optimally allo-
cating channels over a wireless sensor network requires economic usage of communications
due to limited battery power [19]. The subject of developing algorithms (and convergence
guarantees) that balance these costs has received significant attention in recent years; see
e.g., [8, 3, 4, 5, 33, 42] and the references therein. In this paper, we follow the approach
used in [3] and explicitly decompose the two steps. As a result, our algorithms are endowed
with flexibility in terms of the number of communication and computation steps performed
at each iteration. We show the benefits of this flexibility theoretically and empirically.

1.1 Literature Review

Decentralized Gradient Descent (DGD) [6, 27], a primal first-order method, is considered
the prototypical method for solving (1). At each iteration nodes perform local computa-
tions and communicate local decision variable to neighbors. Gradient tracking methods,
e.g., EXTRA [34], SONATA [36], NEXT [10], DIGing [25], Aug-DGM [40], have emerged
as popular alternatives due to their superior theoretical guarantees and empirical perfor-
mance. They maintain, update and communicate an additional auxiliary variable that
tracks the average gradient (additional communication cost compared to DGD). These
methods are usually applied to smooth convex functions over undirected networks; how-
ever, they are also applicable to various other settings such as time varying networks [25],
uncoordinated step sizes [26, 40], directed networks [25, 31], nonconvex functions [10, 36]
and stochastic gradients [30]. Our algorithmic framework generalizes and extends current
gradient tracking methodologies, allowing for a unified analysis and direct comparison of
popular methods. In [37, 41], semi-definite programming is used to unify communication
strategies in gradient tracking methods. Our framework is simpler and allows for more
general communication strategies than those in [37, 41].

Another class of popular methods is primal-dual methods [1, 15, 18, 35, 39, 21, 20].
Of these methods, Flex-PD [21] and ADAPD [20] allow for flexibility with respect to
the number of communication and computation steps. That said, Flex-PD [21] does not
show improved performance with the employment of the flexibility and ADAPD [20] does
not allow for a balance between communication and computation. Finally, algorithms
that consider the consensus constraint as a proximal operator have been proposed. These
algorithms aim to reduce communication load on distributed systems via a randomization
scheme but are primarily designed for fully connected networks (all pairs of nodes are
connected). Examples of such methods include, but are not limited to, Scaffnew [22],
FedAvg [17], Scaffold [16], Local-SGD [13] and FedLin [23].
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1.2 Contributions

We summarize our main contributions as follows:

1. We propose a gradient tracking algorithmic framework (GTA) that unifies communica-
tion strategies in gradient tracking methods and provides flexibility in the number of
communication and computation steps performed at each iteration. The framework
recovers as special cases popular gradient tracking methods, i.e., GTA-1 [34, 25],
GTA-2 [10, 36] and GTA-3 [26, 40]; see Table 1.

2. We establish the conditions required, on the communication strategy and the step
size parameter, that guarantee a global linear rate of convergence for GTA with mul-
tiple communication and multiple computation steps. We also compare the relative
performance of the special case gradient tracking algorithms, and illustrate the theo-
retical advantages of GTA-3 over GTA-2 (and GTA-2 over GTA-1), a direct comparison
not established in prior literature.

3. We show that the rate of convergence improves with increasing the number of com-
munication steps, and the extent of improvement depends on the communication
strategy. The improvements are much more profound in GTA-3 as compared to GTA-2
and GTA-1.

4. We illustrate the empirical performance of the proposed GTA framework on quadratic
and binary classification logistic regression problems. We show the effect and ben-
efits of multiple communication and/or computation steps per iteration on the per-
formance of the special case algorithms.

1.3 Notation

Our proposed algorithmic framework is iterative and works with inner and outer loops.
The variables xi,k,j ∈ Rd and yi,k,j ∈ Rd denote the local copies of the decision variable
and the auxiliary variable, respectively, of node i, in outer iteration k and inner iteration
j. The average of all local decision variables and local auxiliary variables are denoted
by x̄k,j = 1

n

∑n
i=1 xi,k,j and ȳk,j = 1

n

∑n
i=1 yi,k,j , respectively. Boldface lowercase letters

represent concatenated vectors of local copies

xk,j =


x1,k,j

x2,k,j
...

xn,k,j

 ∈ Rnd, yk,j =


y1,k,j

y2,k,j
...

yn,k,j

 ∈ Rnd, ∇f(xk,j) =


∇f1(x1,k,j)
∇f2(x2,k,j)

...

∇fn(xn,k,j)

 ∈ Rnd.

The concatenated vector of the average of decision variables (x̄k,j) and auxiliary variables
(ȳk,j) repeated n times is denoted by x̄k,j and ȳk,j , respectively. The n dimensional vector
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of all ones is denoted by 1n and the identity matrix of dimension n is denoted by In. The
spectral radius of square matrix A is ρ(A). Matrix inequalities are defined component wise.
The Kronecker product of any two matrices A ∈ Rn×n and B ∈ Rd×d is represented using
the operator ⊗ and denoted as A⊗B ∈ Rnd×nd.

1.4 Paper Organization

In Section 2, we describe our proposed gradient tracking algorithmic framework (GTA).
In Section 3, we provide theoretical convergence guarantees for the proposed algorithmic
framework for multiple communication steps and a single computation step at each itera-
tion (Subsection 3.1) and multiple communication and computation steps at each iteration
(Subsection 3.2). In Subsection 3.3, we consider the special case of fully connected net-
works. Numerical experiments on quadratic and binary classification logistic regression
problems are presented in Section 4. Finally, we provide concluding remarks in Section 5.

2 Gradient Tracking Algorithmic Framework

In this section, we describe our algorithmic framework (GTA) that unifies gradient tracking
methods. We then extend the framework to allow for flexibility in the number of commu-
nication and computation steps performed at every iteration. Finally, we make remarks
about the algorithmic framework and implementation, and then discuss popular gradient
tracking methods as special cases of our proposed framework.

The iterate update form (for all k ≥ 0) for the decision variable x ∈ Rnd and the
auxiliary variable y ∈ Rnd that we propose to unify gradient tracking methods is

xk+1,1 = Z1xk,1 − αZ2yk,1

yk+1,1 = Z3yk,1 + Z4(∇f(xk+1,1)−∇f(xk,1)),
(4)

where α > 0 is the constant step size, Zi = Wi ⊗ Id ∈ Rnd×nd for i = 1, 2, 3, 4 and Wi ∈
Rn×n are communication matrices. A communication matrix U ∈ Rn×n is a symmetric,
doubly stochastic matrix that respects the connectivity of the network, i.e., uii > 0 and
uij ≥ 0 (i ̸= j) if (i, j) ∈ E and uij = 0 (i ̸= j) if (i, j) /∈ E . The communication matrices,
Wi for i = 1, 2, 3, 4, represent four (possibly different) network topologies consisting of
all the nodes and (possibly different) subsets of the edges of the network over which the
corresponding vectors are communicated. The update form given in (4) generalizes many
popular gradient tracking methods for different choices of the communication matrices; see
Table 1. In (4) one communication and one computation step is performed at every iteration
and so the inner iteration index is always 1. We include this subscript for consistency
with the presentation of the algorithm and analysis with multiple communication and
computation steps.

5



Table 1: Special cases of Gradient Tracking Algorithm (GTA).

Method
Communication Matrices Algorithms in literature

W1 W2 W3 W4 (nc = ng = 1)

GTA-1 W In W In DIGing [25], EXTRA [34],

GTA-2 W W W In SONATA [36], NEXT [10, 31]

GTA-3 W W W W Aug-DGM [40], ATC-DIGing [26]

Note: W is a

mixing matrix.

We incorporate multiple communications in (4) by replacing Zi with Znc
i = Wnc

i ⊗ Id
for i = 1, 2, 3, 4, where nc ≥ 1 is the number of communication steps at each iteration.
Taking the communication matrices to the nc power represents performing nc communi-
cation (consensus) steps at every iteration. We further extend (4) to incorporate multiple
computation steps at each iteration. That is, the algorithm performs multiple local updates
before communicating information with local neighbors. Our full algorithmic framework
with flexibility in the number of communication and computation steps, i.e., nc ≥ 1 and
ng ≥ 1, is given in Algorithm 1. A balance between the number of communication and
computation steps is required to achieve overall efficiency for different applications, and
GTA allows for such flexibility in these steps via the parameters ng and nc.

Algorithm 1 GTA: Gradient Tracking Algorithm

Inputs: initial point x0,1 ∈ Rnd, step size α > 0, computations ng ≥ 1,
communications nc ≥ 1.

1: y0,1 ← ∇f(x0,1)
2: for k ← 0, 1, 2 ... do
3: if ng > 1 then
4: for j ← 1, 2 ... , ng − 1 do
5: xk,j+1 ← xk,j − αyk,j

6: yk,j+1 ← yk,j +∇f(xk,j+1)−∇f(xk,j)
7: end for
8: end if
9: xk+1,1 ← Znc

1 xk,ng − αZnc
2 yk,ng

10: yk+1,1 ← Znc
3 yk,ng

+ Znc
4 (∇f(xk+1,1)−∇f(xk,ng))

11: end for

Remark 1. We make the following remarks about Algorithm 1.

• Communications and Computations: The number of communication and com-
putation steps are dictated by nc and ng, respectively. By performing multiple com-
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munication steps, the goal is to improve consensus across the local decision variables.
By performing multiple computation steps, the goal is for individual nodes to make
more progress on their local objective functions.

• Inner and Outer Loops: Lines 2–8 form the outer loop and Lines 4–6 form the
inner loop. The algorithm performs nc communication steps each outer iteration
(Lines 7 and 8). The algorithm performs ng local (gradient) computations at each
outer iteration; ng − 1 computations in the inner loop (Line 6, ∇f(xk,j+1)) and one
computation in the outer loop (Line 8, ∇f(xk+1,1)). The inner loop is only executed
if more than one computation, i.e., ng > 1, is to be performed every outer iteration
(Line 3). By default, we refer to outer iterations when we say iterations unless
otherwise specified.

• Step size (α > 0): The algorithm employs a constant step size that depends on the
problem parameters, the choices of nc and ng, and the communication strategy, i.e.,
Wi for i = 1, 2, 3, 4.

We analyze GTA and provide results for several popular communication strategies as
special cases; summarized in Table 1. The choice of the communication matrices (Wi for
i = 1, 2, 3, 4), or equivalently the communication strategy, impact both the convergence of
the algorithm and practical implementation. Notice that all methods in Table 1 require
that W1 and W3 are mixing matrices. Our theoretical results recover this for the general
framework. Consider GTA-1, GTA-2 and GTA-3 defined in Table 1 with ng = 1. In GTA-1

and GTA-2, computing local gradients and communications can be performed in parallel
because the local gradients need not be communicated (W4 = In). On the other hand, in
GTA-3, these steps need to be performed sequentially. Such trade-offs can create significant
impact depending on the problem setting and system.

As mentioned above, the communication matrices (Wi for i = 1, 2, 3, 4) in GTA need not
be the same. That is, different information can be exchanged on subsets of the edges of the
network. This allows for a flexibility in the communication strategy that current gradient
tracking methodologies do not possess. Such strategies can be useful in applying gradient
tracking methods to decentralized settings with networks with bandwidth limitations, e.g.,
optimization problems in cyberphysical systems with battery powered wireless sensors [19].

3 Convergence Analysis

In this section, we present theoretical convergence guarantees for our proposed algorithmic
framework (GTA). The analysis is divided into three subsections. In Subsection 3.1, we
analyze the effect of multiple communications, i.e., nc ≥ 1 (and ng = 1), on GTA and
the three special cases GTA-1, GTA-2 and GTA-3. While these results are a special case of
the results presented in Subsection 3.2, we present these results first as they are simpler
to derive, easier to follow and allow us to gain intuition about the effect of the number
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of communications. We then look at the effect of multiple computations in conjunction
with multiple communications, i.e., nc ≥ 1 and ng ≥ 1, in Subsection 3.2 by extending
the analysis from Subsection 3.1. In Subsection 3.3, we analyze GTA-2 and GTA-3 for
fully connected networks; this special case is not captured by the analysis in the previous
subsections.

We make the following assumption on the functions.

Assumption 2. The global objective function f : Rd → R is µ-strongly convex. Each com-
ponent function fi : Rd → R (for i ∈ {1, 2, . . . , n}) has L-Lipschitz continuous gradients.
That is, for all z, z′ ∈ Rd

f(z′) ≥ f(z) + ⟨∇f(z), z′ − z⟩+ µ
2∥z

′ − z∥22,
∥∇fi(z)−∇fi(z′)∥2 ≤ L∥z − z′∥2, ∀ i = 1, . . . , n.

By Assumption 2, the global minimizer of (1) is unique, and we denote it by x∗.
For notational convenience, we define

βnc =
∥∥∥Wnc − 1n1Tn

n

∥∥∥
2
, βnc

i =
∥∥∥Wnc

i −
1n1Tn
n

∥∥∥
2
, ∀ i = 1, 2, 3, 4,

where β ∈ [0, 1) because W is a mixing matrix for a connected network and βi ∈ [0, 1] be-
cause Wi for i = 1, 2, 3, 4 are symmetric, doubly stochastic matrices. Using the definitions
of Znc = Wnc ⊗ Id and Znc

i = Wnc
i ⊗ Id for i = 1, 2, 3, 4, it follows that

∥Znc − I∥2 = βnc , ∥Znc
i − I∥2 = βnc

i , ∀ i = 1, 2, 3, 4. (5)

We also define,

hk,j =
1

n

n∑
i=1

∇fi(xi,k,j), hk,j =
1

n

n∑
i=1

∇fi(xk,j), and I =
1n1

T
n

n
⊗ Id. (6)

where xi,k,j , denotes the local copy of the ith node, at outer iteration k and inner iteration
j. In the analysis, for all k ≥ 0, we consider the following error vector

rk =

 ∥xk,1 − x∗∥2
∥xk,1 − x̄k,1∥2
∥yk,1 − ȳk,1∥2

 .

The error vector rk combines the optimization error, ∥xk,1 − x∗∥2, and consensus errors,
∥xk,1− x̄k,1∥2 and ∥yk,1− ȳk,1∥2 where xk,1 and yk,1 are the first iterates of outer iteration
k. We establish general technical lemmas that quantify the relation between rk+1 and rk
for each case of the presented algorithm.
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3.1 GTA with multiple communication (nc ≥ 1, ng = 1)

In this section, we analyze GTA when only one computation step is performed per iteration.
In this setting (ng = 1), the inner loop (Lines 4–6 in Algorithm 1) is never executed. Thus,
the inner iteration counter in GTA can be ignored and the iteration simplifies to

xk+1 = Znc
1 xk − αZnc

2 yk,

yk+1 = Znc
3 yk + Znc

4 (∇f(xk+1)−∇f(xk)).
(7)

We note that throughout this subsection we drop the subscript related to the inner iteration
j, i.e., xi,k,j is denoted as xi,k (since j = 1), and similar with other quantities. We first
establish the progression of the error vector rk as a linear system for (7). Then, we provide
the step size conditions and convergence rates for (7) and the instances in Table 1 when
ng = 1.

Lemma 3. Suppose Assumption 2 holds and the number of gradient steps in each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then for all k ≥ 0,

rk+1 ≤ A(nc)rk,

where A(nc) =

 1− αµ αL√
n

0

0 βnc
1 αβnc

2√
nαβnc

4 L2 βnc
4 L(∥Znc

1 − Ind∥2 + αL) βnc
3 + αβnc

4 L

 . (8)

Proof. If ng = 1, using (7), the average iterates can be expressed as

x̄k+1 = x̄k − αȳk,

ȳk+1 = ȳk + hk+1 − hk,

where hk is defined in (6). Taking the telescopic sum of ȳi+1 from i = 0 to k − 1 with
ȳ0 = h0, it follows that

ȳk = hk. (9)

We first consider the optimization error on the average iterates. That is,

∥x̄k+1 − x∗∥2 =
∥∥x̄k − αȳk + αhk − αhk − x∗

∥∥
2

≤
∥∥x̄k − αhk − x∗

∥∥
2
+ α

∥∥ȳk − hk
∥∥
2

≤ (1− αµ)∥x̄k − x∗∥2 + α
∥∥hk − hk

∥∥
2

= (1− αµ)∥x̄k − x∗∥2 + α
n

∥∥∥∥∥
n∑

i=1

∇fi(xi,k)−∇fi(x̄k)

∥∥∥∥∥
2

≤ (1− αµ)∥x̄k − x∗∥2 + αL
n

n∑
i=1

∥xi,k − x̄k∥2

≤ (1− αµ)∥x̄k − x∗∥2 + αL√
n
∥xk − x̄k∥2 (10)
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where the first inequality is due to the triangle inequality, the second inequality is obtained
by performing one gradient descent iteration on function f under Assumption 2 at the
average iterate x̄k with α ≤ 1

L [28, Theorem 2.1.14] and substituting using (9), the equality
is due to (6), the second to last inequality follows by Assumption 2, and the last inequality
is due to

∑n
i=1 ∥xi,k − xk∥2 ≤

√
n∥xk − x̄k∥2.

Next, we consider the consensus error in xk,

xk+1 − x̄k+1 = Znc
1 xk − x̄k − αZnc

2 yk + αȳk

= Znc
1 xk − Znc

1 x̄k − αZnc
2 yk + αZnc

2 ȳk − I(xk − x̄k) + I(yk − ȳk)

= (Znc
1 − I) (xk − x̄k)− α (Znc

2 − I) (yk − ȳk).

where the second equality follows from adding −I(xk − x̄k) = 0 and I(yk − ȳk) = 0. By
the triangle inequality and (5),

∥xk+1 − x̄k+1∥2 ≤ ∥Znc
1 − I∥2 ∥xk − x̄k∥2 + α ∥Znc

2 − I∥2 ∥yk − ȳk∥2
= βnc

1 ∥xk − x̄k∥2 + αβnc
2 ∥yk − ȳk∥2.

(11)

Finally, we consider the consensus error in yk. By the triangle inequality and (5),

∥yk+1 − ȳk+1∥2
= ∥Znc

3 yk − ȳk + Znc
4 (∇f(xk+1)−∇f(xk))− I(∇f(xk+1)−∇f(xk))∥2

≤∥(Znc
3 − I) (yk − ȳk)∥2 + ∥(Z

nc
4 − I) (∇f(xk+1)−∇f(xk))∥2

≤βnc
3 ∥yk − ȳk∥2 + βnc

4 ∥∇f(xk+1)−∇f(xk)∥2 .

(12)

The last term in (12) can be bounded as follows,

∥∇f(xk+1)−∇f(xk)∥2 ≤ L∥xk+1 − xk∥2
= L∥Znc

1 xk − αZnc
2 yk − xk∥2

= L∥(Znc
1 − Ind)(xk − x̄k)− αZnc

2 yk∥2
≤ L∥Znc

1 − Ind∥2∥xk − x̄k∥2 + αL∥Znc
2 ∥2∥yk + ȳk − ȳk∥2

≤ L∥Znc
1 − Ind∥2∥xk − x̄k∥2 + αL∥yk − ȳk∥2 + αL ∥ȳk∥2 , (13)

where the first inequality is due to Assumption 2, the first equality is due to iterate update
form (7), the second equality is by adding −(Znc

1 − Ind)x̄k = 0 and the last two inequal-
ities are applications of the triangle inequality. Next we bound the term ∥ȳk∥2. By (9),
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Assumption 2 and
∑n

i=1 ∥xi,k − xk∥2 ≤
√
n∥xk − x̄k∥2,

∥ȳk∥2 ≤
√
n∥ȳk∥2

=
√
n∥hk∥2

≤
√
n

∥∥∥∥∥ 1
n

n∑
i=1

∇fi(xi,k)− 1
n

n∑
i=1

∇fi(x̄k)

∥∥∥∥∥
2

+
√
n

∥∥∥∥∥ 1
n

n∑
i=1

∇fi(x̄k)

∥∥∥∥∥
2

= 1√
n

∥∥∥∥∥
n∑

i=1

∇fi(xi,k)−
n∑

i=1

∇fi(x̄k)

∥∥∥∥∥
2

+ 1√
n

∥∥∥∥∥
n∑

i=1

∇fi(x̄k)−
n∑

i=1

∇fi(x∗)

∥∥∥∥∥
2

≤ L ∥xk − x̄k∥2 +
√
nL∥x̄k − x∗∥2. (14)

Thus, by (12), (13) and (14), it follows that

∥yk+1 − ȳk+1∥2 ≤ βnc
4

√
nαL2∥x̄k − x∗∥2 + βnc

4 L (∥Znc
1 − Ind∥2 + αL) ∥xk − x̄k∥2

+ (βnc
3 + βnc

4 αL) ∥yk − ȳk∥2.
(15)

Combining (10), (11) and (15) concludes the proof.

Using Lemma 3, we now provide the explicit form for A(nc) in order to establish the
progression of the error vector rk for the special cases defined in Table 1.

Corollary 4. Suppose the conditions of Lemma 3 are satisfied. Then, the matrices A(nc)
for the methods described in Table 1 are defined as:

GTA-1: A1(nc) =

1− αµ αL√
n

0

0 βnc α
√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-2: A2(nc) =

1− αµ αL√
n

0

0 βnc αβnc

√
nαL2 L(2 + αL) βnc + αL

 , (16)

GTA-3: A3(nc) =

 1− αµ αL√
n

0

0 βnc αβnc

βnc
√
nαL2 βncL(2 + αL) βnc(1 + αL)

 .

Proof. Substituting the matrix values for each method in (8) and using ∥Znc
1 − Ind∥2 ≤ 2

gives the desired result.

The convergence properties of GTA when ng = 1 can be analyzed using the spectral
radius of the matrix A(nc). We now qualitatively establish the effect of nc on ρ(A(nc)),
the spectral radius of the matrix A(nc), and the relative ordering between ρ(A1(nc)),
ρ(A2(nc)) and ρ(A3(nc)).

11



Theorem 5. Suppose Assumption 2 holds and the number of gradient steps in each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then as nc increases, ρ(A(nc))
decreases where A(nc) is defined in (8). Thus, as nc increases, ρ(Ai(nc)) decreases, for
i = 1, 2, 3 defined in (16). Moreover, if all three methods described in Table 1 (GTA-1,
GTA-2 and GTA-3) employ the same step size,

ρ(A1(nc)) ≥ ρ(A2(nc)) ≥ ρ(A3(nc)),

where the matrices A1(nc), A2(nc) and A3(nc) are defined in (16).

Proof. Note that A(nc) ≥ 0 and A(nc) ≥ A(nc + 1) ≥ 0. By [14, Corollary 8.1.19], it
follows that ρ(A(nc)) ≥ ρ(A(nc+1)). The same argument is applicable for A1(nc), A2(nc)
and A3(nc). Now, observe that A1(nc) ≥ A2(nc) ≥ A3(nc) ≥ 0 when the same step size is
employed. Thus, again by [14, Corollary 8.1.19], it follows that ρ(A1(nc)) ≥ ρ(A2(nc)) ≥
ρ(A3(nc)).

We now derive conditions for establishing a linear rate of convergence to the solution
for Algorithm 1 when ng = 1 in terms of network parameters (β1, β2, β3, β4) and objective
function parameters (L, µ, κ = L

µ ).

Theorem 6. Suppose Assumption 2 holds and the number of gradient steps at each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If the matrix A(nc) is irreducible,
β1, β3 < 1 and

α < min

{
1
L ,

1−βnc
3

Lβnc
4

,
(1−βnc

1 +2βnc
2 )

2βnc
2 κ(L+µ)

(√
1 +

4(1−βnc
1 )(1−βnc

3 )βnc
2 (κ+1)

βnc
4 (1−βnc

1 +2βnc
2 )2

− 1

)}
, (17)

then, for all ϵ > 0 there exists a constant Cϵ > 0 such that, for all k ≥ 0,

∥rk∥2 ≤ Cϵ(ρ(A(nc)) + ϵ)k∥r0∥2, where ρ(A(nc)) < 1.

Proof. Following [30, Lemma 5], derived from the Perron-Forbenius Theorem [14, Theorem
8.4.4] for a 3 × 3 matrix, when the matrix A(nc) is non-negative and irreducible, it is
sufficient to show that the diagonal elements of A(nc) are less than one and that det(I3 −
A(nc)) > 0 in order to guarantee ρ(A(nc)) < 1. We upper bound ∥Znc

1 − Ind∥2 ≤ 2 in
A(nc) for the results.

Let us first consider the diagonal elements of the matrix A(nc). The first element is,
1− αµ ≤ 1− µ

L < 1 by (17). The second element is βnc
1 < 1 as β1 < 1. Finally, the third

element is βnc
3 + αβnc

4 L < βnc
3 +

1−βnc
3

βnc
4 L

βnc
4 L = 1 due to (17) and β3 < 1.

Next, let us consider

det(I3 −A(nc))

=− α(α2L2βnc
2 βnc

4 (L+ µ) + αµLβnc
4 (1− βnc

1 + 2βnc
2 )− µ (1− βnc

1 ) (1− βnc
3 ))

=− L2βnc
2 βnc

4 (L+ µ)α(α− αl)(α− αu),

12



where αl = α1 − α2, αu = α1 + α2, and

α1 =
−(1−βnc

1 +2βnc
2 )

2βnc
2 κ(L+µ)

and α2 = −α1

√
1 +

4(1−βnc
1 )(1−βnc

3 )βnc
2 (κ+1)

βnc
4 (1−βnc

1 +2βnc
2 )2

.

Observe that αl < 0 < αu and α2 > |α1|. From (17), we have 0 < α < αu. Therefore,
det(I3−A(nc)) > 0, which combined with the fact that the diagonal elements of the matrix
are less than 1, implies ρ(A(nc)) < 1.

Finally, we bound the norm of error vector ∥rk∥2 by telescoping ri+1 ≤ A(nc)ri from
i = 0 to k − 1 and triangle inequality as

∥rk∥2 ≤ ∥A(nc)
k∥2∥r0∥2.

From [14, Corollary 5.6.13], we can bound ∥A(nc)
k∥2 ≤ Cϵ(ρ(A(nc))+ ϵ)k where ϵ > 0 and

Cϵ is a positive constant that depends on A(nc) and ϵ.

The only constraint Theorem 6 imposes on the system (network) is β1, β3 < 1. This
implies that the communication matrices W1 and W3 must represent connected networks
(not necessarily the same network). Properties of W2 and W4 change the step size require-
ment but are not part of the sufficient conditions for convergence. Theorem 6 also does
not require any relation among W1, W2, W3 and W4. This allows for more flexibility
than the structures considered in the literature. The variables can be communicated along
different connections within the network. We note that if A(nc) is a reducible matrix, the
analysis for the progression of rk can be further simplified from Lemma 3. For example,

when W = 1n1Tn
n , i.e., β = 0, in GTA-2 and GTA-3. The analysis for these cases is presented

in Subsection 3.3.
The next result establishes step size conditions that guarantee a linear rate of conver-

gence for the three special cases (GTA-1, GTA-2 and GTA-3).

Corollary 7. Suppose Assumption 2 holds, W ̸= 1n1Tn
n , and the number of gradient steps

at each outer iteration of Algorithm 1 is set to one (i.e., ng = 1). If the following step size
conditions hold for the methods described in Table 1,

GTA-1: α < min

{
1−βnc

L , (3−βnc )
2κ(L+µ)

(√
1 + 4(κ+ 1)

(
1−βnc

3−βnc

)2
− 1

)}
,

GTA-2: α < min

{
1−βnc

L , (1+βnc )
2κ(L+µ)βnc

(√
1 + 4(κ+ 1)βnc

(
1−βnc

1+βnc

)2
− 1

)}
,

GTA-3: α < min

{
1
L ,

1−βnc

Lβnc , (1+βnc )
2κ(L+µ)βnc

(√
1 + 4(κ+ 1)

(
1−βnc

1+βnc

)2
− 1

)}
,

then, for all ϵ > 0 there exist constants Ci,ϵ > 0 such that, for all k ≥ 0,

∥rk∥2 ≤ Ci,ϵ(ρ(Ai(nc)) + ϵ)k∥r0∥2, where ρ(Ai(nc)) < 1, for i = 1, 2, 3.
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Proof. The conditions given in Theorem 6 are satisfied for all three methods. That is, the

matrices are irreducible as W ̸= 1n1Tn
n , i.e., β > 0 and β1, β3 < 1 in all the three methods

as β < 1 because W is mixing matrix of a connected network. Thus, we can use (17) to
derive the conditions on the step size for each of the methods. Substituting the values for
β1, β2, β3 and β4 for each method yields the desired result. We should note that in GTA-1

and GTA-2, we ignore the term 1
L since 1

L > 1−βnc

L .

Corollary 7 shows how the communication strategy affects the step size when ng = 1.
Among the three methods, GTA-3 allows for the largest step size, even having the possibility
to use the step size 1

L if sufficiently large number of communications steps are performed
(high nc) and depending on β. Among GTA-1 and GTA-2, GTA-2 allows for a larger step
size. While these share the same first term in the bound, the presence of the βnc factor in
the denominator of the second term in GTA-2 makes the bound larger than GTA-1, possibly
allowing for a larger step size.

Theorem 6 states that there exists a step size such that GTA converges at a linear rate
when ng = 1. We now proceed to analyze the convergence rate GTA when ng = 1. Before
that, we provide a technical lemma that shows that the largest eigenvalue of the matrix
A(nc) is a positive real number.

Lemma 8. Suppose Assumption 2 holds, the number of gradient steps at each outer iter-
ation of Algorithm 1 is set to one (i.e., ng = 1) and α ≤ 1

L . If the matrix A(nc) defined
in (8) is irreducible, then, the spectral radius of A(nc) is the largest eigenvalue of A(nc)

and is a positive real number. Consequently, if W ̸= 1n1Tn
n , the spectral radius of matrices

A1(nc), A2(nc), A3(nc) defined in (16) are also positive real numbers and equal to their
largest eigenvalues, respectively.

Proof. The statement about the matrix A(nc) follows from the Perron-Forbenius Theorem
[14, Theorem 8.4.4], and the fact that the matrix is non-negative and irreducible. Using
similar arguments, the statement about the matrices A1(nc), A2(nc) and A3(nc) follows as

these matrices are irreducible when W ̸= 1n1Tn
n , i.e., β > 0.

The next theorem provides an upper bound on the convergence rate of GTA for suffi-
ciently small constant step sizes.

Theorem 9. Suppose Assumption 2 holds and the number of gradient steps at each outer
iteration of Algorithm 1 is set to one (i.e., ng = 1). If the matrix A(nc) is irreducible and
α ≤ 1

L , then,

ρ(A(nc)) ≤ λu = max

{
1− αµ

2 , λ̂+
√
2αLκβnc

2 βnc
4

}
, (18)

where λ̂ =
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 −βnc
3 −Lαβnc

4 )
2
+4βnc

2 βnc
4 L2α2+8Lαβnc

2 βnc
4

2 .
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Proof. Using Lemma 8, we know that the spectral radius of A(nc) is equal to the largest
eigenvalue which is a positive real number. Following a similar approach to [32], we prove
λu is an upper bound on the largest eigenvalue by showing the characteristic equation is
non-negative at λu and strictly increasing for all values greater than λu. Consider

g(λ) =det(λI3 −A(nc))

=(λ− 1 + αµ) ((λ− βnc
1 )(λ− βnc

3 − αLβnc
4 )− αL(2 + αL)βnc

2 βnc
4 )

− α3L3βnc
2 βnc

4

=(λ− 1 + αµ)q(λ)− α3L3βnc
2 βnc

4 ,

where q(λ) = λ2 − λ(βnc
1 + βnc

3 + Lαβnc
4 ) + βnc

1 βnc
3 + Lαβnc

4 (βnc
1 − 2βnc

2 − Lαβnc
2 ). Let the

roots of the quadratic function q(λ) be denoted as λ1 and λ2. Then, we have,

max{λ1, λ2} =
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 +βnc
3 +Lαβnc

4 )
2−4(βnc

1 βnc
3 +Lαβnc

4 (βnc
1 −2βnc

2 −Lαβnc
2 ))

2

=
βnc
1 +βnc

3 +Lαβnc
4 +

√
(βnc

1 −βnc
3 −Lαβnc

4 )
2
+4βnc

2 βnc
4 L2α2+8Lαβnc

2 βnc
4

2

Thus, for any λ ≥ max
{
1− αµ, λ̂

}
, the function g(λ) is increasing and is lower bounded

by (λ− 1 + αµ)(λ− λ̂)2 − α3L3βnc
2 βnc

4 . By λu ≥ max
{
1− αµ, λ̂

}
,

g(λu) ≥ (λ− 1 + αµ)(λ− λ̂)2 − α3L3βnc
2 βnc

4

≥
(
1− αµ

2 − 1 + αµ
)
(λ− λ̂)2 − α3L3βnc

2 βnc
4

≥ αµ
2

(
2αL2βnc

2 βnc
4

µ

)
− α3L3βnc

2 βnc
4

= α2L2βnc
2 βnc

4 (1− αL) ≥ 0,

where the second and third inequalities are due to the definition of λu and the final quan-
tity is non-negative since α ≤ 1

L . Therefore, by the above arguments, we conclude that
ρ(A(nc)) ≤ λu which completes the proof.

Theorem 9 is derived independent of the conditions in Theorem 6. When ρ(A(nc)) < 1
is imposed using Theorem 9, β1, β3 < 1 is a necessary condition for convergence. We show

this by constructing a lower bound on λu, λu ≥ λ̂ ≥ βnc
1 +βnc

3 +|βnc
1 −βnc

3 |
2 . For convergence

we require λu < 1, i.e., β1+β3+|β1−β3|
2 < 1, which implies β1, β3 < 1 as β1, β3 ∈ [0, 1].

Thus, again we require W1 and W3 to represent a connected network. The step size
condition in Theorem 6 isO(L−1κ−0.5) while Theorem 9 requiresO(L−1κ−1), which is more
pessimistic. That said, the precise and interpretable characterization of the convergence
rate in Theorem 9 allows us to better differentiate amongst the communication strategies
and the effect of nc.
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Corollary 10. Suppose Assumption 2 holds, W ̸= 1n1Tn
n , and the number of gradient steps

at each outer iteration of Algorithm 1 is set to one (i.e., ng = 1). If α ≤ 1
L , then, the

spectral radii for the methods described in Table 1 satisfy

GTA-1: ρ(A1(nc)) ≤ max
{
1− αµ

2 , βnc +
√
αL
(
2.5 +

√
κ
)}

,

GTA-2: ρ(A2(nc)) ≤ max
{
1− αµ

2 , βnc +
√
αL
(
2.5 +

√
κβnc

)}
,

GTA-3: ρ(A3(nc)) ≤ max
{
1− αµ

2 , βnc

(
1 +
√
αL
(
2.5 +

√
κ
))}

.

Proof. The conditions in Theorem 9 are satisfied due to Lemma 8. Thus, we can plug in
the values for βi (i = 1, 2, 3, 4) for each method to get an upper bound on the spectral
radii. The upper bound λu for GTA-1 can be simplified as

λ̂+

√
2αL2βnc

2 βnc
4

µ = 2βnc+Lα+
√
5L2α2+8Lα

2 +
√

2αL2

µ

= βnc +
√
αL
2

(√
αL+ 2

√
κ+
√
8 + 5Lα

)
≤ βnc +

√
αL
(
2.5 +

√
κ
)

where the last inequality is due to α ≤ 1
L . Following the same approach, λu for GTA-2 can

be simplified as

λ̂+

√
2αL2βnc

2 βnc
4

µ =
2βnc+Lα+

√
L2α2+4L2α2βnc+8Lαβnc

2 +
√

2αL2βnc

µ

= βnc +
√
αL
2

(√
αL+ 2

√
κβnc +

√
8βnc + 4Lαβnc + Lα

)
≤ βnc +

√
αL
(
2.5 +

√
κβnc

)
where the last inequality uses α ≤ 1

L and β < 1. Finally, the upper bound λu for GTA-3 is

λ̂+

√
2αL2βnc

2 βnc
4

µ =
2βnc+Lαβnc+

√
5L2α2(βnc )2+8Lα(βnc )2

2 +

√
2αL2(βnc )2

µ

= βnc

(
1 +

√
αL
2

(√
αL+ 2

√
κ+
√
8 + 5Lα

))
≤ βnc

(
1 +
√
αL
(
2.5 +

√
κ
))

where the last inequality is due to α ≤ 1
L and β < 1.

Corollary 10 characterizes the effect of multiple communication steps (when ng = 1) on
the convergence rates of GTA-1, GTA-2 and GTA-3. First, the convergence rate improves with
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increased communications (increase in nc) when ng = 1 for all methods. The improvement
is most apparent in GTA-3 as increasing nc drives the second term in the max bound to
zero. Thus, if a sufficient number of communication steps are performed in GTA-3, the
method can achieve convergence rates similar to those of gradient descent, i.e., (1 − αµ

2 ).
The improvement is less apparent in GTA-2 and the least in GTA-1. With an increase in
nc, the dominating term in the max bound, i.e.,

√
αLκ, remains unchanged in GTA-1 and

changes to
√
αLκβnc in GTA-2 which is affected by the number of communication steps

nc.

3.2 GTA with multiple communication and computation (nc ≥ 1, ng ≥ 1)

In this section, we analyze GTA when multiple computation and communication steps are
performed every iteration. We extend the analysis from Subsection 3.1; the case ng = 1 is
a special case of the analysis in this section. The subscript for the inner iteration counter
is re-introduced in this section as we consider cases with ng > 1 and the inner loop (Lines
4–6 in Algorithm 1) is executed. We first provide a technical lemma that bounds the errors
due to the execution of the inner loop. We use this result to extend Lemma 3 and establish
the progression of the error vector rk when multiple communication and computation steps
are performed. Finally, we provide the conditions for linear convergence of Algorithm 1
with any composition of communication and computation steps.

Lemma 11. Suppose Assumption 2 holds and α ≤ 1
ngL

in Algorithm 1. Then, for all k ≥ 0
and 1 ≤ j ≤ ng

∥ȳk,1∥2 ≤ ∥yk,1 − ȳk,1∥2 + L ∥xk,1 − x̄k,1∥2 + L
√
n∥x̄k,1 − x∗∥2 (19)

∥xk,j − xk,1∥2 ≤ 2α(j − 1)∥yk,1∥2, (20)

∥xk,j − x̄k,j∥2 ≤ 2α(j − 1)∥yk,1∥2 + ∥xk,1 − x̄k,1∥2, (21)

Proof. Taking a telescopic sum of yk,i+1 = yk,i + ∇f(xk,i+1) − ∇f(xk,i), the inner loop
update, from i = 1 to j − 1 we get

yk,j = yk,1 +∇f(xk,j)−∇f(xk,1). (22)

Using (22), yk+1,1 can be expressed as

yk+1,1 = Znc
3

(
yk,1 +∇f(xk,ng)−∇f(xk,1)

)
+ Znc

4

(
∇f(xk+1,1)−∇f(xk,ng)

)
= Znc

3 yk,1 + Znc
4 ∇f(xk+1,1)− Znc

3 ∇f(xk,1) + Znc
3 ∇f(xk,ng)− Znc

4 ∇f(xk,ng)
(23)

Taking the component-wise average across all nodes in (22) and (23) and using (6), it
follows that

ȳk,j = ȳk,1 + hk,j − hk,1, (24)

ȳk+1,1 = ȳk,1 + hk+1,1 − hk,1. (25)
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Performing a similar telescopic sum as (9) with (25), we obtain ȳk,1 = hk,1. Thus, substi-
tuting ȳk,1 = hk,1 in (24) yields

ȳk,j = ȳk,1 + hk,j − hk,1 = hk,j . (26)

By the triangle inequality, ∥yk,1∥2 ≤ ∥yk,1−ȳk,1∥2+∥ȳk,1∥2, where ∥ȳk,1∥2 can be bounded
by a similar procedure to (14) due to ȳk,1 = hk,1 to yield (19).

Now, taking the telescopic sum of the inner loop update xk,i = xk,i−1 − αyk,i−1 from

i = 2 to j yields xk,j = xk,1 − α
∑j−1

i=1 yk,i. The sum
∑j−1

i=1 yk,i is evaluated using (22) as

j−1∑
i=1

yk,j = yk,1 +

j−1∑
i=2

yk,i +∇f(xk,i)−∇f(xk,1)

= (j − 1)yk,1 +

j−1∑
i=2

∇f(xk,i)−∇f(xk,1).

(27)

By the triangle inequality and Assumption 2, it follows that

∥xk,j − xk,1∥2 ≤ α(j − 1)∥yk,1∥2 + α

j−1∑
i=1

∥∇f(xk,i)−∇f(xk,1)∥2

≤ α(j − 1)∥yk,1∥2 + αL

j−1∑
i=1

∥xk,i − xk,1∥2.

Now we apply induction to show (20) using the above inequality.

For j = 1, ∥xk,1 − xk,1∥2 = 0 = 2α(1− 1)∥yk,1∥2.

For j ≥ 2, ∥xk,j − xk,1∥2 ≤ α(j − 1)∥yk,1∥2 + αL

j−1∑
i=1

∥xk,i − xk,1∥2

≤ α(j − 1)∥yk,1∥2 + 2α2L

j−1∑
i=1

(i− 1)∥yk,1∥2

= α(j − 1)∥yk,1∥2 + 2α2L∥yk,1∥2 (j−2)(j−1)
2

= α(j − 1) (1 + αL(j − 2)) ∥yk,1∥2
≤ 2α(j − 1)∥yk,1∥2,

where the first equality uses the sum of j − 1 natural numbers and the second to last
inequality is due to αL ≤ 1

ng
and j ≤ ng.

By (20), the triangle inequality and ∥Ind − I∥2 = 1, it follows that

∥xk,j − x̄k,j∥2 ≤ ∥xk,j − xk,1 + x̄k,1 − x̄k,j∥2 + ∥xk,1 − x̄k,1∥2
≤ ∥(Ind − I)(xk,j − xk,1)∥2 + ∥xk,1 − x̄k,1∥2
≤ ∥xk,j − xk,1∥2 + ∥xk,1 − x̄k,1∥2.
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The two bounds in Lemma 11 ((20) and (21)) bound the deviation of the local decision
variables from the start of the outer iteration, ∥xk,j − xk,1∥2, and the consensus error,
∥xk,j − x̄k,j∥2, in inner iteration j, respectively. Combined with (19), these quantities are
bounded as an O(αj) multiple of the components of the error vector rk. This property has
two implications; (1) if one performs more inner iterations, i.e., increases ng, the constant
step size α needs to be reduced to reduce these quantities, (2) if an outer iterate is the
optimal solution, the inner loop does not introduce any deviations in the iterates and
maintains optimality.

We now establish the progression of error vector rk under multiple communication and
computation steps being performed every iteration in Algorithm 1.

Lemma 12. Suppose Assumption 2 holds and α ≤ 1
ngL

in Algorithm 1. Then, for all
k ≥ 0,

rk+1 ≤ B(nc, ng)rk, where B(nc, ng) = A(nc, ng) + αL(ng − 1)E(nc, ng),

A(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc
1 α ((ng − 1)βnc

1 + βnc
2 )

√
nαβnc

4 L2 βnc
4 L(∥Znc

1 − Ind∥2 + αL) βnc
3 + αβnc

4 L

 ,

E(nc, ng) =

 αLng
αLng√

n
αng√

n√
nαLδ1(nc, ng) αLδ1(nc, ng) αδ1(nc, ng)√
nLδ2(nc, ng) Lδ2(nc, ng) δ2(nc, ng)

 ,

(28)

and
δ1(nc, ng) = 2βnc

2 + βnc
1 (ng − 2),

δ2(nc, ng) = 2
(
βnc
4 ∥Z

nc
1 − Ind∥2 +

βnc
4
ng

+ βnc
3

)
.

(29)

Proof. We first consider the optimization error of the average iterates xk,1. Similar to (10),
we bound the optimization error as

∥x̄k,j+1 − x∗∥2 ≤ (1− αµ)∥x̄k,j − x∗∥2 + αL√
n
∥xk,j − x̄k,j∥2 ∀ 1 ≤ j ≤ ng − 1,

where the above holds by using (26) (the generalization of (9)) and the error bound of
gradient descent from [28, Theorem 2.1.14]. Next, we bound the optimization error in
xk+1,1 with respect to xk,ng in a similar manner as,

∥x̄k+1,1 − x∗∥2 ≤ (1− αµ)∥x̄k,ng − x∗∥2 + αL√
n
∥xk,ng − x̄k,ng∥2.
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Recursively applying the above two bounds, by (21) it follows that,

∥x̄k+1,1 − x∗∥2 ≤ (1− αµ)ng∥x̄k,1 − x∗∥2 + αL√
n

ng∑
j=1

(1− αµ)ng−j∥xk,1 − x̄k,1∥2

+ 2α2L√
n

ng∑
j=1

(1− αµ)ng−j(j − 1)∥yk,1∥2

≤ (1− αµ)ng∥x̄k,1 − x∗∥2 + κ√
n
[1− (1− αµ)ng ] ∥xk,1 − x̄k,1∥2

+ α2L√
n
ng(ng − 1)∥yk,1∥2,

where the last inequality is due to the fact that (1 − αµ)ng−j ≤ 1 ∀j = 1, 2, ..., ng due to
α ≤ 1

Lng
, the coefficient of the second term is the sum of a geometric progression, and the

coefficient of the third term is the sum of the first ng − 1 natural numbers. By (19), we
obtain the desired bound on the optimization error.

Next, we consider the consensus error in xk,1,

xk+1,1 − x̄k+1,1

=(Ind − I)xk+1,1 = (Ind − I) (Znc
1 xk,ng − αZnc

2 yk,ng)

= (Ind − I)

Znc
1

xk,1 − α

ng−1∑
j=1

yk,j

− αZnc
2 yk,ng


=(Ind − I)

Znc
1 xk,1 − αZnc

1

(ng − 1)yk,1 +

ng−1∑
j=2

∇f(xk,j)−∇f(xk,1)


− α (Ind − I)

(
Znc
2 (yk,1 +∇f(xk,ng)−∇f(xk,1))

)
=(Znc

1 − I) (xk,1 − x̄k,1)− α ((ng − 1) (Znc
1 − I) + (Znc

2 − I)) (yk,1 − ȳk,1)

− α (Znc
2 − I)

(
∇f(xk,ng)−∇f(xk,1)

)
− α (Znc

1 − I)

ng−1∑
j=2

∇f(xk,j)−∇f(xk,1)


where the second equality is a telescopic sum of the inner loop update (xk,i = xk,i−1 −
αyk,i−1) from i = 2 to ng and the third equality is due to (27). By the triangle inequality,
Assumption 2 and (5),

∥xk+1,1 − x̄k+1,1∥2 ≤ βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2 ) ∥yk,1 − ȳk,1∥2

+ αβnc
2 L∥xk,ng − xk,1∥2 + αβnc

1 L

ng−1∑
j=2

∥xk,j − xk,1∥2.

20



Adding αβnc
1 L∥xk,1 − xk,1∥2 = 0 to the right hand side and (20), it follows,

∥xk+1,1 − x̄k+1,1∥2 ≤ βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2 ) ∥yk,1 − ȳk,1∥2

+ α2βnc
2 L(2(ng − 1))∥yk,1∥2 + α2βnc

1 L

ng−1∑
j=1

2(j − 1)∥yk,1∥2

= βnc
1 ∥xk,1 − x̄k,1∥2 + α ((ng − 1)βnc

1 + βnc
2 ) ∥yk,1 − ȳk,1∥2

+ 2α2L(ng − 1)
(
βnc
2 + βnc

1
(ng−2)

2

)
∥yk,1∥2.

The desired bound for the consensus error in xk,1 follows by using (19).
Finally, we consider the consensus error in yk,1. By (23),

yk+1,1 − ȳk+1,1 = (Ind − I)yk+1,1

= (Ind − I) (Znc
3 yk,1 + Znc

4 ∇f(xk+1,1)− Znc
3 ∇f(xk,1))

+ (Ind − I) (Znc
3 ∇f(xk,ng)− Znc

4 ∇f(xk,ng))

= (Znc
3 − I) (yk,1 − ȳk,1) + (Znc

4 − I) (∇f(xk+1,1)−∇f(xk,ng))

+ (Znc
3 − I) (∇f(xk,ng)−∇f(xk,1))

By Assumption 2 and (5),

∥yk+1,1 − ȳk+1,1∥2
≤ βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥xk+1,1 − xk,ng∥2 + βnc

3 L∥xk,ng − xk,1∥2
= βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥(Znc

1 − Ind)(xk,ng − x̄k,ng)− αZnc
2 yk,ng∥2

+ βnc
3 L∥xk,ng − xk,1∥2

≤ βnc
3 ∥yk,1 − ȳk,1∥2 + βnc

4 L∥Znc
1 − Ind∥2∥xk,ng − x̄k,ng∥2 + αβnc

4 L∥Znc
2 ∥2∥yk,ng∥2

+ βnc
3 L∥xk,ng − xk,1∥2

= βnc
3 ∥yk,1 − ȳk,1∥2 + βnc

4 L∥Znc
1 − Ind∥2∥xk,ng − x̄k,ng∥2

+ αβnc
4 L∥yk,1 +∇f(xk,ng)−∇f(xk,1)∥2 + βnc

3 L∥xk,ng − xk,1∥2
≤ βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥Znc

1 − Ind∥2∥xk,ng − x̄k,ng∥2
+ αβnc

4 L∥yk,1∥2 + αβnc
4 L2∥xk,ng − xk,1∥2 + βnc

3 L∥xk,ng − xk,1∥2

where the first equality follows from xk+1,1 = Znc
1 xk,ng−αZ

nc
2 yk,ng and −(Z

nc
1 −Ind)x̄k,ng =

0, the second inequality is by the triangle inequality, the second equality follows by (22),
and the last inequality is an application of triangle inequality and Assumption 2. By (20),
(21) and αL ≤ 1

ng
, it follows,

∥yk+1,1 − ȳk+1,1∥2
≤βnc

3 ∥yk,1 − ȳk,1∥2 + βnc
4 L∥Znc

1 − Ind∥2∥xk,1 − x̄k,1∥2

+
(
αβnc

4 L+ 2α(ng − 1)L
(
βnc
4 ∥Z

nc
1 − Ind∥2 +

βnc
4
ng

+ βnc
3

))
∥yk,1∥2.
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Substituting (19) yields the desired bound for the consensus error in yk,1.

Lemma 12 quantifies the progression of error vector rk using the matrix B(nc, ng),
similar to Lemma 3 but now allowing for multiple computation steps. Notice that when
ng = 1, Lemma 12 reduces to Lemma 3, making it a special case of this analysis. We
split the matrix B(nc, ng) into the matrices A(nc, ng) and E(nc, ng). The latter matrix is
characterized by the terms δ1(nc, ng) and δ2(nc, ng). We now define the explicit form of
B(nc, ng) for the methods defined in Table 1.

Corollary 13. Suppose the conditions of Lemma 12 are satisfied. Then, the matrices
A(nc, ng) for the methods described in Table 1 are defined as:

GTA-1: A1(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc α ((ng − 1)βnc + 1)
√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-2: A2(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc αβncng√
nαL2 L(2 + αL) βnc + αL

 ,

GTA-3: A3(nc, ng) =

(1− αµ)ng κ√
n
(1− (1− αµ)ng) 0

0 βnc αβncng√
nαβncL2 βncL(2 + αL) βnc(1 + αL)

 .

(30)

The matrix E(nc, ng) for the methods described in Table 1 is defined using the error terms
(δ1(nc, ng) and δ2(nc, ng)). The error terms for the methods described in Table 1 are defined
in Table 2.

Table 2: Error terms (δ1(nc, ng) and δ2(nc, ng)) for GTA-1, GTA-2 and GTA-3

Method δ1(nc, ng) δ2(nc, ng)

GTA-1 2 + βnc(ng − 2) 2
(
2 + 1

ng
+ βnc

)
GTA-2 ngβ

nc 2
(
2 + 1

ng
+ βnc

)
GTA-3 ngβ

nc 2βnc

(
3 + 1

ng

)
Proof. Substituting the matrix values for each method in (28) and bounding ∥Znc

1 −Ind∥2 ≤
2 gives the desired result.
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Corollary 13 presents the explicit form of the matrices Bi(nc, ng) = Ai(nc, ng)+αL(ng−
1)Ei(nc, ng) for i = 1, 2, 3, for each of the methods in Table 1. The convergence properties of
GTA can be analyzed using the spectral radius of B(nc, ng). We now qualitatively establish
the effect of the number of communication steps nc on ρ(B(nc, ng)) and a relative ordering
for ρ(B1(nc, ng)), ρ(B2(nc, ng)) and ρ(B3(nc, ng)).

Theorem 14. Suppose Assumption 2 holds. If α ≤ 1
Lng

in Algorithm 1, then as nc

increases, ρ(B(nc, ng)) decreases where B(nc, ng) is defined in Lemma 12. Thus, as nc

increases, ρ(Bi(nc, ng)) decreases for all i = 1, 2, 3 defined in Corollary 13. Moreover, if
all three methods defined in Table 1 (GTA-1, GTA-2 and GTA-3) employ the same step size,

ρ(B1(nc, ng)) ≥ ρ(B2(nc, ng)) ≥ ρ(B3(nc, ng)).

Proof. Note that A(nc, ng) ≥ 0 and E(nc, ng) ≥ 0, thus B(nc, ng) ≥ 0. Also, A(nc, ng) ≥
A(nc+1, ng), δ1(nc, ng) ≥ δ1(nc+1, ng), δ2(nc, ng) ≥ δ2(nc+1, ng), thus E(nc, ng) ≥ E(nc+
1, ng) andB(nc, ng) ≥ B(nc+1, ng). By [14, Corollary 8.1.19], it follows that ρ(A(nc, ng)) ≥
ρ(A(nc+1, ng)), ρ(E(nc, ng)) ≥ ρ(E(nc+1, ng)) and ρ(B(nc, ng)) ≥ ρ(B(nc+1, ng)). The
same argument is applicable for B1(nc, ng), B2(nc, ng) and B3(nc, ng). Now, observe that
B1(nc, ng) ≥ B2(nc, ng) ≥ B3(nc, ng) ≥ 0 when the same step size is employed. Thus, again
by [14, Corollary 8.1.19], it follows that ρ(B1(nc, ng)) ≥ ρ(B2(nc, ng)) ≥ ρ(B3(nc, ng)).

The effect of the number of computation steps ng on ρ(B(nc, ng)) is not as clear as the
effect of the number of communication steps nc. Increasing ng increases all elements of
the matrix αL(ng − 1)E(nc, ng), while (1 − αµ)ng in the matrix A(nc, ng) decreases since
α ≤ 1

Lng
. Thus, the effect of ng on ρ(B(nc, ng)) is not monotonic.

We now derive conditions for establishing a linear rate of convergence for Algorithm 1
with multiple communication and computation steps every iteration in terms of network
parameters (β1, β2, β3, β4) and objective function parameters (L, µ, κ = L

µ ).

Theorem 15. Suppose Assumption 2 holds and a finite number of computation steps are
performed at each outer iteration of Algorithm 1 (i.e., 1 ≤ ng <∞). If the matrix B(nc, ng)
is irreducible, β1, β3 < 1 and

α < min

{
1

ngL
, µ
(2L2+µ2)(ng−1)

, 1
2L

√
3(1−βnc

1 )
δ1(nc,ng)(ng−1) ,

3(1−βnc
3 )

4L(βnc
4 +δ2(nc,ng)(ng−1))

,
−b2+
√

b22+4b1b3
2b1

}
(31)
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where

b1 =
µL2ng

2 [(ng − 1) (βnc
1 + δ1(nc, ng)) + βnc

2 ] [βnc
4 + (ng − 1)δ2(nc, ng)]

+ L3ng(ng − 1)
[
δ1(nc, ng)

(
1−βnc

3
4

)
+ (βnc

4 + (ng − 1)δ2(nc, ng))
(
1−βnc

1
4

)]
+ L2(ng − 1)2

[
Lδ1(nc, ng) (3β

nc
4 + (ng − 1)δ2(nc, ng)) + δ1(nc, ng)

(
1−βnc

3
4

)]
+ L2[βnc

4 + (ng − 1)δ2(nc, ng)] [Lng + (ng − 1)] [(ng − 1) (βnc
1 + δ1(nc, ng)) + βnc

2 ]

b2 =µngβ
nc
4 L ((ng − 1)(βnc

1 + δ1(nc, ng)) + βnc
2 ) , and b3 =

µng

2

(
1−βnc

1
4

)(
1−βnc

3
4

)
and δ1(nc, ng) and δ2(nc, ng) are defined in (29), then, for all ϵ > 0 there exists a constant
Cϵ > 0 such that, for all k ≥ 0,

∥rk∥2 ≤ Cϵ(ρ(B(nc, ng)) + ϵ)k∥r0∥2, where ρ(B(nc, ng)) < 1.

Proof. By the binomial expansion of (1−αµ)ng and the condition that α ≤ 1
Lng

, it follows

that 1 − αµng ≤ (1 − αµ)ng ≤ 1 − αµng + α2µ2 ng(ng−1)
2 . Following a similar approach to

[31, Theorem 2], since the step size satisfies (31), the first, second and third diagonal terms
of B(nc, ng) can be upper bounded as

(1− αµ)ng + α2L2ng(ng − 1) ≤ 1− αµng + α2(L2 + µ2

2 )ng(ng − 1) < 1− αµng

2 ,

βnc
1 + α2L2(ng − 1)δ1(nc, ng) <

3+βnc
1

4 ,

βnc
3 + αβnc

4 L+ αL(ng − 1)δ2(nc, ng) <
3+βnc

3
4 .

With the above bounds, (1 − αµ)ng ≥ 1 − αµng and ∥Znc
1 − Ind∥ ≤ 2, we construct the

3× 3 matrix B̃(nc, ng) that has entries b̃ij defined as follows:

b̃11 = 1− αµng

2 , b̃12 =
αLng√

n
(1 + αL(ng − 1)) , b̃13 =

α2Lng(ng−1)√
n

b̃21 =
√
nα2L2(ng − 1)δ1(nc, ng), b̃22 =

3+βnc
1

4 ,

b̃23 = α ((ng − 1)(βnc
1 + αLδ1(nc, ng)) + βnc

2 ) ,

b̃31 =
√
nαL2 (βnc

4 + (ng − 1)δ2(nc, ng)) ,

b̃32 = βnc
4 L(2 + αL) + αL2(ng − 1)δ2(nc, ng), b̃33 =

3+βnc
3

4 ,

such that 0 ≤ B(nc, ng) ≤ B̃(nc, ng) and by [14, Corollary 8.1.19], ρ(B(nc, ng)) ≤ ρ(B̃(nc, ng)).
Following [30, Lemma 5] derived from the Perron-Forbenius Theorem [14, Theorem 8.4.4]
for a 3×3 matrix, when the matrix B̃(nc, ng) is nonnegative and irreducible, it is sufficient
to show that the diagonal elements of B̃(nc, ng) are less than one and det(I3−B̃(nc, ng)) > 0
in order to guarantee ρ(B̃(nc, ng)) < 1 which suffices to show ρ(B(nc, ng)) < 1.
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Consider the diagonal elements of the matrix B̃(nc, ng). The first element is 1− αµng

2 ≤
1− µ

2L < 1 by (31). The second element is
3+βnc

1
4 < 1 as β1 < 1. Finally the third element

is
3+βnc

3
4 < 1 as β3 < 1. Next, let us consider,

det(I3 − B̃(nc, ng))

=
αµng

2

(
1−βnc

1
4

)(
1−βnc

3
4

)
− α3L3ng(ng − 1)

[
βnc
4

(
1−βnc

1
4

)
+ δ1(nc, ng)

(
1−βnc

3
4

)]
− α2µLng

2 [(ng − 1)(βnc
1 + αLδ1(nc, ng)) + βnc

2 ] [βnc
4 (2 + αL) + αL(ng − 1)δ2(nc, ng)]

− α4L4ng(ng − 1)2δ1(nc, ng) [2β
nc
4 + αL (βnc

4 + (ng − 1)δ2(nc, ng))]

− α3L3ng (1 + α(ng − 1)) [βnc
4 + (ng − 1)δ2(nc, ng)] [(ng − 1)(βnc

1 + αLδ1(nc, ng)) + βnc
2 ]

− α3L3ng(ng − 1)2
[
δ2(nc, ng)

(
1−βnc

1
4

)
+ αδ1(nc, ng)

(
1−βnc

3
4

)]
≥α(−b1α2 − b2α+ b3) = −b1α(α− αl)(α− αu)

where the inequality is due to αLng ≤ 1 and thus αL ≤ 1 as ng ≥ 1, and

αl =
−b2−
√

b22+4b1b3
2b1

and αu =
−b2+
√

b22+4b1b3
2b1

.

Observe that αl < 0 < αu since b1, b2, b3 ≥ 0. From (31), we have 0 < α < αu. Therefore,
det(I3 − B̃(nc, ng)) > 0, which combined with the fact that the diagonal elements of the
matrix are less than 1, implies ρ(B(nc, ng)) ≤ ρ(B̃(nc, ng)) < 1.

Finally, we bound the norm of error vector ∥rk∥2 by telescoping ri+1 ≤ B(nc, ng)ri from
i = 0 to k − 1 and triangle inequality as

∥rk∥2 ≤ ∥B(nc, ng)
k∥2∥r0∥2.

From [14, Corollary 5.6.13], we can bound ∥B(nc, ng)
k∥2 ≤ Cϵ(ρ(B(nc, ng)) + ϵ)k where

ϵ > 0 and Cϵ is a positive constant depending on B(nc, ng) and ϵ.

Similar to Theorem 9, the only constraint Theorem 15 imposes on the system is
β1, β3 < 1. This implies the communication matrices W1 and W3 must represent con-
nected networks (not necessarily the same network) even when multiple communication
and multiple computation steps are performed. Theorem 15 does not impose any restric-
tions on the relation among W1, W2, W3 and W4. Thus, it allows for more flexibility
than the structures considered in the literature even when multiple communication and
multiple computation steps are performed. Theorem 15 uses a relaxation of the original
matrix B(nc, ng) to provide a more pessimistic step size condition than required. But
observe, when ng = 1, (31) recovers the O(L−1κ−0.5) step size condition of Theorem 6,
suggesting it might not be very pessimistic.

Based on Theorem 15, the step size conditions for methods described in Table 1 can
be derived. We omit these conditions as they are complex and do not offer any additional
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insights. We also omit the counterpart to Theorem 9 as the matrix B(nc, ng) is now a dense
matrix, thus any such bounds are again highly complex and do not offer strong insights
into the effects of communication and computation on the convergence rate. If B(nc, ng)
is a reducible matrix, the analysis for the progression of rk can be further simplified from
Lemma 12. The analysis for this case is presented in Subsection 3.3 with the examples of

GTA-2 and GTA-3 when W = 1n1Tn
n , i.e., β = 0.

3.3 Fully connected network

In this section, we analyze the methods defined in Table 1 under a fully connected net-
work. While showing linear convergence of GTA in Theorem 15, we assume B(nc, ng) is an

irreducible matrix. When the network is fully connected, i.e., W = 1n1Tn
n and β = 0, the

assumption does not hold for GTA-2 and GTA-3 as the matrices B2(nc, ng) and B3(nc, ng)
defined by Corollary 13 are reducible. For GTA-1, such an issue does not arise as A1(nc, ng)
defined in Corollary 13 is irreducible for all β ∈ [0, 1]. Thus, we now present sufficient
conditions for linear rate of convergence and the convergence rate for GTA-2 and GTA-3 for
the special case of fully connected networks.

Theorem 16. Suppose Assumption 2 holds, W = 1n1Tn
n and a finite number of computation

steps are performed each outer iteration of GTA-3 defined in Table 1 (i.e., 1 ≤ ng <∞). If

α < min
{

µ
(2L2+µ2)(ng−1)

, 1
Lng

}
, then for all k ≥ 0,

∥xk+1,1 − x∗∥2 ≤
(
(1− αµ)ng + α2L2ng(ng − 1)

)
∥xk,1 − x∗∥2.

Moreover, suppose the number of computation steps performed each outer iteration of GTA-2
and GTA-3 defined in Table 1 is set to one (i.e., ng = 1). If α ≤ 1

L , then for both the
methods, for all k ≥ 0,

∥xk+1,1 − x∗∥2 ≤ (1− αµ)∥xk,1 − x∗∥2.

Proof. When we substitute β = 0 in Corollary 13 as α < 1
ngL

, the matrices B2(nc, ng)

and B3(nc, ng) now have rows of zeros that make them reducible. Thus, we reduce these
matrices by ignoring the error terms corresponding to the row of zeros. This yields the
following systems for the progression of errors in these methods,

GTA-2: r̃k+1 ≤

[
(1− αµ)ng + α2L2ng(ng − 1)

α2Lng(ng−1)√
n√

nαL2δ̃(nc, ng) αLδ̃(nc, ng)

]
r̃k, (32)

GTA-3: ∥xk+1,1 − x∗∥2 ≤
(
(1− αµ)ng + α2L2ng(ng − 1)

)
∥xk,1 − x∗∥2, (33)
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where δ̃(nc, ng) = 1 + 2(ng − 1)
(
2 + 1

ng

)
and r̃k =

[
∥xk,1 − x∗∥2
∥yk,1 − ȳk,1∥2

]
.

By α < µ
(2L2+µ2)(ng−1)

and (1− αµ)ng ≤ 1− αµng + α2µ2 ng(ng−1)
2 from Theorem 15,

(1− αµ)ng + α2L2ng(ng − 1) ≤ 1− αµng + α2
(
L2 + µ2

2

)
ng(ng − 1) < 1,

and thus the result for GTA-3 follows. When the number of computation steps performed
each outer iteration is set to one, i.e., ng = 1, the result for GTA-3 follows by substituting
ng = 1 in (33), where 1 − αµ < 1 as α ≤ 1

L . Substituting ng = 1 in (32) for GTA-2

yields, r̃k+1 ≤

[
1− αµ 0
√
nαL2 αL

]
r̃k, where the bound on optimization error is independent of

the consensus error in yk,1. Thus, we obtain ∥xk+1,1 − x∗∥2 ≤ (1− αµ) ∥xk,1 − x∗∥2 for
GTA-2.

By Theorem 16 if the network is fully connected and a single computation step is
performed, i.e., ng = 1, GTA-2 and GTA-3 display gradient descent performance. For GTA-2,
when the network is fully connected and ng > 1, the convergence rate can be expressed as
the spectral radius of the 2× 2 matrix in (32).

4 Numerical Experiments

In this section, we illustrate the empirical performance of the methods defined in Table 1
using Python implementations2. The aim of this section is to show, over multiple prob-
lems, that different communication strategies and the balance between communication and
computation steps can substantially effect the algorithm’s performance. Specifically, we
establish the relative performance of the methods defined in Table 1 and illustrate the
benefits of the flexibility in terms of communication and computation steps.

We present results on two problems: (1) a synthetic strongly convex quadratic prob-
lem (Subsection 4.1); and, (2) binary classification logistic regression problems over the
mushroom and australian datasets [11] (Subsection 4.2). We investigated two network
structures (different mixing matrix W) with n = 16 nodes: (1) a connected cyclic net-
work (β = 0.992) where all nodes have two neighbours; and, (2) a connected star network
(β = 0.95) where all nodes are connected to a single central node. Both networks have
low connectivity (i.e., high β). We should note that the performance of Algorithm 1 with
multiple communication steps is equivalent to the performance over a network with higher
connectivity (i.e., lower β).

2Our code will be made publicly available upon publication of the manuscript. Github repository:
https://github.com/Shagun-G/Gradient-Tracking-Algorithmic-Framework. Moreover, additional ex-
tensive numerical results can be found in the same repository.
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The methods defined in Table 1 are denoted as GTA−i(nc, ng), i = 1, 2, 3, where nc and
ng are the number of communication and computation steps, respectively. We tested 5 val-
ues of nc and ng for each of the methods; nc ∈ {1, 5, 10, 50, 100} and ng ∈ {1, 5, 20, 50, 100}.
We compared the performance of popular gradient tracking methods, which are special
cases of our generalized framework. The step sizes were tuned over the set {2−t|t =
0, 1, 2, .., 20} for all algorithms and problems, and the initial iterates for all algorithms,
problems and nodes were set to the zero vector (i.e., xk = 0). The performance of the
methods was measured in terms of the optimization error (∥x̄k − x∗∥2) and the consensus
error (∥xk − x̄k∥2). We do not report the consensus error in the auxiliary variable yk

(∥yk − ȳk∥2) as this measure does not provide any significant additional insights about
the performance of the algorithms. The optimal solution x∗ for quadratic problem was
obtained analytically and for the logistic regression problems was obtained by running
gradient descent in the centralized setting to high accuracy, i.e., ∥∇f(x∗)∥2 ≤ 10−12.

4.1 Quadratic Problems

We first consider quadratic problems

f(x) =
1

n

n∑
i=1

1

2
xTQix+ bTi x,

whereQi ∈ R10×10, Qi ≻ 0 and bi ∈ R10 is the local information at each node i ∈ {1, 2, .., n},
and n = 16. Each local problem is strongly convex and was generated using the procedure
described in [24], with global condition number κ ≈ 104.

Figs. 1 and 2 show the performance of GTA-1, GTA-2 and GTA-3 over a cyclic network
and a star network, respectively. Our first observation, from the iteration plots in both
the figures, is that the optimization error and consensus error converge at a linear rate for
all methods, matching the theoretical results of Section 3. Moreover, improvements in the
rates of convergence of all methods are observed as a result of the flexibility in terms of
the number of communication and computation steps. Specifically, the consensus error is
improved (and on par optimization error) when multiple communication steps with single
computation step are performed (see GTA-i(1, 1) vs. GTA-i(nc, 1) lines), and the opti-
mization error is improved (and on par consensus error) when multiple computation steps
with same number of communication steps are performed (see GTA-i(nc, 1) vs. GTA-i(nc,
ng) lines). These observations match the theory presented in Section 3.2. That being said,
these improvements come at a higher cost in terms of total communication or computation
steps, respectively, and an optimal choice of (nc, ng) depends on the exact cost structure
that combines the complexity of both these steps; see e.g., [3]. Finally, we also observe
that GTA-2 and GTA-3 outperform GTA-1 in terms of optimization error and achieve similar
consensus error. The performance of GTA-2 and GTA-3 is very similar for this problem, we
suspect the reason for this behavior is due to the large β and the high condition number
(κ ≈ 104) that dominate the rate constant; see Corollary 10.

28



0 1 2 3 4 5
1e4

10 1

100

101

Op
tim

iza
tio

n 
Er

ro
r

0 2 4 6 8 10
1e4

10 1

100

101

0 5 10 15 20 25
1e4

10 1

100

101

0 1 2 3 4 5
Iterations 1e4

10 9

10 7

10 5

10 3

10 1

Co
ns

en
su

s E
rro

r

0 2 4 6 8 10
Gradients 1e4

10 9

10 7

10 5

10 3

10 1

0 5 10 15 20 25
Communications 1e4

10 9

10 7

10 5

10 3

10 1

GTA-1 (1, 1) GTA-2 (1, 1) GTA-3 (1, 1) GTA-1 (10, 1) GTA-2 (10, 1) GTA-3 (10, 1)
GTA-1 (10, 5) GTA-2 (10, 5) GTA-3 (10, 5)

Figure 1: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1,
GTA-2 and GTA-3 with respect to number of iterations, communications and gradient eval-
uations for a synthetic quadratic problem (n = 16, d = 10, κ = 104) over a cyclic network
(β = 0.992).
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Figure 2: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1,
GTA-2 and GTA-3 with respect to number of iterations, communications and gradient
evaluations for a synthetic quadratic problem (n = 16, d = 10, κ = 104) over star
network(β = 0.95).
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Figure 3: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1,
GTA-2 and GTA-3 with respect to number of iterations, communications and gradient
evaluations for binary logistic regression on Mushroom dataset (n = 16, d = 117,∑n

i=1 ni = 8124) over cyclic network (β = 0.992).

4.2 Binary Classification Logistic Regression

Next, we consider ℓ2-regularized binary classification logistic regression problems of the
form

f(x) =
1

n

n∑
i=1

1

ni
log(1 + e−bTi Aix) +

1

ni
∥x∥22,

where each node i ∈ {1, 2, .., n} has a portion of data samples Ai ∈ Rni×d and corresponding
labels bi ∈ {0, 1}ni . Experiments were performed over the mushroom dataset (n = 16,
d = 117,

∑n
i=1 ni = 8124) and the australian dataset (n = 16, d = 41,

∑n
i=1 ni = 690) [11].

Figs. 3 and 4 show the performance of GTA-1, GTA-2 and GTA-3 over a cyclic network
(β = 0.992) for the mushroom dataset and a star network for the australian dataset (β =
0.95), respectively. Similar observations to those made for the quadratic problem with
respect to the effect of performing multiple communication and computation steps can
also be made for these problems. Additionally, we observe that GTA-3 outperforms GTA-2
on these problems. We should note that although GTA-3 performs the best within these
experiments, it also brings certain implementation constraints; see Section 2.
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Figure 4: Optimization Error (∥xk − x∗∥2) and Consensus Error (∥xk − x̄k∥2) of GTA-1,
GTA-2 and GTA-3 with respect to number of iterations, communications and gradient evalu-
ations for binary logistic regression on Australian dataset (n = 16, d = 41,

∑n
i=1 ni = 690)

over star network (β = 0.95).

5 Final Remarks

In this paper, we have proposed a framework that unifies and generalizes communication
strategies in gradient tracking methods with flexibility in the number of communication and
computation steps performed at every iteration. We have established convergence guar-
antees for the proposed gradient tracking framework. Specifically, we have shown linear
convergence for the general framework and the special cases of gradient tracking methods.
Moreover, we have shown the positive influence of performing multiple communication
steps at every iteration on the convergence rate and provide results that allow for the di-
rect comparison of popular gradient tracking methods. Our experiments on quadratic and
logistic regression problems illustrate the effects of different communication strategies and
the benefits of the flexibility in terms of iterations and number of communication and com-
putation steps. The advantages of the proposed framework can be further realized when
the actual cost, i.e., a combination of the complexity of both communication and compu-
tation steps that is application specific, is considered. Finally, the algorithmic framework
can be extended to other interesting settings such as nonconvex problems, stochastic local
information, asynchronous updates, and higher-order approaches.
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