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Abstract

Multi-stage robust optimization, in which decisions are taken sequentially as new information

becomes available about the uncertain problem parameters, is a very versatile yet computation-

ally challenging paradigm for decision-making under uncertainty. In this paper, we propose a

new model and solution approach for multi-stage robust mixed-integer programs, which may

contain both continuous and discrete decisions in any time stage. Our model builds upon the

finite adaptability scheme developed for two-stage robust optimization problems, and it allows

us to decompose the multi-stage problem into a large number of much simpler two-stage prob-

lems. We discuss how these two-stage problems can be solved both exactly and approximately,

and we report numerical results for route planning and location-transportation problems.

Keywords: Robust optimization; multi-stage problems; mixed-integer optimization.

1 Introduction

Real-life decisions almost inevitably need to be taken under considerable uncertainty about key

problem parameters, such as future customer demands, raw material prices, exchange rates, equip-

ment outages and traffic conditions. Among the many paradigms that have been developed to safe-

guard decisions against uncertainty, such as simulation-based optimization, stochastic programming

and Markov decision processes, the relatively young field of robust optimization stands out due to
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its promise to scale to the large problem sizes commonly encountered in application areas. This is

achieved by replacing probabilistic descriptions of the uncertainty with a set-based characterization

under which the uncertain problem parameters can attain any value from a pre-specified uncer-

tainty set, and a decision is sought that performs best in view of the worst anticipated parameter

realizations (Ben-Tal et al., 2009; Bertsimas et al., 2011a; Bertsimas and den Hertog, 2022).

While robust optimization has initially been developed for single-stage problems where all deci-

sions are taken here-and-now, subsequent research has studied multi-stage formulations where the

uncertain problem parameters are revealed gradually over time, and future recourse decisions can

depend on the parameters that have already been observed. In contrast to single-stage robust opti-

mization problems, which can often be solved in polynomial time, multi-stage robust optimization

problems are NP-hard even if only two stages are considered, all decisions are continuous and the

objective function as well as all constraints are linear (Guslitser, 2002). Two-stage robust optimiza-

tion problems with continuous recourse can be solved exactly via Benders’ decomposition (Jiang

et al., 2010; Thiele et al., 2010; Bertsimas et al., 2013; Zhao et al., 2013), column-and-constraint

generation (Zeng and Zhao, 2013; Ayoub and Poss, 2016), Fourier-Motzkin elimination (Zhen et al.,

2018), copositive programming (Xu and Burer, 2018; Hanasusanto and Kuhn, 2018) or iteratively

lifting the uncertainty set (Georghiou et al., 2020). None of these techniques scale well beyond two

stages, however, and multi-stage robust optimization problems with more than two stages are typ-

ically conservatively approximated by restricting the recourse decisions to affine (Guslitser, 2002;

Kuhn et al., 2011), piecewise affine (Chen et al., 2008; Chen and Zhang, 2009; Goh and Sim, 2010;

Georghiou et al., 2015), polynomial or trigonometric (Bertsimas et al., 2011b) functions of the

observed parameters (the so-called decision rules). More recently, multi-stage robust optimization

problems have also been solved exactly by an adaptation of stochastic dual dynamic programming

(Georghiou et al., 2019). We refer to Ben-Tal et al. (2009), Delage and Iancu (2015), Yanıkoğlu

et al. (2019) and Bertsimas and den Hertog (2022) for surveys of the literature.

All of the aforementioned approaches have in common that they require the recourse decisions

to be continuous. The ubiquitous presence of integer recourse decisions in practical applications,

such as whether or not to place an order, build a facility or change the operation of a plant, has

sparked significant interest in the development of solution schemes for multi-stage robust mixed-

integer problems. However, the presence of integer recourse decisions prohibits a straightforward

2



application of the aforementioned decision rules, and it precludes the use of strong convex duality

results upon which most of the tractable reformulations from the continuous robust optimization

literature rely. Two-stage robust optimization problems with mixed-integer recourse decisions have

been solved exactly by semi-infinite programming techniques (Zhao and Zeng, 2012) as well as

approximately by K-adaptability schemes (Bertsimas and Caramanis, 2010; Hanasusanto et al.,

2015; Subramanyam et al., 2020) that restrict the choice of the second-stage decisions to one out

of K candidate solutions which are optimized over in the first stage. We are not aware of any

successful attempts to generalize either of these techniques to multi-stage robust mixed-integer

problems with more than two time stages, however.

In this paper, we propose to approximate multi-stage robust mixed-integer programs by a

finite adaptability formulation. Our formulation selects in each time stage the best mixed-integer

state decision from a finite set of pre-selected candidate decisions. Continuous control decisions

that only affect the feasibility and optimality within a stage, on the other hand, can be selected

optimally from pre-defined polyhedral regions. We show that in contrast to the original multi-stage

robust mixed-integer program, the finite adaptability approximation admits an equivalent nested

formulation that can be solved via backward recursion. This allows us to reduce the monolithic

multi-stage problem to a number of much simpler two-stage problems, many of which can be solved

in parallel. We show how the arising two-stage problems can be solved exactly or approximately.

We also discuss various heuristic strategies to select sets of candidate state decisions for each stage,

and we show how to deterministically bound the suboptimality incurred by the current choice of

candidate state decision sets. The contributions of this paper can be summarized as follows:

(i) We conservatively approximate multi-stage robust mixed-integer programs via a finite adapt-

ability approximation that admits an equivalent decomposition into two-stage subproblems.

To our best knowledge, this is the first approach that decomposes multi-stage robust mixed-

integer programs into smaller subproblems that can be solved independently.

(ii) The subproblems of our decomposition scheme constitute two-stage robust optimization prob-

lems with a particularly benign structure. We show how these problems can be solved exactly

through a disjunctive programming reformulation, as well as approximately by extending re-

cent results from the literature on two-stage robust optimization.
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(iii) We demonstrate the promise of our framework in the context of two numerical experiments:

a route planning problem involving a graph with 100 nodes and 40 time stages as well as

a location-transportation problem involving up to 20 facilities, 40 customer sites and 10

time stages. Our source codes as well as all data sets are released open-source to facilitate

comparison with alternative approaches as well as reuse in applications.1

Our solution approach builds upon the multi-stage robust mixed-integer programming litera-

ture, which can be broadly categorized into two streams: (i) generalizations of the decision rule

schemes developed for continuous problems and (ii) uncertainty set partitioning schemes. In the

following, we summarize the most prominent approaches of both streams, and we subsequently

explain how our proposed method differs from the literature.

The first decision rule architecture for multi-stage robust mixed-integer programs has been pro-

posed by Bertsimas and Caramanis (2007). The authors model the recourse decisions as affine

functions of features formed from the observed parameters. To ensure integrality of the discrete

recourse decisions, the parameter realizations are rounded up to the closest integers, and the in-

tercepts and slopes of the corresponding affine functions are restricted to integer numbers. The

resulting semi-infinite mixed-integer linear program (MILP) is solved by constraint sampling, which

results in probabilistic feasibility and optimality guarantees. Bertsimas and Georghiou (2015), on

the other hand, model the continuous recourse decisions as piecewise affine functions of the observed

parameters, whereas the discrete decisions (which are assumed to be binary) attain the value 1 pre-

cisely when certain piecewise affine functions of the parameters are non-negative. The problem can

be formulated as a semi-infinite MILP that is solved by an iterative procedure which alternates be-

tween determining the optimal decision rules for a fixed set of parameter realizations and identifying

new worst-case parameter realizations for the updated decision rules. For computational reasons,

the algorithm is typically terminated prematurely, which implies that the solution may violate the

constraints for some scenarios, and the true worst-case costs may exceed the worst-case costs esti-

mated by the procedure. For the same problem class, Bertsimas and Georghiou (2018) model the

binary recourse decisions as affine functions of non-anticipative binary features formed from the

observed parameters. Binarity of the recourse decisions is achieved by requiring the intercepts and

slopes of these affine functions to be integer and by restricting the image of the decision rules to be

1Website: http://www.doc.ic.ac.uk/„wwiesema/multi-stage-ro.zip.
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binary. Using convex duality arguments, the authors obtain a finite-dimensional MILP whose size

grows exponentially in general but remains polynomial if the uncertainty set is a hyperrectangle

and each feature mapping involves a single parameter. The approach has recently been extended

to endogenous (decision-dependent) uncertainty by Feng et al. (2021).

The first uncertainty set partitioning scheme for multi-stage robust mixed-integer programs

has been proposed by Vayanos et al. (2011), who pre-partition the uncertainty set in each time

stage into hyperrectangles and select affine decision rules (for the continuous recourse decisions)

as well as constant decision rules (for the integer recourse decisions) over each hyperrectangle. By

invoking convex duality arguments, the authors solve the corresponding conservative approximation

exactly as a finite-dimensional MILP. The authors also discuss how their approach generalizes

to the presence of endogenous (decision-dependent) uncertainty. Subsequent extensions of the

uncertainty set partitioning paradigm have continued to rely on affine and constant decision rules

for the continuous and discrete recourse decisions, respectively, but they seek to refine the partitions

adaptively in view of the incumbent solutions. Postek and den Hertog (2016) alternate between

determining the best decision rules for a fixed partition of the uncertainty set and identifying subsets

of the partition where multiple parameter realizations result in binding constraints, thus indicating

the need to further subdivide these subsets to obtain better decisions. In the multi-stage case,

the stage-wise partitions form a tree structure that is similar to the scenario trees in stochastic

programming. This partitioning scheme is very effective when the adaptive problem at hand has a

small number of time stages, but it exhibits an exponential growth if many time stages are involved.

Romeijnders and Postek (2021) refine the splitting technique of Postek and den Hertog (2016) in

the presence of integer recourse decisions, where subsets of the partition may need to be split even

if they do not generate binding constraints. The authors show that critical parameter realizations

can be identified from the LP relaxations in the branch-and-bound tree that determines the decision

rules. Bertsimas and Dunning (2015) propose an alternative scheme where the uncertainty set in

each time stage is partitioned by a Voronoi diagram that is constructed from the binding scenarios,

thus eliminating the need to choose splits manually. Since their approach splits each subset of

the partition in every iteration, however, the size of the partition grows quickly in the number of

algorithm iterations even for two-stage problems.

In contrast to the aforementioned decision rule architectures and uncertainty set partitioning

5



schemes, Goerigk and Hartisch (2021) model multi-stage robust pure integer programs with pure

integer uncertainties as quantified integer linear programs, which constitute two-person zero-sum

games between an existential player (the ‘minimizer’) and a universal player (the ‘maximizer’). The

resulting problems can be solved with an open-source quantified integer programming solver.

Multi-stage mixed integer problems have also been studied in the related literature on stochastic

programming, where the uncertain problem parameters are assumed to be governed by a known

(typically discrete) probability distribution. Most approaches in this domain relax some of the

constraints in the scenario tree representation of the problem, which leads to scenario, component

and nodal decomposition approaches; see Klein Haneveld and van der Vlerk (1999), Römisch and

Schultz (2001), Schultz (2003), Sen (2005) and Boland et al. (2016). Under the assumption of

stage-wise independent problem parameters, multi-stage mixed integer stochastic programs are

also amenable to extensions of the stochastic dual dynamic programming scheme developed for

convex problems (Pereira and Pinto, 1991; Shapiro, 2011). Since the cost to-go functions are no

longer convex, the affine cutting planes from stochastic dual dynamic programming are no longer

applicable, and they are replaced with step functions (Philpott et al., 2020), nonlinear Lipschitz cuts

(Ahmed et al., 2020) or generalized conjugacy cuts (Zhang and Sun, 2022). Alternatively, Zou et al.

(2019) show that the convex lower envelope of the cost to-go function remains piecewise affine and

convex if the problem has a complete recourse and only contains binary state variables; in this case,

cuts generated from Lagrangian relaxations can also be applied. The aforementioned stochastic

programming approaches crucially rely on the ability to enumerate all uncertainty realizations

explicitly or implicitly as a scenario tree, however, and it is unclear how they would extend to the

set-based descriptions of the uncertainty that are employed in robust optimization.

The method developed in this paper complements the existing solution schemes for multi-stage

robust mixed-integer programs. The uncertainty set partitioning approaches from the literature

are essentially free of hyperparameters and thus do not require any a priori knowledge about the

problem. On the flip side, they construct set-based analogues of scenario trees that exhibit an expo-

nential growth in the number of time stages as well as, typically, the number of uncertain problem

parameters per stage. They are thus ideally suited for smaller problems where the decision maker

has little a priori insight into the structure of well-performing solutions. Most of the decision rule

architectures, on the other hand, require the functional form of the recourse decisions to be selected
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upfront and thus rely on domain knowledge of the decision maker. In contrast to the uncertainty

set partitioning approaches, however, decision rule architectures tend to scale polynomially in the

number of decision variables and time stages, which renders them particularly promising for larger

problems. Similar to the decision rule architectures, our method requires a priori knowledge about

the problem to select suitable candidate decisions for each time stage. On the other hand, since our

approach decomposes the overall problem into smaller two-stage subproblems, our method scales

particularly well in the number of time stages. Moreover, and in contrast to all of the existing

approaches, our method is ideally suited for parallelization since many of the subproblems can be

solved in parallel. This is attractive in view of the recent growth in cloud computing services, which

enable users to rent vast amounts of parallel computing resources at an hourly billing.

The remainder of this paper proceeds as follows. Section 2 formulates the multi-stage robust

mixed-integer program of interest, it presents our finite adaptability approximation, and it elu-

cidates how this approximation admits a decomposition into two-stage subproblems. Sections 3

and 4 discuss exact and approximate solution approaches for the two-stage subproblems, respec-

tively. Section 5 presents a progressive bound to estimate the suboptimality of our approximation,

and it develops heuristic strategies to select candidate state decision sets for each stage. We con-

clude with numerical experiments in Section 6. All proofs are relegated to the appendix.

Notation. For a vector ξ “ pξ1, . . . , ξT q constructed from T subvectors ξ1, . . . , ξT , we denote by

ξt the t-th subvector, whereas ξt “ pξ1, . . . , ξtq stacks all subvectors up to and including ξt. The

vectors e and ei refer to the all-ones and the i-th basis vector, respectively; their dimension will be

clear from the context. Finally, we denote by 1r¨s the indicator function that attains the value 1 if

the logical expression ¨ is satisfied and 0 otherwise.

2 Problem Formulation

We are interested in multi-stage robust mixed-integer optimization problems of the form

minimize max
ξPΞ

T
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq

subject to Ttpξtqxt´1pξ
t´1q `Wtpξtqxtpξ

tq ` Vt ytpξ
tq ě htpξtq @ξ P Ξ, @t “ 1, . . . , T

xtpξ
tq P Xt and ytpξ

tq P Rn
2
t for all ξ P Ξ and t “ 1, . . . , T,

(1)
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where the uncertain problem parameters ξt are revealed at the beginning of each time stage t,

t “ 1, . . . , T , and the decisions xt and yt are taken afterwards under the full knowledge of ξt “

pξ1, . . . , ξtq. A solution to problem (1) is immunized against all parameter realizations ξ “ ξT in

the uncertainty set Ξ. The cost vectors qt, the technology matrices Tt, the recourse matrices Wt as

well as the right-hand side vectors ht may all depend affinely on ξt. We stipulate that T1pξ0q ” 0

and x0pξ
0q ” 0, that is, the first-stage constraints only involve the first-stage decisions x1 and

y1. We assume that ξ1 is deterministic, and hence x1 and y1 are here-and-now decisions. We can

interpret xt as state variables since they couple constraints of consecutive stages, whereas yt are

control variables that only affect the costs and feasibility within stage t. Each set Xt Ď Rn1
t can be

non-convex and comprise both continuous and discrete decision variables. In contrast, the linear

constraints of problem (1) fully characterize the set of admissible yt. To ease the exposition, we

assume that the set of admissible yt is bounded; this avoids tedious but otherwise straightforward

case distinctions where infinite cost savings in one stage need to be weighed against infeasibility

(which can be regarded as infinite costs) in another stage. We do not assume that problem (1)

has a relatively complete recourse, that is, there may be partial solutions pxτ ,yτ q
t
τ“1 satisfying the

constraints up to time stage t that cannot be extended to complete solutions pxτ ,yτ q
T
τ“1 satisfying

all constraints up to the final time stage T . The presence of potentially non-convex stage-wise

feasible regions Xt renders problem (1) strongly NP-hard even in the absence of uncertainty. Even

if the stage-wise feasible regions Xt are polyhedra, however, problem (1) remains strongly NP-hard

due to the presence of adaptive decisions, see Guslitser (2002, Theorem 3.5) and Subramanyam

et al. (2020, Proposition A.3).

The uncertainty set Ξ comprises discrete inter-stage uncertainties φt P Rk
1
t that can be coupled

over consecutive time stages as well as continuous intra-stage uncertainties ψt P Rk
2
t that are stage-

wise rectangular, apart from their potential dependence on φt. More precisely, Ξ emerges from

stage-wise uncertainty sets Ξt as follows. The parameters of the first stage are deterministic and

are thus the only element of the singleton set Ξ1 “ tξ1 “ pφ1,ψ1qu. For t “ 2, . . . , T , the stage-wise

uncertainty sets satisfy

Ξtpφt´1q “ tξt “ pφt,ψtq : φt P Φtpφt´1q, Utpφtqψt ď btpφtqu ,

where Ut : Rk1t Ñ Rltˆk2t and bt : Rk1t Ñ Rlt can be arbitrary functions of φt. To keep the notation

consistent, we stipulate that φ0 ” 0, Φ1pφ0q ” Φ1 “ tφ1u and Ξ1pφ0q ” Ξ1. We assume that the
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sets Φtpφt´1q are finite and their unions Φt “
Ť

φt´1PΦt´1
Φtpφt´1q, t “ 2, . . . , T , are ‘not too large’,

in a sense that we will discuss in more detail later on. We can then define the overall uncertainty

set Ξ from the stage-wise uncertainty sets Ξt as

Ξ “
 

ξ “ ppφt,ψtq
looomooon

“ξt

qTt“1 : ξ1 P Ξ1, ξt P Ξtpφt´1q @t “ 2, . . . , T
(

. (2)

Note that Ξ may fail to be stage-wise rectangular, that is, Ξ Ĺ
ŚT

t“1tξt : ξ P Ξu. To avoid technical

but otherwise straightforward case distinctions, we assume in the following that Ξ is bounded.

The uncertainty set (2) is quite versatile, and it complements the relatively scarce literature on

multi-stage uncertainty sets (Miao et al., 2007; Delage and Iancu, 2015; Lorca and Sun, 2015).

Example 1 (Uncertainty Set Ξ). In the multi-stage robust optimization literature, stage-wise rect-

angular uncertainty sets of the form Ξ “ Ξ1 ˆ . . . ˆ ΞT , where Ξ1 “ tξ1u and each set Ξt is a

polyhedron, constitute a common choice of uncertainty sets. Stage-wise rectangular uncertainty

sets are readily recognized as a special case of (2) if we disregard the inter-stage uncertainties φt

and choose Ut and bt such that tψt : Uψt ď btu “ Ξt. Despite their popularity, we argue that

stage-wise rectangular uncertainty sets can lead to overly conservative solutions as they allow for

the worst parameter values to be realized in every single time stage.

To alleviate the conservatism of stage-wise rectangular uncertainty sets, Bandi and Bertsimas

(2012) propose uncertainty sets inspired by central limit theorems, where it is assumed that the

cumulative absolute deviations of the uncertain parameters from some nominal values are bounded.

A univariate discrete version of their uncertainty set can be modeled as

Z “

#

ζ P RT : ζ1 “ ζ0
1 , ζt P

 

ζ
t
, . . . , ζt

(

@t “ 2, . . . T, Γ ď
T
ÿ

t“1

ζt ď Γ

+

,

where ζt is the uncertain parameter in stage t, pζ
t
, ζtq are the stage-wise bounds and pΓ,Γq charac-

terize the maximum absolute deviations from some nominal values. Note that this uncertainty set

includes the well-known discrete budget uncertainty sets (Bertsimas and Sim, 2004) as a special

case. Central limit theorem uncertainty sets emerge if we disregard the intra-stage uncertainties ψt

in (2) and choose φt “ pφ
1
t, φ

Σ
t q with Φ1 “ tpζ

0
1 , ζ

0
1 qu as well as

Φtpφt´1q “

#

φt “ pφ
1
t, φ

Σ
t q : Dζ P Z such that

t´1
ÿ

τ“1

ζτ “ φΣ
t´1, ζt “ φ1t and φΣ

t “ φΣ
t´1 ` φ

1
t

+

,
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Φ1 Φ2 Φ3 Φ4

ϕ2

ϕ3

ϕ′ 3

…

…

…

Figure 1. Lattice regime (left) and Markovian regime chain (right) uncertainty sets. In

both cases, the regimes are represented as nodes. In the left figure, we have Φ3pφ2q “

tφ3, φ
1
3u. In the right figure, the sets Φt`1pφtq corresponding to the nodes φt highlighted

by bold strokes are the nodes with dotted strokes.

t “ 2, . . . , T , where φ1t and φΣ
t represent the innovation term at stage t as well as the summation

over all previously observed innovations, respectively. The uncertainty set (2) can readily model

multivariate versions of the discrete central limit theorem uncertainty sets as well, albeit at the

expense of combinatorially scaling inter-stage uncertainty sets Φt.

Chen et al. (2019), Long et al. (2023) and Cui et al. (2023) propose scenario-based uncertainty

sets for distributionally robust optimization problems, where a random parameter vector can be gov-

erned by different moment ambiguity sets with associated (and possibly partially unknown) scenario

probabilities. A robust multi-stage version of this uncertainty set,

Z “

$

’

’

’

&

’

’

’

%

ζ “ pζ1, . . . , ζT q : ζ1 “ ζ
0
1 ,

»

—

—

—

–

F 1
t ζt ď g

1
t

_
...

_ F st
t ζt ď g

st
t

fi

ffi

ffi

ffi

fl

@t “ 2, . . . , T

,

/

/

/

.

/

/

/

-

,

arises as a special case of (2) if the scalar inter-stage uncertainty can attain the values φt P

t1, . . . , stu and we set Utpφtq “ F
φt
t as well as btpφtq “ g

φt
t in every stage t “ 2, . . . , T . We can

interpret this uncertainty set as a union of scenario polyhedra in every time stage.

Finally, uncertainty sets of the form (2) also allow us to model regime uncertainty sets that

to our best knowledge have not been previously studied in the robust optimization literature. In a

lattice regime uncertainty set, the discrete regime φt in stage t is any element of Φtpφt´1q, where

Φtpφt´1q describes the children of the previous regime node φt´1 in a lattice structure ( cf. Figure 1,

left). Likewise, in a Markovian regime chain uncertainty set, the regime φt is any of the neighbours

Φtpφt´1q of the previous regime node φt´1 in a graph ( cf. Figure 1, right). In both cases, the discrete
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regimes can be complemented by continuous intra-regime uncertainties.

Instead of solving the multi-stage robust mixed-integer problem (1) directly, we propose to

investigate the following finite adaptability approximation,

minimize max
ξPΞ

T
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq

subject to Ttpξtqxt´1pξ
t´1q `Wtpξtqxtpξ

tq ` Vt ytpξ
tq ě htpξtq @ξ P Ξ, @t “ 1, . . . , T

xtpξ
tq P XC

t and ytpξ
tq P Rn

2
t for all ξ P Ξ and t “ 1, . . . , T,

(3)

where XC
t “ tx

1
t , . . . ,x

pt
t u Ď Xt is a finite set of pre-selected candidate decisions for stage t. The

finite adaptability approximation (3) differs from the multi-stage robust mixed-integer problem (1)

in that it selects optimal state decisions xt from the restricted finite sets XC
t as opposed to the

original sets Xt. This conservative approximation turns out to be crucial for the development of

our nested problem formulation and its associated solution method below. Note that in contrast

to the K-adaptability schemes for two-stage robust problems (Bertsimas and Caramanis, 2010;

Hanasusanto et al., 2015; Subramanyam et al., 2020), the candidate decision sets XC
t in problem (3)

are fixed. Similar to the choice of decision rule architectures discussed in the introduction, the

choice of suitable candidate decision sets XC
t requires some a priori insight into the structure of

well-performing solutions to the multi-stage robust mixed-integer problem (1). We will discuss in

Section 5 different heuristic approaches for choosing candidate decision sets XC
t if such a priori

knowledge is not available. We emphasize that problem (3) selects the best decisions from each set

XC
t adaptively based on the realization of ξt, and that the problem therefore remains challenging

as it generalizes a known NP-hard problem (Subramanyam et al., 2020, Proposition B.3).

We now discuss how the finite adaptability approximation (3) gives rise to an equivalent nested

problem formulation that can be solved by a backward recursion. Our result relies on the following

interchangeability principle established by Shapiro (2017, Proposition 2.1).

Lemma 1. For a set Ω Ă Rm, a set-valued mapping F : Ω Ñ Rn, the set of functions F “ trx :

Ω Ñ Rns : xpωq P F pωq @ω P Ωu and a cost function c : Rn ˆ Rm Ñ R, we have

min
xPF

max
ωPΩ

cpxpωq,ωq “ max
ωPΩ

min
xPF pωq

cpx,ωq (4)

as long as c attains its minimum over x P F pωq for all ω P Ω.
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Note that Lemma 1 does not require any convexity assumptions. Intuitively, any policy x P F

in the min-max problem on the left-hand side of (4) induces a feasible (but possibly suboptimal)

response xpωq in the max-min problem on the right-hand side of (4), and conversely a collection of

responses txpωquωPΩ to the max-min problem in (4) gives rise to a feasible (but possibly suboptimal)

policy x P F in the min-max problem in (4). Lemma 1 extends to the case where F pωq “ H for

some ω P Ω if we stipulate that both sides of the identity (4) evaluate to `8 in that case.

Our nested formulation is defined by the stage-t worst-case cost to-go problem

Qtpx̂t´1;φt´1q “ max
ξtPΞtpφt´1q

Qtpx̂t´1; ξtq, (5a)

t “ 1, . . . , T , where the stage-t nominal cost to-go problem satisfies

Qtpx̂t´1; ξtq “

»

—

—

—

–

minimize qtpξtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq

xt P XC
t , yt P Rn

2
t

fi

ffi

ffi

ffi

fl

. (5b)

In problem (5b), we stipulate that Qtpx̂t´1; ξtq “ `8 if the minimization is infeasible, and we set

the boundary condition QT`1pxT ;φT q ” 0 for all xT P XC
T and φT P ΦT . For t “ 1, we also set

x̂0 ” 0 and abbreviate Q1px̂0,φ0q by Q1.

Proposition 1. The finite adaptability approximation (3) and the stage-1 worst-case cost to-go

problem Q1 share the same optimal value. In particular, (3) is infeasible if and only if Q1 “ 8.

The equivalence of multi-stage problems and their nested formulations is well understood in the

stochastic programming community when the worst-case approach is replaced with the expected

value. In that case, the pendant of Lemma 1 has been established by Rockafellar and Wets (1998,

Theorem 14.60), and the equivalence of both formulations is typically taken as given. Shapiro (2017)

studies the more general case where the expected value is replaced with a generic risk measure.

While this result includes our worst-case approach, the nested formulation of Shapiro (2017) does

not account for any structure in the support of the random vectors, and his stage-wise cost to-go

problems therefore depend on the entire parameter sequence ξT . In contrast, the stage-t worst-

case cost to-go problems in our derivations only depend on the realization φt´1 of the preceding

inter-stage uncertainty. This parsimonious dependence of the worst-case cost to-go problems on

the past uncertainty realizations lies at the heart of our approach; it is facilitated by the design of

our generalized rectangularity of Ξ, and it is key for the tractability of our approach.
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In the following, we first discuss how the stage-t worst-case cost to-go problems Qtpx̂t´1;φt´1q

can be solved by a backward recursion (Algorithm 1). Here, the key step repeatedly solves two-

stage subproblems Qt, given the (previously computed) values of the worst-case cost to-go problems

Qt`1. Sections 3 and 4 are devoted to the exact and approximate solution of these subproblems.

Algorithm 1: Evaluation of the stage-t worst-case cost to-go problems Qtpx̂t´1;φt´1q.

1. Initialization. Set t “ T as well as QT`1pxT ;φT q “ 0 for all xT P XC
T and φT P ΦT .

2. Iteration. Compute Qtpx̂t´1;φt´1q for all x̂t´1 P XC
t´1 and φt´1 P Φt´1.

3. Termination. If t ą 1, update tÐ t´ 1 and repeat Step 2. Otherwise, terminate.

Note that the subproblems Qt occurring in the same time stage t are independent of another and

can thus be solved in parallel, leading to a theoretical maximum speedup of p1{T q¨
řT
t“1 |XC

t |¨|Φt´1|

over the sequential solution of all subproblems. Once Algorithm 1 has been executed, the optimal

first-stage decisions px‹1,y
‹
1q can be obtained by solving a single instance of the nominal problem

Q1. In principle, Algorithm 1 is sufficient for solving the finite adaptability approximation (3) in a

receding-horizon fashion, where upon observing ξt we construct and solve a new pT ´ t` 1q-stage

problem. However, since Algorithm 1 solves all worst-case cost to-go problems Qt, they do not

need to be recomputed at later time stages. The following algorithm exploits this property.

Algorithm 2: Optimal policy for the finite adaptability approximation (3).

1. Initialization. Solve all stage-t worst-case cost to-go problems via Algorithm 1.

2. First Stage. Implement px‹1,y
‹
1q as determined by the problem Q1. Set t “ 2.

3. Iteration. Upon observation of the uncertain parameters ξt, solve the stage-t nominal cost

to-go problem Qtpx
‹
t´1; ξtq and implement the corresponding stage-t decisions px‹t ,y

‹
t q.

4. Termination. If t ă T , update tÐ t` 1 and repeat Step 3. Otherwise, terminate.

We next show that Algorithm 2 implicitly defines an optimal policy tpx‹t ,y
‹
t qu

T
t“1 for the finite

adaptability approximation (3) in response to a stage-wise revealed scenario ξ P Ξ.

Proposition 2. Assume that problem (3) is feasible. Then the policy tpx‹t ,y
‹
t qu

T
t“1 that is implicitly

defined by Algorithm 2 in response to the parameter realizations ξ P Ξ is optimal in (3).
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Remark 1 (Alternative Formulations). While in theory a nested formulation akin to (5) could be

formulated for a finite adaptability approximation that selects the candidate decision sets XC
t as part

of the optimization, or even more generally for the multi-stage robust mixed-integer problem (1), the

corresponding backward recursion would have to compute the worst-case cost to-go for all possible

decisions x̂t´1 P Xt´1, as opposed to the candidate decisions x̂t´1 P XC
t´1 only, in order to quantify

the future worst-case cost to-go in each two-stage subproblem. This unfavorable scaling would limit

the applicability of the resulting solution scheme to very small problem instances.

Remark 2 (Robust Markov Decision Processes). When the continuous decisions yt are absent, the

multi-stage robust mixed-integer program (1) is reminiscent of a robust Markov decision process,

that is, a Markov decision process where the transition probabilities are only known to reside in

some uncertainty set (Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann et al., 2013). A crucial

difference between the two modeling paradigms is, however, that the discrete decisions xt in (1)

can be selected after the uncertain parameters ξt have been observed, whereas the same decisions

would have to be taken before ξt is known in a robust Markov decision process. This seemingly

minor difference is crucial as one can readily construct instances of (1) that are feasible under

the multi-stage robust optimization paradigm but infeasible if modelled as a robust Markov decision

process. Likewise, the applications in our numerical experiments would typically reduce to much

simpler deterministic problems if they were modelled as robust Markov decision processes.

3 Exact Solution of the Two-Stage Subproblems Qt

The key step in Algorithm 1 for our finite adaptibility approximation (3) is the solution of the

two-stage subproblems Qt. The presence of discrete wait-and-see decisions xt in these problems

renders most of the existing exact solution approaches for two-stage robust optimization prob-

lems (cf. Section 1) inapplicable. Indeed, Fourier-Motzkin elimination and iterative uncertainty

set lifting schemes fundamentally require all second-stage decisions to be continuous, while Ben-

ders’ decomposition and column-and-constraint generation depend on strong convex duality of the

second stage to identify worst-case uncertainty realizations for fixed first-stage decisions. To our

best knowledge, the only exact solution approach for two-stage robust optimization problems with

mixed-integer recourse is the nested column-and-constraint generation scheme of Zhao and Zeng

(2012). Applied to our setting, however, this method would require the two-stage subproblems Qt
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to be solved by extreme point uncertainty realizations ξt P ext Ξtpφt´1q, which is not guaranteed

to be the case in our context. Indeed, one can readily construct instances of Qt without control

variables and either objective uncertainty or right-hand side uncertainty whose worst-case uncer-

tainty realizations are not extreme points, and the two-stage subproblems in our two applications

of Section 6 are not optimized by extreme point worst-case parameter realizations in general. Our

problem Qt is reminiscent of the K-adaptability problems studied by Bertsimas and Caramanis

(2010), Hanasusanto et al. (2015) and Subramanyam et al. (2020). In contrast to those problems,

however, the candidate decision sets XC
t in Qt have finite cardinality. This allows us to design exact

solution schemes despite the presence of continuous second-stage decisions yt.

To solve the two-stage subproblems Qt exactly, we first derive a non-convex strong duality result

for the stage-t nominal cost to-go problem Qt that is embedded in the two-stage subproblem Qt

(Theorem 1), which subsequently gives rise to an equivalent bilinear programming formulation of

Qt (Proposition 3). We then identify and discuss four special cases of Proposition 3 that lead to

LP or MILP reformulations of polynomial size: (i) the constraints of Qt do not depend on the

uncertainty realization ξt; (ii) the control variables yt are absent in Qt; (iii) the recourse matrix

Vt in Qt is invertible; and (iv) the recourse matrix Vt in Qt has a block-diagonal structure.

The benign structure of the stage-t nominal cost to-go problem Qt allows us to derive a non-

convex strong dual that forms the basis of our solution approaches for the two-stage subproblems Qt.

Theorem 1 (Strong Duality). Fix x̂t´1 P XC
t´1 and ξt. The stage-t nominal cost to-go problem

Qtpx̂t´1; ξtq has the same optimal value as the semi-infinite disjunctive program

maximize θ

subject to
”

θ ď qtpξtq
Jxt ` rt

Jyt `Qt`1pxt;φtq _

Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ğ htpξtq
ı

@xt P XC
t , @yt P Rn

2
t

θ P R.

(6)

Problem (6) can be interpreted as follows. For every second-stage decision pxt,ytq P XC
t ˆRn2

t ,

θ either needs to account for the objective value qtpξtq
Jxt ` rt

Jyt ` Qt`1pxt;φtq of pxt,ytq, or

pxt,ytq has to violate at least one of the constraints Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq.

We next leverage the semi-infinite non-convex dual (6) to derive an equivalent finite-dimensional

single-stage reformulation of the two-stage subproblem Qt as a bilinear program. To this end, we
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from now on denote by mt the number of second-stage constraints Ttpξtqxt´1`Wtpξtqxt`Vt yt ě

htpξtq in stage t.

Proposition 3. Fix x̂t´1 P XC
t´1 and φt´1 P Φt´1. If the stage-t nominal cost to-go problem

Qtpx̂t´1; ξtq is feasible for some ξt P Ξtpφt´1q, then the two-stage subproblem Qtpx̂t´1;φt´1q has

the equivalent reformulation

maximize θ

subject to θ ď qtpξtq
Jxit `

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
λit

`Qt`1px
i
t;φtq @i “ 1, . . . , pt

V Jt λ
i
t “ rt @i “ 1, . . . , pt

θ P R, ξt P Ξtpφt´1q, λ
i
t P R

mt
` , i “ 1, . . . , pt.

(7)

Problem (7) constitutes a mixed-integer bilinear program and is as such difficult to solve in

general. We next study subclasses of problem (7) that admit practically efficient solution schemes.

Corollary 1 (Deterministic Constraints). Fix x̂t´1 P XC
t´1 and φt´1 P Φt´1. If the constraints

of the stage-t nominal cost to-go problem Qt do not depend on ξt, then the two-stage subproblem

Qtpx̂t´1;φt´1q has the equivalent MILP reformulation

maximize θ

subject to θ ď qtpξtq
Jxit ` r

i
t `Qt`1px

i
t;φtq @i “ 1, . . . pt : rit ‰ `8

θ P R, ξt P Ξtpφt´1q

if rit ‰ ´8 for all i “ 1, . . . , pt, and Qtpx̂t´1;φt´1q “ ´8 otherwise, where rit “ inftrt
Jyit :

Tt x̂t´1 `Wt x
i
t ` Vt y

i
t ě ht, y

i
t P Rn

2
t u P RY t´8,`8u.

Several combinatorial optimization problems admit formulations where the constraints are not

affected by uncertainty and that thus fall under the umbrella of Corollary 1. Examples include the

shortest path, minimum cut, minimum spanning tree and matching problem with uncertain arc

weights, the knapsack problem with uncertain utilities as well as the capacitated vehicle routing

problem with uncertain travel costs.

Corollary 2 (State Variables Only). Fix x̂t´1 P XC
t´1 and φt´1 P Φt´1. If the control vari-

ables yt are absent in the stage-t nominal cost to-go problem Qt, then the two-stage subproblem
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Qtpx̂t´1;φt´1q has the equivalent MILP reformulation

maximize θ

subject to θ ď qtpξtq
Jxit `Qt`1px

i
t;φtq `M ¨ zit @i “ 1, . . . pt

“

Ttpξtq x̂t´1 `Wtpξtqx
i
t

‰

`
ă rhtpξtqs` `M ¨ λi`t @i “ 1, . . . pt, @` “ 1, . . . ,mt

zit `
mt
ÿ

`“1

λi`t ď mt @i “ 1, . . . pt

θ P R, ξt P Ξtpφt´1q, zt P t0, 1u
pt , λt P t0, 1u

ptˆmt ,

(8)

where M is a sufficiently large positive number.

For practical purposes, the strict inequalities in problem (8) can be relaxed to weak inequalities

if we subtract sufficiently small positive quantities from their right-hand sides. An alternative

derivation along the lines of Hanasusanto et al. (2015) is possible, but it would result in a formulation

whose number of constraints scales exponentially in mt.

Corollary 2 is applicable, for example, in purely discrete instances of the multi-stage robust

mixed-integer problem (1) where |Xt| is not too large. This is the case for moderate-sized queueing

network problems, where the state variables record the numbers of customers at each node, as well

as for display ad allocation problems, where campaigns are matched to ad impressions so as to

maximize the publisher’s revenues subject to uncertain click-throughs (Chen et al., 2011).

Corollary 3 (Invertible Recourse Matrix). Fix x̂t´1 P XC
t´1 and φt´1 P Φt´1. If the recourse

matrix Vt in the stage-t nominal cost to-go problem Qt is invertible, then the two-stage subproblem

Qtpx̂t´1;φt´1q is infeasible if pV ´1
t qJrt ğ 0; otherwise, it has the equivalent MILP reformulation

maximize θ

subject to θ ď qtpξtq
Jxit `

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
pV ´1

t qJrt

`Qt`1px
i
t;φtq @i “ 1, . . . , pt

θ P R, ξt P Ξtpφt´1q.

Note that the stage-t worst-case cost to-go problem Qtpx̂t´1;φt´1q is infeasible precisely when

for every ξt P Ξtpφt´1q the stage-t nominal cost to-go problem Qtpx̂t´1; ξtq is unbounded.

Corollary 4 (Decomposability). Fix x̂t´1 P XC
t´1 and φt´1 P Φt´1. If the stage-t nominal cost

to-go problem Qtpx̂t´1; ξtq is feasible for some ξt P Ξtpφt´1q and the recourse matrix Vt in Qt has
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a block-diagonal structure Vt “ diag pV 1
t , . . . ,V

kt
t q, then the two-stage subproblem Qtpx̂t´1;φt´1q

has the equivalent MILP reformulation

maximize θ

subject to θ ď qtpξtq
Jxit `

kt
ÿ

j“1

τ ijt `Qt`1px
i
t;φtq @i “ 1, . . . , pt

τ ijt ď
“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J

j
λjt `M ¨ zijt pλ

j
t q `M ¨

ÿ

γjt PΓ
j
t

δijt pγ
j
t q

@λjt P Λjt , @i “ 1, . . . , pt, @j “ 1, . . . , kt
ÿ

λj
tPΛ

j
t

zijt pλ
j
t q “ |Λ

j
t | ´ 1 @i “ 1, . . . , pt, @j “ 1, . . . , kt

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J

j
γjt ą M ¨ pδijt pγ

j
t q ´ 1q

@γjt P Γjt , @i “ 1, . . . , pt, @j “ 1, . . . , kt

θ P R, ξt P Ξtpφt´1q, τ ijt P R, zijt : Λjt Ñ t0, 1u, δijt : Γjt Ñ t0, 1u,

i “ 1, . . . , pt and j “ 1, . . . , kt,

where rt “ pr1
t , . . . , r

kt
t q such that V j

t and rjt have matching numbers of rows, j “ 1, . . . , kt, Λjt

and Γjt contain the extreme points and extreme rays of the polyhedron tλ ě 0 : rV j
t s
Jλ “ rjt u,

respectively, and r¨sj refers to the subsets of rows matching those of V j
t and rjt .

The equivalence stated in Corollary 4 extends to unbounded instances of the two-stage sub-

problem Qt in the sense that Qtpx̂t´1;φt´1q is unbounded if and only if the MILP in Corollary 4

attains an optimal value greater than or equal to M. Corollary 4 applies to multi-stage robust

mixed-integer problems that, as far as the continuous decisions yt are concerned, decompose into

separate components. Note that the discrete decisions xt as well as the uncertain parameters ξt

may still connect the different components. The study of optimization problems with decompos-

able structure goes back to Bellman (1957), and much work has since been dedicated to developing

efficient solution techniques (most notably the Dantzig-Wolfe and Benders’ decomposition) and

applying them, among others, to problems in supply chain management, production scheduling as

well as the design and operation of energy systems (Martin, 1999). In supply chain management

problems, for example, the flows of different products are often restricted by constraints that exhibit

a block-diagonal structure. Likewise, in production scheduling problems, the production activities

typically decompose across different facilities.
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Remark 3. If the set Φtpφt´1q of inter-stage uncertainties φt is not too large, then we can alter-

natively solve the MILPs in Corollaries 1–4 by enumerating all possible values of φt P Φpφt´1q,

treating φt as a constant in the MILPs and solving the resulting problems in parallel.

Remark 4. Even if a two-stage subproblem Qt is not amenable to Corollaries 3 or 4 per se, it may

admit an equivalent reformulation that is once a candidate decision x̂t´1 P XC
t´1 has been fixed and

redundant constraints in the stage-t nominal cost to-go problem Qt have been removed.

4 Conservative Approximation of the Two-Stage Subproblems Qt

In cases where the two-stage subproblems Qt cannot be solved exactly, we propose to use conserva-

tive approximations Qt that restrict the adaptivity of the state or control variables. The following

observation justifies the use of stage-wise conservative approximations Qt in a multi-stage setting.

Observation 1 (Conservative Approximations: Propagation of Upper Bounds).

(i) If Qt`1 in each nominal stage-t cost to-go problem Qt is replaced with an upper bound

Qt`1pxt;φtq ě Qt`1pxt;φtq, t “ 1, . . . , T , xt P XC
t and φt P Φt, then the resulting approxi-

mations Qt of Qt are conservative: Qtpxt´1;φt´1q ě Qtpxt´1;φt´1q for all t, xt´1 and φt´1.

(ii) If Q1 ă 8, then the policy tpx‹t ,y
‹
t qu

T
t“1 that is implicitly defined by Algorithm 2 using the

upper bounds Qt, t “ 1, . . . , T , is feasible in (3) and attains worst-case costs of at most Q1.

Observation 1 shows that Qt`1px
‹
t ;φtq remains an upper bound on the worst-case cost to-go

when decision x‹t P XC
t is taken by Algorithm 2, even when the worst-case cost to-go functions in

later time stages are also replaced by conservative approximations.

In the remainder of this section, we discuss two different conservative bounds based on ap-

proximations of the state and control variables. Since both approximations distinguish between

the inter-stage uncertainties φt and the intra-stage uncertainties ψt in time stage t, we define

Ψtpφtq “ tψt : pφt,ψtq P Ξtpφt´1qu as the set of conditional intra-stage uncertainty realizations.

Approximation 1 (State Approximation). The state variables xt in each two-stage subproblem

Qtpx̂t´1;φtq no longer adapt to the exact values of the intra-stage uncertainties ψt, but only to

their set memberships t1rψt P Ψtjpφtqsu
l
j“1 across a pre-selected polyhedral partition tΨtjpφtqu

l
j“1

of the conditional intra-stage uncertainty realizations Ψtpφtq.
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Note that under Approximation 1, the state variables xt remain fully adaptive in the inter-stage

uncertainties φt. Approximation 1 then adopts a piecewise constant decision rule approximation

in ψt for the state variables xt. The number l of subsets in the partition tΨtjpφtqu
l
j“1 of Ψtpφtq

can vary with the time stage t as well as the values of φt´1, φt and x̂t´1; for ease of exposition,

however, we notationally suppress this potential dependence.

Observation 2. Denote by η‹pφt, j,xtq, φt P Φtpφt´1q, j “ 1, . . . , l and xt P XC
t , the optimal

value of the following worst-case optimization problem with continuous recourse.

maximize

»

—

—

—

–

minimize qtpφt,ψtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqxt ` Vt yt ě htpφt,ψtq

yt P Rn
2
t

fi

ffi

ffi

ffi

fl

subject to ψt P Ψtjpφtq

Under Approximation 1, the optimal value of the two-stage subproblem Qt coincides with

max
!

min
 

η‹pφt, j,xtq : xt P XC
t

(

: φt P Φtpφt´1q and j “ 1, . . . , l
)

.

The |Φtpφt´1q|¨l ¨pt worst-case optimization problems of Observation 2 can be solved in parallel.

Together with our earlier observation of the parallel solution of the subproblems in each time stage,

there are thus two levels of parallelization: We can solve |Φt´1|¨|Φt|¨l¨pt´1¨pt worst-case optimization

problems in parallel in each time stage t. In contrast to the two-stage subproblems Qt, the worst-

case optimization problems in Observation 2 contain no first-stage decisions, discrete uncertainties

or discrete recourse decisions, and they can be solved using column-and-constraint generation (Zeng

and Zhao, 2013) or iterative liftings of the uncertainty set (Georghiou et al., 2020).

Instead of approximating the state variables, we can also approximate the control variables.

Approximation 2 (Control Approximation). The control variables yt in each two-stage subprob-

lem Qtpx̂t´1;φtq no longer adapt to the exact values of the intra-stage uncertainties ψt; instead, they

are optimally chosen from an optimally selected set of affine decision rules tytj : Ψtpφtq Ñ Rn2
t ulj“1.

Under Approximation 2, the control variables yt remain fully adaptive in the inter-stage uncer-

tainties φt. Instead of selecting yt optimally in response to the observation of ψt, Approximation 2

selects the l best affine decision rules tytj : Ψtpφtq Ñ Rn2
t ulj“1 here-and-now (that is, upon observa-

tion of φt but before observing ψt) and subsequently computes yt from the best of these l decision
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rules wait-and-see (that is, upon observation of ψt). Similar to the number l in Approximation 1,

the number l of decision rules in Approximation 2 can vary with the values of t, φt´1, φt and x̂t´1.

Observation 3. Denote by η‹pφtq, φt P Φtpφt´1q, the optimal value of the following ppt, lq-

adaptable two-stage robust MILP that optimizes over affine decision rules tytju
l
j“1 here-and-now

and over combinations pk, jq P t1, . . . , ptu ˆ t1, . . . , lu wait-and-see.

minimize

¨

˚

˚

˚

˝

max
ψtPΨtpφtq

»

—

—

—

–

minimize qtpφt,ψtq
Jxkt ` rt

Jytjpψtq `Qt`1px
k
t ;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqx
k
t ` Vt ytjpψtq ě htpφt,ψtq

pk, jq P t1, . . . , ptu ˆ t1, . . . , lu

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

subject to ytj : Ξtpφt´1q Ñ Rn
2
t , j “ 1, . . . , l.

Under Approximation 2, the optimal value of the two-stage subproblem Qt coincides with

maxtη‹pφtq : φt P Φtpφt´1qu.

The |Φtpφt´1q| ppt, lq-adaptable two-stage robust MILPs of Observation 3 can be solved in par-

allel. Together with our earlier observation of the parallel solution of the subproblems in each time

stage, we can thus solve |Φt´1|¨|Φt|¨pt´1 ppt, lq-adaptable two-stage robust optimization problems in

parallel in each time stage t. In contrast to the two-stage subproblems Qt, the ppt, lq-adaptable two-

stage robust MILPs in Observation 3 contain neither discrete uncertainties nor continuous recourse

decisions, and they are thus amenable to standard solution schemes for K-adaptable two-stage

robust optimization problems (Hanasusanto et al., 2015; Subramanyam et al., 2020).

5 Lower Bounds and Selection of Candidate State Decision Sets

So far we assumed that the sets XC
t of candidate state decisions in the finite adaptability approx-

imation (3) are pre-specified and fixed. This is reasonable if domain expertise can be leveraged

to design promising candidate state decisions, but it may place an undue burden on the decision

maker when such information is not available. To address such situations, we develop in this section

a greedy heuristic that iteratively expands the sets XC
t based on optimal solutions to lower bounds

of the multi-stage robust mixed-integer optimization problem (1). The lower bounds are useful in

their own right to estimate the suboptimality of a solution to (3), regardless of whether the sets

XC
t are being expanded or kept fixed.
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Our expansion heuristic is motivated by a necessary and a sufficient condition for the improve-

ment of the optimal value of the finite adaptability approximation (3). To ease the exposition, we

denote by XC “ tXC
1 , . . . ,XC

T u the collection of all candidate state decision sets, and for a fixed

choice of XC and Ξ we let P pXC,Ξq denote both the formulation (3) and its optimal value.

Proposition 4 (Necessary and Sufficient Conditions for Improvement). Consider two collections

of candidate state decision sets XC “ tXC
t u

T
t“1 and X̂C “ tX̂C

t u
T
t“1 with X̂C

τ “ XC
τ Ytx

1
τu for some

τ “ 1, . . . , T and x1τ P Xt, and X̂C
t “ XC

t for all t ‰ τ . A necessary condition for P pX̂C,Ξq ă

P pXC,Ξq is the existence of φτ´1 P Φτ´1, x̂τ´1 P XC
τ´1, ξτ P Ξτ pφτ´1q and y1τ P Rn

2
τ such that

(1) Tτ pξτ q x̂τ´1 `Wτ pξτ qx
1
τ ` Vτ y

1
τ ě hτ pξτ q, and

(2) qτ pξτ q
Jx1τ ` rτ

Jy1τ `Qτ`1px
1
τ ;φτ q ă Qτ px̂τ´1; ξτ q.

A sufficient condition for P pX̂C,Ξq ă P pXC,Ξq is the existence of an optimal solution px‹,y‹qpξq

to P pXC,Ξq such that for all corresponding worst-case uncertainties ξ‹ P Ξ, conditions (1) and (2)

hold for x̂τ´1 “ x
‹
τ´1prξ

‹sτ´1q and ξτ “ ξ
‹
τ .

In Proposition 4, ξ‹ P Ξ is a worst-case uncertainty if
řT
t“1 qtpξ

‹
t q
Jx‹t prξ

‹stq ` rt
Jy‹t prξ

‹stq “

P pXC,Ξq. The conditions (1) and (2) correspond to the feasibility and objective improvement

of px̂t, ŷtq in the stage-t nominal cost to-go problem Qt, respectively. The necessary condition in

Proposition 4 is not sufficient since the candidate state solution x1τ may only improve nominal

stage-t problems Qtpxτ´1; ξτ q that do not involve worst-stage uncertainties ξτ or optimal decisions

xτ´1 in P pXC,Ξq. Likewise, the sufficient condition in Proposition 4 is not necessary since it is

possible that by adding x1τ to XC
τ the worst-case cost to-go Qt and nominal cost to-go Qt decrease

in early stages t “ 1, . . . , τ´1 for previously sub-optimal decisions, thus leading to an improvement

without the sufficient condition being satisfied.

Motivated by Proposition 4, we limit our attention to worst-case uncertainties ξ‹ when selecting

new candidate state decisions to add to XC. This idea is formalized in the following algorithm.

Algorithm 3: Iterative expansion of the candidate state decision sets.

1. Initialization. Initialize the collection of candidate state decision sets XC.

2. Conservative Bound. Solve the current finite adaptability problem P pXC,Ξq.
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3. Progressive Bound. Identify a set Ξ̂ Ď Ξ of worst-case uncertainties and solve P pX , Ξ̂q,

where X “ tXtuTt“1. Identify the candidate state decision(s) to add to XC.

4. Termination. Stop if XC has not been updated. Otherwise, go back to Step 2.

Algorithm 3 produces a sequence of upper and lower bounds to the multi-stage robust mixed-

integer optimization problem (1) by solving finite adaptability problems P pXC,Ξq with updated

candidate state decision sets XC and relaxations of (1) that only involve subsets Ξ̂ Ď Ξ of the

uncertain parameter realizations, respectively. Algorithm 3 constitutes a template that allows for

several ways of (i) initializing and updating the collection XC, (ii) constructing reduced uncertainty

sets Ξ̂ and (iii) solving the upper and lower bounds P pXC,Ξq and P pX , Ξ̂q.

We initialize the collection XC of candidate state decision sets by solving a static version of the

multi-stage robust mixed-integer optimization problem (1) and identifying XC
t with the decision

x‹t P Xt taken by the optimal solution to the static problem. Likewise, we update XC by adding to

each set XC
t the decision x‹t P Xt taken by an optimal solution to the lower bound P pX , Ξ̂q. This

approach is heuristic as it uses the sufficient (but not necessary) condition of Proposition 4.

We consider two alternative constructions of the reduced uncertainty set Ξ̂. In the first, we

identify Ξ̂ with all worst-case uncertainties ξ‹ determined during the solution of the upper bound

problem P pXC,Ξq, which results in a set Ξ̂ of finite cardinality. In the second approach, we set

Ξ̂ “ tξ “ pφ‹,ψq P Ξ : φ‹ P Φ‹u, where Φ‹ denotes the set of worst-case inter-stage uncertainties

in problem P pXC,Ξq. In other words, the second approach considers all uncertainty realizations

that emerge from combinations of the worst-case inter-stage uncertainties with any admissible intra-

stage uncertainties. If necessary, the reduced uncertainty set Ξ̂ resulting from either approach can

be restricted further by selecting subsets of the worst-case parameter realizations.

We solve the upper bound problems P pXC,Ξq using Algorithm 1. As part of this algorithm, we

solve the emerging two-stage subproblems Qt either exactly (using the techniques of Section 3) or

approximately (using the methods of Section 4). The lower bound problems P pX , Ξ̂q, on the other

hand, can be solved as large-scale MILPs as long as the reduced uncertainty set Ξ̂ is finite (i.e.,

it takes the form of a scenario tree or a scenario fan). If Ξ̂ has infinite cardinality, on the other

hand, then we solve a single-stage robust optimization problem in which the decisions pxt,ytq only

adapt to the inter-stage uncertainties φt but not to the intra-stage uncertainties ψt. Note that this

approach no longer provides a lower bound on the multi-stage robust mixed-integer optimization
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problem (1), but it remains a valid heuristic to choose candidate state decisions to add to XC.

6 Numerical Experiments

We compare our iterative solution scheme for the finite adaptability approximation (3) with different

benchmark approaches for solving the multi-stage robust mixed-integer problem (1) on two case

studies. The first case study concerns a route planning problem in which the stage-wise feasible

regions Xt are sufficiently benign for our approach to solve the problem exactly within seconds.

The second case study concerns a transportation-location planning problem where the stage-wise

feasible regions Xt grow exponentially in the problem description; here, we use our iterative state

variable selection procedure from Section 5 in combination with the piecewise constant state decision

approximation from Section 4 to approximately solve the problem to a high accuracy.

6.1 Route Planning

We consider a dynamic robust route planning problem on a directed graph G “ pN,Aq with nodes

N “ t1, . . . , nu and arcs A Ď V ˆ V . The goal is to determine an adaptive shortest path from

the start node 1 to the terminal node n that minimizes the worst-case route length when the arc

lengths are uncertain and non-stationary over time. The problem can be formulated as the following

instance of our multi-stage robust mixed-integer optimization problem (1):

minimize max
ξPΞ

T
ÿ

t“1

ÿ

pi,jqPA

ytijpξ
tq

subject to ytijpξ
tq ě rtijpξtq

´

xtjpξ
tq ` xt´1,ipξ

t´1q ´ 1
¯

@ξ P Ξ, @pi, jq P A, @t “ 1, . . . , T

xtjpξ
tq ` xt´1,ipξ

t´1q ď 1 @ξ P Ξ, @pi, jq R A, @t “ 1, . . . , T

xT pξ
T q “ en @ξ P Ξ

xtpξ
tq P tei : i “ 1, . . . , nu, ytpξ

tq ě 0 @ξ P Ξ, @t “ 1, . . . , T.

Here, rtijpξtq represents the uncertain length of arc pi, jq P A in time stage t “ 1, . . . , T . The state

variable xt records the node entered at time stage t, with x0pξ
0q ” e1, and the components of the

auxiliary control variable yt evaluate (at optimality) to ytijpξ
tq “ rtijpξtq if arc pi, jq is traversed in

time stage t and ytijpξ
tq “ 0 otherwise. The objective function evaluates the worst-case cumulative

length of the arcs traversed over time. The first constraint ensures that ytijpξ
tq ě rtijpξtq precisely
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when we traverse from node i to node j in time stage t, the second constraint ensures that this is

possible only when pi, jq P A, and the third constraint ensures that we reach node n by time T .

For our numerical experiments, we generate random graphs with nodes N “ t1, . . . , 100u that

are located uniformly at random on the ‘N’-shaped subset r0, 10s2zpr2, 4s ˆ r0, 8s Y r6, 8s ˆ r2, 10sq

of the two-dimensional square r0, 10s2; the exceptions are the start node 1 and the terminal node

n “ 100, which are located at the bottom-left corner p0, 0q and top-right corner p10, 10q, respectively.

To construct the arc set, we start with A “ NˆN (including all self-loops) and remove all arcs that

cross the boundaries of our ‘N’-shaped set. We subsequently remove arcs in order of decreasing arc

lengths until either |A| “ 6n or the removal of any further arcs would make the graph disconnected.

This eliminates trivial problem instances in which the shortest path contains few arcs. Note that

the inclusion of self-loops allows the decision maker to reside at the current node in any time stage;

in particular, the decision maker can arrive and reside at the terminal node n prior to time stage

T . To model the uncertain arc lengths rtijpξtq, we construct a budget uncertainty set of the form

Ξtpφt´1q :“
!

ξt “ pφt,ψtq : φt P Φtpφt´1q, ψt P r0, 1s
|A|, eJψt ď φt´1 ´ φt, ψtii “ 0 @i P N

)

.

Here, the intra-stage uncertainties ψt determine the arc length excesses via rtijpξtq :“ p1`ψtijqr
0
ij ,

where the nominal length r0
ij of arc pi, jq P A is set to the Euclidean distance between nodes i and

j, and the inter-stage uncertainty budget φt evolves according to the set Φtpφt´1q :“ tφt P N0 :

φt ď φt´1u for some initial budget φ0 (selected below). We set the time horizon to T “ 40.

The static problem, where the uncertain arc lengths are stationary and observed after choosing

the shortest path, can be reduced to the solution of multiple deterministic shortest path problems

(Bertsimas and Sim, 2003). In our finite adaptability approximation of the dynamic problem, we

employ full adaptivity, that is, we set XC
t “ Xt for all t; this is possible since |Xt| “ n in this case

study. We solve the resulting problem with Algorithm 1 (cf. Section 2), where the subproblems

Qtpx̂t´1;φt´1q are solved exactly using Corollary 3 and Remarks 3 and 4 from Section 3. In fact,

each subproblem Qtpx̂t´1;φt´1q of our finite adaptability approximation can be solved to any fixed

precision ε in time Oplog ε´1q via a binary search. All instances of the static as well as the adaptive

route planning formulation were solved within 10 seconds each, which is why we omit detailed

runtime comparisons in this section.

Figure 2 compares the average worst-case route lengths over 50 randomly generated instances

and initial uncertainty budgets φ0 P t0, . . . , T u of three alternative methods: (i) the static robust

25



Figure 2. Worst-case route lengths of the static, the crystal ball and our dynamic

solution across 50 randomly generated instances and varying uncertainty budgets φ0.

route (‘static’) that solves a single-stage robust optimization problem to determine a fixed here-

and-now route to minimize the worst case route length before any arc lengths are observed; (ii) the

worst-case crystal ball route (‘crystal ball’) over all possible uncertainty realizations that benefits

from observing all arc lengths ahead of time; and (iii) our adaptive robust route (‘adaptive’). As

expected, the figure confirms that the worst-case route length of our adaptive solution is bounded

from above and below by the static and the crystal ball solution, respectively. Moreover, we can see

that the static solution ‘saturates’ quickly even for relatively small uncertainty budgets, in which

case the adversarial nature maximally perturbs all arcs lengths along the worst-case optimal path.

This illustrates the value of adaptivity in the context of robust route planning.

To further study the differences between static and adaptive routes, we run a simulation study

where in each time stage t, the adversarial nature randomly selects each arc pi, jq P A emanating

from the decision maker’s present location xt´1,ipξ
t´1q “ 1 with probability p, and the lengths of

the selected arc are maximally increased (subject to the remaining uncertainty budget). Figure 3

compares the static robust route (in blue) with different adaptive robust routes (in red) that

respond in a worst-case optimal way to randomly drawn arc length sequences r1pξ1q, . . . , rT pξT q

for the initial uncertainty budgets φ0 P t0, 15, 30, 45u. In the figure, the optimal static route changes

as the initial budget increases from 0 to 15, but it subsequently returns to its original form when

the budget increases further. Indeed, an initial budget of 30 is sufficient to maximally perturb all

arcs on the worst-case optimal path, in which case the static robust problem becomes equivalent to
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(a) φ0 “ 0 (b) φ0 “ 15

(c) φ0 “ 30 (d) φ0 “ 45

Figure 3. Comparison of the optimal static route (blue) with 1,000 simulated paths

of the optimal adaptive route (red; thickness corresponds to traversal frequency) on a

randomly generated instance with 4 different initial uncertainty budgets.

a nominal shortest path problem. For an initial uncertainty budget of 0, the simulated paths of our

adaptive route coincide with the optimal static route. For all other uncertainty budgets, however,

our adaptive route reacts to the revealed arc lengths; this is illustrated by the red arcs, whose

thickness is proportional to the traversal frequency across 1,000 simulated arc length sequences.

It is worth noting that the initial arc selected by our adaptive route often differs from the one

chosen by the optimal static route. This shows that future adaptivity needs to be accounted for by

the decision taken here-and-now, and it demonstrates that a receding horizon implementation of a
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static problem may result in suboptimal solutions.

6.2 Location-Transportation Planning

We study a dynamic location-transportation problem where facilities can be built at locations

i “ 1, . . . ,m to serve uncertain customer demands at locations j “ 1, . . . , n over a time span

of T stages. The problem can be formulated as the following instance of our multi-stage robust

mixed-integer optimization problem (1):

minimize max
ξPΞ

T
ÿ

t“1

pt
Jytpξ

tq ´ ct
Jztpξ

tq ´ bt
Jxtpξ

tq

subject to
m
ÿ

i“1

ytijpξ
tq ` ztjpξ

tq “ dtjpξtq @ξ P Ξ, @j “ 1, . . . , n, @t “ 1, . . . , T

n
ÿ

j“1

ytijpξ
tq ď Ci ¨ xtipξ

tq @ξ P Ξ, @i “ 1, . . . ,m, @t “ 1, . . . , T

xtpξ
tq ě xt´1pξ

t´1q @ξ P Ξ, @t “ 1, . . . , T

xtpξ
tq P t0, 1um, ytpξ

tq P Rmn` , ztpξ
tq P Rn` @ξ P Ξ, @t “ 1, . . . , T.

Here, ptij and ctj denote the profit and penalty for serving or disregarding one unit of demand at

location j from location i in time stage t, respectively, bti represents the cost of operating a facility

at location i in time stage t, dtj are the uncertain customer demands at location j in time stage t,

and Ci is the capacity of the candidate facility at location i. The state variables xti record whether

a facility exists at location i in time stage t, whereas the control variables ytij and ztj record the

demand at location j that is served from location i or disregarded in time stage t, respectively.

The objective function computes the cumulative worst-case difference of sales profits and penalty

as well as facility operating costs. The first constraint stipulates that all customer demands are

either served or disregarded, the second constraint ensures that the facility capacities are obeyed,

and the third constraint prohibits the closure of previously opened facilities.

For our numerical experiments, we generate random problem instances with m P t5, 10, 15, 20u

facility locations and n “ 2m customer locations that are located uniformly at random on the two-

dimensional square r0, 10s2. We set the per-unit sales profits ptij to 80 minus d times the Euclidean

distance between the locations of facility i and customer j, where the per-unit transportation costs

are d P t1, 5, 10u. The per-unit penalty ctj P t10, 25, 50u for unserved demand is the same across all

customer locations j and time stages t. We set the facility capacities to Ci “ 90 for all locations
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i, whereas the operating costs are set to bti “ 80 ¨ γ ¨ Ci, where γ P t0.6, 0.7, 0.8u is the facility

cost factor. With this choice, the per-period operating cost bti of facility i is amortized by its sales

revenues if it utilizes 100% ¨γ of its production capacity Ci to serve customer demands. We employ

a lattice regime chain uncertainty set for the customer demands (cf. Example 1), where the demand

regime φt satisfies φ1 “ 100 and φt P Φtpφt´1q “ tφt´1, φt´1 ` ∆φu for t “ 2, . . . , T , where the

demand increments ∆φ are selected from the set t10, 20, 30u. The stage-wise uncertainty sets are

Ξtpφt´1q “

"

ξt “ pφt,ψtq P Φtpφt´1q ˆ R4
` : eJdtpξtq “ φt, 0.8 ¨

φt
4

e ď ψt ď 1.2 ¨
φt
4

e

*

,

where the customer demands satisfy dtjpξtq “
ř4
f“1

”

1
distpj,fq{

řn
k“1

1
distpk,fq

ı

ψtf . Here, ψt P R4
` is

a vector of risk factors and distpj, fq is the Euclidean distance between the customer location j and

the f -th corner of the square r0, 10s2. The uncertainty set reflects the idea that the overall demand

in time stage t is known to be φt, but its geographic breakdown is governed by uncertain risk factors

that are only known to reside in a hypercube. In summary, our problem instances are characterized

by the five parameters m, d, ctj , γ and ∆φ. We generate 50 random problem instances for each of

these 4 ¨ 34 “ 324 parameter combinations and set the time horizon to T “ 10.

Since the stage-wise feasible regions Xt of the state decisions scale exponentially in the number of

facility locations m, we solve the finite adaptability approximation of the dynamic transportation-

location problem with our iterative state variable selection procedure outlined in Algorithm 3

(cf. Section 5). In each iteration, we solve the finite adaptability problem P pXC,Ξq using Approxi-

mation 1 with piecewise constant state decisions based on a single partition (cf. Section 4), and we

identify the set Ξ̂ of worst-case uncertainties with the 2 worst scenarios in this problem. We com-

pare our method with two benchmark models. The first model (‘intra-stage uncertainty’) restricts

the state decisions xt to adapt only to the inter-stage uncertainties φt, but not to the intra-stage

uncertainties ψt. The resulting problem can be reformulated as a large MILP that combines a sce-

nario tree for the demand regimes φt with robust constraints for the intra-stage demand realizations

dtpξtq. The second model (‘nominal intra-stage’) additionally replaces the uncertain intra-stage de-

mand realizations dtpξtq with their nominal values d0
tj “

1
4

ř4
f“1

”

1
distpj,fq{

řn
k“1

1
distpk,fq

ı

¨ φt. The

resulting model is smaller and thus easier to solve, but it constitutes a weaker approximation of the

original problem. In our experiments, we use the incumbent solution of ‘nominal intra-stage’ that

has been determined after 10 minutes runtime to warm-start our iterative state variable selection

procedure. We set the runtime limit of each approach to 12 hours per problem instance.
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Figure 4. Average (bold lines) and 25%-75% quartile ranges (shaded areas) of the upper

and lower bounds generated from our approach (blue), the ‘intra-stage uncertainty’ model

(red) and the ‘nominal intra-stage’ model (green). Shown are the relative optimality gaps

(ordinates) as functions of the runtime in seconds (abscissae) for m “ 5, 10, 15, 20 (from

left to right), averaged over all other 34 “ 81 parameter choices. Some of the lower

bounds are absent since their optimality gaps lie outside of the displayed region.

Figure 4 and Table 1 present numerical results for different parameter settings. Note that each

of the three methods provides both upper (conservative) and lower (progressive) bounds on the

optimal value of the dynamic location-transportation problem. In particular, upper bounds can be

obtained via Algorithm 1, whereas the lower bounds result from computing the crystal ball solution

px,y, zq over a reduced uncertainty set Ξ̂ that is extracted from the upper bound problem. Our

results show that the ‘nominal intra-stage’ model can obtain feasible solutions quickly, but the lower

bounds tend to provide poor estimates of the optimal value. The ‘intra-stage uncertainty’ model,

on the other hand, can result in good upper and lower bounds, but its runtime grows excessively as

a function of the problem size. Our iterative approach, finally, provides tighter bounds than both

benchmark methods under almost all parameter settings. The kinks in our lower bounds for m “ 5

and m “ 10 in Figure 4 are due to the transition from the incumbent solution to the ‘nominal intra-

stage’ model after 10 minutes to the lower bounds produced by Algorithm 3. We note that while

the final gap between our lower and upper bounds is typically small, in most problem instances the

bounds do not collapse, see also Table 1.
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∆φ “ 10 ∆φ “ 20 ∆φ “ 30

γ “ 0.6 γ “ 0.7 γ “ 0.8 γ “ 0.6 γ “ 0.7 γ “ 0.8 γ “ 0.6 γ “ 0.7 γ “ 0.8

d
=

1

ctj = 10 0.03% 0.03% 0.20% 0.08% 0.00% 0.07% 0.00% 0.00% 0.00%

13.80% 16.78% 23.85% 13.47% 19.83% 31.68% 46.94% 105.41% 160.32%

14.08% 16.55% 22.35% 14.01% 19.83% 20.75% 45.37% 95.32% 161.55%

ctj = 25 0.04% 0.03% 0.00% 0.04% 0.22% 0.00% 0.01% 0.00% 1.17%

18.97% 22.35% 52.22% 19.22% 21.37% 89.57% 46.48% 102.69% 1,860.14%

19.49% 22.78% 51.34% 19.51% 22.66% 89.70% 46.04% 101.82% 1,721.78%

ctj = 50 0.02% 0.06% 0.15% 0.06% 0.13% 0.04% 0.01% 0.00% 1.49%

29.62% 37.92% 59.82% 29.61% 38.69% 90.96% 46.68% 104.93% 1,809.24%

29.22% 37.92% 59.91% 30.09% 38.65% 89.87% 46.01% 104.98% 1,712.70%

d
=

5

ctj = 10 0.12% 0.77% 1.88% 1.31% 1.95% 6.65% 0.00% 0.00% 0.00%

11.51% 8.35% 13.46% 9.41% 10.81% 16.21% 83.24% 118.32% 191.45%

13.23% 16.43% 24.54% 13.93% 17.12% 39.76% 69.30% 149.66% 226.17%

ctj = 25 0.19% 0.96% 4.67% 0.71% 1.75% 1.18% 0.00% 0.00% 0.00%

17.61% 28.99% 125.98% 17.28% 41.45% 572.63% 82.72% 724.77% 115.39%

20.83% 25.58% 122.20% 21.57% 36.38% 354.85% 78.52% 844.00% 130.67%

ctj = 50 0.18% 0.40% 7.69% 0.59% 4.55% 0.90% 0.11% 0.00% 0.59%

31.08% 50.68% 342.05% 34.52% 64.79% 224.49% 78.75% 778.90% 120.36%

34.18% 52.08% 290.22% 38.18% 66.19% 212.99% 76.84% 755.01% 109.46%

d
=

1
0

ctj = 10 0.15% 1.30% 3.26% 0.48% 8.32% 4.73% 3.69% 1.71% 3.90%

9.73% 8.78% 3.01% 21.38% 30.85% 3.12% 203.35% 17.59% 2.76%

21.47% 54.77% 35.37% 37.74% 151.21% 17.80% 216.81% 40.20% 17.24%

ctj = 25 2.39% 9.87% 6.47% 8.28% 13.16% 3.12% 0.00% 2.57% 4.33%

18.17% 50.84% 10.75% 23.85% 79.68% 7.68% 301.31% 44.58% 6.89%

27.19% 90.59% 33.02% 46.08% 106.60% 23.96% 320.86% 53.14% 17.79%

ctj = 50 2.42% 9.27% 4.06% 12.70% 9.55% 1.58% 4.52% 1.39% 1.83%

51.57% 134.73% 38.27% 78.79% 67.62% 33.11% 205.81% 61.46% 30.49%

60.06% 180.83% 38.38% 112.34% 72.59% 28.88% 213.31% 60.69% 34.48%

Table 1. Optimality gaps for instances with m “ 10 facility locations. Within each cell,

the numbers correspond to our iterative approach, followed by the benchmark models

with and without intra-stage uncertainty. The best method is highlighted in bold print,

and shaded cells correspond to instances with large optimality gaps.
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Appendix: Proofs

Proof of Lemma 1. This follows immediately from Proposition 2.1 and Example 2 of Shapiro

(2017).

Proof of Proposition 1. We show that the finite adaptability approximation (3) shares the

same optimal value as the nested optimization problem

max
ξ1PΞ1

min
px1,y1qPF1pξ1q

”

q1pξ1q
Jx1 ` r1

Jy1 ` max
ξ2PΞ2pφ1q

min
px2,y2qPF2px1,ξ2q

”

q2pξ2q
Jx2 ` r2

Jy2

` ¨ ¨ ¨ ` max
ξT PΞT pφT´1q

min
pxT ,yT qPFT pxT´1,ξT q

”

qT pξT q
JxT ` rT

JyT

ı

¨ ¨ ¨

ı

, (9)

where for all t “ 1, . . . , T , xt´1 P XC
t´1 and ξt “ pφt,ψtq P Ξt,

Ftpxt´1, ξtq “
!

pxt,ytq P XC
t ˆ Rn

2
t : Ttpξtqxt´1 `Wtpξtqxt ` Vt yt ě htpξtq

)

,

and where we notationally suppress the dependence on x0 in F1pξ1q. The statement of the propo-

sition then follows from the fact that for all t “ 1, . . . , T , the value of Qtpx̂t´1;φt´1q coincides with

the optimal value of the partial problem

max
ξtPΞtpφt´1q

min
pxt,ytqPFtpx̂t´1,ξtq

”

qtpξtq
Jxt ` rt

Jyt ` ¨ ¨ ¨

` max
ξT PΞT pφT´1q

min
pxT ,yT qPFT pxT´1,ξT q

”

qT pξT q
JxT ` rT

JyT

ı

¨ ¨ ¨

ı

,

which can be readily shown by a backward induction on t.

To show the equivalence between (3) and (9), we denote by Ξ1:t “ tξ
t : ξ P Ξu the projection

of Ξ onto the first t stages, and we rewrite the finite adaptability problem (3) as

min
px1,y1qPF1

min
px2,y2qPF2px1q

¨ ¨ ¨ min
pxT ,yT qPFT pxT´1q

max
ξPΞ

T
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq,

where for all t “ 1, . . . , T ,

Ftpxt´1q “

!

rpxt,ytq : Ξ1:t Ñ XC
t ˆ Rn

2
t s : pxt,ytqpξ

tq P Ftpxt´1pξ
t´1q, ξtq @ξ

t P Ξ1:t

)

,

and where we notationally suppress the dependence on x0 in F1. By Lemma 1, we can inter-

change the innermost minimization and maximization operators, and thus the finite adaptability
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approximation (3) is equivalent to

min
px1,y1qPF1

¨ ¨ ¨ min
pxT´1,yT´1qPFT´1pxT´2q

max
ξPΞ

min
pxT ,yT qPFT pxT´1pξT´1q,ξT q

«

T´1
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq

ff

` qT pξT q
JxT ` rT

JyT .

Decomposing the maximization over ξ P Ξ into one over ξT´1 P Ξ1:T´1 and one over ξT P ΞT pφT´1q,

which is admissible due to the generalized rectangularity of Ξ, the problem becomes

min
px1,y1qPF1

¨ ¨ ¨ min
pxT´1,yT´1qPFT´1pxT´2q

max
ξT´1PΞ1:T´1

max
ξT PΞT pφT´1q

min
pxT ,yT qPFT pxT´1pξT´1q,ξT q

«

T´1
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq

ff

` qT pξT q
JxT ` rT

JyT

“ min
px1,y1qPF1

¨ ¨ ¨ min
pxT´1,yT´1qPFT´1pxT´2q

max
ξT´1PΞ1:T´1

«

T´1
ÿ

t“1

qtpξtq
Jxtpξ

tq ` rt
Jytpξ

tq

ff

` max
ξT PΞT pφT´1q

min
pxT ,yT qPFT pxT´1pξT´1q,ξT q

qT pξT q
JxT ` rT

JyT .

We can now invoke Lemma 1 to interchange the minimization over pxT´1,yT´1q with the maximiza-

tion over ξT´1. A backward induction over all time stages then proves that the finite adaptability

approximation (3) indeed attains the same optimal value as the nested formulation (9).

Proof of Proposition 2. To prove that tpx‹t ,y
‹
t qu

T
t“1 is optimal in (3), it suffices to show that

T
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq ď Q1 @ξ P Ξ (10)

since Q1 coincides with the optimal value of (3) by Proposition 1. To this end, we conduct a

backward induction on t to show that for all ξ P Ξ, we have

T
ÿ

τ“t

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q ď Qtpx
‹
t´1pξ

t´1q;φt´1q

with our usual convention that x‹0pξ
0q ” 0. Indeed, the base case t “ T holds since for any ξ P Ξ,

qT pξT q
Jx‹T pξ

T q ` rT
Jy‹T pξq “ QT px

‹
T´1pξ

T´1q; ξT q

ď max
ξ1T PΞT pφT´1q

QT px
‹
T´1pξ

T´1q; ξ1T q

“ QT px
‹
T´1pξ

T´1q;φT´1q,
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where the first equality holds since px‹T pξ
T q,y‹T pξ

T qq is an optimal solution to the nominal problem

QT px
‹
T´1pξ

T´1q; ξT q by the design of Algorithm 2. Next, assume that the induction hypothesis

holds for stage t` 1. We then have that

T
ÿ

τ“t

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q “

”

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq

ı

`

T
ÿ

τ“t`1

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q

ď

”

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq

ı

`Qt`1px
‹pξtq;φtq

“ Qtpx
‹
t´1pξ

t´1q; ξtq ď max
ξtPΞtpφt´1q

Qtpx
‹
t´1pξ

t´1q; ξtq

“ Qtpx
‹
t´1pξ

t´1q;φt´1q.

Here, the first inequality holds because of the induction hypothesis, while the second equality is due

to the fact that px‹t pξ
tq,y‹t pξ

tqq is an optimal solution to the nominal problem Qtpx
‹
t´1pξ

t´1q; ξtq

by the design of Algorithm 2. In particular, the above inequality also holds for t “ 1, which shows

that (10) holds and thus Algorithm 2 implicitly defines an optimal policy tpx‹t ,y
‹
t qu

T
t“1 for (3).

Proof of Theorem 1. We first prove weak duality, that is, the optimal value of Qt is bounded

from below by the optimal value of (6). This is trivially the case if Qt is infeasible. Assume therefore

that Qt is feasible, and fix any feasible decision pxt,ytq P XC
t ˆRn2

t in Qt and any feasible decision

θ P R in (6). The feasibility of pxt,ytq in Qt implies that Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq,

which in turns implies that θ ď qtpξtq
Jxt ` rt

Jyt `Qt`1pxt;φtq as θ is feasible in (6).

We now prove strong duality, that is, the optimal values of Qt and (6) coincide. If Qt is

infeasible, that is, if Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ğ htpξtq for all pxt,ytq P XC
t ˆ Rn2

t , then (6)

is unbounded as desired. Let us now assume that Qt is minimized by px‹t ,y
‹
t q P Xt ˆ Rn2

t , that

is, we have Ttpξtq x̂t´1 `Wtpξtqx
‹
t ` Vt y

‹
t ě htpξtq, and for all pxt,ytq P XC

t ˆ Rn2
t we either

have Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ğ htpξtq or qtpξtq
Jxt ` rt

Jyt ` Qt`1pxt;φtq ě qtpξtq
Jx‹t `

rt
Jy‹t `Qt`1px

‹
t ;φtq. Then the solution θ‹ “ qtpξtq

Jx‹t ` rt
Jy‹t `Qt`1px

‹
t ;φtq is feasible in (6)

by construction.

Proof of Proposition 3. The semi-infinite disjunction in problem (6) can be expressed as

θ ď qtpξtq
Jxit ` rt

Jyit `Qt`1px
i
t;φtq @i “ 1, . . . , pt, @y

i
t P Ytpx̂t´1, ξt,x

i
tq,
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where

Ytpx̂t´1, ξt,xtq “
!

yt P Rn
2
t : Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq

)

.

This constraint, in turn, can be reformulated as

θ ď qtpξtq
Jxit ` inf

 

rt
Jyit : yit P Ytpx̂t´1, ξt,x

i
tq
(

`Qt`1px
i
t;φtq @i “ 1, . . . , pt. (11)

The minimization problem embedded in this constraint,

minimize rt
Jyit

subject to Ttpξtq x̂t´1 `Wtpξtqx
i
t ` Vt y

i
t ě htpξtq

yit P Rn
2
t ,

(12)

has the linear programming dual

maximize
“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
λit

subject to V Jt λ
i
t “ rt

λit P R
mt
` .

Strong linear programming duality holds unless both the primal minimization problem and the dual

maximization problem are infeasible. Note that the feasibility of the dual maximization problem

does not depend on x̂t´1, xit or ξt. In particular, the dual maximization problem is infeasible for

some x̂t´1 and ξt if and only if it is infeasible for all x̂t´1 and ξt. In the latter case, the primal

problem has to be infeasible or unbounded for all x̂t´1 and ξt. By assumption, the set of admissible

yit in problem (12) is bounded for all x̂t´1 and ξt, which implies that the primal problem would

have to be infeasible for all x̂t´1 and ξt. This, however, contradicts our assumption that the stage-t

nominal cost to-go problem Qt is feasible for some ξt P Ξtpφt´1q. We thus conclude that strong

linear programming duality holds.

The statement of the proposition now follows from substituting the linear programming dual (12)

into the constraint (11), replacing the semi-infinite constraint in problem (6) with the revised

constraint (11) and finally embedding the updated problem (6) in the overall two-stage subproblem

Qtpx̂t´1;φt´1q that optimizes over the uncertain parameters ξt P Ξtpφt´1q.

Proof of Corollary 1. Using similar arguments as in the proof of Proposition 3, the semi-infinite

disjunction in problem (6) can be expressed as

θ ď qtpξtq
Jxit ` inf

!

rt
Jyit : Tt x̂t´1 `Wt x

i
t ` Vt y

i
t ě ht, y

i
t P Rn

2
t

)

`Qt`1px
i
t;φtq
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for all i “ 1, . . . , pt, see also constraint (11). The statement then follows from substituting this

constraint into the stage-t nominal cost to-go problem (6) and optimizing over the uncertainties

ξt P Ξtpφt´1q. Note that the validity of this reformulation does not depend on the feasibility of Qt

since we do not rely on strong duality in this proof.

Proof of Corollary 2. Similar arguments as in the proof of Theorem 1 show that when the

control variables yt are absent, then the nominal cost to-go Qtpx̂t´1; ξtq equals the optimal value

of the problem

maximize θ

subject to
”

θ ď qtpξtq
Jxt `Qt`1pxt;φtq _ Ttpξtq x̂t´1 `Wtpξtqxt ğ htpξtq

ı

@xt P XC
t

θ P R.
(13)

We claim that for fixed ξt P Ξtpφt´1q, the problems (8) and (13) share the same optimal value. The

statement then follows from the fact that Qtpx̂t´1;φt´1q “ max tQtpx̂t´1; ξtq : ξt P Ξtpφt´1qu.

We first show that for fixed ξt P Ξtpφt´1q, the optimal value of (13) is bounded from above

by the optimal value of (8). To this end, we show that any θ P R feasible in (13) is also feasible

in (8) if we complement it with the variable assignment pzt,λtq detailed next. If xit P XC
t , i “

1, . . . , pt, satisfies θ ď qtpξtq
Jxit ` Qt`1px

i
t;φtq, then the variable assignment zit “ 0 as well as

λi1t “ . . . “ λimtt “ 1 satisfies the relevant constraints in problem (8). Likewise, if xit P XC
t satisfies

“

Ttpξtq x̂t´1 `Wtpξtqx
i
t

‰

`
ă rhtpξtqs` for at least one ` “ 1, . . . ,mt, then the variable assignment

zit “ 1 as well as λilt “ 1rl‰`s, l “ 1, . . . ,mt, satisfies the relevant constraints in problem (8).

We now prove that for fixed ξt P Ξtpφt´1q, the optimal value of (8) is also bounded from above

by the optimal value of (13). To this end, we show that any solution pθ,zt,λtq feasible in (8) implies

that the solution θ satisfies the disjunctive constraint in (13) for each xit, i “ 1, . . . , pt. Indeed, if

zit “ 0, then θ ď qtpξtq
Jxit `Qt`1px

i
t;φtq. If, on the other hand, zit “ 1, then λi`t “ 0 for at least

one ` “ 1, . . . ,mt since zit `
řmt
`“1 λ

i`
t ď mt. We thus conclude that

“

Ttpξtq x̂t´1 `Wtpξtqx
i
t

‰

`
ă

rhtpξtqs`, that is, Ttpξtq x̂t´1 `Wtpξtqx
i
t ğ htpξtq in this case, as desired.

Proof of Corollary 3. If the recourse matrix Vt is invertible, then so is its transpose V Jt , and

we can therefore conduct the variable substitution λit Ð pV ´1
t qJrt in the stage-t worst-case cost

to-go problem (7). If pV ´1
t qJrt ğ 0, then λit ğ 0 and problem (7) is infeasible; otherwise, the
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variable substitution λit Ð pV ´1
t qJrt leads to the maximization problem in the statement of the

corollary.

Proof of Corollary 4. By eliminating the epigraphical variable θ and separating the maximiza-

tion over ξt P Ξtpφt´1q and λit P R
mt
` , we can equivalently express problem (7) as

maximize min
i“1,...,pt

max
λitPR

mt
`

!

qtpξtq
Jxit `

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
λit

`Qt`1px
i
t;φtq : V Jt λ

i
t “ rt

)

subject to ξt P Ξtpφt´1q.

(14)

Here, we exchanged the order of the maximization over λit and the minimization over i, which is

admissible since the problem decomposes in the decisions λit, irrespective of the structure of Vt.

For any fixed ξt P Ξtpφt´1q, problem (14) is unbounded if and only if for every i “ 1, . . . , pt, the

vector htpξtq´Ttpξtq x̂t´1´Wtpξtqx
i
t has a strictly positive inner product with one of the extreme

rays of the polyhedron tλ ě 0 : Vt
Jλ “ rtu, that is, if and only if the problem

maximize θ

subject to θ ď M ¨
ÿ

γtPΓt

δitpγtq @i “ 1, . . . , pt

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
γt ą M ¨ pδitpγtq ´ 1q @γt P Γt, @i “ 1, . . . , pt

θ P R, δit : Γt Ñ t0, 1u, i “ 1, . . . , pt

has an optimal value greater than or equal to M, where Γt is the set of extreme rays of the polyhedron

tλ ě 0 : Vt
Jλ “ rtu. Likewise, if (14) is bounded for a fixed ξt P Ξtpφt´1q, then it is optimized

by extreme points λit of the polyhedron tλ ě 0 : Vt
Jλt “ rtu, i “ 1, . . . , pt, since the inner

maximization in (14) is affine in λit. In that case, the optimal value of (14) with ξt fixed equals

maximize θ

subject to θ ď qtpξtq
Jxit `

“

htpξtq ´ Ttpξtq x̂t´1 ´Wtpξtqx
i
t

‰J
λt `Qt`1px

i
t;φtq `M ¨ zitpλtq

@λt P Λt, @i “ 1, . . . , pt
ÿ

λtPΛt

zitpλtq “ |Λt| ´ 1 @i “ 1, . . . , pt

zit : Λt Ñ t0, 1u,

where Λt is the set of extreme points of the polyhedron tλ ě 0 : Vt
Jλ “ rtu.
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We obtain the optimization problem in the statement of the corollary, finally, if we combine

the unbounded and bounded case from above into a single optimization problem, optimize over

ξt P Ξtpφt´1q and exploit the assumed decomposition Λt “
Śkt

j“1 Λjt and Γt “
Śkt

j“1 Γjt .

Proof of Observation 1. In view of the first statement, we observe that

Qtpx̂t´1;φt´1q “ max
ξtPΞtpφt´1q

»

—

—

—

–

minimize qtpξtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq

xt P XC
t , yt P Rn

2
t

fi

ffi

ffi

ffi

fl

ď max
ξtPΞtpφt´1q

»

—

—

—

–

minimize qtpξtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpξtq x̂t´1 `Wtpξtqxt ` Vt yt ě htpξtq

xt P XC
t , yt P Rn

2
t

fi

ffi

ffi

ffi

fl

“ Qtpxt´1;φt´1q,

where the first and last equality hold by definition, and the inequality holds because Qt`1pxt;φtq ě

Qt`1pxt;φtq for all xt P XC
t and φt P Φt.

As for the second statement, we show that

T
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq ď Q1 @ξ P Ξ.

To this end, we conduct a backward induction on t to show that for all ξ P Ξ, we have

T
ÿ

τ“t

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q ď Qtpx
‹
t´1pξ

t´1q;φt´1q

with our usual convention that x‹0pξ
0q ” 0. The backward induction follows the same reasoning

as in the proof of Proposition 2, with Qt and Qt taking the roles of Qt and Qt, respectively,

t “ 1, . . . , T . We omit the details for the sake of brevity.

Proof of Observation 2. The two-stage subproblem Qt admits the following representation as

a two-stage robust optimization problem:

max
φtPΦtpφt´1q,
jPt1,...,lu

max
ψtPΨtjpφtq

min
xtPXC

t

»

—

—

—

–

minimize qtpφt,ψtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqxt ` Vt yt ě htpφt,ψtq

yt P Rn
2
t

fi

ffi

ffi

ffi

fl
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Here, we have replaced the intra-stage uncertainties ψt with pairs pj,ψtjq P t1, . . . , lu ˆ Ψtjpφtq,

where j denotes the realized set of the polyhedral partition tΨtjpφtqu
l
j“1 and ψtj the intra-stage

realization within the j-th set, respectively, and we have split the maximization and minimization

problems into two separate subproblems each.

Under Approximation 1, the state variables xt no longer adapt to pj,ψtjq P t1, . . . , luˆΨtjpφtq,

but only to j P t1, . . . , lu. This amounts to exchanging the order of the inner maximization and

the outer minimization in the above optimization problem:

max
φtPΦtpφt´1q,
jPt1,...,lu

min
xtPXC

t

max
ψtPΨtjpφtq

»

—

—

—

–

minimize qtpφt,ψtq
Jxt ` rt

Jyt `Qt`1pxt;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqxt ` Vt yt ě htpφt,ψtq

yt P Rn
2
t

fi

ffi

ffi

ffi

fl

One readily recognizes that the expression in the statement of the observation computes the optimal

value of this optimization problem.

Proof of Observation 3. The two-stage subproblem Qt admits the following representation

as a two-stage robust optimization problem:

max
φtPΦtpφt´1q

max
ψtPΨtpφtq

min
ytPRn

2
t

»

—

—

—

–

minimize qtpφt,ψtq
Jxkt ` rt

Jyt `Qt`1px
k
t ;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqx
k
t ` Vt yt ě htpφt,ψtq

k P t1, . . . , ptu

fi

ffi

ffi

ffi

fl

Here, we have replaced the minimization over xt P XC
t with the equivalent minimization over xkt ,

k P t1, . . . , ptu, and we have split the maximization and minimization problems into two separate

subproblems each. We can further exchange the order of the inner maximization and the outer

minimization operators by optimizing over decisions rules as follows:

max
φtPΦtpφt´1q

min
yt:ΨtpφtqÑRn

2
t

max
ψtPΨtpφtq

»

—

—

—

–

minimize qtpφt,ψtq
Jxkt ` rt

Jytpψtq `Qt`1px
k
t ;φtq

subject to Ttpφt,ψtq x̂t´1 `Wtpφt,ψtqx
k
t ` Vt ytpψtq ě htpφt,ψtq

k P t1, . . . , ptu

fi

ffi

ffi

ffi

fl

Under Approximation 2, the control variables yt are no longer fully adaptive in ψt. Instead, l

affine decision rules ytj : Ψtpφtq Ñ Rn2
t are chosen before ψt is observed, and the decision of the

best decision rule is implemented upon observation of ψt. One readily verifies that this restriction

leads to the optimization problem in the statement of the observation.
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Proof of Proposition 4. Recall from the proof of Proposition 1 that P pXC,Ξq evaluates to

max
ξ1PΞ1

min
px1,y1qPF1pξ1q

”

q1pξ1q
Jx1 ` r1

Jy1 ` max
ξ2PΞ2pφ1q

min
px2,y2qPF2px1,ξ2q

”

q2pξ2q
Jx2 ` r2

Jy2

` ¨ ¨ ¨ `Qτ pxτ´1;φτ´1q

ı

¨ ¨ ¨

ı

,

and thus a necessary condition for P pX̂C,Ξq ă P pXC,Ξq is that the inclusion of x1τ in XC
t strictly

decreases the optimal value of at least one of the two-stage subproblems Qτ pxτ´1;φτ´1q, xτ´1 P

XC
τ´1 and φτ´1 P Φτ´1pφτ´2q. Recall also that for x̂τ´1 P XC

τ´1 and φτ´1 P Φτ´1pφτ´2q, we have

Qτ px̂τ´1;φτ´1q “

»

—

—

—

—

—

—

–

maximize

»

—

—

—

–

minimize qτ pξτ q
Jxτ ` rτ

Jyτ `Qτ`1pxτ ;φτ q

subject to Tτ pξτ q x̂τ´1 `Wτ pξτ qxτ ` Vτ yτ ě hτ pξτ q

xτ P XC
τ , yτ P Rn

2
τ

fi

ffi

ffi

ffi

fl

subject to ξτ “ pφτ ,ψτ q P Ξτ pφτ´1q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

A necessary condition for the optimal value of this problem to decrease when x1τ is included in the

set XC
τ is that there is φτ´1 P Φτ´1, ξτ P Ξτ pφτ´1q and y1τ P Rn2

τ such that px1τ ,y
1
τ q is feasible in

the inner minimization problem and improves its optimal value under the realization ξτ , which is

exactly what the necessary condition in the statement of the proposition demands.

On the other hand, the sufficient condition in the statement of the proposition guarantees that

P pXC,Ξq “ max
ξPΞ

#

T
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq

+

“ max

#

max
ξPΞ‹

#

τ´1
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq `

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q ` Qτ`1px
‹
τ pξ

τ q;φτ q

+

,

max
ξPΞzΞ‹

#

τ´1
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq `

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q ` Qτ`1px
‹
τ pξ

τ q;φτ q

++

ą max

#

max
ξPΞ‹

#

τ´1
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq `

qτ pξτ q
Jx1τ ` rτ

Jy1τ pξ
tq ` Qτ`1px

1
τ ;φτ q

+

,
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max
ξPΞzΞ‹

#

τ´1
ÿ

t“1

qtpξtq
Jx‹t pξ

tq ` rt
Jy‹t pξ

tq `

qτ pξτ q
Jx‹τ pξ

τ q ` rτ
Jy‹τ pξ

τ q ` Qτ`1px
‹
τ pξ

τ q;φτ q

++

ě P pX̂C,Ξq,

where Ξ‹ Ď Ξ is the set of worst-case uncertainties corresponding to the policy px‹,y‹q in P pXC,Ξq.

Here, the first two identities hold by definition. Note that second embedded maximization is strictly

smaller than the first embedded maximization by definition of the set Ξ‹. The first inequality is

due to the sufficient condition in the statement of the proposition, which guarantees that for any

ξ P Ξ‹, there is a feasible decision pair px1τ ,y
1
τ pξ

tqq such that

qτ pξτ q
Jx1τ ` rτ

Jy1τ pξ
τ q `Qτ`1px

1
τ ;φτ q ă qτ pξτ q

Jx‹τ pξ
τ q ` rτ

Jy‹τ pξ
τ q `Qτ`1px

‹
τ pξ

τ q;φτ q,

and thus the value of the first embedded maximization strictly decreases when we replace x‹τ pξ
τ q

with x1τ . The second inequality, finally, holds since the policy in the preceding line is feasible but

not necessarily optimal in P pX̂C,Ξq.
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