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Abstract

Multi-stage robust optimization, in which decisions are taken sequentially as new information

becomes available about the uncertain problem parameters, is a very versatile yet computation-

ally challenging paradigm for decision-making under uncertainty. In this paper, we propose a

new model and solution approach for multi-stage robust mixed-integer programs, which may

contain both continuous and discrete decisions in any time stage. Our model builds upon the

finite adaptability scheme developed for two-stage robust optimization problems, and it allows

us to decompose the multi-stage problem into a large number of much simpler two-stage prob-

lems. We discuss how these two-stage problems can be solved both exactly and approximately,

and we report numerical results for route planning and location-transportation problems.

Keywords: Robust optimization; multi-stage problems; mixed-integer optimization.

1 Introduction

Real-life decisions almost inevitably need to be taken under considerable uncertainty about key

problem parameters, such as future customer demands, raw material prices, exchange rates, equip-

ment outages and traffic conditions. Among the many paradigms that have been developed to safe-

guard decisions against uncertainty, such as simulation-based optimization, stochastic programming

and Markov decision processes, the relatively young field of robust optimization stands out due to
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its promise to scale to the large problem sizes commonly encountered in application areas. This is

achieved by replacing probabilistic descriptions of the uncertainty with a set-based characterization

under which the uncertain problem parameters can attain any value from a pre-specified uncer-

tainty set, and a decision is sought that performs best in view of the worst anticipated parameter

realizations (Ben-Tal et al., 2009; Bertsimas et al., 2011a; Bertsimas and den Hertog, 2022).

While robust optimization has initially been developed for single-stage problems where all deci-

sions are taken here-and-now, subsequent research has studied multi-stage formulations where the

uncertain problem parameters are revealed gradually over time, and future recourse decisions can

depend on the parameters that have already been observed. In contrast to single-stage robust opti-

mization problems, which can often be solved in polynomial time, multi-stage robust optimization

problems are NP-hard even if only two stages are considered, all decisions are continuous and the

objective function as well as all constraints are linear (Guslitser, 2002). Two-stage robust optimiza-

tion problems with continuous recourse can be solved exactly via Benders’ decomposition (Jiang

et al., 2010; Thiele et al., 2010; Bertsimas et al., 2013; Zhao et al., 2013), column-and-constraint

generation (Zeng and Zhao, 2013; Ayoub and Poss, 2016), Fourier-Motzkin elimination (Zhen et al.,

2018), copositive programming (Xu and Burer, 2018; Hanasusanto and Kuhn, 2018) or iteratively

lifting the uncertainty set (Georghiou et al., 2020). None of these techniques scale well beyond two

stages, however, and multi-stage robust optimization problems with more than two stages are typ-

ically conservatively approximated by restricting the recourse decisions to affine (Guslitser, 2002;

Kuhn et al., 2011), piecewise affine (Chen et al., 2008; Chen and Zhang, 2009; Goh and Sim, 2010;

Georghiou et al., 2015), polynomial or trigonometric (Bertsimas et al., 2011b) functions of the

observed parameters (the so-called decision rules). More recently, multi-stage robust optimization

problems have also been solved exactly by an adaptation of stochastic dual dynamic programming

(Georghiou et al., 2019). We refer to Ben-Tal et al. (2009), Delage and Iancu (2015), Yanıkoğlu

et al. (2019) and Bertsimas and den Hertog (2022) for surveys of the literature.

All of the aforementioned approaches have in common that they require the recourse decisions

to be continuous. The ubiquitous presence of integer recourse decisions in practical applications,

such as whether or not to place an order, build a facility or change the operation of a plant, has

sparked significant interest in the development of solution schemes for multi-stage robust mixed-

integer problems. However, the presence of integer recourse decisions prohibits a straightforward
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application of the aforementioned decision rules, and it precludes the use of strong convex duality

results upon which most of the tractable reformulations from the continuous robust optimization

literature rely. Two-stage robust optimization problems with mixed-integer recourse decisions have

been solved exactly by semi-infinite programming techniques (Zhao and Zeng, 2012) as well as

approximately by K-adaptability schemes (Bertsimas and Caramanis, 2010; Hanasusanto et al.,

2015; Subramanyam et al., 2020) that restrict the choice of the second-stage decisions to one out

of K candidate solutions which are optimized over in the first stage. We are not aware of any

successful attempts to generalize either of these techniques to multi-stage robust mixed-integer

problems with more than two time stages, however.

In this paper, we propose to approximate multi-stage robust mixed-integer programs by a

finite adaptability formulation. Our formulation selects in each time stage the best mixed-integer

state decision from a finite set of pre-selected candidate decisions. Continuous control decisions

that only affect the feasibility and optimality within a stage, on the other hand, can be selected

optimally from pre-defined polyhedral regions. We show that in contrast to the original multi-stage

robust mixed-integer program, the finite adaptability approximation admits an equivalent nested

formulation that can be solved via backward recursion. This allows us to reduce the monolithic

multi-stage problem to a number of much simpler two-stage problems, many of which can be solved

in parallel. We show how the arising two-stage problems can be solved exactly or approximately.

We also discuss various heuristic strategies to select sets of candidate state decisions for each stage,

and we show how to deterministically bound the suboptimality incurred by the current choice of

candidate state decision sets. The contributions of this paper can be summarized as follows:

(i) We conservatively approximate multi-stage robust mixed-integer programs via a finite adapt-

ability approximation that admits an equivalent decomposition into two-stage subproblems.

To our best knowledge, this is the first approach that decomposes multi-stage robust mixed-

integer programs into smaller subproblems that can be solved independently.

(ii) The subproblems of our decomposition scheme constitute two-stage robust optimization prob-

lems with a particularly benign structure. We show how these problems can be solved exactly

through a disjunctive programming reformulation, as well as approximately by extending re-

cent results from the literature on two-stage robust optimization.
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(iii) We demonstrate the promise of our framework in the context of two numerical experiments:

a route planning problem involving a graph with 100 nodes and 40 time stages as well as

a location-transportation problem involving up to 20 facilities, 40 customer sites and 10

time stages. Our source codes as well as all data sets are released open-source to facilitate

comparison with alternative approaches as well as reuse in applications.1

Our solution approach builds upon the multi-stage robust mixed-integer programming litera-

ture, which can be broadly categorized into two streams: (i) generalizations of the decision rule

schemes developed for continuous problems and (ii) uncertainty set partitioning schemes. In the

following, we summarize the most prominent approaches of both streams, and we subsequently

explain how our proposed method differs from the literature.

The first decision rule architecture for multi-stage robust mixed-integer programs has been pro-

posed by Bertsimas and Caramanis (2007). The authors model the recourse decisions as affine

functions of features formed from the observed parameters. To ensure integrality of the discrete

recourse decisions, the parameter realizations are rounded up to the closest integers, and the in-

tercepts and slopes of the corresponding affine functions are restricted to integer numbers. The

resulting semi-infinite mixed-integer linear program (MILP) is solved by constraint sampling, which

results in probabilistic feasibility and optimality guarantees. Bertsimas and Georghiou (2015), on

the other hand, model the continuous recourse decisions as piecewise affine functions of the observed

parameters, whereas the discrete decisions (which are assumed to be binary) attain the value 1 pre-

cisely when certain piecewise affine functions of the parameters are non-negative. The problem can

be formulated as a semi-infinite MILP that is solved by an iterative procedure which alternates be-

tween determining the optimal decision rules for a fixed set of parameter realizations and identifying

new worst-case parameter realizations for the updated decision rules. For computational reasons,

the algorithm is typically terminated prematurely, which implies that the solution may violate the

constraints for some scenarios, and the true worst-case costs may exceed the worst-case costs esti-

mated by the procedure. For the same problem class, Bertsimas and Georghiou (2018) model the

binary recourse decisions as affine functions of non-anticipative binary features formed from the

observed parameters. Binarity of the recourse decisions is achieved by requiring the intercepts and

slopes of these affine functions to be integer and by restricting the image of the decision rules to be

1Website: http://www.doc.ic.ac.uk/�wwiesema/multi-stage-ro.zip.
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binary. Using convex duality arguments, the authors obtain a finite-dimensional MILP whose size

grows exponentially in general but remains polynomial if the uncertainty set is a hyperrectangle

and each feature mapping involves a single parameter. The approach has recently been extended

to endogenous (decision-dependent) uncertainty by Feng et al. (2021).

The first uncertainty set partitioning scheme for multi-stage robust mixed-integer programs

has been proposed by Vayanos et al. (2011), who pre-partition the uncertainty set in each time

stage into hyperrectangles and select affine decision rules (for the continuous recourse decisions)

as well as constant decision rules (for the integer recourse decisions) over each hyperrectangle. By

invoking convex duality arguments, the authors solve the corresponding conservative approximation

exactly as a finite-dimensional MILP. The authors also discuss how their approach generalizes

to the presence of endogenous (decision-dependent) uncertainty. Subsequent extensions of the

uncertainty set partitioning paradigm have continued to rely on affine and constant decision rules

for the continuous and discrete recourse decisions, respectively, but they seek to refine the partitions

adaptively in view of the incumbent solutions. Postek and den Hertog (2016) alternate between

determining the best decision rules for a fixed partition of the uncertainty set and identifying subsets

of the partition where multiple parameter realizations result in binding constraints, thus indicating

the need to further subdivide these subsets to obtain better decisions. In the multi-stage case,

the stage-wise partitions form a tree structure that is similar to the scenario trees in stochastic

programming. This partitioning scheme is very effective when the adaptive problem at hand has a

small number of time stages, but it exhibits an exponential growth if many time stages are involved.

Romeijnders and Postek (2021) refine the splitting technique of Postek and den Hertog (2016) in

the presence of integer recourse decisions, where subsets of the partition may need to be split even

if they do not generate binding constraints. The authors show that critical parameter realizations

can be identified from the LP relaxations in the branch-and-bound tree that determines the decision

rules. Bertsimas and Dunning (2015) propose an alternative scheme where the uncertainty set in

each time stage is partitioned by a Voronoi diagram that is constructed from the binding scenarios,

thus eliminating the need to choose splits manually. Since their approach splits each subset of

the partition in every iteration, however, the size of the partition grows quickly in the number of

algorithm iterations even for two-stage problems.

In contrast to the aforementioned decision rule architectures and uncertainty set partitioning
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schemes, Goerigk and Hartisch (2021) model multi-stage robust pure integer programs with pure

integer uncertainties as quantified integer linear programs, which constitute two-person zero-sum

games between an existential player (the ‘minimizer’) and a universal player (the ‘maximizer’). The

resulting problems can be solved with an open-source quantified integer programming solver.

Multi-stage mixed integer problems have also been studied in the related literature on stochastic

programming, where the uncertain problem parameters are assumed to be governed by a known

(typically discrete) probability distribution. Most approaches in this domain relax some of the

constraints in the scenario tree representation of the problem, which leads to scenario, component

and nodal decomposition approaches; see Klein Haneveld and van der Vlerk (1999), Römisch and

Schultz (2001), Schultz (2003), Sen (2005) and Boland et al. (2016). Under the assumption of

stage-wise independent problem parameters, multi-stage mixed integer stochastic programs are

also amenable to extensions of the stochastic dual dynamic programming scheme developed for

convex problems (Pereira and Pinto, 1991; Shapiro, 2011). Since the cost to-go functions are no

longer convex, the affine cutting planes from stochastic dual dynamic programming are no longer

applicable, and they are replaced with step functions (Philpott et al., 2020), nonlinear Lipschitz cuts

(Ahmed et al., 2020) or generalized conjugacy cuts (Zhang and Sun, 2022). Alternatively, Zou et al.

(2019) show that the convex lower envelope of the cost to-go function remains piecewise affine and

convex if the problem has a complete recourse and only contains binary state variables; in this case,

cuts generated from Lagrangian relaxations can also be applied. The aforementioned stochastic

programming approaches crucially rely on the ability to enumerate all uncertainty realizations

explicitly or implicitly as a scenario tree, however, and it is unclear how they would extend to the

set-based descriptions of the uncertainty that are employed in robust optimization.

The method developed in this paper complements the existing solution schemes for multi-stage

robust mixed-integer programs. The uncertainty set partitioning approaches from the literature

are essentially free of hyperparameters and thus do not require any a priori knowledge about the

problem. On the flip side, they construct set-based analogues of scenario trees that exhibit an expo-

nential growth in the number of time stages as well as, typically, the number of uncertain problem

parameters per stage. They are thus ideally suited for smaller problems where the decision maker

has little a priori insight into the structure of well-performing solutions. Most of the decision rule

architectures, on the other hand, require the functional form of the recourse decisions to be selected
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upfront and thus rely on domain knowledge of the decision maker. In contrast to the uncertainty

set partitioning approaches, however, decision rule architectures tend to scale polynomially in the

number of decision variables and time stages, which renders them particularly promising for larger

problems. Similar to the decision rule architectures, our method requires a priori knowledge about

the problem to select suitable candidate decisions for each time stage. On the other hand, since our

approach decomposes the overall problem into smaller two-stage subproblems, our method scales

particularly well in the number of time stages. Moreover, and in contrast to all of the existing

approaches, our method is ideally suited for parallelization since many of the subproblems can be

solved in parallel. This is attractive in view of the recent growth in cloud computing services, which

enable users to rent vast amounts of parallel computing resources at an hourly billing.

The remainder of this paper proceeds as follows. Section 2 formulates the multi-stage robust

mixed-integer program of interest, it presents our finite adaptability approximation, and it elu-

cidates how this approximation admits a decomposition into two-stage subproblems. Sections 3

and 4 discuss exact and approximate solution approaches for the two-stage subproblems, respec-

tively. Section 5 presents a progressive bound to estimate the suboptimality of our approximation,

and it develops heuristic strategies to select candidate state decision sets for each stage. We con-

clude with numerical experiments in Section 6. All proofs are relegated to the appendix.

Notation. For a vector � � p�1; : : : ; �T q constructed from T subvectors �1; : : : ; �T , we denote by

�t the t-th subvector, whereas �t � p�1; : : : ; �tq stacks all subvectors up to and including �t. The

vectors e and ei refer to the all-ones and the i-th basis vector, respectively; their dimension will be

clear from the context. Finally, we denote by 1r�s the indicator function that attains the value 1 if

the logical expression � is satisfied and 0 otherwise.

2 Problem Formulation

We are interested in multi-stage robust mixed-integer optimization problems of the form

minimize max
�PΞ

T
‚

t�1

qtp�tq
Jxtp�

tq � rt
Jytp�

tq

subject to Ttp�tqxt�1p�
t�1q �Wtp�tqxtp�

tq � Vt ytp�
tq ¥ htp�tq @� P Ξ; @t � 1; : : : ; T

xtp�
tq P Xt and ytp�

tq P Rn2
t for all � P Ξ and t � 1; : : : ; T;

(1)
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where the uncertain problem parameters �t are revealed at the beginning of each time stage t,

t � 1; : : : ; T , and the decisions xt and yt are taken afterwards under the full knowledge of �t �

p�1; : : : ; �tq. A solution to problem (1) is immunized against all parameter realizations � � �T in

the uncertainty set Ξ. The cost vectors qt, the technology matrices Tt, the recourse matrices Wt as

well as the right-hand side vectors ht may all depend affinely on �t. We stipulate that T1p�0q � 0

and x0p�
0q � 0, that is, the first-stage constraints only involve the first-stage decisions x1 and

y1. We assume that �1 is deterministic, and hence x1 and y1 are here-and-now decisions. We can

interpret xt as state variables since they couple constraints of consecutive stages, whereas yt are

control variables that only affect the costs and feasibility within stage t. Each set Xt � Rn1
t can be

non-convex and comprise both continuous and discrete decision variables. In contrast, the linear

constraints of problem (1) fully characterize the set of admissible yt. To ease the exposition, we

assume that the set of admissible yt is bounded; this avoids tedious but otherwise straightforward

case distinctions where infinite cost savings in one stage need to be weighed against infeasibility

(which can be regarded as infinite costs) in another stage. We do not assume that problem (1)

has a relatively complete recourse, that is, there may be partial solutions px� ;y� q
t
��1 satisfying the

constraints up to time stage t that cannot be extended to complete solutions px� ;y� q
T
��1 satisfying

all constraints up to the final time stage T . The presence of potentially non-convex stage-wise

feasible regions Xt renders problem (1) strongly NP-hard even in the absence of uncertainty. Even

if the stage-wise feasible regions Xt are polyhedra, however, problem (1) remains strongly NP-hard

due to the presence of adaptive decisions, see Guslitser (2002, Theorem 3.5) and Subramanyam

et al. (2020, Proposition A.3).

The uncertainty set Ξ comprises discrete inter-stage uncertainties �t P Rk1
t that can be coupled

over consecutive time stages as well as continuous intra-stage uncertainties  t P Rk2
t that are stage-

wise rectangular, apart from their potential dependence on �t. More precisely, Ξ emerges from

stage-wise uncertainty sets Ξt as follows. The parameters of the first stage are deterministic and

are thus the only element of the singleton set Ξ1 � t�1 � p�1; 1qu. For t � 2; : : : ; T , the stage-wise

uncertainty sets satisfy

Ξtp�t�1q � t�t � p�t; tq : �t P Φtp�t�1q; Utp�tq t ⁄ btp�tqu ;

where Ut : Rk1
t Ñ Rlt�k2

t and bt : Rk1
t Ñ Rlt can be arbitrary functions of �t. To keep the notation

consistent, we stipulate that �0 � 0, Φ1p�0q � Φ1 � t�1u and Ξ1p�0q � Ξ1. We assume that the
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sets Φtp�t�1q are finite and their unions Φt �
�

�t�1PΦt�1
Φtp�t�1q, t � 2; : : : ; T , are ‘not too large’,

in a sense that we will discuss in more detail later on. We can then define the overall uncertainty

set Ξ from the stage-wise uncertainty sets Ξt as

Ξ �
 

� � pp�t; tq
looomooon

��t

qTt�1 : �1 P Ξ1; �t P Ξtp�t�1q @t � 2; : : : ; T
(

: (2)

Note that Ξ may fail to be stage-wise rectangular, that is, Ξ �
�T

t�1t�t : � P Ξu. To avoid technical

but otherwise straightforward case distinctions, we assume in the following that Ξ is bounded.

The uncertainty set (2) is quite versatile, and it complements the relatively scarce literature on

multi-stage uncertainty sets (Miao et al., 2007; Delage and Iancu, 2015; Lorca and Sun, 2015).

Example 1 (Uncertainty Set Ξ). In the multi-stage robust optimization literature, stage-wise rect-

angular uncertainty sets of the form Ξ � Ξ1 � : : : � ΞT , where Ξ1 � t�1u and each set Ξt is a

polyhedron, constitute a common choice of uncertainty sets. Stage-wise rectangular uncertainty

sets are readily recognized as a special case of (2) if we disregard the inter-stage uncertainties �t

and choose Ut and bt such that t t : U t ⁄ btu � Ξt. Despite their popularity, we argue that

stage-wise rectangular uncertainty sets can lead to overly conservative solutions as they allow for

the worst parameter values to be realized in every single time stage.

To alleviate the conservatism of stage-wise rectangular uncertainty sets, Bandi and Bertsimas

(2012) propose uncertainty sets inspired by central limit theorems, where it is assumed that the

cumulative absolute deviations of the uncertain parameters from some nominal values are bounded.

A univariate discrete version of their uncertainty set can be modeled as

Z �

#

� P RT : �1 � �0
1 ; �t P

 

�
t
; : : : ; �t

(

@t � 2; : : : T; Γ ⁄
T
‚

t�1

�t ⁄ Γ

+

;

where �t is the uncertain parameter in stage t, p�
t
; �tq are the stage-wise bounds and pΓ;Γq charac-

terize the maximum absolute deviations from some nominal values. Note that this uncertainty set

includes the well-known discrete budget uncertainty sets (Bertsimas and Sim, 2004) as a special

case. Central limit theorem uncertainty sets emerge if we disregard the intra-stage uncertainties  t

in (2) and choose �t � p�
1
t; �

Σ
t q with Φ1 � tp�

0
1 ; �

0
1 qu as well as

Φtp�t�1q �

#

�t � p�
1
t; �

Σ
t q : D� P Z such that

t�1
‚

��1

�� � �Σ
t�1; �t � �1t and �Σ

t � �Σ
t�1 � �

1
t

+

;
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Figure 1. Lattice regime (left) and Markovian regime chain (right) uncertainty sets. In

both cases, the regimes are represented as nodes. In the left figure, we have Φ3p�2q �

t�3; �
1
3u. In the right figure, the sets Φt`1p�tq corresponding to the nodes �t highlighted

by bold strokes are the nodes with dotted strokes.

t � 2; : : : ; T , where �1t and �Σ
t represent the innovation term at stage t as well as the summation

over all previously observed innovations, respectively. The uncertainty set (2) can readily model

multivariate versions of the discrete central limit theorem uncertainty sets as well, albeit at the

expense of combinatorially scaling inter-stage uncertainty sets Φt.

Chen et al. (2019), Long et al. (2023) and Cui et al. (2023) propose scenario-based uncertainty

sets for distributionally robust optimization problems, where a random parameter vector can be gov-

erned by different moment ambiguity sets with associated (and possibly partially unknown) scenario

probabilities. A robust multi-stage version of this uncertainty set,

Z �

$

’

’

’

&

’

’

’

%

� � p�1; : : : ; �T q : �1 � �
0
1 ;

�

�

�

�

�

F 1
t �t ⁄ g

1
t

_
...

_ F st
t �t ⁄ g

st
t

�

�

�

�

�

@t � 2; : : : ; T

,

/

/

/

.

/

/

/

-

;

arises as a special case of (2) if the scalar inter-stage uncertainty can attain the values �t P

t1; : : : ; stu and we set Utp�tq � F
�t
t as well as btp�tq � g

�t
t in every stage t � 2; : : : ; T . We can

interpret this uncertainty set as a union of scenario polyhedra in every time stage.

Finally, uncertainty sets of the form (2) also allow us to model regime uncertainty sets that

to our best knowledge have not been previously studied in the robust optimization literature. In a

lattice regime uncertainty set, the discrete regime �t in stage t is any element of Φtp�t�1q, where

Φtp�t�1q describes the children of the previous regime node �t�1 in a lattice structure ( cf. Figure 1,

left). Likewise, in a Markovian regime chain uncertainty set, the regime �t is any of the neighbours

Φtp�t�1q of the previous regime node �t�1 in a graph ( cf. Figure 1, right). In both cases, the discrete
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regimes can be complemented by continuous intra-regime uncertainties.

Instead of solving the multi-stage robust mixed-integer problem (1) directly, we propose to

investigate the following finite adaptability approximation,

minimize max
�PΞ

T
‚

t�1

qtp�tq
Jxtp�

tq � rt
Jytp�

tq

subject to Ttp�tqxt�1p�
t�1q �Wtp�tqxtp�

tq � Vt ytp�
tq ¥ htp�tq @� P Ξ; @t � 1; : : : ; T

xtp�
tq P X C

t and ytp�
tq P Rn2

t for all � P Ξ and t � 1; : : : ; T;

(3)

where X C
t � tx

1
t ; : : : ;x

pt
t u � Xt is a finite set of pre-selected candidate decisions for stage t. The

finite adaptability approximation (3) differs from the multi-stage robust mixed-integer problem (1)

in that it selects optimal state decisions xt from the restricted finite sets X C
t as opposed to the

original sets Xt. This conservative approximation turns out to be crucial for the development of

our nested problem formulation and its associated solution method below. Note that in contrast

to the K-adaptability schemes for two-stage robust problems (Bertsimas and Caramanis, 2010;

Hanasusanto et al., 2015; Subramanyam et al., 2020), the candidate decision sets X C
t in problem (3)

are fixed. Similar to the choice of decision rule architectures discussed in the introduction, the

choice of suitable candidate decision sets X C
t requires some a priori insight into the structure of

well-performing solutions to the multi-stage robust mixed-integer problem (1). We will discuss in

Section 5 different heuristic approaches for choosing candidate decision sets X C
t if such a priori

knowledge is not available. We emphasize that problem (3) selects the best decisions from each set

X C
t adaptively based on the realization of �t, and that the problem therefore remains challenging

as it generalizes a known NP-hard problem (Subramanyam et al., 2020, Proposition B.3).

We now discuss how the finite adaptability approximation (3) gives rise to an equivalent nested

problem formulation that can be solved by a backward recursion. Our result relies on the following

interchangeability principle established by Shapiro (2017, Proposition 2.1).

Lemma 1. For a set Ω � Rm, a set-valued mapping F : Ω Ñ Rn, the set of functions F � trx :

Ω Ñ Rns : xp!q P F p!q @! P Ωu and a cost function c : Rn � Rm Ñ R, we have

min
xPF

max
!PΩ

cpxp!q;!q � max
!PΩ

min
xPF p!q

cpx;!q (4)

as long as c attains its minimum over x P F p!q for all ! P Ω.
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Note that Lemma 1 does not require any convexity assumptions. Intuitively, any policy x P F

in the min-max problem on the left-hand side of (4) induces a feasible (but possibly suboptimal)

response xp!q in the max-min problem on the right-hand side of (4), and conversely a collection of

responses txp!qu!PΩ to the max-min problem in (4) gives rise to a feasible (but possibly suboptimal)

policy x P F in the min-max problem in (4). Lemma 1 extends to the case where F p!q � H for

some ! P Ω if we stipulate that both sides of the identity (4) evaluate to �8 in that case.

Our nested formulation is defined by the stage-t worst-case cost to-go problem

Qtpx̂t�1;�t�1q � max
�tPΞtp�t�1q

Qtpx̂t�1; �tq; (5a)

t � 1; : : : ; T , where the stage-t nominal cost to-go problem satisfies

Qtpx̂t�1; �tq �

�

�

�

�

�

minimize qtp�tq
Jxt � rt

Jyt �Qt�1pxt;�tq

subject to Ttp�tq x̂t�1 �Wtp�tqxt � Vt yt ¥ htp�tq

xt P X C
t ; yt P Rn2

t

�

�

�

�

�

: (5b)

In problem (5b), we stipulate that Qtpx̂t�1; �tq � �8 if the minimization is infeasible, and we set

the boundary condition QT�1pxT ;�T q � 0 for all xT P X C
T and �T P ΦT . For t � 1, we also set

x̂0 � 0 and abbreviate Q1px̂0;�0q by Q1.

Proposition 1. The finite adaptability approximation (3) and the stage-1 worst-case cost to-go

problem Q1 share the same optimal value. In particular, (3) is infeasible if and only if Q1 � 8.

The equivalence of multi-stage problems and their nested formulations is well understood in the

stochastic programming community when the worst-case approach is replaced with the expected

value. In that case, the pendant of Lemma 1 has been established by Rockafellar and Wets (1998,

Theorem 14.60), and the equivalence of both formulations is typically taken as given. Shapiro (2017)

studies the more general case where the expected value is replaced with a generic risk measure.

While this result includes our worst-case approach, the nested formulation of Shapiro (2017) does

not account for any structure in the support of the random vectors, and his stage-wise cost to-go

problems therefore depend on the entire parameter sequence �T . In contrast, the stage-t worst-

case cost to-go problems in our derivations only depend on the realization �t�1 of the preceding

inter-stage uncertainty. This parsimonious dependence of the worst-case cost to-go problems on

the past uncertainty realizations lies at the heart of our approach; it is facilitated by the design of

our generalized rectangularity of Ξ, and it is key for the tractability of our approach.
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In the following, we first discuss how the stage-t worst-case cost to-go problems Qtpx̂t�1;�t�1q

can be solved by a backward recursion (Algorithm 1). Here, the key step repeatedly solves two-

stage subproblems Qt, given the (previously computed) values of the worst-case cost to-go problems

Qt�1. Sections 3 and 4 are devoted to the exact and approximate solution of these subproblems.

Algorithm 1: Evaluation of the stage-t worst-case cost to-go problems Qtpx̂t�1;�t�1q.

1. Initialization. Set t � T as well as QT�1pxT ;�T q � 0 for all xT P X C
T and �T P ΦT .

2. Iteration. Compute Qtpx̂t�1;�t�1q for all x̂t�1 P X C
t�1 and �t�1 P Φt�1.

3. Termination. If t ¡ 1, update t— t� 1 and repeat Step 2. Otherwise, terminate.

Note that the subproblems Qt occurring in the same time stage t are independent of another and

can thus be solved in parallel, leading to a theoretical maximum speedup of p1{T q�
°T
t�1 |X C

t |�|Φt�1|

over the sequential solution of all subproblems. Once Algorithm 1 has been executed, the optimal

first-stage decisions px�1;y
�
1q can be obtained by solving a single instance of the nominal problem

Q1. In principle, Algorithm 1 is sufficient for solving the finite adaptability approximation (3) in a

receding-horizon fashion, where upon observing �t we construct and solve a new pT � t� 1q-stage

problem. However, since Algorithm 1 solves all worst-case cost to-go problems Qt, they do not

need to be recomputed at later time stages. The following algorithm exploits this property.

Algorithm 2: Optimal policy for the finite adaptability approximation (3).

1. Initialization. Solve all stage-t worst-case cost to-go problems via Algorithm 1.

2. First Stage. Implement px�1;y
�
1q as determined by the problem Q1. Set t � 2.

3. Iteration. Upon observation of the uncertain parameters �t, solve the stage-t nominal cost

to-go problem Qtpx
�
t�1; �tq and implement the corresponding stage-t decisions px�t ;y

�
t q.

4. Termination. If t   T , update t— t� 1 and repeat Step 3. Otherwise, terminate.

We next show that Algorithm 2 implicitly defines an optimal policy tpx�t ;y
�
t qu

T
t�1 for the finite

adaptability approximation (3) in response to a stage-wise revealed scenario � P Ξ.

Proposition 2. Assume that problem (3) is feasible. Then the policy tpx�t ;y
�
t qu

T
t�1 that is implicitly

defined by Algorithm 2 in response to the parameter realizations � P Ξ is optimal in (3).
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Remark 1 (Alternative Formulations). While in theory a nested formulation akin to (5) could be

formulated for a finite adaptability approximation that selects the candidate decision sets X C
t as part

of the optimization, or even more generally for the multi-stage robust mixed-integer problem (1), the

corresponding backward recursion would have to compute the worst-case cost to-go for all possible

decisions x̂t�1 P Xt�1, as opposed to the candidate decisions x̂t�1 P X C
t�1 only, in order to quantify

the future worst-case cost to-go in each two-stage subproblem. This unfavorable scaling would limit

the applicability of the resulting solution scheme to very small problem instances.

Remark 2 (Robust Markov Decision Processes). When the continuous decisions yt are absent, the

multi-stage robust mixed-integer program (1) is reminiscent of a robust Markov decision process,

that is, a Markov decision process where the transition probabilities are only known to reside in

some uncertainty set (Iyengar, 2005; Nilim and Ghaoui, 2005; Wiesemann et al., 2013). A crucial

difference between the two modeling paradigms is, however, that the discrete decisions xt in (1)

can be selected after the uncertain parameters �t have been observed, whereas the same decisions

would have to be taken before �t is known in a robust Markov decision process. This seemingly

minor difference is crucial as one can readily construct instances of (1) that are feasible under

the multi-stage robust optimization paradigm but infeasible if modelled as a robust Markov decision

process. Likewise, the applications in our numerical experiments would typically reduce to much

simpler deterministic problems if they were modelled as robust Markov decision processes.

3 Exact Solution of the Two-Stage Subproblems Qt

The key step in Algorithm 1 for our finite adaptibility approximation (3) is the solution of the

two-stage subproblems Qt. The presence of discrete wait-and-see decisions xt in these problems

renders most of the existing exact solution approaches for two-stage robust optimization prob-

lems (cf. Section 1) inapplicable. Indeed, Fourier-Motzkin elimination and iterative uncertainty

set lifting schemes fundamentally require all second-stage decisions to be continuous, while Ben-

ders’ decomposition and column-and-constraint generation depend on strong convex duality of the

second stage to identify worst-case uncertainty realizations for fixed first-stage decisions. To our

best knowledge, the only exact solution approach for two-stage robust optimization problems with

mixed-integer recourse is the nested column-and-constraint generation scheme of Zhao and Zeng

(2012). Applied to our setting, however, this method would require the two-stage subproblems Qt
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to be solved by extreme point uncertainty realizations �t P ext Ξtp�t�1q, which is not guaranteed

to be the case in our context. Indeed, one can readily construct instances of Qt without control

variables and either objective uncertainty or right-hand side uncertainty whose worst-case uncer-

tainty realizations are not extreme points, and the two-stage subproblems in our two applications

of Section 6 are not optimized by extreme point worst-case parameter realizations in general. Our

problem Qt is reminiscent of the K-adaptability problems studied by Bertsimas and Caramanis

(2010), Hanasusanto et al. (2015) and Subramanyam et al. (2020). In contrast to those problems,

however, the candidate decision sets X C
t in Qt have finite cardinality. This allows us to design exact

solution schemes despite the presence of continuous second-stage decisions yt.

To solve the two-stage subproblems Qt exactly, we first derive a non-convex strong duality result

for the stage-t nominal cost to-go problem Qt that is embedded in the two-stage subproblem Qt

(Theorem 1), which subsequently gives rise to an equivalent bilinear programming formulation of

Qt (Proposition 3). We then identify and discuss four special cases of Proposition 3 that lead to

LP or MILP reformulations of polynomial size: (i) the constraints of Qt do not depend on the

uncertainty realization �t; (ii) the control variables yt are absent in Qt; (iii) the recourse matrix

Vt in Qt is invertible; and (iv) the recourse matrix Vt in Qt has a block-diagonal structure.

The benign structure of the stage-t nominal cost to-go problem Qt allows us to derive a non-

convex strong dual that forms the basis of our solution approaches for the two-stage subproblems Qt.

Theorem 1 (Strong Duality). Fix x̂t�1 P X C
t�1 and �t. The stage-t nominal cost to-go problem

Qtpx̂t�1; �tq has the same optimal value as the semi-infinite disjunctive program

maximize �

subject to
�

� ⁄ qtp�tq
Jxt � rt

Jyt �Qt�1pxt;�tq _

Ttp�tq x̂t�1 �Wtp�tqxt � Vt yt § htp�tq
�

@xt P X C
t ; @yt P Rn2

t

� P R:

(6)

Problem (6) can be interpreted as follows. For every second-stage decision pxt;ytq P X C
t �Rn2

t ,

� either needs to account for the objective value qtp�tq
Jxt � rt

Jyt � Qt�1pxt;�tq of pxt;ytq, or

pxt;ytq has to violate at least one of the constraints Ttp�tq x̂t�1 �Wtp�tqxt � Vt yt ¥ htp�tq.

We next leverage the semi-infinite non-convex dual (6) to derive an equivalent finite-dimensional

single-stage reformulation of the two-stage subproblem Qt as a bilinear program. To this end, we
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from now on denote by mt the number of second-stage constraints Ttp�tqxt�1�Wtp�tqxt�Vt yt ¥

htp�tq in stage t.

Proposition 3. Fix x̂t�1 P X C
t�1 and �t�1 P Φt�1. If the stage-t nominal cost to-go problem

Qtpx̂t�1; �tq is feasible for some �t P Ξtp�t�1q, then the two-stage subproblem Qtpx̂t�1;�t�1q has

the equivalent reformulation

maximize �

subject to � ⁄ qtp�tq
Jxit �

�

htp�tq � Ttp�tq x̂t�1 �Wtp�tqx
i
t

�J
�it

�Qt�1px
i
t;�tq @i � 1; : : : ; pt

V Jt �
i
t � rt @i � 1; : : : ; pt

� P R; �t P Ξtp�t�1q; �
i
t P Rmt

� ; i � 1; : : : ; pt:

(7)

Problem (7) constitutes a mixed-integer bilinear program and is as such difficult to solve in

general. We next study subclasses of problem (7) that admit practically efficient solution schemes.

Corollary 1 (Deterministic Constraints). Fix x̂t�1 P X C
t�1 and �t�1 P Φt�1. If the constraints

of the stage-t nominal cost to-go problem Qt do not depend on �t, then the two-stage subproblem

Qtpx̂t�1;�t�1q has the equivalent MILP reformulation

maximize �

subject to � ⁄ qtp�tq
Jxit � r

i
t �Qt�1px

i
t;�tq @i � 1; : : : pt : rit � �8

� P R; �t P Ξtp�t�1q

if rit � �8 for all i � 1; : : : ; pt, and Qtpx̂t�1;�t�1q � �8 otherwise, where rit � inftrt
Jyit :

Tt x̂t�1 �Wt x
i
t � Vt y

i
t ¥ ht; y

i
t P Rn2

t u P RY t�8;�8u.

Several combinatorial optimization problems admit formulations where the constraints are not

affected by uncertainty and that thus fall under the umbrella of Corollary 1. Examples include the

shortest path, minimum cut, minimum spanning tree and matching problem with uncertain arc

weights, the knapsack problem with uncertain utilities as well as the capacitated vehicle routing

problem with uncertain travel costs.

Corollary 2 (State Variables Only). Fix x̂t�1 P X C
t�1 and �t�1 P Φt�1. If the control vari-

ables yt are absent in the stage-t nominal cost to-go problem Qt, then the two-stage subproblem
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Qtpx̂t�1;�t�1q has the equivalent MILP reformulation

maximize �

subject to � ⁄ qtp�tq
Jxit �Qt�1px

i
t;�tq �M � zit @i � 1; : : : pt

�

Ttp�tq x̂t�1 �Wtp�tqx
i
t

�

‘
  rhtp�tqs‘ �M � �i‘t @i � 1; : : : pt; @‘ � 1; : : : ;mt

zit �
mt
‚

‘�1

�i‘t ⁄ mt @i � 1; : : : pt

� P R; �t P Ξtp�t�1q; zt P t0; 1u
pt ; �t P t0; 1u

pt�mt ;

(8)

where M is a sufficiently large positive number.

For practical purposes, the strict inequalities in problem (8) can be relaxed to weak inequalities

if we subtract sufficiently small positive quantities from their right-hand sides. An alternative

derivation along the lines of Hanasusanto et al. (2015) is possible, but it would result in a formulation

whose number of constraints scales exponentially in mt.

Corollary 2 is applicable, for example, in purely discrete instances of the multi-stage robust

mixed-integer problem (1) where |Xt| is not too large. This is the case for moderate-sized queueing

network problems, where the state variables record the numbers of customers at each node, as well

as for display ad allocation problems, where campaigns are matched to ad impressions so as to

maximize the publisher’s revenues subject to uncertain click-throughs (Chen et al., 2011).

Corollary 3 (Invertible Recourse Matrix). Fix x̂t�1 P X C
t�1 and �t�1 P Φt�1. If the recourse

matrix Vt in the stage-t nominal cost to-go problem Qt is invertible, then the two-stage subproblem

Qtpx̂t�1;�t�1q is infeasible if pV �1
t qJrt § 0; otherwise, it has the equivalent MILP reformulation

maximize �

subject to � ⁄ qtp�tq
Jxit �

�

htp�tq � Ttp�tq x̂t�1 �Wtp�tqx
i
t

�J
pV �1

t qJrt

�Qt�1px
i
t;�tq @i � 1; : : : ; pt

� P R; �t P Ξtp�t�1q:

Note that the stage-t worst-case cost to-go problem Qtpx̂t�1;�t�1q is infeasible precisely when

for every �t P Ξtp�t�1q the stage-t nominal cost to-go problem Qtpx̂t�1; �tq is unbounded.

Corollary 4 (Decomposability). Fix x̂t�1 P X C
t�1 and �t�1 P Φt�1. If the stage-t nominal cost

to-go problem Qtpx̂t�1; �tq is feasible for some �t P Ξtp�t�1q and the recourse matrix Vt in Qt has
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a block-diagonal structure Vt � diag pV 1
t ; : : : ;V

kt
t q, then the two-stage subproblem Qtpx̂t�1;�t�1q

has the equivalent MILP reformulation

maximize �

subject to � ⁄ qtp�tq
Jxit �

kt
‚

j�1

� ijt �Qt�1px
i
t;�tq @i � 1; : : : ; pt

� ijt ⁄
�

htp�tq � Ttp�tq x̂t�1 �Wtp�tqx
i
t

�J

j
�jt �M � zijt p�

j
t q �M �

‚


jt PΓ
j
t

�ijt p

j
t q

@�jt P Λjt ; @i � 1; : : : ; pt; @j � 1; : : : ; kt
‚

�j
tPΛ

j
t

zijt p�
j
t q � |Λ

j
t | � 1 @i � 1; : : : ; pt; @j � 1; : : : ; kt

�

htp�tq � Ttp�tq x̂t�1 �Wtp�tqx
i
t

�J

j

jt ¡ M � p�ijt p


j
t q � 1q

@
jt P Γjt ; @i � 1; : : : ; pt; @j � 1; : : : ; kt

� P R; �t P Ξtp�t�1q; � ijt P R; zijt : Λjt Ñ t0; 1u; �ijt : Γjt Ñ t0; 1u;

i � 1; : : : ; pt and j � 1; : : : ; kt;

where rt � pr1
t ; : : : ; r

kt
t q such that V j

t and rjt have matching numbers of rows, j � 1; : : : ; kt, Λjt

and Γjt contain the extreme points and extreme rays of the polyhedron t� ¥ 0 : rV j
t s
J� � rjt u,

respectively, and r�sj refers to the subsets of rows matching those of V j
t and rjt .

The equivalence stated in Corollary 4 extends to unbounded instances of the two-stage sub-

problem Qt in the sense that Qtpx̂t�1;�t�1q is unbounded if and only if the MILP in Corollary 4

attains an optimal value greater than or equal to M. Corollary 4 applies to multi-stage robust

mixed-integer problems that, as far as the continuous decisions yt are concerned, decompose into

separate components. Note that the discrete decisions xt as well as the uncertain parameters �t

may still connect the different components. The study of optimization problems with decompos-

able structure goes back to Bellman (1957), and much work has since been dedicated to developing

efficient solution techniques (most notably the Dantzig-Wolfe and Benders’ decomposition) and

applying them, among others, to problems in supply chain management, production scheduling as

well as the design and operation of energy systems (Martin, 1999). In supply chain management

problems, for example, the flows of different products are often restricted by constraints that exhibit

a block-diagonal structure. Likewise, in production scheduling problems, the production activities

typically decompose across different facilities.
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Remark 3. If the set Φtp�t�1q of inter-stage uncertainties �t is not too large, then we can alter-

natively solve the MILPs in Corollaries 1–4 by enumerating all possible values of �t P Φp�t�1q,

treating �t as a constant in the MILPs and solving the resulting problems in parallel.

Remark 4. Even if a two-stage subproblem Qt is not amenable to Corollaries 3 or 4 per se, it may

admit an equivalent reformulation that is once a candidate decision x̂t�1 P X C
t�1 has been fixed and

redundant constraints in the stage-t nominal cost to-go problem Qt have been removed.

4 Conservative Approximation of the Two-Stage Subproblems Qt

In cases where the two-stage subproblems Qt cannot be solved exactly, we propose to use conserva-

tive approximations Qt that restrict the adaptivity of the state or control variables. The following

observation justifies the use of stage-wise conservative approximations Qt in a multi-stage setting.

Observation 1 (Conservative Approximations: Propagation of Upper Bounds).

(i) If Qt�1 in each nominal stage-t cost to-go problem Qt is replaced with an upper bound

Qt�1pxt;�tq ¥ Qt�1pxt;�tq, t � 1; : : : ; T , xt P X C
t and �t P Φt, then the resulting approxi-

mations Qt of Qt are conservative: Qtpxt�1;�t�1q ¥ Qtpxt�1;�t�1q for all t, xt�1 and �t�1.

(ii) If Q1   8, then the policy tpx�t ;y
�
t qu

T
t�1 that is implicitly defined by Algorithm 2 using the

upper bounds Qt, t � 1; : : : ; T , is feasible in (3) and attains worst-case costs of at most Q1.

Observation 1 shows that Qt�1px
�
t ;�tq remains an upper bound on the worst-case cost to-go

when decision x�t P X C
t is taken by Algorithm 2, even when the worst-case cost to-go functions in

later time stages are also replaced by conservative approximations.

In the remainder of this section, we discuss two different conservative bounds based on ap-

proximations of the state and control variables. Since both approximations distinguish between

the inter-stage uncertainties �t and the intra-stage uncertainties  t in time stage t, we define

Ψtp�tq � t t : p�t; tq P Ξtp�t�1qu as the set of conditional intra-stage uncertainty realizations.

Approximation 1 (State Approximation). The state variables xt in each two-stage subproblem

Qtpx̂t�1;�tq no longer adapt to the exact values of the intra-stage uncertainties  t, but only to

their set memberships t1r t P Ψtjp�tqsu
l
j�1 across a pre-selected polyhedral partition tΨtjp�tqu

l
j�1

of the conditional intra-stage uncertainty realizations Ψtp�tq.
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Note that under Approximation 1, the state variables xt remain fully adaptive in the inter-stage

uncertainties �t. Approximation 1 then adopts a piecewise constant decision rule approximation

in  t for the state variables xt. The number l of subsets in the partition tΨtjp�tqu
l
j�1 of Ψtp�tq

can vary with the time stage t as well as the values of �t�1, �t and x̂t�1; for ease of exposition,

however, we notationally suppress this potential dependence.

Observation 2. Denote by ��p�t; j;xtq, �t P Φtp�t�1q, j � 1; : : : ; l and xt P X C
t , the optimal

value of the following worst-case optimization problem with continuous recourse.

maximize

�

�

�

�

�

minimize qtp�t; tq
Jxt � rt

Jyt �Qt�1pxt;�tq

subject to Ttp�t; tq x̂t�1 �Wtp�t; tqxt � Vt yt ¥ htp�t; tq

yt P Rn2
t

�

�

�

�

�

subject to  t P Ψtjp�tq

Under Approximation 1, the optimal value of the two-stage subproblem Qt coincides with

max
!

min
 

��p�t; j;xtq : xt P X C
t

(

: �t P Φtp�t�1q and j � 1; : : : ; l
)

:

The |Φtp�t�1q|�l �pt worst-case optimization problems of Observation 2 can be solved in parallel.

Together with our earlier observation of the parallel solution of the subproblems in each time stage,

there are thus two levels of parallelization: We can solve |Φt�1|�|Φt|�l�pt�1�pt worst-case optimization

problems in parallel in each time stage t. In contrast to the two-stage subproblems Qt, the worst-

case optimization problems in Observation 2 contain no first-stage decisions, discrete uncertainties

or discrete recourse decisions, and they can be solved using column-and-constraint generation (Zeng

and Zhao, 2013) or iterative liftings of the uncertainty set (Georghiou et al., 2020).

Instead of approximating the state variables, we can also approximate the control variables.

Approximation 2 (Control Approximation). The control variables yt in each two-stage subprob-

lem Qtpx̂t�1;�tq no longer adapt to the exact values of the intra-stage uncertainties  t; instead, they

are optimally chosen from an optimally selected set of affine decision rules tytj : Ψtp�tq Ñ Rn2
t ulj�1.

Under Approximation 2, the control variables yt remain fully adaptive in the inter-stage uncer-

tainties �t. Instead of selecting yt optimally in response to the observation of  t, Approximation 2

selects the l best affine decision rules tytj : Ψtp�tq Ñ Rn2
t ulj�1 here-and-now (that is, upon observa-

tion of �t but before observing  t) and subsequently computes yt from the best of these l decision
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rules wait-and-see (that is, upon observation of  t). Similar to the number l in Approximation 1,

the number l of decision rules in Approximation 2 can vary with the values of t, �t�1, �t and x̂t�1.

Observation 3. Denote by ��p�tq, �t P Φtp�t�1q, the optimal value of the following ppt; lq-

adaptable two-stage robust MILP that optimizes over affine decision rules tytju
l
j�1 here-and-now

and over combinations pk; jq P t1; : : : ; ptu � t1; : : : ; lu wait-and-see.

minimize

�

�

�

�

�

max
 tPΨtp�tq

�

�

�

�

�

minimize qtp�t; tq
Jxkt � rt

Jytjp tq �Qt�1px
k
t ;�tq

subject to Ttp�t; tq x̂t�1 �Wtp�t; tqx
k
t � Vt ytjp tq ¥ htp�t; tq

pk; jq P t1; : : : ; ptu � t1; : : : ; lu

�

�

�

�

�

�

�

�

�




subject to ytj : Ξtp�t�1q Ñ Rn2
t ; j � 1; : : : ; l:

Under Approximation 2, the optimal value of the two-stage subproblem Qt coincides with

maxt��p�tq : �t P Φtp�t�1qu:

The |Φtp�t�1q| ppt; lq-adaptable two-stage robust MILPs of Observation 3 can be solved in par-

allel. Together with our earlier observation of the parallel solution of the subproblems in each time

stage, we can thus solve |Φt�1|�|Φt|�pt�1 ppt; lq-adaptable two-stage robust optimization problems in

parallel in each time stage t. In contrast to the two-stage subproblems Qt, the ppt; lq-adaptable two-

stage robust MILPs in Observation 3 contain neither discrete uncertainties nor continuous recourse

decisions, and they are thus amenable to standard solution schemes for K-adaptable two-stage

robust optimization problems (Hanasusanto et al., 2015; Subramanyam et al., 2020).

5 Lower Bounds and Selection of Candidate State Decision Sets

So far we assumed that the sets X C
t of candidate state decisions in the finite adaptability approx-

imation (3) are pre-specified and fixed. This is reasonable if domain expertise can be leveraged

to design promising candidate state decisions, but it may place an undue burden on the decision

maker when such information is not available. To address such situations, we develop in this section

a greedy heuristic that iteratively expands the sets X C
t based on optimal solutions to lower bounds

of the multi-stage robust mixed-integer optimization problem (1). The lower bounds are useful in

their own right to estimate the suboptimality of a solution to (3), regardless of whether the sets

X C
t are being expanded or kept fixed.
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Our expansion heuristic is motivated by a necessary and a sufficient condition for the improve-

ment of the optimal value of the finite adaptability approximation (3). To ease the exposition, we

denote by X C � tX C
1 ; : : : ;X C

T u the collection of all candidate state decision sets, and for a fixed

choice of X C and Ξ we let P pX C;Ξq denote both the formulation (3) and its optimal value.

Proposition 4 (Necessary and Sufficient Conditions for Improvement). Consider two collections

of candidate state decision sets X C � tX C
t u

T
t�1 and X̂ C � tX̂ C

t u
T
t�1 with X̂ C

� � X C
� Ytx

1
�u for some

� � 1; : : : ; T and x1� P Xt, and X̂ C
t � X C

t for all t � � . A necessary condition for P pX̂ C;Ξq  

P pX C;Ξq is the existence of ���1 P Φ��1, x̂��1 P X C
��1, �� P Ξ� p���1q and y1� P Rn2

� such that

(1) T� p�� q x̂��1 �W� p�� qx
1
� � V� y

1
� ¥ h� p�� q, and

(2) q� p�� q
Jx1� � r�

Jy1� �Q��1px
1
� ;�� q   Q� px̂��1; �� q.

A sufficient condition for P pX̂ C;Ξq   P pX C;Ξq is the existence of an optimal solution px�;y�qp�q

to P pX C;Ξq such that for all corresponding worst-case uncertainties �� P Ξ, conditions (1) and (2)

hold for x̂��1 � x
�
��1pr�

�s��1q and �� � �
�
� .

In Proposition 4, �� P Ξ is a worst-case uncertainty if
°T
t�1 qtp�

�
t q
Jx�t pr�

�stq � rt
Jy�t pr�

�stq �

P pX C;Ξq. The conditions (1) and (2) correspond to the feasibility and objective improvement

of px̂t; ŷtq in the stage-t nominal cost to-go problem Qt, respectively. The necessary condition in

Proposition 4 is not sufficient since the candidate state solution x1� may only improve nominal

stage-t problems Qtpx��1; �� q that do not involve worst-stage uncertainties �� or optimal decisions

x��1 in P pX C;Ξq. Likewise, the sufficient condition in Proposition 4 is not necessary since it is

possible that by adding x1� to X C
� the worst-case cost to-go Qt and nominal cost to-go Qt decrease

in early stages t � 1; : : : ; ��1 for previously sub-optimal decisions, thus leading to an improvement

without the sufficient condition being satisfied.

Motivated by Proposition 4, we limit our attention to worst-case uncertainties �� when selecting

new candidate state decisions to add to X C. This idea is formalized in the following algorithm.

Algorithm 3: Iterative expansion of the candidate state decision sets.

1. Initialization. Initialize the collection of candidate state decision sets X C.

2. Conservative Bound. Solve the current finite adaptability problem P pX C;Ξq.
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3. Progressive Bound. Identify a set Ξ̂ � Ξ of worst-case uncertainties and solve P pX ; Ξ̂q,

where X � tXtu
T
t�1. Identify the candidate state decision(s) to add to X C.

4. Termination. Stop if X C has not been updated. Otherwise, go back to Step 2.

Algorithm 3 produces a sequence of upper and lower bounds to the multi-stage robust mixed-

integer optimization problem (1) by solving finite adaptability problems P pX C;Ξq with updated

candidate state decision sets X C and relaxations of (1) that only involve subsets Ξ̂ � Ξ of the

uncertain parameter realizations, respectively. Algorithm 3 constitutes a template that allows for

several ways of (i) initializing and updating the collection X C, (ii) constructing reduced uncertainty

sets Ξ̂ and (iii) solving the upper and lower bounds P pX C;Ξq and P pX ; Ξ̂q.

We initialize the collection X C of candidate state decision sets by solving a static version of the

multi-stage robust mixed-integer optimization problem (1) and identifying X C
t with the decision

x�t P Xt taken by the optimal solution to the static problem. Likewise, we update X C by adding to

each set X C
t the decision x�t P Xt taken by an optimal solution to the lower bound P pX ; Ξ̂q. This

approach is heuristic as it uses the sufficient (but not necessary) condition of Proposition 4.

We consider two alternative constructions of the reduced uncertainty set Ξ̂. In the first, we

identify Ξ̂ with all worst-case uncertainties �� determined during the solution of the upper bound

problem P pX C;Ξq, which results in a set Ξ̂ of finite cardinality. In the second approach, we set

Ξ̂ � t� � p��; q P Ξ : �� P Φ�u, where Φ� denotes the set of worst-case inter-stage uncertainties

in problem P pX C;Ξq. In other words, the second approach considers all uncertainty realizations

that emerge from combinations of the worst-case inter-stage uncertainties with any admissible intra-

stage uncertainties. If necessary, the reduced uncertainty set Ξ̂ resulting from either approach can

be restricted further by selecting subsets of the worst-case parameter realizations.

We solve the upper bound problems P pX C;Ξq using Algorithm 1. As part of this algorithm, we

solve the emerging two-stage subproblems Qt either exactly (using the techniques of Section 3) or

approximately (using the methods of Section 4). The lower bound problems P pX ; Ξ̂q, on the other

hand, can be solved as large-scale MILPs as long as the reduced uncertainty set Ξ̂ is finite (i.e.,

it takes the form of a scenario tree or a scenario fan). If Ξ̂ has infinite cardinality, on the other

hand, then we solve a single-stage robust optimization problem in which the decisions pxt;ytq only

adapt to the inter-stage uncertainties �t but not to the intra-stage uncertainties  t. Note that this

approach no longer provides a lower bound on the multi-stage robust mixed-integer optimization

23



problem (1), but it remains a valid heuristic to choose candidate state decisions to add to X C.

6 Numerical Experiments

We compare our iterative solution scheme for the finite adaptability approximation (3) with different

benchmark approaches for solving the multi-stage robust mixed-integer problem (1) on two case

studies. The first case study concerns a route planning problem in which the stage-wise feasible

regions Xt are sufficiently benign for our approach to solve the problem exactly within seconds.

The second case study concerns a transportation-location planning problem where the stage-wise

feasible regions Xt grow exponentially in the problem description; here, we use our iterative state

variable selection procedure from Section 5 in combination with the piecewise constant state decision

approximation from Section 4 to approximately solve the problem to a high accuracy.

6.1 Route Planning

We consider a dynamic robust route planning problem on a directed graph G � pN;Aq with nodes

N � t1; : : : ; nu and arcs A � V � V . The goal is to determine an adaptive shortest path from

the start node 1 to the terminal node n that minimizes the worst-case route length when the arc

lengths are uncertain and non-stationary over time. The problem can be formulated as the following

instance of our multi-stage robust mixed-integer optimization problem (1):

minimize max
�PΞ

T
‚

t�1

‚

pi;jqPA

ytijp�
tq

subject to ytijp�
tq ¥ rtijp�tq

�

xtjp�
tq � xt�1;ip�

t�1q � 1
	

@� P Ξ; @pi; jq P A; @t � 1; : : : ; T

xtjp�
tq � xt�1;ip�

t�1q ⁄ 1 @� P Ξ; @pi; jq R A; @t � 1; : : : ; T

xT p�
T q � en @� P Ξ

xtp�
tq P tei : i � 1; : : : ; nu; ytp�

tq ¥ 0 @� P Ξ; @t � 1; : : : ; T:

Here, rtijp�tq represents the uncertain length of arc pi; jq P A in time stage t � 1; : : : ; T . The state

variable xt records the node entered at time stage t, with x0p�
0q � e1, and the components of the

auxiliary control variable yt evaluate (at optimality) to ytijp�
tq � rtijp�tq if arc pi; jq is traversed in

time stage t and ytijp�
tq � 0 otherwise. The objective function evaluates the worst-case cumulative

length of the arcs traversed over time. The first constraint ensures that ytijp�
tq ¥ rtijp�tq precisely
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when we traverse from node i to node j in time stage t, the second constraint ensures that this is

possible only when pi; jq P A, and the third constraint ensures that we reach node n by time T .

For our numerical experiments, we generate random graphs with nodes N � t1; : : : ; 100u that

are located uniformly at random on the ‘N’-shaped subset r0; 10s2zpr2; 4s � r0; 8s Y r6; 8s � r2; 10sq

of the two-dimensional square r0; 10s2; the exceptions are the start node 1 and the terminal node

n � 100, which are located at the bottom-left corner p0; 0q and top-right corner p10; 10q, respectively.

To construct the arc set, we start with A � N�N (including all self-loops) and remove all arcs that

cross the boundaries of our ‘N’-shaped set. We subsequently remove arcs in order of decreasing arc

lengths until either |A| � 6n or the removal of any further arcs would make the graph disconnected.

This eliminates trivial problem instances in which the shortest path contains few arcs. Note that

the inclusion of self-loops allows the decision maker to reside at the current node in any time stage;

in particular, the decision maker can arrive and reside at the terminal node n prior to time stage

T . To model the uncertain arc lengths rtijp�tq, we construct a budget uncertainty set of the form

Ξtp�t�1q :�
!

�t � p�t; tq : �t P Φtp�t�1q;  t P r0; 1s
|A|; eJ t ⁄ �t�1 � �t;  tii � 0 @i P N

)

:

Here, the intra-stage uncertainties  t determine the arc length excesses via rtijp�tq :� p1� tijqr
0
ij ,

where the nominal length r0
ij of arc pi; jq P A is set to the Euclidean distance between nodes i and

j, and the inter-stage uncertainty budget �t evolves according to the set Φtp�t�1q :� t�t P N0 :

�t ⁄ �t�1u for some initial budget �0 (selected below). We set the time horizon to T � 40.

The static problem, where the uncertain arc lengths are stationary and observed after choosing

the shortest path, can be reduced to the solution of multiple deterministic shortest path problems

(Bertsimas and Sim, 2003). In our finite adaptability approximation of the dynamic problem, we

employ full adaptivity, that is, we set X C
t � Xt for all t; this is possible since |Xt| � n in this case

study. We solve the resulting problem with Algorithm 1 (cf. Section 2), where the subproblems

Qtpx̂t�1;�t�1q are solved exactly using Corollary 3 and Remarks 3 and 4 from Section 3. In fact,

each subproblem Qtpx̂t�1;�t�1q of our finite adaptability approximation can be solved to any fixed

precision � in time Oplog ��1q via a binary search. All instances of the static as well as the adaptive

route planning formulation were solved within 10 seconds each, which is why we omit detailed

runtime comparisons in this section.

Figure 2 compares the average worst-case route lengths over 50 randomly generated instances

and initial uncertainty budgets �0 P t0; : : : ; T u of three alternative methods: (i) the static robust
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