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1 Introduction

In this paper, we address the problem of minimizing the noisy unconstrained
derivative-free optimization (DFO) problem

min f(x)
s.t. x ∈ Rn,

(1)

assuming that the smooth real-valued function f : Rn → R is available only
through a noisy oracle that takes x ∈ Rn and gives an approximated function
value f̃(x) of f(x). The noise may be deterministic or stochastic. Sources of
deterministic noise may be modelling, truncation, and/or discretization errors,
and sources of stochastic noise may be rounding errors, simulation noise, or
inaccurate measurements.

DFO algorithms do not assume any knowledge of the structure of the objective
function, the true gradient or its Lipschitz constant, or the statistical proper-
ties of the noise. In particular, repeated evaluation of the function at the same
point may or may not provide the same function value.

In finite precision arithmetic, the goal is to find an ε-approximate stationary
point of the noisy unconstrained DFO problem, i.e., a point whose unknown
exact gradient is below a given threshold ε > 0. In practice, we cannot know
if such a point has been found since exact gradients are not available, and
one usually stops when some heuristic test is satisfied. However, for problems,
where the true gradient is available (though not used in the DFO algorithm),
this can be checked aposteriori.

There are many solvers that can be used to solve the noisy unconstrained
DFO problem (1), such as derivative-free line search solvers (cf. Larson et
al. [36, Section 2.3.4]), derivative-free trust region solvers ([36, Section 2.4]),
direct search solvers (see e.g., [36, Section 2.1]), matrix adaptation evolution
strategies (see e.g., Auger and Hansen [9], Loshchilov et al. [39], Beyer [11],
and Beyer and Sendhoff [12]). Two books with some historical references for
DFO are Audet and Hare [8] and Conn et al. [15]. For the behaviour of these
solvers, for the noiseless case see Rios and Sahinidis [48] and Kimiaei and
Neumaier [32] and for the noisy case see Kimiaei [30]. Other useful references
for noisy DFO are Berahas et al. [10], Chen [14], Elster and Neumaier [18],
Gratton et al. [20,21], Gratton et al. [22], Huyer and Neumaier [27], Lucidi
and Sciandrone [40], Moré and Wild [44], Powell [46,47], Shi et al. [49], and
Wild et al. [52].

In the following, we only discuss line search methods and evolution strategies
in more details since our method is an improved evolution strategy enriched by
a new randomized non-monotone line search method and several new heuristic
techniques.
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1.1 Derivative-free line searches

Derivative-free line search solvers are among the fastest and most robust
solvers for noisy DFO problems, e.g., the deterministic solver SDBOX by Lucidi
and Sciandrone [40] and the randomized solvers VRBBO by Kimiaei and Neu-
maier [32] and VRDFON by Kimiaei [30]. For other methods, e.g., see Larson et
al. [36, Section 2.3.4] and Shi et al. [49]. Derivative-free line search methods
compute trial points and their inexact function values along a fixed direction
and accept them if they satisfy a decrease condition. They can be classified
into the following three classes:

In the first class, the gradients are approximated by finite differences and
line search conditions are Armijo or Wolfe with approximate gradients and
directional derivatives, e.g., FMINUNC by Matlab Optimization Toolbox [41] and
SSDFO by Kimiaei et al. [34]. These solvers are robust and efficient for noiseless
DFO problems. But, as shown in [30], FMINUNC is numerically very poor in the
noisy case because the approximate gradient is not accurate, leading to poor
quasi-Newton directions and line search failures.

In the second class, noisy variants of finite differences or Armijo or Wolfe
line search and or both are used; e.g., see Moré and Wild [44], Berahas et
al. [10], and Shi et al. [49]. The efficiency and robustness of derivative-free
line search with the finite difference technique for the gradient approximation
strongly depends on whether or not noise can be estimated in an efficient
way. Applying noise estimation methods [49] to the L-BFGS algorithm [38] is
useful. These methods require the knowledge of the noise level and n function
evaluations for approximating the gradient in each iteration.

In the third class, neither the Armijo condition nor the Wolfe condition with
approximate directional derivatives is used as a decrease condition to ac-
cept points with low inexact function values. Instead, approximate directional
derivatives are replaced by forcing functions, non-decreasing and positive, like
SDBOX, VRBBO, and VRDFON. However, VRBBO and VRDFON use gradient estima-
tion to generate some heuristic techniques. As shown in [32,30], SDBOX, VRBBO,
and VRDFON are robust line search solvers at low to high noise for noiseless and
noisy unconstrained DFO problems in low to high dimensions and are efficient
for noisy problems in medium to high dimensions.

Extrapolation is the main ingredient of the line search solvers. As long as the
inexact function values are reduced, extrapolation increases the step sizes.
This is particularly valuable when the slope of the function is small at the
point with lowest inexact function value found so far, but no local minimizer
is nearby. It helps the algorithm to quickly leave regions near a saddle point
or local maximizer. By extrapolation, these line search solvers can actually
find points with low inexact function values in the noiseless case, but in the
noisy case they may need a randomized non-monotone line search condition.
Indeed, the idea is to replace the inexact function value f(xold) at the old
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point xold with a randomized non-monotone term, which is at least f(xold).
Many deterministic non-monotone formulas have been proposed, which are
useful when the function is flat or the valley is narrow, e.g., see Ahookhosh
and Amini [1], Amini et al. [2,3], Birgin et al. [13], Diniz-Ehrhardt [16], Grippo
and Rinaldi [24], Grippo et al. [23], Kimiaei [29], Kimiaei and Neumaier [33],
Kimiaei and Rahpeymaii [35], Kimiaei et al. [31], Lucidi and Sciandrone [40],
and Toint [50].

1.2 MAES, matrix adaptation evolution strategy

An evolution strategy is an algorithm that goes back to the principle of bio-
logical evolution (cf. [4]) and repeatedly proceeds with three phases:

• Mutation is a perturbation with zero mean.

• Selection selects some individuals to generate parents.

• Recombination chooses a new mean for the distribution.

Matrix adaptation evolution strategy (MAES) is a well-known numerical ran-
domized DFO method used for solving noisy unconstrained DFO problems.
Each mutation direction d = Mz of MAES is chosen from a multivariate nor-
mal distribution N (0, C) with zero mean and covariance matrix C := MMT ,
which specifies the pairwise dependencies between the variables in the dis-
tribution. Here the distribution direction z is chosen from N (0, I) with zero
mean and variance I (an identity matrix) and M is an affine scaling matrix,
which is determined adaptively and heuristically. MAES updates the shape of
the distribution ellipsoid and is particularly useful when the objective function
is ill-conditioned. There are different ways to update M or C, see e.g., Auger
and Hansen [9] (the CMAES solver), Loshchilov et al. [39] (the LMMAES solver),
Beyer [11] (the FMAES solver), and Beyer and Sendhoff [12] (the BiPopMAES
solver).

Inspired by the approximation of the inverse Hessian matrix in quasi-Newton
methods, a second order model of the objective function can be constructed
whose Hessian is an adaptation of C or M . For convex-quadratic objective
functions the inverse Hessian matrix is approximated by C, which is equivalent
to rescaling the ellipsoid function to a spherical function (cf. Hansen [25]).
Therefore, the optimal covariance matrix is assumed to be equal to the inverse
Hessian matrix up to a constant factor. The final objective of covariance matrix
is to approximate the contour lines of the objective function f as well as
possible. For convex-quadratic functions, this amounts to an approximation of
the inverse Hessian matrix, similar to a quasi-Newton method. No derivative
is needed, only the ascending rank order of the inexact function values at
the mutation points is used to learn the sample distribution. Thus, unlike
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most traditional optimization methods, the nature of the underlying objective
function requires fewer assumptions. Therefore, for problems with expensive
function evaluations, MAES solvers are preferable to quasi-Newton methods
since they require a lower number of function evaluations. However, these
solvers do not care whether or not the inexact function value is reduced when
step sizes are updated. Therefore, they may accept points with large inexact
function values.

1.2.1 The basic mutation phase

The goal of the selection phase is to generate mutation points around the mean
of the distribution.

At the ℓth iteration of MAES, three ingredients of the mutation phase are:

(i) Each component of distribution directions ziℓ (i = 1, . . . , λ) is chosen from
the normal distribution N (0, 1) with zero mean and variance one. Here λ ≥ 2
is the number of distribution directions.

(ii) The ith mutation direction

diℓ := Mℓz
iℓ (2)

is computed by multiplying the affine scaling matrix Mℓ and the ith distribu-
tion direction ziℓ.

(iii) The λ mutation points

xiℓ := yℓ + σℓd
iℓ for i = 1, 2, . . . , λ (3)

are computed, each of which is a perturbation of the current recombination
yℓ. Here y0 is an initial given point, yℓ+1 is computed in the recombination
phase below, σℓ > 0 is called recombination step size (initially given), and
Mℓ ∈ Rn×n is the ℓth affine scaling matrix, which is initially the identity
matrix M0 = I. We discuss below in the recombination phase how σℓ+1 and
Mℓ+1 are updated.

1.2.2 The selection phase

The goal of the selection phase is to sort points and directions obtained from
the mutation phase with respect to the ascending order of the inexact function
values at the λ mutation points and then select some mutation points with
low inexact function values and the corresponding directions, which are used
by the recombination phase below.
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At the ℓth iteration of MAES, the selection phase sorts the mutation points xiℓ

(i = 1, . . . , λ) with

f̃(xπ1,ℓ) ≤ f̃(xπ2,ℓ) ≤ . . . ≤ f̃(xπλ,ℓ), (4)

where π is a permutation of {1, 2, . . . , λ}. The distribution directions ziℓ (i =
1, . . . , λ) and the mutation directions diℓ (i = 1, . . . , λ) are sorted accordingly.
Then the µ best mutation points and their inexact function values are selected:

Xℓ := ( xπ1,ℓ, . . . , xπµ,ℓ ) ∈ Rn×µ, F̃ ℓ := ( f̃π1,ℓ, . . . , f̃πµ,ℓ ) ∈ R1×µ.

The corresponding distribution directions and mutation directions are:

Zℓ := ( zπ1,ℓ, . . . , zπµ,ℓ ) ∈ Rn×µ, Dℓ := ( dπ1,ℓ, . . . , dπµ,ℓ ) ∈ Rn×µ.

1.2.3 The basic recombination phase

Using the selected directions and points obtained from the selection phase,
the recombination phase computes a new mean for the distribution (called
recombination point below).

The main ingredients of the recombination phase are:

(i) The ℓth recombination mutation (recm) direction

dℓ
rec :=

µ∑
i=1

wid
πi,ℓ

and the ℓth recombination distribution (recd) direction

zℓ
rec :=

µ∑
i=1

wiz
πi,ℓ

are computed, where the weights wi of the recombination step satisfy

λ∑
i=1

wi = 1 and w1 ≥ w2 ≥ . . . ≥ wµ > 0 = wµ+1 = . . . = wλ. (5)

Here dπi,ℓ and zπi,ℓ, for i = 1, . . . , µ, are the µ mutation and distribution
directions, respectively, sorted and selected in the selection phase. We discuss
in Section 3 how to numerically compute the weights wi for i = 1, . . . , µ.

(ii) The (ℓ + 1)th recombination point

yℓ+1 := yℓ + σℓd
ℓ
rec
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and its inexact function value f̃ ℓ+1 := f̃(yℓ+1) are computed, where the re-
combination step size σℓ is updated below.

(iii) MAES updates adaptively the (ℓ + 1)th affine scaling matrix by the tradi-
tional formula (cf. Hansen [25])

Mℓ+1 := Mℓ

(
I + c1

2

(
pℓ

σ(pℓ
σ)T − I

)
+ cµ

2

( µ∑
i=1

wiz
πi,ℓ(zπi,ℓ)T − I

))
(6)

with O(n3) operations because of the matrix-matrix products (cf. Beyer [11]).
Here 0 < cµ ≤ 1 is the learning rate for the rank-µ matrix of Mℓ, c1 ≤ 1 − cµ

is the learning rate for the rank-one update of Mℓ, and the evolution path

p0
σ := 0, pℓ+1

σ := (1 − cσ)pℓ
σ + cσzℓ

rec with cσ :=
√

cσ(2 − cσ)µrec

is updated using the variance effective selection mass

µrec := ∥w∥2
1

∥w∥2
2

= 1∑µ
i=1 w2

i

∈ [1, µ]

by (5). Since
zπi,ℓ(zπi,ℓ)T = −zπi,ℓ(−zπi,ℓ)T ,

the sign of selected distribution steps in the third term (6) is lost in the
calculation of Mℓ+1. This is the motivation for using the evolution path pℓ

σ

in the second term (6), which causes Mℓ+1 to behave better in practice when
µrec is small (cf. [25]).

The formula (6) is a combination of the rank-one update

Mℓ+1 = (1 − c1)Mℓ + c1pℓ
σ(pℓ

σ)T (7)

and the rank-µ update

Mℓ+1 = (1 − cµ)Mℓ + cµ

µ∑
i=1

wiz
πi,ℓ(zπi,ℓ)T . (8)

The weighted selection used in the third term of (6) and the second term
of (8) lead to affine scaling matrices that behave better in practice. In (8),
when cµ = 0, learning is not taken and when cµ = 1 prior information is not
retained.

Maximum likelihood estimator (MLE) of the covariance matrix C differs slightly
from the unbiased estimator; e.g., the empirical covariance matrix (mean of
the actual realized sample) is an unbiased estimator of the original covariance
matrix (the true mean value). MLE maximizes a likelihood function such that
the observed data are most likely under the assumed statistical model.
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In the rank-µ update (8), the second term is a result of maximizing a log-
likelihood. Hence, the rank-one update for Mℓ+1 inserts the maximum like-
lihood of zπi (i = 1, . . . , µ) into Mℓ to increase the probability of zπi (i =
1, . . . , µ) in the next iteration. The rank-µ update for Mℓ+1 is the mean of the
estimated affine scaling matrices from all iterations, for more details see [25,
Section 3].

(iv) Given the learning rate cσ ≤ 1 for the cumulation for the step size and
the damping parameter dσ ≈ 1, the (ℓ + 1)th recombination step size

σℓ+1 := σℓ exp
(

cσd−1
σ

(
e−1

σ ∥pℓ
σ∥ − 1

))
(9)

is updated, where eσ is an approximation of the expected value E(∥u∥) of the
norm of the vector u ∼ N (0, I) (cf. [25, Section 4]).

1.2.4 FMAES, a fast MAES algorithm

We now discuss the details of the FMAES algorithm from Beyer [11]. FMAES is
almost the same as MAES, which is a part of Loshchilov et al. [39, Algorithm
1], except that FMAES computes (9) using eσ = O(

√
n), while MAES computes

it using eσ = n.

Figure 1 is pseudocode for FMAES. Let us describe how FMAES works. The main
loop of FMAES repeatedly performs three phases, mutation-basic, selection,
and recombination-basic, until the maximum number of function evalua-
tions is reached or an approximate stationary point is found.
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FMAES

mutation-basic
For i = 1, . . . , λ, compute

• the distribution direction ziℓ ∈ N (0, I);
• the mutation direction diℓ := Mℓz

iℓ;
• the mutation point xiℓ := yℓ + σℓd

iℓ;
• the inexact function value f̃ iℓ := f̃(xiℓ).

selection
• Sort f̃ iℓ in ascending order satisfying

(4).
• Choose the µ points with low f̃ and the

corresponding information

Xℓ := ( xπ1,ℓ, . . . , xπµ,ℓ ) ∈ Rn×µ,

F̃ ℓ := ( f̃π1,ℓ, . . . , f̃πµ,ℓ ) ∈ R1×µ,

Zℓ := ( zπ1,ℓ, . . . , zπµ,ℓ ) ∈ Rn×µ,

Dℓ := ( dπ1,ℓ, . . . , dπµ,ℓ ) ∈ Rn×µ.

Minimizer
found?

recombination-basic
Compute

• the recd direction zℓ
rec := ∑µ

j=1 wjz
πj,ℓ;

• the recm direction dℓ
rec := ∑µ

j=1 wjd
πj,ℓ;

• the recombination point
yℓ+1 := yℓ + σℓd

ℓ
rec;

• the inexact function value f̃(yℓ+1);
• the recombination step size σℓ+1 by (9);
• the affine scaling matrix Mℓ+1 by (10).

Stop

done

no
new f̃

done

new f̃

yes

Fig. 1: Pseudocode for FMAES. X:i denotes the ith column of the matrix X.
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mutation-basic computes distribution directions, mutation directions, mu-
tation points, and their inexact function values. Then selection sorts these
function values in ascending order and accordingly the distribution directions,
mutation directions, and mutation points. Then finally it selects µ selected
distribution directions, mutation directions, µ selected mutation points and
their inexact function values. Using the selected information from the mu-
tation phase, recombination-basic then computes two new recm and recd
directions, a new recombination point and its inexact function value, and up-
dates a new recombination step size and a new affine scaling matrix.

Defining dℓ
σ := Mℓp

ℓ
σ, FMAES computes the (ℓ + 1)th affine scaling matrix

Mℓ+1 :=
(

1 − c1

2 − cµ

2

)
Mℓ + c1

2 dℓ
σ(pℓ

σ)T + cµ

2

µ∑
i=1

wid
πi,ℓ(zπi,ℓ)T . (10)

Since dℓ
σ is precomputed and dπi,ℓ = Mℓz

πi,ℓ is reused (computed in the muta-
tion phase before), FMAES requires O(n2) operations due to the vector-matrix
products, unlike the traditional formula (6) that requires O(n3) operations
due to the matrix-matrix products.

Two sources for poor recm directions dℓ
rec and recd directions zℓ

rec by the basic
recombination recombination-basic are:

(i) Since the previous recombination step size is used as the fixed step size
(without any safeguard) to generate the current λ mutation points, these
points are at the boundary of a neighborhood of the current recombination
point and cannot be well-distributed. In this case, if the step size is large,
many candidate points in this neighborhood that could be mutation points
are ignored. If these mutation points are far from an approximate stationary
point (this happens because there is no decrease condition for f̃ to accept
points with low inexact function values), then the µ selected mutation points
obtained from the selection phase are points possibly with large inexact func-
tion values; therefore, the recm direction and recd direction become poor di-
rections. Therefore, this inadequacy of mutation-basic affects the ability of
recombination-basic to find recombination points with low inexact function
values.

(ii) For high noise, sorting the inexact function values at the mutation points
may be not a successful process. Therefore, the ordering of the weights may
not be correct, resulting in two poor recd and recm directions.

When noise is not large, the main shortcoming of recombination-basic is
that there is no a descent condition, like the line search condition, to check
whether or not a new recombination point with low inexact function value is
found.
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2 Our new algorithm

This section introduces MADFO and describes how it works.

2.1 The MADFO algorithm

This subsection describes briefly the MADFO algorithm and its main ingredients.

MADFO improves the two phases, mutation and recombination and preserves the
selection phase. The main loop of MADFO repeatedly performs three phases,
mutation, selection, and recombination, until the maximum number of
function evaluations is reached or an approximate stationary point is found.

A recombination point with lowest inexact function value found so far by
MADFO is called best point, denoted by ybest. Figure 2 is pseudocode for
MADFO, showing a simple structure of MADFO and its functions. For ℓ = 1, 2, . . .,
MADFO includes the following three functions:
• goodStepSize computes good mutation and recombination step sizes.
• recomSubDir computes recm subspace directions dℓs

rec.
• getBestPoint updates ybest and f̃best := f̃(ybest).

We discuss goodStepSize in Subsection 2.3, recomSubDir in Subsection 2.4.1,
and getBestPoint below.

The data structure F̃ ℓ
nm contains the list of at least λ inexact function values

at the mutation points. It uses for the computation of non-monotone terms
f ℓ

nm. The vertices of the first triangle △1 := △(ybest, ysbest, ytbest) are the
three best points found so far by MADFO, called best vertex (ybest), second best
vertex (ysbest), and third best vertex (ytbest), respectively. The best vertex of
the second triangle △2 := △(ybest, y1,2, y1,3) is the best vertex of △1. The
other two vertices of △2 are y1,2 (the mean of ybest and ysbest) and y1,3 (the
mean of ybest and ytbest).

getBestPoint uses the following functions:
• updateNM updates F̃ ℓ

nm.
• randNM computes f ℓ

nm.
• randomNMLS performs extrapolation along one of ±dℓs

rec.
• triUpdate1 replaces in △1 the vertex with largest f̃ with ybest.
• triUpdate2 sorts the vertices of △1, so that their function values are in
ascending order and then computes the vertices of △2.
• triSubPoint generates random triangle subspace points within △2.
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MADFO

mutation
For i = 1, . . . , λ, compute

• the step size βiℓ by goodStepSize;
• the distribution direction ziℓ ∈ N (0, I);

• the mutation direction diℓ := Mℓz
iℓ;

• the mutation point xiℓ := ybest + βiℓdℓ
i ;

• the inexact function value f̃ iℓ := f̃(xiℓ).

selection
• Sort f̃ iℓ so that (4) holds.
• Select the µ points with low f̃ and

the corresponding information

Xℓ := ( xπ1,ℓ, . . . , xπµ,ℓ ) ∈ Rn×µ,

F̃ ℓ := ( f̃π1,ℓ, . . . , f̃πµ,ℓ ) ∈ R1×µ,

Zℓ := ( zπ1,ℓ, . . . , zπµ,ℓ ) ∈ Rn×µ,

Dℓ := ( dπ1,ℓ, . . . , dπµ,ℓ ) ∈ Rn×µ.

Minimizer
found?

recombination
Compute

• the recd direction zℓ
rec := ∑µ

j=1 wjz
πj,ℓ;

• the recm direction dℓ
rec := ∑µ

j=1 wjd
πj,ℓ;

• the recm subspace direction dℓs
rec by recomSubDir;

• the recombination step size σℓ by goodStepSize;

• yℓ
rec := ybest + σℓd

ℓs
rec and f̃ ℓ

rec := f̃(yℓ
rec);

• ybest and f̃best := f̃(ybest) by getBestPoint;
• the recombination step size σℓ+1 by (9);
• the affine scaling matrix Mℓ+1 by (10).

Stop

done

no
new f̃

done

new f̃

yes

Fig. 2: Pseudocode for MADFO.

Figure 3 is pseudocode for getBestPoint, which tries to find the new ybest and
its inexact function value f̃best, while calling the functions updateNM, randNM,
randomNMLS (discussed in Subsection 2.4.3), triUpdate1, triUpdate2, and
triSubPoint (discussed in Subsection 2.4.4).

getBestPoint uses the two decrease conditions on f̃ to accept the best point.
The first condition, f̃ ℓ

nm > f̃ ℓ
rec + γσ2

ℓ with a given 0 < γ < 1, is our new
randomized line search condition (discussed in Subsection 2.4.3) and the sec-
ond condition, f̃ ℓ

rec < f̃best, is used to check whether or not random triangle
subspace points can be accepted as the new best point (see Subsection 2.4.4).
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getBestPoint

Non-monotone term f̃ ℓ
nm

• Call updateNM to update F̃ ℓ
nm.

• Compute f̃ ℓ
nm = randNM(F̃ ℓ

nm, f̃ ℓ
rec).

f̃ ℓ
nm > f̃ ℓ

rec + γσ2
ℓ

Randomized line search
Try randomNMLS along ±dℓs

rec.

f̃ ℓ
rec < f̃best

Heuristic point
• Call triUpdate2 to compute the

vertices of △2.

• Call triSubPoint to compute
y△2 ∈ △2.

• Compute f̃△2 := f̃(y△2).

Update of the best point
• Set ybest := yℓ

rec, f̃best := f̃(ybest).

• Call triUpdate1 to update the
vertex with largest f̃ in △1.

• Stop.

Minimizer
found?

Possible update of the best point
If f̃△2 < f̃best then:

• Set ybest := y△2, f̃best := f̃△2.
• Call triUpdate1 to update the

vertex with largest f̃ in △1.
Stop.

Update of the best point
• Set ybest := yℓ

rec and f̃best := f̃(ybest).

• Call triUpdate1 to update the ver-
tex with largest f̃ in △1.

• Stop.

done

no

yes

no

yes

new f̃

new f̃

no

yes

doneno

yes

done

Fig. 3: Pseudocode for getBestPoint. Here 0 < γ < 1 is a tuning parameter
for line search.
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2.2 An overview of our method

This paper describes the design and implementation of a robust solver, called
matrix adaptation evolution strategy (MADFO) for noisy unconstrained DFO
problems in low dimensions, an extended version of FMAES [11].

The main features of MADFO are:

(i) Unlike MAES solvers that use the previous recombination step size as the
fixed mutation step sizes, the new good mutation step sizes are computed
heuristically so that the mutation points are well-distributed; hence the chance
of finding selected mutation points with low inexact function values increases
in the selection phase, affecting the ordering of recombination weights and
leading to finding the new best point in the recombination phase.

(ii) Extrapolation is performed using a new randomized non-monotone line
search condition to enhance the chance of quickly leaving regions near a saddle
point or local maximizer.

(iii) To avoid line search failures, recombination step sizes are controlled so
that they are neither too small nor too large.

(iv) In each recombination phase, the recm subspace is spanned by the previous
and current recm directions. Then, recm subspace directions within the recm
subspace are chosen. Since the old recm directions are the result of the various
sorting processes in the previous selection phases, there is a good chance that
there are some safe sorting procedure in the cases where not much noise has
accumulated yet. This property contributes to MADFO producing useful recm
subspace directions even if the current sorting process fails due to noise.

(v) DFO algorithms use decrease conditions to find the best point. In the
presence of noise, DFO algorithms may accept point whose function values
are spuriously good, which means that the approximate function value is sig-
nificantly smaller than the unknown exact function value. If only the best
approximate point is kept, this may cause DFO algorithms to get stuck before
finding an ε-approximate stationary point. If our line search cannot find the
new best point, a heuristic procedure is used to find a random triangle sub-
space point that can be accepted as the new best point, a point whose inexact
function value is in practice not spuriously good. After a few iterations, MADFO
forms △1 and △2 while updating their vertices. This random triangle subspace
point is inside △2 because △2 is near the best vertex of △1 and △2 and there
is a high probability of finding the new best point in the neighborhood of the
previous best point, leaving points with large inexact function values.

None of the above features can be found in previous MAES solvers. Although
extrapolation has been used by other derivative-free line search solvers, such
as SDBOX, VRBBO, and VRDFON, its use in a MAES solver is new.
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2.3 Improved mutation

In this subsection, we discuss how, as opposed to the basic mutation, the func-
tion goodStepSize heuristically computes in our improved mutation phase
good mutation step sizes that are neither too small nor too large in the
hope of finding mutation points with low inexact function values. The goal
of goodStepSize is to generate good mutation step sizes based on the pre-
vious best point, so that the components of mutation points never become
too small or too large, and mutation points are well-distributed around the
previous best point, useful in both noisy and noiseless cases.

Let us discuss our motivation to generate good mutation step sizes. For fixed
mutation step sizes that match the previous recombination step size, all λ
mutation points evaluated are likely to be within a ball whose center is the
best point and whose radius is either too large or too small if the fixed step
size is too large or too small. If this fixed step size is too large and there is an
approximate stationary point near the current recombination point, mutation
points are far from an approximate stationary point. On the other hand, if
this fixed step size is too small and an approximate stationary point is far
from the current recombination point, mutation points are far from a local
minimizer. In both cases, the new recombination point is generated far from
an approximate stationary point, resulting in slow convergence or failure of
MAES solvers to find an approximate stationary point.

We now discuss the effects of good mutation step sizes on the selection and
recombination phases. Due to the good mutation step sizes computed by
goodStepSize in the mutation phase, λ mutation points are in a neighborhood
of the current best point whose radius is equal to the maximum value of the
good step sizes generated in the mutation phase. In such a case, this neighbor-
hood contains some well-distributed points with low or large inexact function
values that can be selected as mutation points. Although some mutation points
may have large inexact function values, µ mutation points are selected in the
selection phase, most of which may have low inexact function values. By using
sorted weights and µ selected mutation and distribution steps, more useful
recm directions and recd directions can be generated. As a consequence, the
new best point can more often be found and the new affine scaling matrix
behaves well in practice. Therefore in the next iteration mutation directions
with this matrix will be more useful directions.
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Fig. 4: Well-distributed mutation points.

Given the tuning parameters 0 < σmin < σmax < ∞, to calculate the well-
distributed mutation points

xjℓ = ybest + βjℓdjℓ for j = 1, . . . , λ

within a neighborhood of the best point ybest, goodStepSize calculates the
good mutation step sizes βjℓ, for j = 1, . . . , λ, so that

σmin < βjℓ < σmax for j = 1, . . . , λ.

This restriction is independent of the noise level, but is recommended for noisy
problems and problems with highly nonconvex objective functions because it
avoids too small step sizes (the source of null steps) and too large step sizes
(a source of line search failure); cf. Figure 4. Hence, each component of the
mutation points xjℓ for j = 1, . . . , λ is constrained to be neither too small nor
too large, and these points are well-distributed around the best point ybest.
This is the reason why ybest is included in the calculation of each mutation
step size.

At the first iteration, βjℓ := σ0 is chosen and continuing until ybest = 0. This
case happens if the initial point is 0 and the algorithm cannot update ybest.
goodStepSize performs the following steps:
(S1) Compute the vector ajℓ = |ybest|//|djℓ|, where // denotes componentwise
division.
(S2) Eliminate from the vector ajℓ the components that are zero, NaN, infinity,
or outside of (σmin, σmax) if any.
(S3) If ajℓ is empty, set βjℓ = σℓ−1. Otherwise, project σℓ−1 into [σmin, σmax]
and then compute

ajℓ
med := median

i
{ajℓ

i } and βjℓ :=
√

σℓ−1ajℓ
med. (11)
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We found that, in practice, the proper behavior under scaling is more impor-
tant than translation invariance. The recipe used for the βjℓ ensures that the
magnitudes of the components of the corrections match those of the current
best point.

One of the causes of line search failure is too small or too large step sizes. If
the vector ajℓ has components larger than σmax, they are removed to avoid
large steps, and if the vector ajℓ has components smaller than σmin, they
are removed to avoid small steps. The more robust medians ajℓ

med for j =
1, . . . , λ are obtained by restricting ajℓ to (σmin, σmax). Hence βjℓ are forced
to lie (σmin, σmax) and their corresponding mutation points are well-distributed
around the previous best point.

2.4 Improved recombination

This subsection discusses new heuristic techniques that improve the recombi-
nation phase to update the best point.

2.4.1 recomSubDir – recm subspace direction

This subsection describes how recomSubDir chooses the recm subspace direc-
tions inside the recm subspace, spanned by the old and current recm directions.

The purpose of recomSubDir is to prevent MADFO from getting stuck in cases
where the sorting process fails in the selection phase when noise is large. This
goal can be achieved by using the old and current recm directions. Both the
old and current recm directions are scaled by two different random factors to
determine what percentage of these directions can be used to construct the
recm subspace direction. This is necessary to construct the recm subspace di-
rection based on the different sorting procedures of the current and previous
selection phases, because if the current sorting procedure fails, the recombi-
nation weights may be wrong, so both recm and recd directions and a new
recombination point may not be useful.

recomSubDir computes the ℓth recm subspace direction

dℓs
rec :=

{
s ◦
(
θdℓ

rec + q−ℓ
√

1 − θ2dℓ−1
rec
)

if θ ≥ 0.5
s ◦
(√

1 − θ2dℓ
rec + θq−ℓdℓ−1

rec
)

otherwise,
(12)

where ◦ denotes the componentwise product, 1 < q < ∞ is a tuning parameter,
θ ∈ (0, 1) is a uniformly distributed random value, and s ∈ Rn is a scaling
vector:
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• Optimization problems frequently have variables of different magnitudes.
These are estimated by the scaling vector

s := sup
{

ybest − ysbest, ybest − ytbest

}
,

where the two vectors ybest − ysbest and ybest − ytbest give for each component
sensible componentwise step lengths in the direction of the current valley,
unless they vanish; in that case the default value of one (i.e., si = 1 for
i ∈ J = {i | si = 0}) is used. Here ybest, ysbest, and ytbest are the best point,
second best point, and third best point, respectively, which are the vertices of
△1 and are sorted so that their function values are in ascending order. Until
these three best points are found, si = 1 for i = 1, . . . , n.

• We recommend no restart process to compute dℓ
rec because a restart process

eliminates the old good information that was saved in cases where noise was
not significant.

• When the iterations are near an ε-approximate stationary point, q−ℓ may
become too small. In this case, the recm subspace direction mainly uses the
first component dℓ

rec of the recm subspace, since the use of small steps is
preferable to the use of large steps, and the use of both terms may not be
beneficial in the presence of much accumulated noise.

• The contribution of dℓ
rec is preferably larger than that of dℓ−1

rec at the ℓth
iteration; therefore, for θ ≥ 0.5, the factor of dℓ

rec is θ and otherwise
√

1 − θ2.

2.4.2 Updating and adjusting recombination step sizes

This subsection discusses how goodStepSize updates and possibly adjusts the
recombination step size in each iteration. The first goal of goodStepSize was
discussed in Section 2.3.

The second goal of goodStepSize is to calculate the recombination step size,
so that it is neither too small nor too large. Therefore, large steps and null
steps, which are sources of line search failure, never occur. To achieve this goal,
goodStepSize computes the recombination step size by a heuristic formula
using the components of the old best point so that the components of the
new recombination point are neither too small nor too large. As explained
in Section 2.3, this constraint on the recombination step size results in good
mutation step sizes that are neither too large nor too small, leading to a good
distribution of mutation points around the current best point.

Since in the recombination phase the recm direction dℓs
rec is used, goodStepSize

performs the following steps:
(S1) Compute the vector cℓ = |ybest|//|dℓs

rec|, where // denotes componentwise
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division.
(S2) Eliminate from the vector cℓ the components that are zero, NaN, infinity,
or outside of (σmin, σmax) if any.
(S3) If cℓ is empty, set σℓ = σℓ−1. Otherwise, project σℓ−1 into [σmin, σmax]
and then compute

cℓ
med := median

i
{cℓ

i} and σℓ :=
√

σℓ−1cℓ
med.

In practice, we found that translation invariance is not as important as appro-
priate scaling behavior. The recipe used for the cℓ ensures that the magnitudes
of the components of the corrections match those of the current best point.
At the end of each iteration, MADFO computes σℓ by the traditional formula
(9). This step size is used as the initial extrapolation step size. Therefore, this
choice affects the ability of extrapolation; because if the initial step size is too
large, extrapolation cannot be done, and if it is too small, extrapolation can
be expensive.

The reason why ybest is used to calculate cℓ is that the components of the
best point ybest become neither too small nor too large. On the other hand,
the reason why the median was taken to calculate cℓ

med is that there is no
guarantee that the data used are symmetrically distributed. Since large and
small components of cℓ were removed, the more robust cℓ

med is obtained.

2.4.3 randomNMLS – randomized non-monotone line search

This subsection describes how to compute our new randomized non-monotone
term and insert it into a line search condition whose goal is in practice to
discard recombination points whose function values are spuriously good and
perform extrapolation to quickly leave regions near a saddle point or local
maximizer.

Figure 5 plots several heuristic approximations to the exact function values
f ℓ := f(xℓ). It shows that the approximation f̃ ℓ

nm to f ℓ tends to be better than
the three noisy function values, namely the minimum f̃ ℓ

min, the maximum f̃ ℓ
max,

and the median f̃ ℓ
med of the list

F̃ ℓ
nm =

(
f̃(x1ℓ), . . . , f̃(xλℓ)

)
of λ noisy function values f̃(xiℓ) (i = 1, . . . , λ) at the current and previous
mutation points xiℓ (here λ = κλ is a multiple of λ, where κ ≥ 1 is an integer
tuning parameter). This goal can be achieved by defining f̃ ℓ

nm as a convex
combination of the two pairs

(f̃ ℓ
med, f̃ ℓ

max) or (f̃ ℓ
min, f̃ ℓ

med). (13)
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Fig. 5: A plot of the exact function values f , the noisy function values f̃ ,
the values f̃max, f̃min, and f̃med from (14), and the new noisy non-monotone
term values f̃nm of the one-dimensional objective function f(α) = (α − 2)2 for
α ∈ [0, 2]. Absolute uniform noise with noise level 1 was used.

Since the data used to calculate the non-monotone term does not need to be
symmetrically distributed, the more robust median f̃ ℓ

med is used rather than
the mean f̃ ℓ

mean. Using the three values f̃ ℓ
min, f̃ ℓ

max, and f̃ ℓ
med, the parameter

η̃ of this convex combination is heuristically calculated to lie in ] 1
2 , 1[, while

identifying that f̃ ℓ
nm becomes close to f̃ ℓ

med or f̃ ℓ
min.

To get the more robust median f̃ ℓ
med, F̃ ℓ

nm must have more inexact function
values at the current and previous mutation points. If the length of F̃ ℓ

nm is
below λ, updateNM adds the λ inexact function values at the current mutation
points to F̃ ℓ

nm. Otherwise, updateNM selects a random subset J of {1, 2, . . . , λ}
with the λ members and then only replaces randomly the λ members of the list
F̃ ℓ

nm by the λ inexact function values f̃(xjℓ) (j = 1, 2, . . . , λ) at the mutation
points xjℓ, i.e.,

(F̃ ℓ
nm)J(j) = f̃(xjℓ) for j = 1, 2, . . . , λ.

randNM takes as input the list F̃ ℓ
nm of inexact function values at the λ mutation

points, the inexact function value f̃best := f̃(ybest) at the best point ybest, and
the inexact function value f̃ ℓ

rec = f̃(yℓ
rec) at the recombination point

yℓ
rec := ybest + σℓd

ℓs
rec.

It returns the ℓth non-monotone term f̃ ℓ
nm.
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randNM uses the following steps:
(S1) Compute three values

f̃ ℓ
min := min

(
f̃best, min(F̃ ℓ

nm)
)
, f̃ ℓ

max := max
(
F̃ ℓ

nm
)
, f̃ ℓ

med := median
(
F̃ ℓ

nm
)
.

(14)
(S2) Compute two adaptive parameters

ηℓ
1 := (f̃ ℓ

med − f̃ ℓ
min)/(f̃ ℓ

max − f̃ ℓ
min), ηℓ

2 := (f̃ ℓ
max − f̃ ℓ

med)/(f̃ ℓ
max − f̃ ℓ

min).

(S3) Using ηℓ
1 and ηℓ

2, compute heuristically the parameter

ηℓ :=


min(ηℓ

1, ηℓ
2) if ηℓ

1 ̸= 0 and ηℓ
2 ̸= 0,

ηℓ
1 if ηℓ

1 is nonzero,
ηℓ

2 if ηℓ
2 is nonzero,

r otherwise

and restrict it to η̃ℓ = max(r, ηℓ) ∈ ] 1
2 , 1[, where r ∈ ] 1

2 , 1[ is a uniformly
distributed random value.
(S4) Compute the randomized non-monotone term

f̃ ℓ
nm :=

{
η̃ℓf̃ ℓ

med + (1 − η̃ℓ)f̃ ℓ
max if f̃ ℓ

rec ≥ f̃ ℓ
max,

(1 − η̃ℓ)f̃ ℓ
med + η̃ℓf̃ ℓ

min otherwise.
(15)

The parameter η̃ℓ heuristically computed in (S3) can be computed by any
heuristic formula, provided it belongs to ] 1

2 , 1[. This parameter controls the
non-monotone term f̃ ℓ

nm to be close to f̃ ℓ
med or f̃ ℓ

min according to whether or
not f̃ ℓ

rec ≥ f ℓ
max holds:

• If f̃ ℓ
rec ≥ f̃ ℓ

max, f̃ ℓ
nm is chosen to be in (f̃ ℓ

med, f̃ ℓ
max), closer to f̃ ℓ

med than to
f̃ ℓ

max, since the weight η̃ℓ ∈ ] 1
2 , 1[ of f̃ ℓ

med is greater than the weight 1 − η̃ℓ of
f̃ ℓ

max.

• The condition f̃ ℓ
rec ≥ f̃ ℓ

max tells us that either the recombination point is
far from an approximate stationary point or the noise is strong; hence there
is a possibility to find points whose inexact function values (in practice not
spuriously good) belong to (f̃ ℓ

med, f̃ ℓ
max).

• If f̃ ℓ
rec < f̃ ℓ

max holds, f̃ ℓ
nm is chosen to be within (f̃ ℓ

min, f̃ ℓ
med), closer to f̃ ℓ

min

than to f̃ ℓ
med, since the weight η̃ℓ ∈ ] 1

2 , 1[ of f̃ ℓ
min is greater than the weight

1 − η̃ℓ of f̃ ℓ
med.

• The condition f̃ ℓ
rec < f̃ ℓ

max tells us that the recombination point is close to
the current best point; so the inexact function value (in practice not spuriously
good) at this point belong to (f̃ ℓ

med, f̃ ℓ
max).
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In the presence of strong noise or highly nonconvex functions, if extrapolation
uses the monotone line search condition

f̃best > f̃(ybest + σℓd
ℓs
rec) + γσ2

ℓ with 0 < γ < 1, (16)

this condition has a small chance of finding a point whose inexact function
value is not spuriously good, since

f̃ ℓ
nm ≥ f̃ ℓ

min ≥ f̃best. (17)

In (17), the first inequality is obtained from (15) and the second inequality
is obtained from the definition of f̃ ℓ

min and selecting a random subset J of
{1, 2. . . . , λ}. The condition (16) contains no directional derivative unlike the
first and second classes of line search methods discussed in Section 1.1; instead,
the forcing function γσ2

ℓ is used. As a useful substitute for f̃best in (16), we
use the non-monotone term f̃ ℓ

nm computed by (15) in the randomized non-
monotone line search condition

f̃ ℓ
nm > f̃(ybest + σℓd

ℓs
rec) + γσ2

ℓ . (18)

MADFO calls randomNMLS checking whether or not the line search condition (18)
holds. If this condition holds, it performs extrapolation along one of ±dℓs

rec
with the goal of quickly leaving regions near a saddle point or local maximizer
in cases where the slope of the function at the current best point is small,
finding recombination points whose function value is not spuriously good, and
accepting one of these points with lowest inexact function value found so far
as the new best point.

Using the tuning parameters 0 < γ < 1 (parameter for the line search con-
dition) and γe > 1 (parameter for expanding the step size), at the ℓth iter-
ation of MADFO, randomNMLS takes as input the ℓth recombination step size
σℓ, the inexact function value f̃ ℓ

rec := f̃(yℓ
rec) at the ℓth recombination point

yℓ
rec := ybest + σℓd

ℓs
rec, the current best point ybest, and its inexact function

value f̃best and returns as output the new best point ybest and its inexact
function value f̃best. It includes the following steps:
(R1) If the non-monotone condition (18) holds, go to (R3) to perform extrap-
olation along dℓs

rec.
(R2) If there is no reduction in f̃ , the opposite direction dℓs

rec = −dℓs
rec is chosen

and go to (R3) to perform extrapolation along dℓs
rec.

(R3) Initialize the two values f̃b := f̃ ℓ
rec and σb := σℓ.

(R4) Expand the step size σℓ := γeσℓ.
(R5) Compute the recombination point yrec := ybest + σℓd

ℓs
rec and its inexact

function value f̃rec := f̃(yrec). Then, if f̃rec < f̃b, set f̃b := f̃rec and σb := σℓ.
(R6) Once the non-monotone condition f̃ ℓ

nm > f̃rec + γσ2
ℓ is violated, set
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ybest := ybest + σbdℓs
rec and f̃best := f̃b and terminate the extrapolation (in-

deed, during the extrapolation, many recombination points with low inexact
function values may be found, hence a point with the lowest inexact function
value is accepted as the new best point). Otherwise, go back (R4).

As stated in (R6), extrapolation is terminated when the non-monotone line
search condition (18) does not hold. But when the objective function is un-
bounded below, extrapolation is terminated when the function value reaches
−1012.

2.4.4 triSubPoint – random triangle subspace point

This subsection discusses how triSubPoint finds random triangle subspace
points, which may be accepted as the new best point.

The goal of triSubPoint is to find the new best point when randomNMLS
cannot find such a best point due to noise. This is in contrast to any MAES
solver, which accepts any evaluated recombination point, not necessarily the
new best point.

To achieve this goal, triUpdate1 forms △1 := △(ybest, ysbest, ytbest) and up-
dates its vertices ybest, ysbest, and ytbest, while triUpdate2 forms △2 :=
△(ybest, y1,2, y1,3) and updates its vertices ybest, y1,2 (the mean of ybest and
ysbest), and y1,3 (the mean of ybest and ytbest); cf. Figure 6. These three vertices
are the three best points found from a list of N ≥ 3 previous best points found
by MADFO so far, because some such points may be found by our non-monotone
line search method. Then, triSubPoint selects one random triangle subspace
point within △2 which is closest neighborhood to the best vertex ybest. If the
inexact function value at this point is decreased, this point is accepted as the
new best point.

The goal of triSubPoint is to compute random triangle subspace points
within △2 by the following four steps:
(S1) Form the matrix X := ( ybest y1,2 y1,3 ).
(S2) Choose v := ( v1 v2 v3 ) ∈ N (0, I).
(S3) Scale the random vector v := v/∥v∥∞.
(S4) Compute the random triangle subspace point y△2 :=

∑3
i=1 viX :i.

If y△2 satisfies the condition f̃(y△2) < f̃best, then ybest := y△2 and f̃best :=
f̃(y△2) are chosen.
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ysbest ytbest

ybest

y1,2 y1,3

Fig. 6: The first vertex ybest, the second vertex ysbest, and the third vertex
ytbest of △1 are the three best points found so far by MADFO, sorted in ascending
order. y1,2 is the mean of the points ybest and ysbest and y1,3 is the mean of
the points ybest and ytbest. They are the two vertices of △2, which are not
necessarily best points.

3 Numerical results

In this section, we compare MADFO with the state-of-the-art solvers on noisy test
problems obtained from all 157 noiseless unconstrained CUTEst test functions
in dimensions 2 ≤ n ≤ 20 from the collection of Gould et al. [19]. 17 of these
functions are quadratic, 80 more are a sum of squares, and the remaining 60 are
neither quadratic nor a sum of squares. For each test function, we use absolute
and relative, uniform and Gaussian noise with the 8 noise levels ω = 10k for
k = −5, −4, . . . , 2 and the 3 target accuracies ε ∈ {10−4, 10−3, 10−2}. This
produces a total of 157 × 2 × 2 × 8 × 3 = 15072 noisy test problems, including:

• 17 × 2 × 2 × 8 × 3 = 1632 noisy test problems with quadratic objective
functions;

• 80 × 2 × 2 × 8 × 3 = 7680 noisy test problems whose objective functions are
a sum of squares;

• 60×2×2×8×3 = 5760 other noisy test problems whose objective functions
are none of quadratic and a sum of squares.
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3.1 Codes compared

For all compared solvers, the default values of the tuning parameters are used.

MAES solvers: MADFO and FMAES

• MADFO is a Matlab implemented version of the new techniques discussed in
the paper. The source code is obtainable from

https://github.com/GS1400/MADFO.

Following [11], we selected as defaults

λ := 4 + ⌊3 ln n⌋, µ := ⌊λ/2⌋ , w0
i := ln

(
µ + 1

2

)
− ln i,

wi := w0
i∑µ

j=1 w0
j

for i = 1, . . . , µ, µrec := 1∑µ
j=1 w2

j

,

cσ := min
(

1.999,
µrec + 2

n + µrec + 5

)
, cσ :=

√
cσ(2 − cσ)µrec,

eσ :=
√

n
(
1 − 1/(4n) − 1/(21n2)

)
, c1 := 2/

(
(n + 1.3)2 + µrec

)
,

cµ := min
{

1 − c1,
2(µrec − 2 + 1)/µrec

(n + 2)2 + µrec

}
,

dσ := 1 + cσ + 2 max
{

0,

√
µrec − 1
n + 1 − 1

}
.

In contrast to [11], we added the upper bound 1.999 on cσ since cσ has to be
a real value. Other tuning parameters for MADFO are:

γ = 10−12, σ0 = 1, γe = 2, σmin = 10−2, σmax = 0.5, κ = 5, N = 10, and
q = e.

• FMAES by Beyer [11], obtained from

https://homepages.fhv.at/hgb/downloads.html,

uses an effective matrix adaptation evolution strategy.

Line search solvers: SDBOX, VRBBO, VRDFON

The details of the three line search solvers are as follows:

• SDBOX is a derivative-free algorithm for bound-constrained optimization
problems discussed in [40], downloaded from

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3.
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• VRBBO is a randomized algorithm by Kimiaei and Neumaier [32]; it can be
downloaded from

https://doi.org/10.5281/zenodo.5648165.

• VRDFON is a randomized algorithm by Kimiaei [30]; it can be downloaded
from

https://github.com/GS1400/VRDFON.

Direct search solvers: NMSMAX and BFO

• NMSMAX by Higham [26], obtained from

http://www.ma.man.ac.uk/~higham/mctoolbox/

is a version of Nelder–Mead simplex method for direct search optimization
algorithms.

• BFO, available at

https://github.com/m01marpor/BFO,

is a trainable stochastic derivative-free solver for mixed integer bound-constrained
optimization by Porcelli and Toint [45].

Model-based solvers: UOBYQA and NOMAD

UOBYQA by Powell [46] is obtained from

https://www.pdfo.net/docs.html

and NOMAD [5,7,37] is available at [6].

Other codes such as BCDFO [22] and NELDER [28] were not used because BCDFO
is a model-based solver, comparable to UOBYQA and NOMAD, while NELDER is a
Nelder–Mead algorithm comparable to NMSMAX.

3.2 Starting and stopping

The initial point: We used for each test problem the standard initial point
provided by the CUTEst collection.

Stopping tests: The convergence speed of the solver s to reach a minimum
of the smooth true function f is measured by the quotients

qs := (fs − fopt)/(f0 − fopt) for s ∈ S, (19)

where S denotes the list of compared solvers, fs denotes the best function
value found by the solver s, f0 denotes the function value at the starting point
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(common for all solvers), and fopt denotes the function value at the best known
point (in most cases a global minimizer or at least a better local minimizer)
found by running a sequence of gradient-based and local/global gradient free
solvers; see Appendix B in [32].

For problems with several local minimizers this gives an advantage to solvers
that find a better minimizer.

Note that qs is not available in real applications but can be computed on the
test problems since the noise free version is available. We consider a problem
solved by the solver s if qs ≤ ε and neither the maximum number nfmax
of function evaluations nor the maximum allowed time secmax in seconds is
reached, and unsolved otherwise.

ε ∈ {10−4, 10−3, 10−2}, secmax := 360, nfmax := 2000n + 5000
were chosen so that the best solver can solve at least half of the problems,
unless due to high noise increasing secmax and nfmax cannot change the effi-
ciency and robustness.

3.3 Profiles

Efficiency and robustness: To find approximate stationary points of the
noisy unconstrained DFO problems, we say that a DFO solver is most efficient
if it has a lowest cost of function evaluations and is most robust if it has a
highest number of solved problems compared to the other solvers.

Cost measure: We denote the list of compared solvers by S and the list of
problems by P. cp,s denotes a cost measure of the solver s ∈ S to solve the
problem p ∈ P. Our cost measure is the number nf of function evaluations.
The efficiency with respect to the cost measure nf is called nf efficiency.

Using this cost measure, the efficiency and robustness of DFO solvers can be
identified by four different profiles: Box plot, performance profile (Dolan and
Moré [17]), data profile (Moré and Wild [43]), and Morales profile (Morales
and Nocedal [42]).

Box plot: A box plot shows a robust statistical summary of five numbers,
minimum, first quartile, median (second quartile), third quartile, maximum,
in a given data set. In fact, this plot is not the actual number for each of these
five numbers, but the number closest to these numbers in the data set, which
is a good tool for comparing distributions between groups.

Data profile: The data profile of the solver s, the fraction of problems that
the solver s can solve with κ groups of np + 1 function evaluations, is

δs(κ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ crp,s := cp,s

np + 1 ≤ κ
}∣∣∣. (20)
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Here np is the dimension of the problem p and crp,s is the cost ratio of the
solver s to solve the problem p.

Performance profile: The performance profile of the solver s

ρs(τ) := 1
|P|

∣∣∣{p ∈ P
∣∣∣ prp,s := cp,s

min(cp,s | s ∈ S) ≤ τ
}∣∣∣. (21)

is the fraction of problems that the performance ratio prp,s is at most τ . In
particular, the fraction of problems that the solver s wins compared to the
other solvers is ρs(1) and the fraction of problems for sufficiently large τ (or
κ) that the solver s can solve is ρs(τ) (or δs(κ)).

Morales profile: Morales profiles of the two most robust solvers with respect
to the relative cost for function evaluations measure the efficiency of each
solver by the area of the graphs on its side of the half-space.

Noise profiles: Two noise profiles identify the robustness and efficiency of all
compared solvers with respect to the noise levels.

Box plots, data profiles, and performance profiles are based on the problem
scales but not on the noise levels, while two noise profiles are based on the
noise levels. Hence, these five plots are used to identify the robustness and
efficiency of the compared solvers with respect to the problem scales and the
noise levels.

3.4 Testing for features of MADFO

We compare, on the 157 × 2 × 2 × 8 = 5024 noisy problems with the target
accuracy ε = 10−4, the default version of MADFO with the four versions obtained
by disabling the following features:

• goodStepSize, finding good mutation and recombination step sizes.

• recomSubDir, computing recm subspace directions.

• randomNMLS, performing randomized non-monotone line search method.

• triSubPoint, computing random triangle subspace points.

Table 1 compares the default version of MADFO and the versions where one of
these four features is dropped.

We see that turning off each feature of MADFO reduces the number of solved
problems, but turning off the randomized non-monotone line search and ran-
dom triangle subspace points reduces the number of solved much more than
turning off the two other features.
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Table 1: Cumulative number of solved problems (# solved) out of 5024 noisy
problems for the noise levels ω = 10k with k = −5, −4, . . . , 2 and the target
accuracy ε = 10−4.

solver version # solved
MADFO default 3316
MADFO2 no recomSubDir 3285
MADFO1 no goodStepSize 3277
MADFO4 no triSubPoint 2654
MADFO3 no randomNMLS 2615

The box plots, data profiles and performance profiles in Figure 7 show that
MADFO and MADFO2 are more robust and efficient than the other versions. More-
over, the noise profiles show that MADFO and MADFO2 are more robust and
efficient than the other versions with the respect to the noise levels.
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Fig. 7: The box plots, data profiles and performance profiles (first row) and the
bar graphs and the Morales profiles (second row) for noisy problems with all
types of f and small dimensions 1 < n ≤ 20, generated by the absolute/relative
uniform and Gaussian noises, the target accuracy ε = 10−4, and the noise levels
ω = 10k for k = −5, −4, . . . , 2. Problems solved by no solver are ignored.
MADFO and its four versions used the budgets secmax = 360 and nfmax =
2000n + 5000.
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and the nf efficiency (right) of MADFO and its four versions. Other details as
Figure 7.
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3.5 Results for problems with the various kinds and levels of noise

Table 2: Cumulative number of solved problems for all noise levels ω = 10−i

with i = −2, . . . , 5.

absolute/relative uniform and Gaussian noises
solvers

MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO
all ϵ number of solved problems∑

11052 9252 9160 8403 8153 7498 7478 7447 7150
absolute uniform noise

solvers
MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO

ϵ number of solved problems
10−2 1014 850 897 881 824 810 807 812 767
10−3 948 737 782 762 714 693 687 667 608
10−4 832 610 661 626 600 537 574 513 477∑

2794 2197 2340 2269 2138 2040 2068 1992 1852
absolute Gaussian noise

solvers
MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO

ϵ number of solved problems
10−2 969 821 851 803 797 770 778 778 733
10−3 875 704 754 682 686 649 667 637 574
10−4 734 576 637 553 575 508 528 473 434∑

2578 2101 2242 2038 2058 1927 1973 1888 1741
relative uniform noise

solvers
MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO

ϵ number of solved problems
10−2 1014 927 862 809 755 696 665 708 725
10−3 958 845 785 727 675 617 591 616 606
10−4 887 734 694 619 599 511 523 501 501∑

2859 2506 2341 2155 2029 1824 1779 1825 1832
relative Gaussian noise

solvers
MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO

ϵ number of solved problems
10−2 1011 914 834 752 718 661 624 681 686
10−3 947 823 740 641 644 559 553 597 587
10−4 863 711 663 548 566 487 481 464 452∑

2821 2448 2237 1941 1928 1707 1658 1742 1725

We summarize our results in Tables 2 and Figure 9. We can see that the new
heuristic techniques in MADFO added to FMAES makes MADFO more robust than
the other solvers.

From Table 2, we conclude that MADFO, FMAES, NOMAD, VRDFON are more ro-
bust solvers than the other compared solvers. In fact, MADFO can solve 1800
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more problems than FMAES, 1892 more problems than NOMAD, and 2649 more
problems than VRDFON.

Table 4 contains failure diagnostics, indicating how the compared solvers ter-
minate due to reaching secmax, reaching nfmax, and failure for algorithmic
reasons. The latter are primarily step failures and decrease failures.

As discussed in Subsection 2.3, we found that, in practice, the proper behavior
under scaling is more important than translation invariance. To numerically
verify this, we generate the new problems by the change of coordinates xnew =
x+v (e.g. vi = ±1 with the sign drawn randomly) and transformation to xnew
(f(x) becomes f(xnew − v)). Then, we solve the new problems. Table 3 shows
that the results of MADFO are nearly unaffected by a shift of the points, while
the results of the most other solvers are somewhat more affected. It is unclear
to us why the results of FMAES are strongly affected by the shift.

Table 3: Test for translation invariance: Cumulative number of solved problems
for all noise levels ω = 10−i with i = −2, . . . , 5.

absolute uniform noise
problems without shifted points

solvers
MADFO NOMAD VRDFON FMAES VRBBO SDBOX NMSMAX BFO

ϵ = 10−4 number of solved problems∑
832 661 626 610 574 537 513 477

problems with shifted points
solvers

MADFO NOMAD VRDFON FMAES VRBBO SDBOX NMSMAX BFO
ϵ = 10−4 number of solved problems∑

842 779 733 818 671 610 595 531
variation (%) 0.7962 9.3949 8.5191 16.5605 7.7229 5.8121 6.5287 4.2994

Step failures: Before an approximate stationary point is found, DFO algo-
rithms (like trust region, line search, and direct search) may get stuck because
of null steps. UOBYQA uses a trust region algorithm. In most cases, it cannot find
a reduction in the inaccurate function value when noise increases or is large.
Therefore, the trust region radius is reduced more and more and eventually ap-
proaches zero, which is the cause of the trust region failure. Something related
is true for the line search solvers (VRBBO and VRDFON) and the direct search
solvers (NOMAD, NMSMAX and BFO). In this case, the step sizes go to zero, which
is the cause of line search and direct search failures. Since the step sizes are up-
dated by (9) in the MAES solvers (FMAES and MADFO), the step sizes are reduced
more slowly than the step sizes of the line search and direct search. Unlike
FMAES, MADFO changes and controls the step sizes so that they are neither too
small nor too large.

Decrease failures: Due to large noise (ω > 0.1), decrease conditions cannot
discard points whose function values are spuriously good. Therefore the noisy
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function values reach −1012 and DFO algorithms get stuck before finding an
approximate stationary point. To have a meaningful comparison for relative
noise with the noise level ω > 0.1, we computed the noisy function values by

f̃ = ω(1 + max(0.1 rand, randn))f

in the relative Gaussian noise and by

f̃ = ω(1 + max(0.1 rand, 2 rand −1))f

in the relative uniform noise, where rand ∈ U(0, 1) (uniformly distributed)
and randn ∈ N (0, 1) (normally distributed). Although FMAES does not use
any decrease condition on f̃ to accept the best point, it uses such a decrease
condition to sort inexact function values at the λ mutation points and, accord-
ingly, distribution directions and mutation directions; thus, decrease failures
for FMAES mean that the sorting process fails. MADFO uses two various decrease
conditions to accept the best point, and like FMAES, it uses the sorting process
to calculate recombination points with low inexact function values that can
be accepted as the new best point. Hence, for MADFO, decrease failures mean
that two decrease conditions fail to find best point whose function values are
not spuriously good or the sorting process fails and poor recombination points
with spuriously good function values are accepted as the new best point.

Other bugs: Occasionally solvers fail for other algorithmic reasons.

Table 4: # nfmax, # secmax, # alg count number of problems (from a total of
15072) for which each solver was terminated due to reaching secmax, reaching
nfmax, and failure for algorithmic reasons (step failures, decrease failures, or
other bugs), respectively.

solvers
MADFO FMAES NOMAD VRDFON UOBYQA SDBOX VRBBO NMSMAX BFO

# nfmax 4002 2579 0 6664 0 7571 7592 7622 123
# secmax 0 0 0 0 0 1 0 0 0
# alg 18 3241 5912 5 6919 2 2 3 7799
# total 4020 5820 5912 6669 6919 7574 7594 7625 7922

Table 4 contains the number of problems (out of a total of 15072) where each
solver was terminated for (exactly one of) reaching secmax, reaching nfmax,
and failure for algorithmic reasons. We see that the time limit chosen was quite
generous; SDBOX was stopped due to reaching secmax only once.

The first row of Figure 9 contains box plots, performance profiles, and data
profiles of all 9 compared solvers in terms of nf, while the second row contains
bar graphs of all 9 compared solvers in terms of the number of solved problems
and two Morales profiles of the three most robust solvers in terms of nf, the
goal of which is to show which solver is the most efficient.
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Figure 9 reflects the fact that MADFO is much more robust than the other
solvers. MADFO solves 11052 out of 15072 and hence is much more robust than
the other solvers, while the second to forth more robust solvers are FMAES,
NOMAD, and VRDFON. The performance profiles of this figure in terms of nf
show that the efficiency of MADFO comes at a price in terms of the cost: with
respect to the nf efficiency, MADFO only takes the fourth place after UOBYQA
(first), VRDFON (second), and NOMAD (third). Indeed, MADFO is more efficient
than the other solvers for 10% of problems, while UOBYQA is more efficient
than the other solvers for 20% of problems, and VRDFON is more efficient than
the other solvers for 12% of problems.
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Fig. 9: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems
with all types of f and small dimensions 1 < n ≤ 20, generated by the
absolute/relative uniform and Gaussian noises, the three target accuracies
ε ∈ {10−4, 10−3, 10−2}, and the noise levels ω = 10k for k = −5, −4, . . . , 2.
Problems solved by no solver are ignored. All 9 compared solvers used the
budgets secmax = 360 and nfmax = 2000n + 5000.
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4 Recommendation

This section provides three recommendations on the type of objective function,
the type of noise, and the different noise levels.

4.1 Classified by the type of objective function

This section provides some recommendations on the type of objective func-
tion: Quadratic, a sum of squares, and other (neither quadratic nor a sum of
squares).

Our findings form Figures 10–12 and Tables 5–7 are here summarized:

• For problems with the quadratic f , MADFO was much more robust than the
other solvers since it solved 1456 out of 1632 problems, while the second more
robust solver NOMAD solved 1241 out of 1632 problems. In terms of relative cost
for nf, MADFO takes the fourth place after UOBYQA (first), NOMAD (second), and
VRDFON (third).

• For problems whose f is a sum of squares, MADFO was much more robust than
the other solver since it solved 5436 out of 7680 problems, while the second
more robust solver FMAES solved 4949 problems. In terms of relative cost for
nf, MADFO only is more efficient than FMAES, while UOBYQA and SDBOX are the
first and second more efficient solvers, respectively.

• For problems with the other types of f , MADFO was much more robust and
efficient than the other solvers. MADFO solved 4160 out of 5760 problems, while
the second robust solver NOMAD solved 3277 out of 5760 problems. The first
more efficient solver MADFO for 19% of the problems and the second more
efficient solver VRDFON for 18% of the problems had the lowest relative cost for
nf compared to the other solvers.
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Table 5: Cumulative number of solved problems with the quadratic f for all
noise levels ω = 10k with k = −5, −4, . . . , 2.

absolute/relative uniform and Gaussian noises
solvers

MADFO NOMAD FMAES UOBYQA VRDFON NMSMAX VRBBO BFO SDBOX
all ε number of solved problems from a total of 1632∑

1456 1241 1231 1201 1113 1097 964 960 917
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Fig. 10: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems with
the quadratic f . Other details as Figure 9.
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Table 6: Cumulative number of solved problems with f as a sum of squares
for all noise levels ω = 10k with i = −5, −4, . . . , 2.

absolute/relative uniform and Gaussian noises
solvers

MADFO FMAES NOMAD VRDFON UOBYQA SDBOX NMSMAX VRBBO BFO
all ε number of solved problems from a total of 7680∑

5436 4949 4642 4302 4291 3903 3898 3867 3724
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Fig. 11: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems with
f as a sum of squares. Other details as Figure 9.

37



Table 7: Cumulative number of solved problems with the other types of f for
the 8 noise levels ω = 10k with i = −5, −4, . . . , 2.

absolute/relative uniform and Gaussian noises
solvers

MADFO NOMAD FMAES VRDFON SDBOX UOBYQA VRBBO BFO NMSMAX
all ε number of solved problems from a total of 5760∑

4160 3277 3072 2988 2678 2661 2647 2466 2452
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Fig. 12: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems with
the other types of f . Other details as Figure 9.
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4.2 Classified by the noise level

This section provides a recommendation on the small (ω < 0.1) and large
(ω ≥ 0.1) levels of noise.

For all types of noise and the three different target accuracies, we summarize
here our results from Figures 13 and 14 and Tables 8 and 9:

• At small noise levels MADFO is more robust than the others. It solved 6358
out of 7536 problems, while the second more robust solver NOMAD solved 6175
out of 7536 problems. MADFO ranks last among the 9 compared solvers in terms
of relative cost for nf.

• At large noise levels, MADFO is much more robust and efficient than the others.
It solved 4694 out of 7536 problems, while the second more robust solver FMAES
solved 3330 out of 7536 problems. The first more efficient solver MADFO has the
lowest relative cost for nf on 20% of problems, while the second more efficient
solver UOBYQA has the lowest relative cost for nf on 10% of problems.

Table 8: Cumulative number of solved problems for the 4 small noise levels
ω = 10k with i = −5, −4, −3, −2.

absolute/relative uniform and Gaussian noises
solvers

MADFO NOMAD FMAES VRDFON UOBYQA VRBBO NMSMAX SDBOX BFO
all ε number of solved problems from a total of 7536∑

6358 6175 5922 5863 5824 5634 5392 5313 5131
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Fig. 13: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems with
all types of f and the 4 small noise levels ω = 10k for k = −5, −4, −3, −2.
Other details as Figure 9.
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Table 9: Cumulative number of solved problems for the 4 large noise levels
ω = 10k with i = −1, 0, 1, 2.

absolute/relative uniform and Gaussian noises
solvers

MADFO FMAES NOMAD VRDFON UOBYQA SDBOX NMSMAX BFO VRBBO
all ε number of solved problems from a total of 7536∑

4694 3330 2985 2540 2329 2185 2055 2019 1844
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Fig. 14: The box plots, data profiles and performance profiles (first row) and
the bar graphs and the Morales profiles (second row) for noisy problems with
all types of f and the 4 large noise levels ω = 10k for k = −1, 0, 1, 2. Other
details as Figure 9.
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4.3 Classified by the kind and level of noise and the target accuracy

This section provides a recommendation for the type and level of noise and
the target accuracy.

We summarize here our results from Figures 15–18. For all types of noise,
MADFO is much more robust than the other solvers. When increasing the level
of noise, MADFO not only stays in the first rank for robustness, but also becomes
the first more efficient solver for large noise.
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Fig. 15: For the absolute uniform noise: Box plots (first row), performance
profiles (second row), data profiles (third row), and noise profiles (forth row)
in terms of nf and noise profiles (fifth row) in terms of number of solved
problems for the four more robust solvers. Other details as Figure 9.
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Fig. 16: For the absolute Gaussian noise: Box plots (first row), performance
profiles (second row), data profiles (third row), and noise profiles (forth row) in
terms of nf and noise profiles (fifth row) in terms of number of solved problems
for the four more robust solvers. Other details as Figure 9.
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Fig. 17: For the relative uniform noise: Box plots (first row), performance
profiles (second row), data profiles (third row), and noise profiles (forth row)
in terms of nf and noise profiles (fifth row) in terms of number of solved
problems for the four more robust solvers. Other details as Figure 9.

45



M
A

D
F

O

F
M

A
E

S

N
O

M
A

D

V
R

D
F

O
N

U
O

B
Y

Q
A

B
F

O

N
M

S
M

A
X

S
D

B
O

X

V
R

B
B

O

-1

0

1

2

3

M
A

D
F

O

F
M

A
E

S

N
O

M
A

D

U
O

B
Y

Q
A

V
R

D
F

O
N

N
M

S
M

A
X

B
F

O

S
D

B
O

X

V
R

B
B

O

-1

0

1

2

3

M
A

D
F

O

F
M

A
E

S

N
O

M
A

D

U
O

B
Y

Q
A

V
R

D
F

O
N

S
D

B
O

X

V
R

B
B

O

N
M

S
M

A
X

B
F

O

-1

0

1

2

3

1 2 5 10 20 50
100

200
500

: Performance ratio

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

1 2 5 10 20 50
100

200
500

: Performance ratio

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

1 2 5 10 20 50
100

200
500

: Performance ratio

0

0.2

0.4

0.6

0.8

1

(
):

 P
e

rf
o

rm
a

n
c
e

 p
ro

fi
le

s

10 0 10 1 10 2 10 3

: Cost ratio

0

0.2

0.4

0.6

0.8

1

(
):

 D
a

ta
 p

ro
fi
le

s

10 0 10 1 10 2 10 3

: Cost ratio

0

0.2

0.4

0.6

0.8

1

(
):

 D
a

ta
 p

ro
fi
le

s

10 0 10 1 10 2 10 3

: Cost ratio

0

0.2

0.4

0.6

0.8

1

(
):

 D
a

ta
 p

ro
fi
le

s

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 n
f 

e
ff

ic
ie

n
c
y

 

MADFO

FMAES

NOMAD

VRDFON

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

 n
f 

e
ff

ic
ie

n
c
y

 

MADFO

FMAES

NOMAD

UOBYQA

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

0.1

0.2

0.3

0.4

0.5

0.6

 n
f 

e
ff

ic
ie

n
c
y

 

MADFO

FMAES

NOMAD

UOBYQA

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

50

100

150

 n
u

m
b

e
r 

o
f 

s
o

lv
e
d

 p
ro

b
le

m
s

 MADFO

FMAES

NOMAD

VRDFON

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

20

40

60

80

100

120

140

 n
u

m
b

e
r 

o
f 

s
o

lv
e
d

 p
ro

b
le

m
s

 MADFO

FMAES

NOMAD

UOBYQA

1e-05 0.0001 0.001 0.01 0.1 1 10 100

 noise levels

0

20

40

60

80

100

120

140

 n
u

m
b

e
r 

o
f 

s
o

lv
e
d

 p
ro

b
le

m
s

 MADFO

FMAES

NOMAD

UOBYQA

Fig. 18: For the relative Gaussian noise: Box plots (first row), performance
profiles (second row), data profiles (third row), and noise profiles (forth row)
in terms of nf and noise profiles (fifth row) in terms of number of solved
problems for the four more robust solvers. Other details as Figure 9.
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5 Conclusion

In this paper we discuss MADFO, an improved matrix adaptation strategy for
noisy DFO problems. MADFO uses several new features, such as good (neither
too small nor too large) mutation and recombination step sizes, recm subspace
directions as a useful substitute (in practice against a failing sorting process
in the section phase) for recm directions, a randomized non-monotone line
search method to find mainly recombination points with low inexact function
values, and random triangle subspace points to find a useful substitute for
discarded recombination points with large inexact function values. Turning off
each feature of MADFO reduces robustness, but turning off the randomized non-
monotone line search method and random triangle subspace points reduces
robustness much more than turning off the other two features.

As a result of our recommendations, MADFO is much more robust than the other
solvers with respect to the type and level of noise and the types of objective
function. When noise is large, MADFO is not only much more robust than the
other solvers, but also more efficient than them in terms of the relative cost for
the number of function evaluations. For problems with other types (neither a
sum of squares nor quadratic) of f , MADFO is much more robust and efficient
than the other solvers, while for problems whose f are as a sum of squares or
quadratic MADFO is only much more robust than the other solvers.
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17. E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance
profiles. Math. Program. 91 (2002), 201–213.

18. C. Elster and A. Neumaier. A grid algorithm for bound constrained optimization of
noisy functions. IMA J. Numer. Anal. 15 (1995), 585–608.

19. N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization. Comput. Optim.
Appl. 60 (2015), 545–557.

20. S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on proba-
bilistic descent. SIAM J. Optim 25 (2015), 1515–1541.

21. S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Complexity and global rates of
trust-region methods based on probabilistic models. IMA J. Numer. Anal. 38 (2017),
1579–1597.
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