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In stochastic programming and stochastic-dynamic programming discretization of random model parameters

is often unavoidable. We propose a quasi-Newton learning algorithm to discretize multi-dimensional, con-

tinuous discrete-time Markov processes to scenario lattices by minimizing the Wasserstein distance between

the unconditional distributions of process and lattice. Scenario lattices enable accurate discretization of the

conditional distributions of Markov processes while avoiding the exponential growth typically observed with

scenario trees. Unlike gradient descent methods, the proposed quasi-Newton method does not require manual

calibration of stepsize rules but automatically adjusts stepsizes by scaling updates with an approximation

of the Hessian of the distance function. Numerical results based on various stochastic decision problems

demonstrate that the proposed method achieves superior discretization of stochastic processes and results in

lower optimality gaps compared to existing first-order methods. Furthermore, the method can numerically

handle higher-order Wasserstein distances, proving advantageous for discretizing high-dimensional processes.
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clustering

History :

1. Introduction

Optimization models and solution approaches for stochastic programs often rely on approximat-

ing a continuous probability distribution by a discrete distribution with finite support to make

the problem numerically tractable. Consequently, the question of how to find good discretiza-

tions has received a lot of attention in the stochastic programming literature. In two-stage

stochastic programming, approximations are typically created by drawing a Monte Carlo sam-

ple from the original distribution which leads to the well-known sample average approximation

(Shapiro et al. 2009, Homem-de Mello and Bayraksan 2014). Another popular idea is to explic-

itly minimize a distance between the original distribution and the discrete approximation – for

example in optimal vector quantization as in (Graf and Luschgy 2000, Bally and Pagès 2003)

using the Wasserstein distance. Different probability distances lead to approximations based on

quasi-random numbers (Pennanen and Koivu 2005) or moment matching (Høyland et al. 2003).

See Löhndorf (2016) for a more detailed overview and an empirical comparison of different

methods.
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In multi-stage stochastic programming, the situation is further complicated by the need to

accurately represent the distributions of random model parameters conditional on past real-

izations. Here, one possibility is to assume conditional independence of the stochastic process

and employ a combination of sample average approximation and stochastic dual dynamic pro-

gramming (Pereira and Pinto 1991, Shapiro 2011). Another approach that does not require

this assumption is to approximate the stochastic processes by a scenario tree (e.g., Dupačová

et al. 2003, Pennanen 2005, Kaut and Wallace 2007, Heitsch and Römisch 2009, Pennanen 2009,

Pflug and Pichler 2014). While scenario trees are the most general representation of discrete

stochastic processes, trees that have no deterministic transitions between nodes necessarily

grow exponentially in the number of stages. Although attempts have been made to avoid expo-

nential growth (Heitsch and Römisch 2009), this leads to trees where many nodes necessarily

only have a single successor, which means that decisions in these nodes are taken under perfect

information about (at least part of) future randomness.

An alternative approach to using scenario trees is to approximate the stochastic process by

a scenario lattice. This requires that the process has the Markov property – an assumption

that is hardly limiting, as most processes commonly used in applications are Markovian or

can be transformed into Markov processes by an appropriate state space expansion (Powell

2011). Moreover, unlike scenario trees, lattices do not exhibit exponential growth as they allow

recombining scenarios with identical sub-trees. For example, a lattice with a constant number

of nodes per stage grows only linearly in the number of stages whereas the equivalent scenario

tree grows exponentially.

Lattices have been extensively studied in option pricing starting with the seminal contribution

of Cox et al. (1979), who approximate one-dimensional continuous-time diffusion processes

by discrete-time binomial lattices that weakly converge to the true process as the temporal

resolution gets finer. Consequently, evaluating the expectation of option values on the lattice

process asymptotically yields the true option value and avoids the need for closed form solutions.

In the literature on real options pricing, these initial ideas have been substantially refined

to incorporate information from observed market prices (Rubinstein 1994) and cover mean

reverting processes (e.g. Hahn and Dyer 2008) as well as processes with complex volatilities and

jumps (e.g. Harikae et al. 2021, Wang and Dyer 2010). In Wang and Dyer (2010) and Chourdakis

(2004), multinomial lattice approximations are explored. The general idea of these papers is

to construct lattices in such a way that the resulting process matches certain characteristics of

the original process, mostly volatility and drift.

Broadie and Glasserman (2004) consider discrete-time problems based on fairly general

stochastic processes that are approximated by multinomial lattices called stochastic meshes.

Similar to our approach, convergence to the true distribution is facilitated by increasing the
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number of nodes per time step as opposed to increasing the number of time steps. However, the

considered sampling scheme is closely motivated by the intended options pricing application.

Felix and Weber (2012) and Bardou et al. (2009) are closest to our approach. The authors

consider real options pricing problems with complex decisions and use the Wasserstein metric

to measure the difference between the continuous stochastic process and the lattice discretiza-

tion. Felix and Weber (2012) employ k-means clustering on simulated realizations of general

stochastic processes to minimize the distance between lattice and process, while Bardou et al.

(2009) restrict their attention to Gaussian randomness and use existing optimal quantizers from

the literature to construct lattices.

The effectiveness of using scenario lattices for solving multi-stage stochastic programs with

many time stages and multi-dimensional randomness have been demonstrated in Bonnans et al.

(2012), Löhndorf et al. (2013), Löhndorf and Shapiro (2019), Löhndorf and Wozabal (2021).

Nonetheless, the methods used to construct lattices are mostly ad-hoc and their application in

stochastic programming comes without performance guarantees.

The theoretical literature on lattices is sparse. Kiszka and Wozabal (2020) propose a lattice

distance and show that the objective values of certain stochastic programming problems are

Lipschitz continuous with respect to the proposed distance, facilitating a quantitative stability

analysis. However, the approach does not directly lend itself to the computationally efficient

generation of scenario lattices.

Bally and Pagès (2003) refer to lattices as vector quantization trees and propose a first-

order learning algorithm that minimizes the distance between the unconditional distribution

of a Markov chain and the nodes of the lattice. Their learning algorithm requires user-defined

stepsize rules and therefore manual parameter tuning which can lead to sub-optimal results, as

we will see in Section 3.

Apart from multi-stage stochastic programming, our research also relates to classic theory

on approximations of Markov decision processes (MDPs). However, our setting is different in

several notable ways. First, typical formulations of MDPs feature finite state and action spaces

along with discrete transition probabilities to model randomness (Bertsekas 1981, Langen 1981,

White 1982). By contrast, we consider problems with continuous randomness and uncountable

action spaces. Second, problems based on scenario lattices necessarily have a finite horizon,

whereas most work on approximations of MDPs deals with infinite horizon problems, exploiting

the fact that optimal value functions are fixed points of the Bellman operator (White 1982,

Chow and Tsitsiklis 1991, Saldi et al. 2017). Third, research that deals with continuous state

spaces usually imposes (Lipschitz) continuity conditions on the probability transition kernels

(Bertsekas 1981, Dufour and Prieto-Rumeau 2013, Saldi et al. 2017), which we do not require.

That being said, our results contribute to the literature on approximation of finite-horizon

MDPs with a continuous state space where exogenous states are independent of endogenous
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states. In those cases a lattice can be used as approximation of the exogenous (stochastic) state

transition process.

The contributions of this paper can be summarized as follows: In Section 2, we propose a

stochastic quasi-Newton algorithm that minimizes the Wasserstein distance between the uncon-

ditional distributions of a continuous Markov process and a scenario lattice. We use second-order

information to choose the algorithm’s learning rates. The use of second-order information as

in quasi-Newton methods has been found to speed up convergence in statistical learning (Byrd

et al. 2016, Wang et al. 2017), as it provides a way for selecting good learning rates, which is

a problem of practical importance in many machine learning algorithms (Martens 2010).

Similar to quasi-Newton methods, we employ an approximation of the Hessian, specifically

using a diagonal approximation that can be efficiently estimated and for which inversion is

computationally inexpensive. Our approach is related to LeCun et al. (2002), who describe how

estimates of the Hessian’s diagonal can accelerate the training of multi-layer neural networks.

Likewise, Bottou and Bengio (1994) discuss the utilization of second-order information for k-

means clustering. However, neither of these studies provides convergence guarantees. In this

work, we close this gap by showing that, under mild moment conditions, every limit point of

our second-order learning algorithm is a critical point of the discretization problem.

In a computational experiment, which we summarize in Section 3, we compare the proposed

quasi-Newton method with the gradient descent method proposed in Bally and Pagès (2003)

based on four different stochastic programs for which optimal solutions are either known or can

be approximated by tight bounds: (1) a two-stage newsvendor model, (2) a multi-period/multi-

product newsvendor problem, (3) a multi-period inventory control problem with Markovian

demand, and (4) a realistic option pricing problem for natural gas storages. The findings demon-

strate that the method produces discretizations that are closer to the true distributions than

the corresponding discretizations produced by a benchmark method based on gradient descent.

Furthermore, we demonstrate that the method is numerically stable allowing for the usage

of higher-order Wasserstein distances, which proves advantageous for discretization of high-

dimensional stochastic processes and leads to better approximate policies out-of-sample.

Notation : Throughout the paper, we work on a general probability space (Ω, σ) and denote

by L1(Rd) the space of measurable functions to Rd that are r-integrable (r≥ 1) with respect to

the Lebesgue measure λ. We denote by T the number of decision stages and by ξ = (ξ1, . . . , ξT )

with ξt : Ω→Rdt a discrete-time stochastic process with values in 1, . . . , T , by ξ̃t samples from

ξt, and by ξ̄t an approximated discrete version of ξt. Furthermore, for any N ∈N, we denote

the set {1, . . . ,N} by [N ], the indicator function of set A by 1A, the inner product in Rd by

⟨·, ·⟩, the p-norm in Rd by || · ||p, and by diagd(x)∈Rd×d the diagonal matrix with the diagonal

equal to the vector x∈Rd. If c∈R is a scalar, A is a matrix, and x is a vector, then cx and cA

denote the point-wise (Hadamard) multiplication.
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2. An Algorithm to Generate Scenario Lattices

We start this section by introducing scenario lattices as canonical discrete approximations of

Markov processes. Our objective is to construct lattices such that optimal values and optimal

decisions for a stochastic programming problem based on the lattice are close to the optimal

value of the problems using the true processes.

In Section 2.1, we contrast scenario lattices with scenario trees which are commonly used to

approximate general stochastic processes and argue that lattices give rise to computationally

simpler problems. In Section 2.2, we propose a quasi-Newton algorithm that generates discrete

approximations for the unconditional distributions of a Markov process by minimizing the

Wasserstein distance between the discrete and the original continuous distribution. In Section

2.3, we describe an algorithm to approximate inhomogeneous Markov processes based on the

approximations of the unconditional distributions for all stages.

2.1. Scenario Lattices

Stochastic programming problems with parameters that are driven by high-dimensional random

processes are generally computationally intractable – a phenomenon referred to as the curse

of dimensionality (Hanasusanto et al. 2016). The problem is further aggravated in multi-stage

stochastic programming where the number of possible outcomes increases exponentially in the

number of stages. In this section, we introduce scenario lattices as discretizations of Markov

processes that can be used to mitigate this problem.

A popular approach to discretize stochastic processes are scenario trees. To deal with expo-

nential growth of the number of nodes in the number of stages, scenario trees typically have

only a few stages or contain nodes where the tree does not branch, which effectively leads to

deterministic problems at these nodes.

The complexity of a scenario tree can be reduced substantially if the data process is Marko-

vian. In this case, the conditional distributions of a random process ξ = (ξ1, . . . , ξT ) in t+1 no

longer depend on the entire history of the process but only on outcomes in t. This means that

all histories (ξ1, . . . , ξt−1) of the process that lead to the same state ξt continue in identical sub

trees that can be merged without loss of information. We refer to such recombining scenario

trees as scenario lattices, in line with the terminology often used in mathematical finance.

Formally, a scenario lattice is a graph organized in a finite number of layers. Each layer

is associated with a discrete point in time and contains a finite number of nodes. Successive

layers are connected by arcs. A node represents a possible state of the stochastic process, and

an arc indicates the possibility of a state transition between the two connected nodes. Each

arc is associated with a probability weight, and the weights of outgoing arcs of a node add up

to one. Note that this definition in particular covers inhomogeneous Markov processes where
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Figure 1 A tree with 31 nodes representing 16 scenarios on the left and a lattice with 15 nodes representing

120 scenarios on the right.

conditional distributions change over time. A scenario tree differs from a scenario lattice by the

additional requirement that every node in t has only one predecessor in (t− 1).

We denote the lattice process by ξ̄ = (ξ̄1, . . . , ξ̄T ), the number of nodes of the lattice in stage

t by Nt, and ξ̄tn, n∈ [Nt] as the state of the lattice process at node n in stage t. Assuming that

all state transitions between nodes in consecutive stages have positive probabilities, the number

of scenarios modeled by the lattice equals
∏T

t=1Nt. As the number of stages grows, additional

nodes needed to construct a lattice are those of the newly added stages. By contrast, the number

of nodes in a scenario tree – assuming that each node has more than one successor – grows

exponentially in the number of stages. See Figure 1 for an illustrative comparison between a

typical scenario tree and a scenario lattice.

Scenario lattices are therefore a natural choice for Markovian decision problems with many

time stages, as they allow solving problems with hundreds or even thousands of time stages,

which is far beyond the scope of conventional scenario trees.

2.2. Optimal Discretization of Unconditional Probabilities

In this section, we discuss the stage-wise discretization of the process ξt based on the Wasserstein

distance. For the purpose of this discussion and to simplify notation, ξ will denote a random

vector, ξ : Ω→Rd, instead of a stochastic process. From stability theory of stochastic programs,

it is known that minimizing the Wasserstein distance guarantees favorable properties of the

discretization (Bally and Pagès 2003, Heitsch and Römisch 2009, Pflug and Pichler 2012).

2.2.1. The Wasserstein Distance We start by reviewing basic properties of the Wasser-

stein distance and its connections to stochastic programming. Loosely speaking, the Wasserstein

distance between two distributions can be defined as the minimal cost of transporting mass from

one probability distribution to the other, whereby cost are measured by the distance between

the respective outcomes (see Villani 2003, for a comprehensive introduction).
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Definition 1. Let ξ : Ω→Rd and ξ̄ : Ω̄→Rd be two random vectors with image measure P

and P̄, respectively. The Wasserstein distance of order (r≥ 1) between ξ and ξ̄ is defined as

Wr(ξ, ξ̄) =


inf
π

 ∫
Rd×Rd

∥ξ− ξ̄∥rr π
(
dξ, dξ̄

)
1
r

s.t. π[A×Rd] =P[A] ∀A∈A,
π [Rd×B] = P̄[B] ∀B ∈ Ā,

(1)

where || · ||r is the r-norm in Rd, the infimum is taken over all probability measures π on

(Rd×Rd,A⊗Ā), and A and Ā are sigma-algebras generated by ξ and ξ̄ on Rd.

Note that the Wasserstein distance in general only requires a distance in the objective of (1),

which need not necessarily be generated by a norm. For the purpose of this paper, we restrict

our attention to the distances generated by r-norms in Rd.

For r= 1, the Wasserstein distance has the following dual representation

W1(ξ, ξ̄) = sup
||f ||Lip≤1

{∫
f(ξ) P (dξ)−

∫
f(ξ̄) P̄ (dξ̄)

}
,

where ||f ||Lip is the Lipschitz constant of f , i.e., the supremum is taken over all Lipschitz

functions with a Lipschitz constant smaller than 1. Based on this result, W1 can be directly

used to bound the error in two-stage stochastic programming. In particular, for a well behaved

two-stage problem,

Π∗
P =

{
max
x1

C1(x1)+EP (V (x1, ξ))

s.t. x1 ∈X1,
V (x1, ξ) =

{
max
x2

C2(x2, ξ)

s.t. x2 ∈X2(x1),
(2)

where the second stage’s cost C2 is dependent on a random variable ξ with distribution P, the

recourse function V is Lipschitz, i.e., there is a L> 0 such that

|V (x, ξ)−V (x, ξ̄)| ≤L ∥ξ− ξ̄∥1, ∀x∈X∞ (3)

(see Kall and Mayer 2006, Theorem 2.3 for the case of linear problems).

If in problem (2) the random variable ξ is such that a numerical solution becomes com-

putationally intractable, one might want to replace ξ with a simpler approximation ξ̄ with

distribution P̄ in order to solve the problem at least approximately. The error induced by this

step can be bounded using the Wasserstein distance assuming without loss of generality that

Π∗
P̄
≥Π∗

P

Π∗
P̄ −Π∗

P ≤EP̄ (V (x∗
P̄ , ξ̄))−EP (V (x∗

P̄ , ξ))≤LW1(ξ, ξ̄), (4)

with x∗
P̄
as the first-stage optimal solution of (2) for the approximated problem using ξ̄. In case

that Π∗
P̄
≤Π∗

P an analogous argument establishes that the objective value is Lipschitz continuous

with respect to the Wasserstein distance. This basic stability result suggests that it is desirable

to select a discrete random variable ξ̄ such that W1(ξ, ξ̄) and therefore the approximation error

remains small.

We will restrict our attention to the case r≥ 2 and make the following assumption:
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Assumption 1. The image measure P of ξ is absolutely continuous with respect to the Lebesgue

measure λ on Rd, r≥ 2, and ξ ∈L2r−2(Rd).

To better understand the problem of finding an approximating ξ̄, we next discuss the relation

of the Wasserstein distance to the N -center problem. To that end, note that every set of N

points ξ̄1, . . . , ξ̄N with ξ̄i ∈Rd uniquely defines a partition Γ= (Γ1, . . . ,ΓN) of R
d by

Γi =

{
y ∈Rd : i= argmin

1≤j≤N

||y− ξ̄j||p
}
,

which is called a Voronoi diagram. For each Voronoi diagram, we can define an associated

discrete random variable ξ̄ : Ω→RN with N atoms via

ξ̄(ω) =
N∑

n=1

1Γi
(ξ(ω))ξ̄n (5)

and P[ξ̄ = ξ̄n] =P[Γn]. Note that the ambiguity of the definition of ξ̄ at the borders of Voronoi

cells is inconsequential due to Assumption 1 and can be resolved arbitrarily.

We define the quantization error of the centers ξ̄ as (see Graf and Luschgy 2000, Lemma 3.1)

D(ξ̄) = r−1W r
r (ξ̄, ξ) = r−1

N∑
n=1

∫
Γn(ξ̄)

||ξ̄n− ξ||rr P(dξ) = r−1

∫
Rd

min
1≤n≤N

||ξ̄n− ξ||rr P(dξ).

Consequently, finding an optimal discretization of ξ with a fixed number of N atoms ξ̄1, . . . , ξ̄N ∈
Rd in terms of the Wasserstein distance is equivalent to solving

inf
ξ̄
D(ξ̄) (6)

and then defining a random variable ξ̄ as in (5).

For an arbitrary Voronoi diagram Γ, we furthermore define

D(ξ̄,Γ) = r−1

N∑
n=1

∫
Γn

||ξ̄n− ξ||rr P(dξ),

which defines the effort of moving the mass from the Voronoi cells Γn to the points ξ̄n, even if

the n-th centers is not the closest. Clearly, D(ξ̄) =D(ξ̄,Γ(ξ̄)).

Unfortunately, (6) is an NP-hard, non-convex optimization problem for which even finding

a local optimum can be computationally expensive for large N . In line with Bally and Pagès

(2003), we will use stochastic approximation to learn the atoms in an online fashion from

samples of ξ. In contrast to their approach, we propose a quasi-Newton algorithm that, much like

the Newton-Raphson algorithm, updates gradients based on an approximation of the Hessian

of Dr which makes the method parameter-free.

We start our analysis of the discretization problem by collecting some well known facts about

Dr in the following Lemma. To that end, we denote by ∇ξ̄i
Dr(ξ̄) ∈ Rd the vector of partial

derivatives of the Wasserstein distance with respect to the elements of the center ξ̄i ∈Rd, where

a change in a center changes ξ̄ according to (5). Similarly, we write ∇Dr(ξ̄) for the whole

gradient in RN×d.
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Lemma 1. Under Assumption 1 the following holds:

1. ξ̄ 7→Dr(ξ̄) is differentiable and the gradients are given by

∇ξ̄i
Dr(ξ̄) =

∫
Γi(ξ̄)

sign(ξ̄i− ξ) · |ξ̄i− ξ|r−1 P(dξ), ∀i∈ [N ]. (7)

where · is the pointwise multiplication of vectors.

2. The mapping ξ̄i→∇ξ̄i
Dr(ξ̄) is Lipschitz with respect to || · ||2.

3. For given Voronoi diagram Γ, the the Hessian ∇2
ξ̄
Dr of the mapping ξ̄ 7→Dr(ξ̄,Γ) has the

following elements

(∇2
ξ̄Dr(ξ̄,Γ))jj =

{
(r− 1)

∫
Γi
|ξ̄ij − ξj|r−2 P(dξ), for d(i− 1)< j ≤ di

0, otherwise.
(8)

Proof. The first point follows from Graf and Luschgy (2000), Lemma 4.10, since the distri-

bution of ξ is continuous and therefore the Voronoi diagram associated with ξ̄ is a tesselation.

The second point follows by Proposition 1 in Pflug (2001). To see the third point notice that

∇ξDr(ξ̄,Γ) equals (7) with Γi(ξ̄) replaced with Γ. The result then follows by differentiation

under the integral sign. □

Note that the Hessian of Dr(ξ̄) is analytically intractable, since changes in ξ̄ change the

boundaries of the Voronoi cells and therefore the results for the second derivative. Further-

more, ∇2
ξ̄
Dr(ξ̄) is a dense matrix. We therefore use ∇2

ξ̄
Dr(ξ̄,Γ) as a diagonal approximation for

∇2
ξ̄
Dr(ξ̄), which is much easier to estimate and allows for a numerically inexpensive calculation

of the inverse.

Remark 1. For the case of r= 2, the (∇2
ξ̄
D2(ξ̄,Γ) is a matrix with elements

(∇2
ξ̄D2(ξ̄,Γ))kl =

{
P[Γi], for d(i− 1)<k= l≤ di

0, otherwise.
(9)

2.2.2. A stochastic quasi-Newton algorithm. Based on the preliminary results of the

previous section, we propose a quasi-Newton algorithm tailored to solving theN -center problem.

Solving (6) using the Newton-Raphson method entails choosing a starting point ξ̄1 that is

updated recursively as follows

ξ̄k+1 = ξ̄k− (∇2D(ξ̄k))−1∇D(ξ̄k). (10)

The use of second-order information typically leads to faster convergence than first-order meth-

ods and mitigates the need to manually choose stepsizes, making the method parameter free

(e.g. Byrd et al. 2016). Also note that the stepsizes implied by using information in ∇2
ξ̄
Dr(ξ̄,Γ)

are different for different components of ξ̄k, resulting in tailored learning rates for every center.

Since the calculation of the exact expectations in the gradient ∇D(ξ̄k) is expensive, we

approximate (10) by sampling from ξ as it is common in stochastic gradient descent algorithms.
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Furthermore, we approximate the Hessian ∇2D(ξ̄k) by a sampled version of ∇2
ξ̄
Dr(ξ̄,Γ), where

Γ is held fixed to the Voronoi diagram of the last point. To this end, we define the starting

point ξ̄1 ∈RN×d by randomly selecting N samples from ξ.

To calculate updates, we draw a sequence of i.i.d. samples ξ̃1, ξ̃2, . . . from the distribution of

ξ and denote the sampling space by

(Ω∞,F∞) = (×∞
k=1Ω,×∞

k=1F). (11)

All claims of almost sure convergence are with respect to (Ω∞,F∞). We denote by Fk ⊆F∞ the

σ-algebra generated by the first k random draws ξ̃1, . . . , ξ̃k. Furthermore, we initialize matrices

H0
i for 1≤ i≤N as unit matrices in Rd, i.e., H0

i = diagd((1, . . . ,1)
⊤) ∈Rd×d. The algorithm is

given by the following update rule:

ξ̄k+1
i =

{
ξ̄ki −Hk

i

(
sign(ξ̄ki − ξ̃k) · |ξ̄ki − ξ̃k|r−1

)
, for i= argminj ||ξ̄ki − ξ̃k||r,

ξ̄ki , otherwise,
(12)

Hk
i =


(
(Hk−1

i )−1 +diagd

(
(r− 1)|ξ̄ki − ξ̃k|r−2

))−1

, for i= argminj ||ξ̄ki − ξ̃k||r,
Hk−1

i , otherwise,
(13)

for all i = 1, . . . ,N and all k ∈N. Note that (12) and (13) approximate the gradient in (10)

based on a single sample ξ̃k and replacing the Hessian by the approximation Hk. We only

update the center ξ̄i which is closest to the new sample in iteration k so that Hk
i is the part of

the Hk that corresponds to the i-th center ξ̄i.

Note that the idea of using ∇2
ξ̄
Dr(ξ̄,Γ) instead of ∇2

ξ̄
Dr(ξ̄) for the update is similar to the

idea employed in the k-means algorithm where partitions are also held constant when updating

cluster centers, which is effectively what we are doing, when we ignore the changes of the

boundaries of the Voronoi cells in the computations of the second derivatives.

Remark 2. Note that the computational complexity of performing the steps in (12) and (13)

is low, since the update of every node requires a handful of basic floating point operations whose

number grows linearly in the dimension d of the problem. The overall runtime complexity is

therefore jointly linear in d, the number of stages, and the number of updates. Hence, as we

will see in the numerical results section, millions of updates can be performed in a matter of

seconds on a standard computer.

Also note that for r = 2, the update is especially simple, since the diagonal matrix (Hk
i )

−1

contains the number of samples that were sampled up to iteration k in the Voronoi cell defined

by node i as diagonal entries. Consequently, if the centers stabilize, diagonal elements of kHk
i

converge to P[Γi].
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2.2.3. Convergence analysis. In the following, we will prove that the proposed algorithm

converges almost surely. We start with a technical result, which establishes that the expected

locations of the centers found by the algorithm stay in a bounded region.

Lemma 2. At iteration k, for every i∈ [N ] there is a Ci > 0 with Ci ◁Fk−1 such that

E
[
|ξ̄li|r−1|Fk−1

]
≤Ci <∞, ∀l ∈N : l≥ k+1,

where the above inequalities holds component-wise.

Proof. We denote by Γk
i the Voronoi cell associated with ξ̄ki and split up Γk

i =A1 ∪A2 with

A1 =Γk
i ∩
∏d

j=1[−ξ̄kj , ξ̄kj ] and A2 =Γk
i \A1. Note that A1 represents the part of the cell that is not

too far from the current center while A2 is the part that is farther away. We will subsequently

treat these two sets separately.

First, fix l= k+1 and write

E
[
|ξ̄k+1

i |r−1|Fk−1

]
= |ξ̄ki |r−1P[Rd \Γk

i ]

+

∫
Γk
i

∣∣∣ξ̄ki −Hk
i sign(ξ̄

k
i − ξ̃k)|ξ̄ki − ξ̃k|r−1

∣∣∣r−1

P(dξ̃k).

Furthermore, note that

Hk
i |ξ̄ki − ξ̃k|r−1 =Hk

i diag(|ξ̄ki − ξ̃k|)r−2|ξ̄ki − ξ̃k|

=
(
(diag(|ξ̄ki − ξ̃k|)r−2Hk−1

i )−1 +(r− 1)
)−1

|ξ̄ki − ξ̃k|

≤ |ξ̄ki − ξ̃k| (14)

where the last inequality follows since (r−1)≥ 1 and the elements of Hk−1
i are strictly positive.

Therefore∫
A1

∣∣∣ξ̄ki −Hk
i sign(ξ̄

k
i − ξ̃k)|ξ̄ki − ξ̃k|r−1

∣∣∣r−1

P(dξ̃k)≤
∫
A1

|ξ̄ki |r−1 P(dξ̃k)≤P[A1]|ξ̄ki |r−1.

Furthermore, by (14) and Hölder’s inequality∫
A2

∣∣ξ̄k+1
i

∣∣r−1
P(dξ̃k+1)≤

∫
A2

∣∣∣ξ̃ki ∣∣∣r−1

P(dξ̃k)≤P[A2]

∫
Rd

∣∣∣ξ̃ki ∣∣∣2(r−1)

P(dξ̃k)

≤P[A2]||ξ||2(r−1)

2(r−1).

Combining these two results, we can approximate

E
[
|ξ̄k+1

i |r−1|Fk−1

]
≤P[A1]|ξ̄ki |r−1 +P[A2]||ξ||2(r−1)

2(r−1) <∞,

due to the moment conditions in Assumption 1. Iterating this argument yields the claimed

result. □
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As we will show in the next proposition all the limit points of the sequence ξ̄k are stationary

points of Dr. The following lemma facilitates this result by establishing that the changes in Hk
i

are of exactly the right size in order for the stochastic algorithm to converge almost surely.

For iteration k of the updates defined in (12) and (13), we define i∗k = argminj ||ξ̄ki − ξ̃k||r
and Hk

i∗
k
,j as the j-th diagonal entry of the matrix Hk

i∗
k
.

Lemma 3. Under Assumption 1 the following holds:

1. Except on a set of measure 0, the sum of elements in Hk
i∗
k
diverges, i.e.,

∞∑
k=1

H i
i∗
k
,j =∞, ∀j ∈ [d], almost surely.

2. Hk
i∗
k
goes to zero almost surely.

3. For all K ∈N

E
[
Hk⊤

i∗
k
Hk

i∗
k

∣∣∣FK

]
≤O(k−2), k≥K, almost surely. (15)

Proof. Fix an arbitrary increasing sequence nk in N with nk =O(k). Considering the j-th

component ξ̄ki∗
k
,j of ξ̄ki∗

k
, it follows by r≥ 2 and the (generalized) Markov inequality that

P
[
|ξ̄ki∗

k
,j − ξ̃k|r−2 ≥ nk

]
≤
E[|ξ̄ki∗

k
,j − ξ̃kj |r−1]

nα
k

with α= r−1
r−2

> 1. By Lemma 2, Assumption 1, and the fact that |a− b|r ≤ 2r−1(|a|r + |b|r) for

r≥ 1 we can conclude that

E[|ξ̄ki∗
k
,j − ξ̃kj |r−1]≤ 2r−2

(
E
[
|ξ̄ki∗

k
,j|r−1

]
+E

[
|ξ̃kj |r−1

])
≤C <∞.

Hence, we obtain
∞∑
k=1

P
[
|ξ̄ki∗

k
,j − ξ̃kj |r−2 ≥ ni

]
≤C

∞∑
k=1

n−α
k <∞

and use the Borel-Cantelli lemma to infer that almost surely |ξ̄ki∗
k
j − ξ̃kj |r−2 ≥ nk happens only

finitely often. This implies that for almost every ω ∈Ω, there is an N ∈N such that

∞∑
k=N

Hk
i∗
k
,j ≥

∞∑
k=N

(
1+ (r+1)|ξ̄ki∗

k
j − ξ̃kj |r−2

)−1

≥
∞∑

k=N

1

nk

=∞,

showing the first part of the result.

To prove the second point, note that for a given I ∈N independent of the location of the

centers ξ̄ki at least I−1/I of the mass is located in cells with probability larger than (IN)−1.

Denote the set of indices of these centers as I ⊆ [N ].

For a given j ∈ [d] consider the marginal distribution Pj of the j-th component ξj of ξ and

define the ball Bu(x) = {y ∈R : (r− 1)|x− y|r−2 ≤ u}. Now choose u∗ > 0 such that

Pj[Bu∗(x)]≤ (I2N)−1, ∀x∈R.
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Note that such an u∗ exists by absolute continuity of Pj with respect to the Lebesgue measure

λ. Hence, it follows that the probability that the update to Hi∗
k
is at least u∗ can be bounded

below as follows

P
[
|ξ̄ki∗

k
,j − ξ̃kj |r−2 >u∗

]
≥
∑
i∈I

(
P[Γk

i ]− (I2N)−1
)

≥ I − 1

I
−
∑
i∈I

(I2N)−1 ≥ I − 1

I
− 1

I
I→∞−−−→ 1. (16)

For a given ε > 0 and δ > 0, choose I such that (16) is larger than (1− δ) for some u∗ > 0.

Now for a given ω consider those cells I ⊆ [N ] which receive infinitely many updates larger

than (IN)−1 and choose a K such that for all k ≥K all other cells get updates smaller than

(IN)−1. Clearly, the values updates of cells in i ∈ I happen infinitely often after k and each

update has a positive probability of being at least of size u∗. Therefore for almost all ω there

is a K ′ ≥K such that Hk
i is eventually smaller than ε for all i∈ I. Becasue of the choice of δ,

we therefore have P[Hk
i∗
k
,j < ε]< δ for k ≥K ′ and the sequence converges in probability. Since

Hi∗
k
,j are bounded and therefore uniformly integrable, they also converge in L1 and therefore

almost surely establishing the second claim.

To show the last statement, fix I ≥ 4 making the chance that individual updates are larger

than u∗ larger than 1/2. Furthermore, note that the expected Hk
i∗
k
,j are smallest if all the updates

are spread evenly across all cells i∈ [N ]. It follows that

E
[
(Hk

i∗,j)
2
]
≤ (u∗)−2E

[
1

(1+X)2

]
= (u∗)−22−k̃

k̃∑
l=0

(
k̃
l

)
(1+ l)−2,

where X is binomially distributed with k̃= ⌊kN−1⌋ trials and probability of success 1/2, where

a success models an update of size u∗ and larger while a failure models a smaller update.

To show that E
[
(Hk

i∗,j)
2
]
converges to 0 at least at the speed of k−2, we note that

E
[
(Hk

i∗,j)
2k̃2
]
≤ (u∗)−22−k̃

k̃∑
l=0

(
k̃
l

)(
k̃

l+1

)2

k̃→∞−−−→ (u∗)−2f(1/2) = 4(u∗)−2

for the function f(x) =min(ε−2, x−2) for an ε < 2−1 due to the approximating property of the

Bernstein polynomials at x = 1
2
(see Feller 1966, Chapter VII, Section 2, Theorem 1). Since

k̃= ⌊kN−1⌋ and k are of the same asymptotic order, this proves (15) for K = 0. The proof for

general K ∈N is analogous. □

Proposition 1. If Assumption 1 holds, then

∇Dr(ξ̄
k)

a.s.−−→ 0,

i.e., every limit point of the generated sequence is a stationary point of Dr.
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Proof. For the purpose of this proof, we write D instead of Dr and define the short-hand

notation ∇iD(ξ̄) :=∇ξ̄i
D(ξ̄), i.e., the derivative of D with respect to the components of ξ̄ti at

the point ξ̄.

For an I ⊆ {1, . . . ,N}, we define the event

ΩI = {ω ∈Ω : i∗k(ω) = i infinitely often , ∀i∈ I} .

Since Ω=
⋃

I⊆{1,...,N}ΩI , showing the result for arbitrary ΩI proves the result. We will therefore

in the following focus on a fixed ΩI .

Note that for i /∈ I, P[Γk
i ]

k→∞−−−→ 0 and ξ̄ki converges almost surely by definition. In the first

part of the proof, we will show that ξ̄ki also converges for all i ∈ I. For that purpose, we will

consider updates for iterations k ≥ k0, where k0 is the last iteration with an update of a cell

i /∈ I.

The recursion in (12) can be re-written as

ξ̄k+1
i =

{
ξ̄ki +Hk

i (Zki−∇iD(ξ̄kt )), i= i∗k
ξ̄kti, otherwise,

where Zki is defined as

Zki = 1{i∗
k
}(i)

(
∇iD(ξ̄k)− sign(ξ̄ki − ξ̃k) · |ξ̄ki − ξ̃k|r−1

)
.

Hence, Zki ∈Rd represents the deviation of the update from the true gradient ∇iD(ξ̄k), which

is 0 in expectation.

Denoting by L the Lipschitz constant of ∇D with respect to || · ||2 (see Lemma 1), we use

the mean value theorem to show for some θ ∈ [0,1]

D(ξ̄k+1) =D(ξ̄kt )+∇i∗
k
D(ξ̄kt + θ(Hk

i∗
k
Zki∗

k
−Hk

i∗
k
∇i∗

k
D(ξ̄kti∗

k
)))⊤(Hk

i∗
k
Zki∗

k
−Hk

i∗
k
∇i∗

k
D(ξ̄kti∗

k
))

≤D(ξ̄k)+∇i∗
k
D(ξ̄k)⊤(Hk

i∗
k
Zki∗

k
−Hk

i∗
k
∇i∗

k
D(ξ̄kt ))+L||Hk

i∗
k
Zki∗

k
−Hk

i∗
k
∇i∗

k
D(ξ̄k)||22

≤D(ξ̄k)+Hk
i∗
k
∇i∗

k
D(ξ̄k)⊤Zki∗

k
−∇i∗

k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)

+ 2L(Z⊤
ki∗

k
(Hk

i∗
k
)2Zki∗

k
+∇i∗

k
D(ξ̄k)⊤(Hk

i∗
k
)2∇i∗

k
D(ξ̄k)), (17)

where the first inequality follows from Lipschitz continuity and the second one from (a− b)2 ≤

2(a2 + b2).

Note that by the second statement in Lemma 3, for an arbitrary ε > 0, we can choose a k

large enough such that Hk
ik∗
< ε, which implies

E
[
∇i∗

k
D(ξ̄k)⊤(Hk

i∗
k
)2∇i∗

k
D(ξ̄k)|Fk−1

]
≤ εE

[
∇i∗

k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)|Fk−1

]
.
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Choosing ε < (4L)−1, taking conditional expectations in (17), and using E[Zki∗
k
|Fk−1] = 0, we

obtain

E[D(ξ̄k+1)|Fk−1]≤D(ξ̄k)−E[∇i∗
k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)|Fk−1]

+ 2LE
[
∇i∗

k
D(ξ̄k)⊤(Hk

i∗
k
)2∇i∗

k
D(ξ̄k)+Z⊤

ki∗
k
(Hk

i∗
k
)2Zki∗

k
|Fk−1

]
≤D(ξ̄k)− 2−1E

[
∇i∗

k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)+ 2LZ⊤

ki∗
k
(Hk

i∗
k
)2Zki∗

k
)|Fk−1

]
. (18)

Integrating the squared j-th component of Zli, we obtain for l > k

E[Z2
lij|Fk] =E

1
Γl−1
i

(∫
Γl−1
i

sign(ξ̄li − ξ̃l) · |ξ̄li − ξ̃l|r−1 P(dξ)− sign(ξ̄li − ξ̃l) · |ξ̄li − ξ̃l|r−1

)2


≤
(∫
|ξ̄lij − ξ̃l|r−1 P(dξ)

)2

+

∫
|ξ̄lij − ξ̃l|2r−2 P(dξ̃)≤ 2

∫
|ξ̄lij − ξ̃l|2r−2 P(dξ̃)

≤ 22r−2

(∫
|ξ̄lij|2r−2 P(dξ̃)+

∫
|ξ̃l|2r−2 P(dξ̃)

)
≤B <∞ (19)

since ξ ∈ L2r−2(Rd) and because of Lemma 2. Essentially the same argument can be used to

show that Z2
lij are uniformly integrable.

It follows from Lemma 3 that (Hk
j∗)

2 = Op(k
−2) component-wise, which together with (19)

implies

∞∑
k=K

Z⊤
ki∗

k
(Hk

i∗
k
)2Zki∗

k

K→∞−−−−→ 0 in probability. (20)

Uniform integrability of Z⊤
ki∗

k
(Hk

i∗
k
)2Zki∗

k
and (19) implies that

SK = 2L
K∑

k=1

E[Z⊤
ki∗

k
(Hk

i∗
k
)2Zki∗

k
|Fk−1]

converges in L1(R). Using the definition of Sk and (18), we write

E[D(ξ̄k+1)−Sk|Fk−1] =E[D(ξ̄k+1)|Fk−1]−Sk (21)

≤D(ξ̄k)− 2−1E[∇i∗
k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)|Fk−1]−Sk−1

≤D(ξ̄k)−Sk−1. (22)

Since Sk−1 is L1(R)-bounded and D ≥ 0, it follows that (D(ξ̄k+1)− Sk) is a bounded super-

martingale, which converges almost surely by the supermartingale convergence theorem (see

Billingsley 1986, Theorem 35.4) and so does D(ξ̄k), showing the first part of the proposition.

Note that, as above, (22) can be re-written as

E[D(ξ̄k+1)−Sk +Tk|Fk−1]≤D(ξ̄k)−Sk−1 +Tk−1
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with TK = 2−1
∑K

k=1E[∇i∗
k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)|Fk−1], which implies that TK converges almost

surely by another application of the supermartingale convergence theorem. Similarly, since

E

[
K∑

k=1

Hk
i∗
k
Zki∗

k
|FK−1

]
=

K−1∑
k=1

Hk
i∗
k
Zki∗

k
+E[HK

i∗
K
ZKi∗

K
|FK−1]

≤
K−1∑
k=1

Hk
i∗
k
Zki∗

k
+HK−1

i∗
K
E[ZKi∗

K
|FK−1]

=
K−1∑
k=1

Hk
i∗
k
Zki∗

k
,

UK =
∑K

k=1H
k
i∗
k
Zki∗

k
is a bounded supermartingale and therefore converges almost surely.

Since TK converges and
∑∞

k=1H
k
i∗
k
= ∞ almost surely by the first point in Lemma 3,

lim infk ||∇D(ξ̄k)||2 = 0 almost surely. Suppose there is a set A⊆Ω with P[A]> 0 and an ε > 0,

such that limsupk ||∇D(ξ̄k)||2 > ε. For a ω ∈A, fix a K0 such that

||Uk−Uk′ ||22 ≤
ε

8L2
, ∀k, k′ ≥K0,

∑
k≥K0

∇i∗
k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)≤ ε

8L2
.

Fix a k∗ >K0 such that ||∇D(ξ̄k
∗
)||2 > ε and k̃ the largest integer smaller than k∗ such that

||∇D(ξ̄k̃)||2 ≤ ε
2
, which exists because lim infk ||∇D(ξ̄k)||2 = 0, then

||∇D(ξ̄k
∗
)−∇D(ξ̄k̃)||22 ≤L2||ξ̄k

∗
− ξ̄k̃||22 ≤L2

∥∥∥∥∥
k∗∑
k=k̃

Hk
i∗
k
∇i∗

k
D(ξ̄k)−Hk

i∗
k
Zk,i∗

k

∥∥∥∥∥
2

2

≤ 2L2

d∑
j=1

k∗∑
k=k̃

(
Hk

i∗
k
,j∇i∗

k
,jD(ξ̄k)

)2

+2L2||Uk∗ −Uk̃||22

≤ 2L2

k∗∑
k=k̃

∇i∗
k
D(ξ̄k)⊤Hk

i∗
k
∇i∗

k
D(ξ̄k)+

ε

4
≤ ε

2

which is a contradiction and thereby establishes that limsupk ||∇D(ξ̄k)||2 = 0 almost surely,

proving the second part of the proposition. □

2.3. Building Scenario Lattices

As established in the previous section, the iterative updates in (12) and (13) yield a discretiza-

tion of the unconditional distribution of ξt with Nt-points. In this section, we outline how this

method can be used to build a scenario lattice.

Algorithm 1 provides a listing of the individual steps. The algorithm first uses the second-

order learning method to learn locations of nodes that minimize the Wasserstein distance

between states of the Markov process and states associated with lattice nodes (lines 1 – 10).

Note that the algorithm described in the previous section does not provide conditional distri-

butions of transitioning from a node in stage t to its successor in stage t+1. In a second step
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1 Set number of nodes Nt for stages t∈ [T ]

2 Draw sample paths (ξ̃−n
1 , . . . , ξ̃−n

T )n∈[maxt Nt] from process ξ

3 ξ̄1tn← ξ̃−n
t , n∈ [Nt], t∈ [T ]

4 H1
tn← diag((1, . . . ,1)⊤), n∈ [Nt], t∈ [T ]

5 for k← 1 to K do

6 Draw sample path ξ̃k1 , . . . , ξ̃
k
T from process ξ

7 for t← 1 to T do
8 Update centers according to (12) and (13)

9 end
10 end

11 for t← 1 to T − 1 do
12 for n← 1 to Nt do

13 Draw L state transitions ξ̃lt+1|ξ̄tn, l= 1, . . . ,L

14 Estimate transition probabilities ptnm according to (23)
15 end
16 end

Algorithm 1: Algorithm for scenario lattice generation.

(lines 11 – 16), with nodes fixed, we therefore estimate transition probabilities between nodes

of successive layers.

More specifically, let ξ̄Ktn denote nodes that result from (12) after a predefined K ∈N itera-

tions. Denote pt, t ∈ [T − 1], as the |Nt| × |Nt+1| transition matrix between layers t and t+ 1

with elements ptnm. To estimate transition probabilities, we draw a sample of L state transi-

tions for each node (ξ̃lt+1|ξ̄tn)Ll=1, n = 1, . . . ,Nt, t = 1, . . . , T − 1 and then count the frequency

of transitions to cells in the Voronoi diagram Γt+1. The corresponding maximum likelihood

estimate of the (conditional) probability of a state transition from ξ̄tn to ξ̄t+1,m is thus given by

ptnm =L−1

L∑
l=1

1Γtm(ξ̃
l
t+1|ξ̄Ktn), n∈ [Nt], m∈ [Nt+1], t∈ [T − 1]. (23)

Bronstein et al. (2010) refer to this method as spray method and find that it offers a good

trade-off between computational speed and accuracy. A welcome property of the spray method

is that transition probabilities can be easily estimated in parallel as the loops in lines (11) and

(12) do not share information.

Remark 3. As discussed in Remark 2, every single update in line 8 of the algorithm is com-

putationally inexpensive and scales linearly with the number of dimensions of the stochastic

process d. Analyzing Algorithm 1, it becomes clear that overall the proposed quasi-Newton

method has a runtime complexity linear in d, the number of stages, and the number of updates.

As we will demonstrate in Section 3, in practice the computational effort of generating a

lattice using Algorithm 1 is small as millions of updates can be performed in a matter of seconds

on a standard computer.
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Löhndorf and Wozabal (2021) propose a method that recursively shifts the location of nodes

of a lattice such that the conditional expectation of each node’s successor nodes exactly matches

the conditional expectation of that node’s next state under the true process. Correcting all

nodes of the lattice in this fashion is also possible for the lattices generated in Algorithm 1 and

ensures that the lattice is a martingale process, which can be important for discretizing price

processes.

3. Numerical Results

In this section, we test the proposed method of scenario lattice generation using four examples:

a single-period newsvendor problem, a multi-period newsvendor problem, a multi-period and

multi-product inventory planning problem, and a gas storage valuation problem. The problems

are chosen such that a true optimal solution for the respective underlying continuous processes

can be calculated or at least closely approximated, which enables a direct assessment of the

error introduced by the discretization of the process to a scenario lattice.

To generate lattices, we have to decide on the number of nodes per stage, the number of

samples to fit the lattice, and the order r of the Wasserstein distance.

Existing theory offers limited guidance in selecting the appropriate number of nodes for a

specific problem, as theoretical bounds linking solution quality to approximation quality are

quite loose and therefore not suitable to choose the number of nodes for concrete problems.

Therefore, in all numerical experiments, we vary the number of nodes and evaluate its impact

on the optimality gap. This approach closely aligns with real-world practices, where users must

balance solution quality and computation time.

Determining how to distribute the number of nodes across stages is a more subtle question.

To the best of our knowledge, there are no theoretical results that address this issue in either

scenario tree or lattice literature. Two distinct (and contradictory) approaches to this topic

exist:

1. Distribute nodes in proportion to the stochastic process variability across stages. For

instance, Bally and Pagès (2003) develop lattices for optimal stopping problems and suggest

allocating the number of nodes in proportion to the distortion of the unconditional distributions

(refer to Eq (41) in Section 3.3.2). This method typically results in a higher number of nodes

in the problem’s later stages.

2. Use the decision’s importance as guiding principle. Early decisions have a more significant

impact on the implemented solution, leading to higher bounds for the value functions of early

stages compared to later stages. This consideration supports allocating more nodes in the earlier

stages.
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We experimented with varying the nodes and, in particular, implemented the method pro-

posed by Bally and Pagès (2003), but observed no substantial benefit for the considered prob-

lems. As a result, we decided not to investigate this aspect further and opted for a constant

number of nodes per stage across all problems.

Regarding the number of samples in Algorithm 1, we set L= 1000 and observed no noticeable

improvement from increasing this value. For K, we consistently selected K = 1000×Nt, which

implies that, on average, there are 1000 samples for each state transition.

We assess the benefit of using second-order information to control the learning rate by com-

paring the proposed method with a standard stepsize rule typical of stochastic gradient descent

methods. For our benchmark, we use the same samples ξ̃kt as for the proposed quasi-Newton

method and learn the centers by the following update rule

ξ̄k+1
ti =

{
ξ̄kti−αk

(
sign(ξ̄kti− ξ̃kt ) · |ξ̄kti− ξ̃kt |r−1

)
, for i= argminj ||ξ̄kti− ξ̃kt ||r,

ξ̄kti, otherwise,
(24)

where we choose the learning rates αk according to

αk =
C1

C2 + kβ
, (25)

(e.g. Pagès and Printems 2003, Pflug and Pichler 2015). Assuming C1 > 0, C2 > 0, and 0<β ≤ 1,

the rule fulfills the Robbins-Monro conditions
∑

k αk =∞ and
∑

k α
2
k <∞ that are necessary

for convergence. In accordance with Pflug and Pichler (2015), we set C1 = 1, C2 = 30 and β = 3/4

for our numerical tests. Furthermore, we use (23) to estimate transition probabilities between

nodes on consecutive stages (see Section 2.3).

We note that in line with Remark 3 the computation associated with the generation of the

scenario lattices is negligible in all discussed problems: Even for the largest models in Section

3.3 with 100 stages and 100 nodes per stage the computation time for the quasi-Newton method

described in Algorithm 1 was only 36 – 44 seconds as compared with the 485 – 508 seconds

it took to solve the corresponding optimization problems that use these lattices. Also, the

computation times do not significantly exceed those of the gradient descent benchmark.

3.1. Single-period Newsvendor

For our first experiment, we consider a simple single-period, multi-product newsvendor problem

with uniformly distributed demand. This allows us to study how well the quasi-Newton method

proposed in Section 2.2 discretizes multivariate distributions.

3.1.1. Stochastic programming model. Denote b∈Rd as the number of newspapers of

each kind purchased at costs c∈Rd, s∈Rd as the number of newspapers sold at prices p∈Rd,

and D : Ω→Rd as the random demand.
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Figure 2 Comparison of first-order gradient descent and the quasi-Newton method; top: Wasserstein dis-

tances as a function of sample size (bold = average, shaded area = confidence interval); bottom:

partition of outcomes space as Voronoi diagrams (gray = sampled points, red/blue = centers scaled

by probability mass).

The newsvendor problem can be written as the following two-stage stochastic program,

max
b,s≥0

−⟨c, b⟩+E[⟨p, s⟩]
s.t. s≤ b, s≤D a.s.

As there are no constraints that connect the individual buying (selling) decisions for the different

types of newspapers, the problem can be decoupled into d individual decision problems.

It follows from elementary calculus (see Birge and Louveaux 2011) that the optimal solution

and optimal value of the problem are

b∗i = F−1
i

(
pi− ci
pi

)
, Π∗ =−cib∗i + pi

∞∫
−∞

min(x, b∗i )dFi(x), ∀i∈ [d], (26)

where Fi and F−1
i are the distribution function and the inverse distribution function of the

demand Di for product i.

3.1.2. Comparison of learning methods. For ease of exposition, we focus on the two-

dimensional case which lends itself to visual inspection. Further, to be able to assess the quality

of the discretization, we fix the order of the Wasserstein distance to r= 2 for which properties

of the optimal quantization are known for uniform distributions.
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Figure 2 plots the Wasserstein distance as well as the Voronoi diagrams of a discretization for a

sample ofK = 100,000 common random variates drawn from a bivariate uniform distribution on

[0,1]× [0,1]. The two top panels graph the distance of ξ̄ with 100 nodes to the true distribution,

whereby W2(ξ, ξ̃) is approximated by the average distance between the sample points and the

atoms of ξ̄. The bold line indicates the average distances over 30 repetitions of the experiment

while the shaded area indicates the estimated normal 95% confidence interval. Clearly, the

quasi-Newton method converges to distributions ξ̄, which are on on average approximately 10-

15% closer to ξ than the results obtained with the gradient descent method. Furthermore, we

observe that the confidence intervals of the quasi-Newton method are significantly narrower

than those of the gradient descent method, indicating a more stable convergence pattern.

The two panels on the bottom of Figure 2 show the Voronoi diagrams for one exemplary

discretization. Each red and blue dot marks the center of a Voronoi cell with its size proportional

to the estimated mass of the center. Newman (1982) show that the optimal quantization of

the uniform distribution on a square results in a tessellation of regular hexagons. As can be

seen from the bottom right panel, the quasi-Newton method produces a partition that fits this

pattern nearly perfectly. The gradient descent method, by contrast, results in a rather irregular

partition consisting of polygons with a varying number of faces, which is quite far from the

optimum.

This finding is further supported by measuring the dispersion of the probabilities of the

centers by the Gini index of the resulting discrete distributions. The theoretical results in

Newman (1982) show that an optimal discretization leads to a uniform distribution on the

centers and therefore a Gini index close to 0. In our experiment, the quasi-Newton method

achieves a Gini index of 0.13, while the first-order method results in a distribution with a

substantially higher Gini index of 0.25.

Figure 3 plots objective values for r= 2 and r= 3 for the newsvendor model with p= 1 and

c= 0.9 for either learning method. Again, bold lines indicate averages and shaded areas indicate

95% confidence intervals.

Both methods lead to approximations that over-estimate expected profits, which is in accor-

dance with theory on discretizations of stochastic programs (e.g., Birge and Louveaux 2011,

Section 8.2). Although both methods yield close estimates of the objective value for this simple

problem, for r = 2 the quasi-Newton method results in an optimality gap which is roughly

half of that of the gradient descent method while exhibiting less variation in the estimate. For

r= 3, both methods fare slightly worse, albeit with lower optimality gaps for the quasi-Newton

method.

3.2. Multi-period Newsvendor

Since the problem treated in the last section is a two-period stochastic programming problem,

the randomness can be represented by a distribution without any dependence on time. To
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Figure 3 Optimal objective values for r= 2 (left) and r= 3 (right) right for stochastic gradient descent and

the quasi-Newton method compared to the optimal values as a function of the number of training

samples.

study the effectiveness of the quasi-Newton method for discretizing non-degenerate stochastic

processes, we study a multi-stage extension of the problem. More specifically, we model a

multi-period, multi-product newsvendor problem, where demand follows a random walk with

normally distributed innovations. As with the single period model, the advantage of using this

model is that we can calculate the optimal objective value analytically, which enables us to

accurately measure the quality of the discretization.

3.2.1. Stochastic programming model. For the multi-stage case, we assume that

demand follows a multivariate random walk,

Dt =Dt−1 + εt, εt ∼N (0,diag((σ2, . . . , σ2)⊤)), (27)

for t= 1, ..., T , with identical initial demand D0i = µ, i∈ [d], where d is the number of products,

and cv = σ
µ
is the coefficient of variation.

The corresponding multi-period, multi-product newsvendor model is given by the multi-stage

stochastic program,

max
b≥0,s

E
[∑T

t=1⟨p, st⟩− ⟨c, bt⟩
]

s.t. st ≤ bt−1, st ≤Dt, t= 1, . . . , T a.s.,

with b0 = 0. Note that we allow sales st to be free variables to deal with negative demand, which

has a positive probability for the arithmetic random walk (27).

To reduce the number of model parameters, we define each instance of the problem formula-

tion by its critical fractile,

cf =
p− c

p
,

which is the probability of the quantile that equals the optimal order quantity.
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3.2.2. Analytical solution. The above variant of the newsvendor model has two attrac-

tive properties: (1) it can be decomposed by product, so that the joint optimal solution is merely

the union of optimal solutions for each product; and (2) the optimal profit can be obtained

analytically for a given product demand Dti, i∈ [d], t∈ [T ].

Denote ϕ as the density of the standard normal distribution Φ. Since the demand process

is a martingale, Dti is the expected value for demand in Dt+1,i. Then, the optimal expected

newsvendor profit for normally distributed demand for product i is given by

(p− c)Dti− pσϕ
(
Φ−1(cf)

)
. (28)

To obtain the multi-stage profit, we calculate the expected profit for all possible D0, . . . ,DT−1,

E

[
T−1∑
t=1

(
(p− c)Dti− pσϕ

(
Φ−1(cf)

))]
= (T − 1)

(
D0i− pσϕ

(
Φ−1(cf)

))
. (29)

Since we assume initial demand to be identical for all products, the total expected profit is

given by

d(T − 1)
(
µ− pσϕ

(
Φ−1(cf)

))
. (30)

This expression enables us to calculate the optimal objective value of the problem and compare

it to the solution obtained when using the discrete lattice.

3.2.3. Comparison of learning methods. For our computational experiment, we fix

p = 1, cf ∈ {0.1,0.2,0.5}, d ∈ {2,5,20}, T ∈ {5,20,100}, D0i = µ = 10, i ∈ [d], and cv ∈

{0.1,0.2,0.5}. Furthermore, we discretize the process to a scenario lattice with a constant num-

ber of nodes per stage, Nt ≡N ∈ {10,100}, t= 2, . . . , T with L= 1000, K =LNt.

Table 1 reports the optimality gap for different instances of the multi-period, multi-product

newsvendor problem for stochastic gradient descent (SGD) and the quasi-Newton (QN) method

for orders r ∈ {2,4}. The lowest gap for each instance is indicated in bold face. The standard

error based on 10 repetitions is given in parentheses.

We can see that the quasi-Newton method achieves the lowest gap in all instances with

the differences ranging roughly between 2% and 20%. Clearly, the harder instances with more

stages or a higher coefficient of variation benefit more from the better quality of approximation

provided by the quasi-Newton method. We also note that the gradient descent method fails to

produce lattices for r = 4 in 12 out of 18 instances due to numerical problems. We attribute

this to the scaling of the gradient by Ht which in case of r= 4 involve relatively large numbers.

3.3. Multi-product Inventory Control

The previous two models provide closed-form solutions and consequently can be solved without

resorting to stochastic programming methods. We now study a variant of the previous problem
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Order r= 2 r= 4
Method SGD QN SGD QN

T d CoefVar CritFrac Nodes

5 5 0.20 0.20 10 8.23 (0.26) 7.25 (0.18) n/a 5.01 (0.38)
100 0.83 (0.18) 0.23 (0.05) 1.85 (0.12) 1.71 (0.09)

20 2 0.20 0.20 10 6.46 (1.36) 4.10 (0.84) n/a 6.78 (0.93)
100 0.72 (0.23) 1.67 (0.33) 1.15 (0.22) 1.02 (0.20)

5 0.10 0.20 10 8.57 (0.38) 5.05 (0.24) n/a 4.71 (0.39)
100 2.70 (0.25) 1.37 (0.10) 1.63 (0.12) 2.30 (0.13)

0.20 0.10 10 23.45 (0.55) 13.44 (0.60) n/a 13.52 (0.73)
100 5.94 (0.38) 5.86 (0.33) 12.09 (0.24) 8.86 (0.27)

0.20 10 18.78 (0.51) 10.42 (0.65) n/a 10.46 (0.77)
100 4.62 (0.49) 3.86 (0.29) 9.10 (0.31) 5.55 (0.38)

0.50 10 9.30 (0.62) 5.88 (0.69) n/a 5.28 (0.78)
100 2.81 (0.38) 1.33 (0.20) 3.72 (0.15) 2.36 (0.32)

0.40 0.20 10 40.49 (1.25) 25.18 (1.40) n/a 27.04 (1.80)
100 17.04 (2.33) 13.83 (1.10) n/a 19.26 (1.61)

20 0.20 0.20 10 23.62 (0.24) 15.94 (0.33) n/a 14.99 (0.34)
100 23.02 (0.22) 4.34 (0.29) n/a 5.90 (0.22)

100 5 0.20 0.20 10 28.45 (0.80) 17.63 (1.47) n/a 22.96 (2.80)
100 23.68 (0.85) 4.86 (0.67) n/a 4.42 (0.85)

Table 1 Optimality gap as percentage of the optimal value for different model instances and method

parameter settings. The numbers in gaps are the standard errors based on 10 repetitions.

which includes an inventory balance equation, more specifically a multi-product inventory con-

trol problem with lost sales for which there are neither analytical solutions nor good heuristic

policies.

Inventory models with Markovian demand are discussed, for example, in Beyer et al. (2010),

and solution approaches typically require demand to be modeled as a discrete Markov chain.

As scenario lattices are effectively Markov chains, our framework provides an efficient approach

to discretize Markovian demand processes to Markov chains. To solve these problems, Beyer

et al. (2010) discusses dynamic programming solutions over discrete inventory states. Since this

is prohibitive in higher dimensions, we instead resort to stochastic dual dynamic programming

(SDDP) (Pereira and Pinto 1991). Since SDDP is a natural choice for problems where random-

ness is modeled by a scenario lattices, this example also demonstrates how the general class of

multi-stage stochastic programming models can benefit from the proposed method.

3.3.1. Stochastic programming model. For this problem, we assume that demand fol-

lows a first-order vector-autoregressive (VAR) model,

Dt =ΘDt−1 + εt, εt ∼N (0,diag((σ2, . . . , σ2)⊤)), (31)

for t= 1, ..., T , with identical initial demand D0i = µ, i∈ [d], where d is the number of products,

cv = σ
µ
is the coefficient of variation, and Θ≡ diag(θ) is the matrix of AR(1) parameters. While
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the default error distribution is a multivariate normal distribution, we test uniform errors as

well as a heavy-tailed t-distribution with df = 5, with scaling parameters set to match the given

coefficient of variation.

In each period t, the decision-maker decides about order quantities bt, given an initial inven-

tory level, It−1, and sells products st. We assume that the leadtime for ordering a product

equals one period, so that demand must be satisfied from on-hand inventory. The deterministic

equivalent of the multi-stage stochastic programming problem is given by

max
b,s,I∈X (Dt,It−1)

E(D1,...,DT )

[
T∑

t=1

⟨p, st⟩− ⟨c, bt⟩

]
, (32)

with feasible set

X (Dt, It−1) =


It = It−1 + bt− st, ∀ t= 1, . . . , T, a.s.
st ≤ It−1, ∀ t= 1, . . . , T, a.s.
st ≤Dt, ∀ t= 1, . . . , T, a.s.
st ∈Rd, bt ≥ 0, It ≥ 0 ∀ t= 1, . . . , T, a.s.

 , (33)

and I0 ≡ 0 as the initial inventory position. As the VAR model is additive, demand can become

negative. We therefore define the vector of sales, st, as free to allow for negative sales.

As opposed to the two previous examples, the above problem has no closed form solution. To

assess the quality of the solution we compute an upper bound. In particular, since randomness

only enters the model in the right hand side of the constraints and demand follows an (additive)

VAR model, we can use the approach pioneered in Infanger and Morton (1996) to compute

statistical upper bounds for the problem using SDDP. We calculate the bound 10 times, with

100 samples per stage and then report the average optimality gap as well the standard error.

The sample average of the SAA SDDP upper bound provides an estimate of the true upper

bound for each problem instance.

We then solve the multi-stage stochastic programming problem by replacing the stochastic

process with a lattice obtained using the two learning methods. All scenario lattices are cre-

ated with a constant number of nodes per stage, Nt ≡ N ∈ {10,100,1000}, t = 2, . . . , T with

L= 1000, K = LNt. We solve the resulting optimization problem using Markov chain SDDP

(Löhndorf and Shapiro 2019, Löhndorf and Wozabal 2021).

To be able to calculate an optimality gap, we run 10,000 forward simulations of the optimal

policy after the algorithm converges. However, instead of sampling scenarios from the lattice,

we use the original continuous stochastic process to simulate demand states in order to obtain

out-of-sample results that be used to quantify the value of the policy trained on the lattice

for realization of the true process. This allows us to compare the quality of the solutions for

different lattice models. In particular, to obtain a solution for a given demand state of the

stochastic process, we choose the value function of the nearest lattice node using the same

distance measure that was used to create the lattice (see Terça and Wozabal 2020).

Having established upper and lower bounds for the optimization problem, we calculate an

estimate of the optimality gap based on 10 independent model runs.
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Order r= 2 r= 4 r= 8 r= 16
Method SGD QN QN QN QN

T d Dist∗ θ Nodes

5 10 ND 1.00 10 11.26 (0.41) 10.49 (0.44) 10.35 (0.42) 9.52 (0.47) 8.33 (0.41)
100 5.17 (0.13) 4.59 (0.11) 4.58 (0.12) 4.36 (0.11) 4.60 (0.09)

20 5 ND 1.00 10 13.54 (0.50) 13.17 (0.66) 11.56 (0.57) 10.40 (0.59) 11.14 (0.48)
100 5.29 (0.50) 4.76 (0.52) 4.86 (0.50) 5.29 (0.52) 6.69 (0.51)

10 ND -0.50 10 7.68 (1.61) 6.53 (2.81) 7.65 (1.67) 7.98 (2.19) 4.62 (1.10)
100 0.23 (0.02) 0.37 (0.09) 0.24 (0.02) 0.19 (0.02) 0.17 (0.02)

0.50 10 4.55 (1.03) 9.93 (2.62) 9.93 (1.70) 9.86 (1.52) 8.02 (2.29)
100 0.32 (0.10) 0.47 (0.10) 0.34 (0.11) 0.24 (0.10) 0.19 (0.10)

1.00 10 21.07 (0.44) 18.35 (0.47) 18.02 (0.45) 15.79 (0.39) 13.13 (0.35)
100 10.96 (0.33) 7.64 (0.38) 6.97 (0.35) 6.47 (0.38) 7.06 (0.35)

TD 1.00 10 31.17 (1.29) 31.32 (1.09) 27.27 (1.13) 30.81 (1.18) 36.39 (1.12)
100 22.04 (1.18) 19.29 (1.16) 19.74 (1.18) 20.68 (1.11) 23.88 (1.17)
1000 16.67 (1.17) 14.16 (1.21) 14.81 (1.21) 15.34 (1.20) 17.84 (1.15)

UD 1.00 10 41.50 (5.63) 3.16 (0.61) 3.84 (0.83) 3.70 (0.84) 4.21 (1.11)
100 1.30 (0.05) 0.95 (0.05) 0.85 (0.05) 0.71 (0.06) 0.69 (0.06)

20 ND 1.00 10 25.81 (0.55) 27.09 (0.33) 23.96 (0.48) 21.08 (0.42) 16.86 (0.32)
100 24.19 (0.43) 12.32 (0.41) 10.07 (0.36) 8.83 (0.34) 8.58 (0.34)
1000 31.74 (0.32) 7.82 (0.33) 7.12 (0.33) 6.45 (0.33) 6.62 (0.33)

100 10 ND 1.00 10 191.77 (2.55) 53.18 (1.68) 50.37 (1.44) 48.99 (1.79) 45.58 (1.86)
100 272.39 (2.69) 26.24 (1.70) 26.46 (1.57) 20.70 (1.84) 20.94 (1.82)
1000 213.84 (2.13) 16.34 (1.87) 16.77 (1.81) 14.04 (1.90) 16.02 (1.72)

∗ND=normal distribution, UD=uniform distribution, TD=t-distribution with df = 5

Table 2 Optimality gap (standard error) for different model instances and method parameter settings

3.3.2. Comparison of learning methods. The results of the numerical experiment are

summarized in Table 2 for stochastic gradient descent (SGD) and the quasi-Newton (QN)

method for orders r ∈ {2,4,8,16}. As the SGD method was numerically unstable for r > 2,

results are only shown for the quasi-Newton method. We report the average optimality gap

(in %) from 10 independent repetitions of the experiment along with its standard error, which

provides an indication of the accuracy of the measurement.

The results provide evidence that the quasi-Newton method generates lattices that lead to

better policies than the gradient descent method. Overall, the optimality gap is lowest when

using lattices that were constructed using a Wasserstein distance of order r= 16, which indicates

that it may generally pay off to train lattices with distance measures that penalize larger

deviations more heavily.

The gaps are particularly wide for the problem with many decision stages (T = 100), which

only the quasi-Newton method was able to solve with reasonable accuracy (14.04% gap with

1000 nodes and order r= 8). The gap is still considerable, but so is the difficulty of the problem

with 10 independent dimensions for the random process and 100 stages in total. Most multi-

stage stochastic programming problems from the literature study significantly smaller problems.
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Another notable observation is that the quasi-Newton method decreases the optimality gap

more quickly as the number of nodes in the lattice increases. This observation is particularly

noticeable for the high-dimensional instance (d= 20), where the gradient descent method hardly

manages to reduce the gap as more nodes become available, whereas the quasi-Newton method

achieves a sizable reduction in optimality gap. A high-dimensional stochastic process is also

subject of the next test case.

3.4. Gas Storage Valuation Problem

For our last test case, we consider a gas storage valuation problem in which randomness is

characterized by a high-dimensional stochastic price process. The problem has been studied in

Lai et al. (2010) and Löhndorf and Wozabal (2021) who show that the rolling intrinsic policy is

near optimal under the risk-neutral measure. We therefore evaluate the rolling intrinsic policy

on the scenario lattice and compare it with a information relaxation upper bound computed in

Lai et al. (2010) based on the original process to assess the quality of the solution. The problem

is an ideal candidate to study the effectiveness of the proposed method on decision problems

with high-dimensional state spaces and randomness in the objective function.

3.4.1. Multi-factor price process. The stochastic process that characterizes the dynam-

ics of futures prices is expressed by a multifactor model, e.g., see Clewlow and Strickland (2000),

Eydeland and Wolyniec (2003). At time t = 1, . . . , T , let Ft = (Ftt, . . . ,FtT ) be the vector of

random prices, with Ftt being the spot price and Ftj being the price of the futures contract

with maturity in period j = t+1, . . . , T . The price process in discrete-time is defined as

lnFtj = lnFt−1,j +Ztj, Ztj ∼N (µ,Σ), j = t, . . . , T, t= 1, . . . , T. (34)

We will work with the drift-less version of the process, which requires µ=−σ2

2
.

3.4.2. Stochastic programming model. In each period t, the decision-maker has the

option to schedule injection itj and withdrawal wtj for period j ≥ T , subject to feasibility of

storage positions stj, operational limits ī, w̄, s̄, as well as in-kind losses, di and dw. Any update

to injections and withdrawals from period t− 1 to t for period j ≥ t must be offset by trading

future j at price Ftj. As money does not change hands until futures contracts mature, future

profits are discounted at rate γj. The deterministic equivalent of the multi-stage stochastic

programming problem is given by

max
i,s,w∈X (Ft,st−1)

E(F1,...,FT )

[
T∑

t=1

T∑
j=t

γjFtj(wtj − itj −wt−1,j + it−1,j)

]
, (35)

with feasible set

X (Ft, st−1) =

 stj = st,j−1 + diitj − dwwtj, ∀ t= 1, . . . , T, j = t, . . . , T
st,t−1 = st−1,t, ∀ t= 1, . . . , T
itj ∈ [0, ī],wtj ∈ [0, w̄], stj ∈ [0, s̄], ∀ t= 1, . . . , T, j = t, . . . , T

 , (36)
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and s0 ≡ 0 as the initial storage position. See Löhndorf and Wozabal (2021) for a more detailed

discussion of the model.

3.4.3. Rolling intrinsic value. We can solve the above decision problem using the so-

called rolling intrinsic approach – a simple reoptimization policy that is often used in practice.

Instead of solving problem (35), the rolling intrinsic policy involves solution of a series of

deterministic problems. The resulting rolling intrinsic value is then given by

E

[
T∑

t=1

max
i,s,w∈X (Ft,st−1)

{
T∑

j=t

γjFtj(wtj − itj −wt−1,j + it−1,j)

}]
. (37)

The rolling intrinsic policy has a two attractive properties: (1) it is known to be near-optimal

under a risk-neutral measure (Lai et al. 2010); and (2) it can be directly applied to simulations

of the decision process.

To assess discretization quality, we calculate the optimality gap between the dual upper

bound provided in Lai et al. (2010) and the rolling intrinsic value obtained with the lattice

process.

3.4.4. Case data. For our experiments, we use the model parameters reported in Lai et al.

(2010) and Löhndorf and Wozabal (2021) who calibrate the multi-factor model using closing

prices from NYMEX Henry Hub on 2006-03-01 (Spring), 2006-06-01 (Summer), 2006-09-01

(Fall), and 2006-12-01 (Winter). In line with the above papers, injection (withdrawal) limits are

set to at 0.15 mmBtu/month and storage capacity to 1.0 mmBtu/month. The initial storage

level is set to zero. The decision problem has 24 decision stages with monthly time increments.

3.4.5. Comparison of learning methods. To gain a first intuition in the difference

between the two learning methods, Figure 4 shows 10,000 simulated sample paths of spot price,

Ftt, drawn from lattices with 10 and 100 nodes per stage for either method and r = 2. As we

can see, and in line with the results in Section 3.1, the quasi-Newton method produces lattices

which are more regular and exhibit a better coverage of the outcome space than the gradient

descent method. For example, prices simulated with the 10-node lattice barely exceed 20 when

using the gradient descent method but go up to 40 when using the quasi-Newton method.

Next, we compare the performance of the two methods by assessing the optimality gap of

the rolling intrinsic value when using the discrete lattice instead of the continuous process. We

discretize the multi-factor price process to a scenario lattice with a constant number of nodes

per stage, Nt ≡N ∈ {10,100}, t= 2, . . . , T with L= 1000, K =LNt.

Table 3 summarizes the result of the numerical experiment for stochastic gradient descent

(SGD) and the quasi-Newton (QN) method for orders r ∈ {2,4}. We can see that the quasi-

Newton method achieves substantially lower optimality gaps than the gradient descent method.

It is worth highlighting that the proposed approach achieves optimality gaps below 3% for
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(a) 10-node lattice with gradient descent method (b) 10-node lattice with quasi-Newton method

(c) 100-node lattice with gradient descent method (d) 100-node lattice with quasi-Newton method

Figure 4 10,000 simulations of spot prices from the discrete lattice process. Dotted red lines mark the means

and color intensity is proportional to the frequency of sampling so that the darker areas represent

more probable outcomes.

Order r= 2 r= 4
Method SGD QN SGD QN

Season Nodes

Fall 10 8.15 (0.50) 11.04 (0.29) n/a 7.29 (0.36)
100 10.86 (0.36) 3.05 (0.04) 15.81 (0.31) 0.27 (0.06)

Spring 10 4.33 (0.58) 6.79 (0.34) n/a 2.81 (0.42)
100 8.79 (0.29) 0.77 (0.06) 13.05 (0.29) 1.02 (0.08)

Summer 10 3.94 (0.54) 7.09 (0.30) n/a 2.26 (0.32)
100 8.45 (0.25) 0.21 (0.04) 12.46 (0.28) 1.78 (0.05)

Winter 10 16.74 (1.87) 22.42 (0.74) 9.45 (1.85) 6.74 (0.86)
100 39.63 (0.70) 1.76 (0.23) 61.68 (0.94) 4.67 (0.19)

Table 3 Optimality gap (std error) for different model instances of the gas storage valuation problem

either instance, and this is despite reducing a process with 24 dimensions to a lattice with only

100 nodes per stage. As in the case of the multi-variate newsvendor problem, for r = 4, the

gradient descent method fails to generate lattices for a number of instances due to numerical

issues leading to n/a results.

Similar to the inventory problem, when the number of nodes is low (Nt = 10), the higher-order

distance measure yields the lowest gap, which confirms the finding of the previous experiment.
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4. Conclusion

We propose a novel quasi-Newton method to train discrete scenario lattices that approximate

continuous multi-dimensional stochastic processes and can be used to model randomness in

multi-stage stochastic programs or stochastic-dynamic programs. Unlike alternative gradient

descent approaches, the quasi-Newton method is parameter-free in the sense that stepsizes are

chosen automatically.

Numerical experiments on a range of problems demonstrate that the new method performs

markedly better than a benchmark gradient descent method. In contrast to gradient descent

methods, the quasi-Newton approach is able to train lattices using higher-order probability

metrics. For high-dimensional problems or those where the number of nodes per stage is rela-

tively low, we observe that lower optimality gaps can be achieved with lattices that have been

trained with higher-order metrics. While we cannot provide any theory to support this empir-

ical result, we conjecture that the higher dispersion of discrete states over the outcome space

leads to better policies.

Future work could study usage of this method on real-world multi-stage stochastic programs

and explore the role of the order r of the employed Wasserstein metric on the quality of the

approximation. Furthermore, it would be interesting to look into hierarchical partitions to

speed-up nearest neighbor search of lattices with millions of nodes per stage.
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