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Network design problems involve constructing edges in a transportation or supply chain network to minimize

construction and daily operational costs. We study a data-driven version where operational costs are uncer-

tain and estimated on historical data. This problem is computationally challenging, and instances with as

few as 50 nodes cannot be solved to optimality by current decomposition techniques. We propose a stochastic

variant of Benders decomposition that mitigates the high computational cost of generating each cut by sam-

pling a subset of the data at each iteration and nonetheless generates deterministically valid cuts (as opposed

to the probabilistically valid cuts frequently proposed in the stochastic optimization literature) via a dual

averaging technique. We implement both single-cut and multi-cut variants of this Benders decomposition,

as well as a k-cut variant that uses clustering of the historical scenarios. On instances with 100–200 nodes,

our algorithm achieves 4-5% optimality gaps, compared with 13-16% for deterministic Benders schemes, and

scales to instances with 700 nodes and 50 commodities within hours. Beyond network design, our strategy

could be adapted to generic two-stage stochastic mixed-integer optimization problems where second-stage

costs are estimated via a sample average.
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1. Introduction

Network design is one of the most famous and frequently studied problems in the Operations

Research literature, with widespread applications in logistics, air transportation (Barnhart et al.

2003), supply chains (Santoso et al. 2005, Pishvaee et al. 2014), telecommunications (Balakrishnan

et al. 1991) and energy markets (Binato et al. 2001) among other domains. These problems are

large-scale and involve uncertain parameters which reflect deviations between the forecast and

realized utilization of a network, e.g., uncertain consumer demand in an air traffic control problem

or uncertain renewable generation output in a capacity expansion problem. Moreover, we often have

data on past realizations of the uncertain parameters. Unfortunately, despite the rapid advances

in the scalability of branch-and-bound solvers over the past 25 years, data-driven network design

problems with as few as 50 nodes are, to our knowledge, currently regarded as intractable and

instead are solved via domain-specific approximation algorithms or heuristics (Crainic et al. 2021a).

To scale to network design problems with up to 50 nodes, the mixed-integer optimization (MIO)

community has developed a suite of algorithms for mixed-integer nonlinear problems over the past

25 years, originating with the works of Ceria and Soares (1999), Stubbs and Mehrotra (1999)

and refined by Frangioni and Gentile (2006, 2009), Günlük and Linderoth (2009) among others.

Essentially, these methods tackle mixed-integer problems with logical constraints and a partially

separable objective function, and enforce logical constraints implicitly via perspective functions,

thus tightening the Boolean relaxation. Indeed, mixed-integer decomposition schemes that exploit

these perspective reformulations often solve problems to optimality at sizes an order of magnitude

larger than was previously possible; see Fischetti et al. (2017), Bertsimas et al. (2021) for related

generalized Benders decomposition schemes.

In a different direction, the machine-learning community has enjoyed considerable success over

the past 25 years in improving the scalability of unconstrained data-driven optimization. A com-

mon meta-approach is to modify a classical optimization algorithm to sample from an observed

dataset at each iteration of the algorithm, and not consider the entire dataset as part of each iter-

ate. Remarkably, each sample often conveys the same essential information as the entire dataset

but can be processed multiple orders of magnitude faster. This sampling approach routinely pro-

duces a multiple-order-of-magnitude scalability improvement on classical optimization algorithms.

Stochastic variants of first-order methods such as Stochastic Gradient Descent (SGD, Davis et al.

2020), the Stochastic Average Gradient method (Schmidt et al. 2017), or Adam (Kingma and Ba

2014) are currently considered to be state-of-the-art for unconstrained problems.

In this paper, we propose to embed a sampling technique within a Benders decomposition (Geof-

frion 1972) scheme run on the perspective reformulation (Günlük and Linderoth 2009) of a network

design problem. We demonstrate that this approach obtains bound gaps of 4–5% on instances with
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100–200 nodes, three times smaller than the bound gaps obtained by deterministic Benders decom-

position schemes in a comparable amount of time. Moreover, our approach successfully scales to

obtain bound gaps of 40% on instances with 700 nodes and 50 commodities. At this scale, deter-

ministic Benders schemes are too expensive to obtain feasible solutions. Our numerical success can

be explained by the fact that sampling allows us to generate significantly more Benders cuts within

a given time budget than is possible via a deterministic Benders approach, while conveying most

of the essential information stored in each deterministic cut. Although developed for the special

case of data-driven multi-commodity capacitated fixed-charge network design problems, we believe

our approach could be applied to two-stage stochastic optimization problems where the first-stage

variables are discrete, and the second-stage cost is evaluated via a sample average approximation.

1.1. Problem Formulation and Main Contributions

We propose a new approach for solving data-driven Multi-commodity Capacitated Fixed-charge

Network Design (MCFND) problems to certifiable optimality. Similar models appear in Magnanti

and Wong (1984), Costa (2005), Rahmaniani et al. (2018) among other works.

In MCFND problems, there is an index set of commodities K to be shipped over a capacitated

directed network (N ,E), where N denotes a set of nodes and E denotes a set of edges. Our overall

objective is to perform this transshipment in a manner that minimizes the construction plus flow

transportation cost. Let A denote this network’s corresponding flow conservation matrix. The

capacity of arc (i, j) ∈ E is given by ui,j and each node n ∈ N supplies or demands an amount

dk,rn of each commodity k ∈ K in each scenario r ∈ R. There is a fixed cost cij of activating each

edge (i, j) ∈ E , and given this problem data, we introduce binary design variables zi,j ∈ {0,1} to

denote whether the (i, j)th edge is activated. The flow variable xk,r
ij then denotes the quantity

of commodity k routed on edge (i, j) in scenario r, and fk
ij denotes the marginal transportation

cost, i.e., the per unit cost of transporting the kth commodity through edge (i, j). Moreover, we

follow the standard sample-average-approximation paradigm (see Shapiro et al. 2021, for a general

theory) in placing equal weight on each observation of historical data r in our objective.

The complete optimization formulation for data-driven MCFND can then be written as:

min
∑

(i,j)∈E

ci,jzi,j +
1

|R|
∑
r∈R

∑
(i,j)∈E

∑
k∈K

fk
i,jx

k,r
i,j +

1

2γ

(∑
k∈K

xk,r
i,j

)2


s.t. Axk,r = dk,r, ∀k ∈K, r ∈R,∑
k∈K

xk,r
i,j ≤ ui,j, ∀(i, j)∈ E , r ∈R,

xk,r ≥ 0, xk,r
i,j = 0 if zi,j = 0, ∀(i, j)∈ E ,∑

(i,j)∈E

zi,j ≤ c0, zi,j ∈ {0,1} ∀(i, j)∈ E ,

(1)
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where, for any γ > 0, 1/2γ
∑

r∈R

(∑
k∈K xk,r

i,j

)2
is a ridge regularization term that improves Prob-

lem (1)’s practical tractability (c.f. Bertsimas et al. 2021), by augmenting the hard constraint∑
k∈K xk,r

i,j ≤ ui,j on each edge’s capacity with a soft penalty in the objective (see also Atamtürk and

Günlük (2018) for a discussion of capacity constraints in network design problems). Correspond-

ingly, Problem (1) is an upper approximation of the optimal objective value without regularization.

Therefore, one would ideally like to minimize (1) with 1/γ→ 0. However, since (1) is a data-driven

formulation, the regularization term may be beneficial from a model stability perspective, partic-

ularly in settings with limited or noisy data.

In this paper, we provide two main contributions. First, we propose a new decomposition method

that combines sampling-based methods from the stochastic optimization and machine learning

literature with a Generalized Benders Decomposition approach in the spirit of Geoffrion (1972).

Our approach is capable of tackling large-scale mixed-integer problems by leveraging weak duality

to obtain valid dual variables for scenarios we do not explicitly sample.

Second, we implement and benchmark our approach across a wide variety of large-scale net-

work design instances, and explore the performance benefits of various design and implementation

choices. Our approach allows us to solve network design problems with 200 nodes to within 4–5%

of optimality in hours, and obtain high-quality feasible solutions on instances with up to 700 nodes.

1.2. Background and Literature Review

Our work is built on two intertwined literatures. First, decomposition schemes for large-scale deter-

ministic problems with logical constraints developed by the MIO community. Second, sampling

algorithms for problems with exogenous uncertainty developed by the stochastic optimization com-

munity. We further remark that, owing to Problem (1)’s significant computational difficulty, a wide

variety of approximation algorithms (Agrawal et al. 1991, Goemans and Bertsimas 1993, Bertsi-

mas and Teo 1998) and heuristic methods have also been proposed for solving Problem (1); see

Rodŕıguez-Mart́ın and Salazar-González (2010), Gendron et al. (2018) for reviews.

Cutting-Plane Schemes for Mixed-Integer Optimization: Problem (1) is a computationally chal-

lenging mixed-integer problem that encompasses hard combinatorial problems such as Steiner tree

optimization (Garey and Johnson 1977) and possesses extremely poor Boolean relaxations (Gen-

dron et al. 1999). Indeed, generic branch-and-bound solvers cannot currently solve network design

(ND) problems at even moderate problem sizes with tens of nodes (see Crainic et al. 2021b, Section

6.1 for an investigation of CPLEX version 12.8’s performance on synthetic ND instances with ten

nodes). Accordingly, and due to its cardinal importance in practice, ND has emerged as one of the

most frequently studied problems in the MIO literature over the past 50 years.
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Throughout the first 30 years of the field of Operations Research, there was a spirited debate

regarding the most efficient technique for solving ND problems, with many proposals, including

branch-and-bound (Boyce et al. 1973), Lagrangian methods (Cornuejols et al. 1980), and dynamic

programming (Erickson et al. 1987). The idea of solving ND problems via Generalized Benders

decomposition (Geoffrion 1972) was moved front-and-center by Magnanti and Wong (1981, 1984).

Building upon several influential prior works, including Geoffrion and Graves (1974), Florian et al.

(1976), Richardson (1976), they found that an accelerated Benders decomposition was a viable

and often more scalable alternative for ND problems than several other optimization approaches,

including the three aforementioned ones. Ever since, Benders decomposition has been widely rec-

ognized as one of the most competitive methods for solving ND problems; we refer to Fischetti

et al. (2017), Crainic et al. (2021b) for modern reviews of Benders decomposition for ND problems.

In a related direction, a significant line of work has developed a suite of cutting planes that iter-

atively strengthen Problem (1)’s Boolean relaxation upon their imposition; see, e.g., Van Roy and

Wolsey (1985), Magnanti et al. (1993, 1995), Bienstock et al. (1998), Günlük (1999), Atamtürk and

Günlük (2021) and references therein. Remarkably, these approaches are so numerically success-

ful and easy to implement that they are usually incorporated within commercial branch-and-cut

solvers within several years of their proposal (Bixby 2012). As a result, some of the decomposi-

tion schemes reviewed above may even be considered “sleeping beauties” in the sense of Ke et al.

(2015), i.e., were not originally considered numerically successful but would be if proposed today,

implicitly in conjunction with these valid inequalities.

Decomposition Schemes for Large-Scale Optimization Under Uncertainty: Cotemporally, a con-

siderable amount of attention has been devoted by the stochastic optimization community to solving

large-scale convex optimization problems with uncertain parameters for which we have access to

either a joint probability distribution or observations from historical data. Initiated by the indepen-

dent works of Dantzig (1955), Beale (1955), and subsequently refined by Wets (1966), Van Slyke

and Wets (1969), contemporary optimizers for large-scale stochatic problems typically invoke the

Minkowski-Weyl theorem (c.f. Bertsimas and Tsitsiklis 1997, Chapter 4) to solve their determinis-

tic equivalents via Benders decomposition (which was termed the L-shaped method by Van Slyke

and Wets 1969). Alternatively, works like Zakeri et al. (2000), Fábián (2000), Rei et al. (2009),

Guigues (2020) propose generating Benders cuts without solving each subproblem to optimality.

The two main variants of Benders decomposition invoked for two-stage stochastic integer opti-

mization problems such as Problem (1) are called single-cut and multi-cut Benders. Single-cut

schemes maintain a single epigraph variable that upper bounds the expected transshipment cost

and generate a single cut at each iteration of Benders decomposition. Multi-cut schemes associate

a separate epigraph variable with the cost incurred in each scenario and generate a separate cut for
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each epigraph variable in each iteration (Birge and Louveaux 1988). Therefore, single-cut schemes

typically require more iterations to converge but require less time to perform each iteration (see

Birge and Louveaux 2011, de Camargo et al. 2008, You and Grossmann 2013, for comparisons).

Problems with fewer scenarios are typically solved faster via multi-cut approaches but the relative

performance of each variant is highly problem-dependent.

More recently, a considerable amount of attention has been devoted to designing variants of

Benders decomposition that avoid solving a subproblem for each scenario at each iteration by

sampling. Higle and Sen (1991, 1996b), Pereira and Pinto (1991), Dantzig and Infanger (1993),

Infanger (1992) initiated this line of inquiry by proposing stochastic cutting-plane schemes that

converge almost surely (see also Bertsimas and Li 2022). Determining convergence of these schemes

is technically challenging. Various statistical tests exist (see, e.g., Higle and Sen 1996a, Morton

1998, Mak et al. 1999) that provide confidence intervals on the duality gap. Yet, to avoid multiple-

testing problems, practitioners typically run stochastic cutting-plane methods for a prespecified

number of iterations and then perform a statistical test on termination (De Matos et al. 2015).

1.3. Structure

We propose a stochastic Benders decomposition scheme that combines the perspective reformu-

lation technique from the MIO literature with sampling ideas from the stochastic optimization

literature to, for the first time, successfully solve data-driven capacitated network design problems

with hundreds of nodes to certifiable (near) optimality. The rest of this paper is laid out as follows:

• In Section 2, we propose stochastic variants of the single-, k-, and multi-cut versions of Benders

decomposition to solve a perspective reformulation of (1). Our algorithms randomly sample a

subset of scenarios Rt ⊆R at each iteration and use a dual averaging technique to generate cuts

that are deterministically valid for all r ∈ R, while previous stochastic approaches generate cuts

that are only valid on average or with high probability. We prove high probability bounds on the

approximation error stemming from our dual averaging technique.

• In Section 3, we propose rigorous convergence criteria to terminate our stochastic decompo-

sition schemes at a certifiable optimal solution. Since our master optimization problem is a MIO

problem, we also discuss the specific termination challenges arising when Benders Decomposition is

implemented via branch-and-cut (or lazy constraints). We also propose techniques for accelerating

the convergence of our methods, by warm-starting their upper and lower bounds.

• In Section 4, we apply our decomposition schemes to a collection of network design instances

that are synthetically generated or obtained from the literature (Crainic et al. 2016, 2021a). On

the largest instances solvable by a deterministic Benders decomposition algorithm, our stochastic

cutting-plane strategy obtains optimality gaps three to four times smaller than their deterministic
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counterparts. Moreover, our approach scales to instances with up to 700 nodes. On instances with

around 200 nodes, it routinely achieves bound gaps on the order of 5% within two hours.

Notation

We let non-boldface characters such as b denote scalars, lowercase bold-faced characters (x) denote

vectors, uppercase bold-faced characters (A) denote matrices, and calligraphic uppercase characters

(Z) denote sets. We let [n] denote the running set of indices {1, . . . , n}. We let e denote the vector

of ones, and 0 denote the vector of all zeros. Finally, we let ⟨·, ·⟩ denote the Euclidean inner product

between two vectors of the same size, i.e., ⟨x,y⟩ :=
∑n

i=1 xiyi for any x,y ∈Rn.

2. Deterministic and Stochastic Cutting-Plane Methods

In this section, we propose an efficient numerical strategy for solving Problem (1) to certifiable

optimality. The backbone of our approach is a generalized Benders decomposition scheme run on

a perspective reformulation of Problem (1), which uses sampling techniques to avoid explicitly

solving each scenario at each iteration of the method. Instead, we use dual-optimal solutions of

the sampled subproblems to construct dual-feasible solutions to the remaining subproblems and

thereby construct valid cuts. We further discuss the convergence properties of our method.

2.1. A Two-Stage Reformulation

We open this section by observing that the flow minimization problem with respect to each x·,r in

(1) is decomposable across scenarios r ∈R. Therefore, consider a set of demand vectors dk ∈ RN

for k ∈K and define

f(z;d) := min
xk∈RE

+,k∈K

∑
k∈K

⟨fk,xk⟩+ 1

2γ

∑
(i,j)∈E

(∑
k∈K

xk
i,j

)2

s.t. Axk = dk, ∀k ∈K, (2)∑
k∈K

xk
i,j ≤ ui,j, ∀(i, j)∈ E ,

xk
i,j = 0 if zi,j = 0, ∀(i, j)∈ E ,

to be the operational cost of serving demand d on network (N ,E) with design variables z. Observe

that the minimization problem defining f(z;d) is not decomposable across commodities because

of shared capacity constraints. With this notation, Problem (1) is equivalent to

min
z∈Z
⟨c,z⟩+ 1

|R|
∑
r∈R

f(z;d·,r), (3)

where d·,r denotes the collection of demand vectors {dk,r, k ∈K} and Z = {z ∈ {0,1}E :
∑

(i,j) zi,j ≤
c0} denotes the set of feasible edges. The network design formulation (3) separates the discrete

design variables z from the continuous second-stage routing variables xk, thus giving a pure integer

optimization formulation that is readily amenable to outer-approximation techniques.
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2.2. A Linear Lower Approximation of the Second-Stage Cost Function

In this section, we derive a family of Benders cuts that successfully outer-approximate a perspective

reformulation of (2). We remark that this derivation is now standard in the literature (see, e.g.,

Bertsimas et al. 2021), although we provide it here to keep this work self-contained.

Since the objective function in (3) involves the average of the function f(z,d) over |R| realization

of d, we start by analyzing properties of the function f(z,d) in isolation, with a view to establish

that f(z,d) is convex in z and a valid subgradient can be obtained by solving a dual problem.

Proposition 1. For any z ∈ {0,1}E and demand vectors dk, k ∈K such that Problem (2) admits

a feasible solution, we have:

f(z;d) = max
α∈RE ,β∈RE

+

pk∈RN ,k∈K

∑
k∈K

〈
pk,dk

〉
−⟨β,u⟩− γ

2

∑
(i,j)∈E

zi,j(αi,j +βi,j)
2 s.t. A⊤pk ≤ fk−α.

(4)

The proof of Proposition 1 follows analogously to Bertsimas et al. (2021, Theorem 2.5) and relies on

deriving the dual of the minimization problem defining f(z;d) by using a variable decomposition

à la Fenchel; for completeness, we provide a formal proof in Appendix A.1.

Proposition 1 calls for a few observations. First, according to the dual reformulation, f(z;d)

can be expressed as the point-wise maximum of affine functions in z, hence f(z;d) is convex in z.

Second, any feasible dual solution α ∈RE , β ∈RE
+, p

k ∈RN such that A⊤pk ≤ fk −α provides a

valid linear lower approximation of f(z′;d). Namely, for any z′,

f(z′;d)≥
∑
k∈K

⟨pk,dk⟩− ⟨β,u⟩− γ

2

∑
(i,j)∈E

z′i,j(αi,j +βi,j)
2.

When the dual variables are optimal for a particular vector z, the resulting offset and slope in the

above linear approximation are exactly the value of f(z;d) and a subgradient of f at z, i.e.,

f(z′;d)≥ f(z;d)+ ⟨∇f(z;d),z−z′⟩ .

Third, Proposition 1 applies if Problem (2) is feasible for the current design vector z. On the other

hand, if (2) is not feasible, then the following feasibility problem does not admit a solution:

∃x∈RE×K
+ : Axk = dk ∀k ∈K,

∑
k∈K

xk
i,j ≤ ui,jzi,j, ∀(i, j)∈ E .

Hence, by Farkas’s lemma (see, e.g., Bertsimas and Tsitsiklis 1997, Theorem 4.6), we can find a cer-

tificate of infeasibility, i.e., β ∈RE
+,p

k ∈RN , k ∈K such that ⟨pk,dk⟩>
∑

(i,j)∈E

zi,jui,jβi,j. Therefore,

we can separate z from the set of feasible design vectors z by imposing the feasibility cut∑
k∈K

⟨pk,dk⟩ ≤
∑

(i,j)∈E

z′i,jui,jβi,j. (5)
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Finally, as has already been observed in the literature (Xie and Deng 2020, Bertsimas et al. 2021),

our reformulation can alternatively be achieved by performing a perspective reformulation on (2)

to rewrite it as a mixed-integer second-order cone problem (c.f. Günlük and Linderoth 2009) and

taking the dual of this perspective reformulation with respect to the continuous variables.

2.3. Epigraph Formulations: Modeling Choice and Algorithmic Implications

In this section, we exploit our previously developed characterization of f(z,d) as the pointwise

maximum of functions linear in z to revisit three deterministic outer-approximation methods that

solve Problem (1) to certifiable optimality. For simplicity, we only treat the optimality cuts in this

section; feasibility cuts follow in much the same way.

Outer-approximation methods such as generalized Benders decomposition solve (3) by construct-

ing a lower approximation of the second-stage operational cost 1
|R|

∑
r∈R f(z;d·,r) and refining this

approximation at each step. However, since the second-stage cost is the average operational cost

over |R| scenarios, one can either approximate each term f(z;d·,r) separately, their sum, or k partial

sums separately, which we refer to as multi-cut, single-cut, and k-cut approaches, respectively.

In a multi-cut approach, we consider the following epigraph formulation of Problem (3), as

originally proposed by Birge and Louveaux (1988) for two-stage stochastic linear optimization:

min
z∈Z

ηr∈R,∀r∈R

⟨c,z⟩+ 1

|R|
∑
r∈R

ηr s.t. ηr ≥ f(z;d·,r), ∀r ∈R,

and iteratively refine a piecewise linear lower approximation of f(z;d·,r) for each epigraph con-

straints until convergence. Specifically, at each iteration T , the multi-cut cutting-plane algorithm

solves the MIO problem

min
z∈Z

ηr∈R,∀r∈R

⟨c,z⟩+ 1

|R|
∑
r∈R

ηr s.t. ηr ≥ f(zt;d·,r)+
〈
∇f(zt;d·,r),z−zt

〉
, ∀t∈ [T ], ∀r ∈R. (6)

Observe that, in this implementation, each of the |R| functions f(z;d·,r) is linearized at T points zt,

so (6) comprises |R|×T linear constraints. The solution of (6), zT+1, then serves as a linearization

point to further improve the approximations of the functions f(z;d·,r) at the next iteration.

Alternatively, the single-cut approach, as originally proposed for two-stage stochastic linear opti-

mization by Van Slyke and Wets (1969), considers a more compact epigraph formulation:

min
z∈Z
η∈R

⟨c,z⟩+ 1

|R|
η s.t. η≥

∑
r∈R

f(z;d·,r),

and constructs a piece-wise linear lower-approximation of
∑

r∈R f(z;d·,r) directly. In a single-cut

cutting-plane algorithm, at a given iteration T , the epigraph constraint is replaced by the linear

constraints of the form

η≥
∑
r∈R

f(zt;d·,r)+

〈∑
r∈R

∇f(zt;d·,r),z−zt

〉
. (7)
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The single-cut approach involves only one epigraph variable η (compared with |R| in the multi-

cut implementation) and adds one linear constraint at each iteration (vs. |R|). As a result, the

MIO problems involved in the single-cut approach are smaller and usually more tractable than

those solved by the multi-cut approach. Yet, multi-cut methods approximate the second-stage cost

function more accurately and therefore might require fewer iterations to converge. Various studies,

including Birge and Louveaux (2011), de Camargo et al. (2008), You and Grossmann (2013) have

reported mixed results on the relative merits of single and multi-cut methods, and which method

works best appears to depend on the underlying problem and the number of scenarios.

To successfully combine the best aspects of single and multi-cut approaches, a k-cut approach

was proposed by Trukhanov et al. (2010), Contreras et al. (2011). They observed that scenarios

can often be partitioned into subsets (or clusters) that are very similar to one another. Moreover,

aggregating the cuts in each partition successfully compresses information about the second-stage

cost surface and, on a per-iteration basis, is almost as fast as a single-cut approach. Accordingly,

let ∪c∈[k]Sc be a partition of R. Then, at each iteration, the k-cut approach solves the MIO:

min
z∈Z

ηc∈R,c∈[k]

⟨c,z⟩+ 1

|R|
∑
c∈[k]

ηc s.t. ηc ≥
∑
r∈Sc

f(zt;d·,r)+ ⟨∇f(zt;d·,r),z−zt⟩, ∀t∈ [T ], ∀c∈ [k], (8)

and constructs each cut similarly to the single and multi-cut approaches. At each iteration, the

k-cut approach adds k linear constraints (one per cluster c∈ [k]). If k= 1 (resp. |R|), we recover the

single-cut (resp. multi-cut) algorithm. We remark that all three methods converge in a finite but

possibly exponential number of iterations by the finiteness of {0,1}E and since no method visits a

binary vector z twice (see also Geoffrion 1972, Theorem 2.4).

A common thread between all three approaches is that evaluating values of functions of the form

f(z,d) (and their subgradients) is the main computational bottleneck, and, in all three approaches,

the number of function evaluations is the same, |R|, which can be prohibitive, especially when

the number of past scenarios |R| increases. Accordingly, we propose stochastic versions of these

approaches with improved per-iteration computational complexity in the next section.

2.4. A Sample-Based Stochastic Cutting-Plane Algorithm

In this section, we propose stochastic variants of the cutting-plane methods proposed in the previous

section, which obtain high-quality deterministically valid lower bounds without explicitly solving

an optimization problem in each scenario and each commodity at each iteration of the method. We

also discuss the convergence of these methods. As these methods do not provide deterministically

valid upper bounds from a single sample, we defer a detailed discussion of their upper bounds, the

corresponding termination criteria, and their single-tree implementation to Section 3, and assume

for ease of exposition that all cutting-plane methods are multi-tree throughout the section.
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First, a stochastic variant of the multi-cut algorithm can be developed in a straightforward

manner. Indeed, in its deterministic implementation, at each iteration t of the multi-cut cutting-

plane algorithm, we add one linear constraint for each epigraph variable ηr, for r ∈ R. Instead,

we can sample a subset Rt ⊆R of scenarios and only add linear constraints for these scenarios.

Formally, at iteration T of the algorithm, we solve

min
z∈Z

ηr∈R,r∈R

⟨c,z⟩+ 1

|R|
∑
r∈R

ηr s.t. ηr ≥ f(zt;d·,r)+ ⟨∇f(zt;d·,r),z−zt⟩, ∀t∈ [T ], ∀r ∈Rt,

instead of (6), as sketched in the multi-tree case in Algorithm 1 (we defer a detailed discussion of its

single-tree implementation and termination criteria to Section 3). Consequently, each iteration only

requires solving |RT+1| optimization problems that define f(zT+1;d·,r), which can be significantly

faster. Moreover, it is not too hard to see that this algorithm converges almost surely under any

reasonable sampling scheme (e.g., sampling subsets of R of fixed cardinality uniformly) since we

almost surely sample each subset Rt infinitely often and there are finitely many binaries. Note

that, in the pseudo-code, Algorithm 1 is initialized with a set of valid constraints generated from

scenarios r ∈R0. However, in practice, these constraints do not have to be generated at z0, nor be

binding. We can initialize the algorithm with any set of valid (linear) constraints on (z,η).

Algorithm 1 A Multi-Cut Sample-Based Cutting Plane Method

1: initialize z0; f(z0;d
·,r),∇f(z0;d

·,r),∀r ∈R0.

2: set T ← 0

3: repeat

4:
compute zT+1,ηT+1← argmin

z,ηr

⟨c,z⟩+ 1

|R|
∑
r∈R

ηr

s.t. ηr ⩾ f(zt;d·,r)+ ⟨∇f(zt;d·,r),z−zt⟩,∀t∈ [T ],∀r ∈Rt,
5: sample RT+1 ⊆R

6: calculate f(zT+1;d·,r),∇f(zT+1;d·,r) for r ∈RT+1

7: set T ← T +1

8: until Termination Criterion Met

On the other hand, developing a stochastic version of the single-cut method is technically

challenging because constraint (7) aggregates information across scenarios. To address this issue,

Infanger (1992) propose generating probabilistic cuts by sampling a subset of scenarios Rt ⊆R at

each iteration and imposing the constraint

|Rt|
|R|
× η≥

∑
r∈Rt

f(zt;d·,r)+

〈∑
r∈Rt

∇f(zt;d·,r),z−zt

〉
, (9)
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instead of (7), where the quantities |R|
|Rt|

∑
r∈Rt

f(zt;d·,r) and |R|
|Rt|

∑
r∈Rt
∇f(zt;d·,r) are unbiased

estimates of the original offset and slope terms,
∑

r∈R f(zt;d·,r) and
∑

r∈R∇f(zt;d·,r) respectively,

so that (9) is a reasonable approximation of the original constraint (7). This intuition is similar

to that of SGD in unconstrained continuous optimization. Unfortunately, these cuts are only valid

probabilistically and may actually cut off part of the feasible region when combined. Moreover,

while the sampled cuts are unbiased estimates of the slope, optimizing these estimates via Ben-

ders decomposition yields solutions that disappoint significantly out-of-sample due to the so-called

optimizer’s curse (Smith and Winkler 2006). SGD shares the same drawbacks but mitigates them

by performing only one gradient step at each iteration and forgetting estimation errors between

iterations. Conversely, in a cutting-plane algorithm, cuts added at one iteration are imposed in

subsequent iterations, until termination.

We reconcile the computational benefits of sampling with the aforementioned drawbacks of the

stochastic single-cut approach by leveraging the dual formulation of f(z;d) in Proposition 1 to

derive deterministically valid lower-approximations for scenarios r that are not sampled. Further,

we argue that provided the sampled scenarios are sufficiently representative of the remaining sce-

narios, this approximation is sufficiently accurate that we eventually obtain an optimal solution

with high probability; see also Zakeri et al. (2000) for an “inexact” Benders decomposition method.

Specifically, recall that any feasible dual solution (α,β,p) provides a valid lower bound:

f(z;d·,r)≥ q(zt,α,β,p;d·,r)+
〈
∇zq(z

t,α,β,p;d·,r),z−zt
〉
,

with q(z,α,β,p;d) :=
∑

k∈K⟨pk,dk⟩− ⟨β,u⟩− γ
2

∑
(i,j)∈E zi,j(αi,j +βi,j)

2. Hence, we replace (7) by

a constraint of the form

η≥
∑
r∈R

q(zt,αr,βr,pr;d·,r)+
∑
r∈R

〈
∇zq(z

t,αr,βr,pr;d·,r),z−zt
〉
, (10)

for some feasible dual solutions (αr,βr,pr). Observe that, unlike (9), the constraint (10) is a

deterministically valid (although not necessarily tight) lower bound on the true operational cost.

Collecting these observations yields our overall stochastic single-cut approach: First, to reduce

the computational burden of solving an optimization problem for each scenario, at each iteration,

we only solve a random subset of scenarios r ∈Rt ⊆R –hence effectively computing f(zt;d·,r) and

∇f(zt;d·,r). Second, for the remaining scenarios r /∈ Rt, we refrain from solving (4) and instead

use the cheap to compute and feasible dual average solution (αr,βr,pr) = (ᾱRt , β̄
Rt , p̄Rt) :=

1

|Rt|
∑

r′∈Rt
(αr′ ,βr′ ,pr′) instead. This gives a stochastic cutting-plane method with a sequence of

deterministically valid non-decreasing lower bounds, which we formalize in Algorithm 2 (we defer

a detailed discussion of its single-tree implementation and termination criterion to Section 3).
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However, it is not obvious whether this method converges towards an optimal solution (e.g., in a

limit) or whether it generates a never-ending sequence of deterministically valid but not tight cuts.

We now provide some reassurance in this direction by showing that for the incumbent solution

zt, the approximation error of cuts obtained via dual averaging can be decomposed, with high

probability, as the sum of two terms: one term that depends on the variance of the optimal dual

variables and that captures the heterogeneity in the demand scenarios, and one estimation error

term that vanishes as |Rt| grows (proof deferred to Appendix A.2):

Proposition 2. Fix zt. For any r ∈R, denote (αr,βr,pr) the optimal dual solutions of (4) for

z = zt and d= d·,r. Denote ν2 the variance in optimal dual variables, defined as

ν2 =
1

|R|
∑
r∈R

∥∥∥(αr,βr,pr)− (ᾱR, β̄
R
, p̄R)

∥∥∥2 with (ᾱR, β̄
R
, p̄R) =

1

|R|
∑
r∈R

(αr,βr,pr).

Then, there exist universal constants L,M > 0 such that, for any δ ∈ (0, e−1), when Rt is sampled

without replacement from R with a fixed size |Rt|, we have with probability 1− 3δ:∑
r/∈Rt

∣∣∣q(zt, ᾱRt , β̄
Rt , p̄Rt ;dr)− f(zt;dr)

∣∣∣≤L
√
|R \Rt|ν+D

√
|R \Rt| log(1/δ), (11)

with

D :=LM
√
2|E|+ |N |× |K|

[√
|R|
(

1

|Rt|
− 1

|R|

)1/2

+

(
1

|R \Rt|
− 1

|R|

)1/4
]
.

Algorithm 2 A Single-Cut Sample-Based Cutting Plane Method

1: initialize z1; f(z0;d
·,r),∇f(z0;d

·,r),∀r ∈R0.

2: set T ← 1

3: repeat

4:
compute zT+1, ηT+1← argmin

z,η
⟨c,z⟩+ 1

|R| η

s.t. η⩾
∑

r∈R q(zt;d·,r)+ ⟨∇q(zt;d·,r),z−zt⟩,∀t∈ [T ],
5: sample RT+1 ⊆R

6: calculate f(zT+1;d·,r),∇f(zT+1;d·,r) for r ∈RT+1

7: set T ← T +1

8: until Termination Criterion Met

Proposition 2 provides a probabilistic guarantee on the quality of each cut in terms of the sample

size |Rt|. Observe that the approximation error is proportional to
√
|R \Rt|, which means that the

approximation error is zero in the limit where Rt→R (as expected) but which also means that

the approximation error grows sub-linearly in the number of scenarios to approximate |R \Rt|.
Moreover, by the probabilistic method (see, e.g., Grimmett and Stirzaker 2020), Proposition 2

reveals that, for any zt and sufficiently small δ, there exists some Rt such that this guarantee holds
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deterministically. Indeed, setting δ < (1−
( |R|
|Rt|

)−1
)/3 reveals that, with the notations of Proposition

2, repeatedly sampling Rt for a given zt eventually gives a cut which is an underestimator of f(zt)

by at most ρ, where

ρ :=L
√
|R \Rt|ν+D

√
|R \Rt| log(1/δ). (12)

The above observation implies that running Algorithm 2 without termination and selecting a zt,

which minimizes our underestimator in the limit, almost surely returns a ρ-optimal solution to

Problem (1), where ρ is defined by Equation (12). Therefore, in practice, when Algorithm 2’s lower

bound stabilizes, we can either increase the number of scenarios sampled (and thus reduce ρ), or

terminate with confidence if, according to a statistical test, the gap between our stochastic upper

bound (see Section 3) and our deterministic lower bound is sufficiently small. As we observe in our

numerical results (see Section 4), the optimality gap from single-cut at termination with a sample

rate of around 10% is usually quite small in practice.

Finally, a stochastic variant of the k-cut approach can be developed analogously, by applying our

method for stochastic single-cut to each cluster c∈ [k]. Namely, we partition the set of scenarios R
into k sets Sc : c∈ [k], and impose valid constraints of the form (10) to each epigraph variable ηc:

ηc ≥
∑
r∈Sc

q(zt,αr,βr,pr;d·,r)+
∑
r∈Sc

〈
∇zq(z

t,αr,βr,pr;d·,r),z−zt
〉
, ∀c∈ [k]. (13)

Then, at each iteration, we sample and solve (4) for a random subset Rt,c ⊆Sc of scenarios in each

cluster and set (αr,βr,pr) = (ᾱRr,c , β̄
Rr,c

, p̄Rr,c) for r ∈ Sc \ Rt,c. From Proposition 2 applied to

each cluster separately, we obtain that the approximation error for cluster c is bounded, with high

probability, by a term that depends on the variance in dual optimal variables within cluster c, ν2
c ,

plus a bootstrap estimation error term. Hence, if the clustering successfully reduces total weighted

variance
∑

c∈[k]

√
|Sc|νc, a k-cut approach could improve the lower bound obtained by single-cut,

while using the same number of samples per iteration.

In practice (and in our implementation), it is not feasible to cluster the set of scenarios R
based on their associated optimal dual solutions αr, because the optimal dual solution implicitly

depends on the current incumbent solution. Instead, we apply a k-means algorithm on the demand

vectors d·,r. The intuition is that the optimization problem defining αr, (4), is parametrized by d·,r.

From sensitivity analysis, the optimal solution should be (irrespective of the incumbent solution)

a smooth function of the demand vectors. So, low variance in terms of demand vectors d·,r should

translate into low variance in terms of optimal solutions.

Remark 1. Although the dual averaging technique is not needed to develop a stochastic multi-

cut cutting-plane algorithm, it can be used to improve its convergence. In Algorithm 1, instead of

only imposing a new cut for the epigraph variables ηr with r ∈Rt, we can also use dual averaging

to impose new valid cuts on ηr, r /∈Rt as well.
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3. Upper Bounds in Stochastic Cutting Planes with Binary Variables

In this section, we analyze the upper bounds obtained at each iteration of our cutting-plane methods

and design convergence criteria that allow us to terminate our methods with confidence.

The primary motivation for this section is that while the lower bounds for the three stochastic

cutting plane methods introduced in Section 2 are deterministic, their per iteration estimates of

the cost associated with each incumbent solution zt,

⟨c,zt⟩+ 1

|Rt|
∑
r∈Rt

f(zt;d·,r) (14)

are stochastic estimates that depend on the sample Rt. Accordingly, we cannot simply use these

stochastic estimates in the same way as in a deterministic method and terminate when the deter-

ministic lower bound, say ⟨c,zt⟩+ 1
|R|

∑
r∈R

ηr in the multi-cut case, is within ϵ of our stochastic upper

bound, or we may terminate because zt is a high variance solution and we picked an optimistic

sample set Rt, rather than because zt is an optimal solution1; see also Smith and Winkler (2006).

In addition, another salient characteristic of our problem is that the decision variables z are

binary. Hence, as described in pseudo-code in Algorithm 1 and 2, a MIO problem needs to be solved

at each iteration by constructing a branch-and-bound tree (multi-tree implementation). Nowadays,

efficient implementations of these schemes exist that simultaneously construct the branch-and-

bound tree and generate cutting planes (single-tree implementation). We also discuss the extent

to which the stochastic cutting-plane algorithms we developed in the previous section can be

implemented with a single-tree instead of multi-tree approach.

3.1. Convergence Criteria

In this section, we define a convergence criterion by using an asymptotically normal estimator of

the upper bound and using a related upper confidence bound. Suppose that one of our stochastic

cutting-plane methods finds a solution z, and that we would like to evaluate its quality. Then, we

can use a sample W to estimate the true cost of this solution

c̄= ⟨c,z⟩+ 1

|R|
∑
r∈R

f(z;d·,r)

by its estimate on W:

ĉW = ⟨c,z⟩+ 1

|W|
∑
r∈W

f(z;d·,r).

In this section, for simplicity, we omit the dependency of ĉW , c̄, and the following quantities, on

the solution z. We also denote W the random sample used for termination since it could be a new

1 We note that such a deterministic convergence criterion is used in the stochastic method of Bertsimas and Li (2022).
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independent draw from the sample Rt used in the algorithm (and should be, for our estimation

procedure to be unbiased).

As noted by Morton (1998), Mak et al. (1999), under some mild assumptions on the distribution

of dk (e.g., finite variance), for an infinite number of scenarios |R|, this estimator obeys a central

limit theorem: √
|W|

[
ĉW − c̄

] d−→N (0, σ2
c ) as |W|→∞,

where σ2
c =Var(f(z, d,r)) can be estimated via the sample variance estimator

σ̂2
c :=

1

|W|− 1

∑
r∈W

(
f(z,d,r)− 1

|W|

∑
s∈W

f(z;d·,s)

)2

.

In reality, however, we only have finitely many observations R. Yet, provided |R| is large relative

to |W|, we can still apply the CLT to estimate the cost of z. Consequently, letting qα be such

that P(N (0,1)≤ qα) = 1−α, we can construct an asymptotically valid confidence interval for this

estimator at level α of the form [
ĉW −

qα/2√
|W|

σ̂c, ĉ
W +

qα/2√
|W|

σ̂c

]
.

We terminate our method using a modified version of the convergence criteria proposed by

Morton (1998). Namely, letting

c̄α,t := ĉW +
qα/2√
|W|

σ̂

denote a upper confidence bound at level α on the cost of zt, the solution generated at the tth

iterate of one of our cutting-plane methods, we terminate as soon the conservative bound gap falls

below a predefined threshold ϵ, i.e., for the multi-cut method

c̄α,t−
(
⟨c,zt⟩+ 1

|R|

∑
r∈R ηr,t

)
c̄α,t

≤ ϵ (15)

and the termination criteria for the two remaining methods are similar. Alternatively, we also

terminate if we exceed a time limit, as discussed in our numerical results. In the latter case, we

evaluate the true cost of zt by computing its cost across each scenario in R.

We remark that for some adversarial instances of Problem (1), using the same sample size at each

iteration in conjunction with this termination criterion could lead to unattractive results where we

terminate at a highly suboptimal solution with high probability (c.f. Morton 1998, Example 1). To

address this issue and provide a confidence bound on our overall solution (accounting for multiple

testing problems), we can increase the sample size at each iteration of the method in accordance

with Morton (1998, Theorem 2) or use another sampling rule discussed therein (see also Bayraksan
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and Morton 2011). However, owing to the single-tree implementation of our cutting-plane methods,

as discussed in the next section, we do not test every candidate solution we generate when deciding

to terminate. Therefore, as we observe in our numerical results, using the same sample size at

each iteration is usually adequate. This is particularly true for the single-cut and k-cut methods,

which, as discussed previously, often generate conservative lower bounds in practice, meaning that

we often terminate at a computational time limit.

Finally, we remark that in circumstances where the total number of scenarios is relatively small,

we can evaluate the true upper bound directly, rather than a stochastic estimate of the bound.

Accordingly, we take this approach whenever the number of scenarios is sufficiently small.

3.2. Integrating Optimality Cuts Within a Branch-and-Cut Framework

Once our cut-generation and termination criterion schemes have been designed, they need to be

embedded within a branch-and-cut framework in order to solve Problem (1) to certifiable opti-

mality. Indeed, in the naive implementation of our algorithms described in the pseudocode of the

previous section, we need to solve a mixed-integer problem at each iteration. For further scalability

benefits, we can integrate our stochastic cut generation procedure within a state-of-the-art com-

mercial mixed-integer solver (namely, Gurobi version 9.1.2) using lazy constraint callbacks,

which accelerate cutting-plane methods by constructing a single branch-and-bound tree. For exam-

ple, they have been used to implement deterministic cutting-plane algorithms in a highly efficient

and relatively standard way; see, e.g., Fischetti et al. (2017, Section 4) .

Mixed-integer solvers assume that lazy constraints are binding at the point they are gener-

ated. Accordingly, they do not visit and do not generate lazy constraints twice at the same

solution. Our stochastic cuts, however, are not binding, they provide a valid yet not necessarily

tight lower bound. Therefore, when we implement our method with lazy constraints, the MIO

solver can terminate with a highly suboptimal solution it deems optimal, because it (mistakenly)

assumes the value of the cut generated at zt and evaluated at that point is precisely the cost of

zt. To avoid this issue, we take a hybrid approach between single- and multi-tree branch-and-cut,

which, to our knowledge, has not yet been described in the literature.

Namely, we maintain an outer loop where, at each iteration, we run a single-tree implementation

of branch-and-cut with stochastic cutting-planes. During the branch-and-cut algorithm, we save

all the cuts generated and imposed as lazy constraints within a separate cut pool. After the

branch-and-cut algorithm, we randomly sample a subset of scenarios W and compute the termi-

nation criterion described in the previous section to determine whether the solution returned by

the branch-and-cut algorithm is indeed ϵ-optimal with high probability (α= 0.90). By computing

this convergence criterion at each iteration of the outer loop only, we mitigate the issue of multiple
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hypothesis testing that would arise when testing the quality of a solution at each iteration of Algo-

rithm 1–2 (inner loop). If the convergence criterion is met, we terminate the algorithm. Otherwise,

we rerun the branch-and-cut algorithm and ensure the MIO solver no longer considers the pre-

viously generated lazy constraints as binding: We apply the constraints generated in the lazy

cut pool as regular linear constraints, purge the lazy cut pool, and rerun the branch-and-cut algo-

rithm. In addition to an optimality gap criterion, we also terminate the algorithm when the total

computational time exceeds a predefined TimeLimit. We summarize this procedure in Algorithm

3. We remark that this approach is related to the notion of restarting a single-tree decomposition

in a classical deterministic Benders scheme (see, e.g., Fischetti et al. 2016, Section 4.4).

Algorithm 3 Outer Loop for Stochastic Branch-and-Cut

1: initialize CutPool= ∅, t= 0

2: repeat

3: Increment t← t+1

4: Initialize Algorithm 1/2 with constraints in CutPool.

5: Run lazy-constraint implementation of Algorithm 1/2

6: Save all lazy constraints generated in CutPool.

7: Obtain candidate optimal solution zt.

8: Obtain valid lower bound from the MIO branch-and-cut solver.

9: Sample W and compute c̄α,t

10: until (15) or TimeLimit

11: Return zt, stochastic upper bound, and deterministic lower bound

Finally, in addition to the hybrid scheme described in this section, one could also consider a

pure multi-tree implementation of our stochastic cutting-plane methods, as suggested in Section 2

and the classical network design literature (Geoffrion and Graves 1974). However, in preliminary

numerical experiments, we found that such an approach is significantly slower because it involves

solving a different MIO to generate each cut. Accordingly, we do not consider such an approach as

part of our numerical experiments.

3.3. Accelerating the Convergence of our Approach

We now describe some practical enhancements to our stochastic cutting-plane approaches that

improve their convergence, sometimes substantially; see also Fischetti et al. (2016, 2017), Bertsimas

et al. (2021) for related discussions on accelerating the convergence of decomposition schemes.
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Warm-Starting the Lower Bound: Cuts at the Root Node First, we warm-start our lower bound

by applying cutting planes at the root node, as advocated by Fischetti et al. (2017), Bertsimas et al.

(2021) among others. Specifically, we solve a Boolean relaxation of (3) using a continuous analog

of our discrete cutting-plane method, and apply these cuts to the root node of our integer problem

before running our branch-and-cut method. Note that this continuous cutting plane algorithm can

also be implemented in a multi- or single-cut fashion, and in a deterministic or stochastic version.

To balance the tightness of the formulation at the root node against the overall cost of computation,

we impose a hard constraint on the total number of root node cuts applied (typically 10 or 20).

Warm-Starting the Upper Bound: We supply the initial network (without any new construction)

as a warm-start for all methods we benchmark in our numerical experiments. This is guaranteed

to be a feasible solution throughout our numerical experiments, due to our instance generation

procedure. However, we do not implement a more sophisticated warm-starting strategy for any of

our methods, in order to better understand the numerical behavior of our decomposition schemes.

We remark that, in practice, the Boolean relaxation could be randomly rounded to generate

provably high-quality feasible solutions (c.f. Bertsimas et al. 2021, Section 3.2), and other heuristics

specific to network design could be applied as well, as reviewed in the introduction.

4. Numerical Experiments

In this section, we numerically benchmark our sample-based Benders decomposition schemes on

data-driven MCFND problems. We also compare their performance with their deterministic coun-

terparts, and the performance of Gurobi on a perspective reformulation of the original MIO for-

mulation (1). We consider a range of synthetic instances of varying sizes, including the so-called R

instances commonly benchmarked in the literature (e.g., Crainic et al. 2016).

All experiments were conducted on MIT’s Supercloud Cluster (Reuther et al. 2018), which hosts

Intel Xeon Platinum 8260 processors. All algorithms were implemented in Julia v1.7.3 (Bezanson

et al. 2017) using JuMP v0.21.10 (Dunning et al. 2017) and Gurobi v9.1.2 (Gurobi Optimization,

LLC 2022). The RAM memory allocated varies from 16GB to 140GB for the largest instances.

4.1. Problem Generation

We generate instances according to a methodology inspired by that of Günlük and Linderoth (2009)

and Bertsimas et al. (2021). We construct a random graph by uniformly positioning |N | nodes

over the unit square [0,1]2 and randomly sampling edges to construct a set of feasible edges E0:

We iteratively sample edges from the k-nearest neighbors graph (with k = 6) until we obtain a

connected graph to ensure the feasibility of our instances. The construction cost for each edge,

ci,j is drawn uniformly from U(1,4). Each commodity k ∈K corresponds to an all-to-one shortest
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path problem with a single destination node ik ∈N . For commodity k, we independently sample

demands from all nodes i′ ∈ N , dki′ , uniformly between 5 to 20. We set dkik := −
∑

i′ ̸=ik
dki′ . We

generate R demand scenarios for each commodity accordingly. This process is repeated for every

scenario r ∈ R. Flow circulation costs, fk
i,j, are proportional to the edge length (by a factor 10).

The capacity of each arc is scaled based on the maximum cumulative demand across all scenarios:

Bi,j :=
∑

k∈K
∑

(i,j)∈E max
r∈R

dk,rij . Formally, we sample the capacity for arc (i, j) according to uij ∼

U(1,4) ·Bi,j/|E0|. We fix the cardinality constraint to c0 = 2|E0|.

All in all, we generate instances with varying numbers of nodes |N |, commodities |K|, and

scenarios |R|, as described in Table 1. We later refer to these instances as small-, medium-, and

large-scale instances based on the number of nodes |N |.

Table 1 Dimensions of the MCFND problems generated, by scale (small-, medium-, and large-scale).

Scale |N | |K| |R|

Small {10,30,50,70} × {5,10,25,50} × {10,30,50,70,100}
Medium {100,150,200} × {5,10,25,50} × {10,30,50,70,100}
Large {300,500,700} × {5,10,25,50} × {10,30,50,70,100}

For our algorithms, we use two termination criteria: a time limit (3,600 or 7,200 seconds) and an

optimality gap target ϵ= 1% (with α= 0.90 for our stochastic algorithms). Note that the time limit

applies to the full outer-loop presented in Algorithm 3 (and not on each run of the branch-and-cut

algorithm only). We also fix the regularization parameter γ to 1 —we discuss its impact on our

algorithms in Appendix B. We warm-start all methods with the original connected graph as an

initial solution.

4.2. Comparison of Different Stochastic Cutting-Plane Algorithms

In this section, we benchmark the variants of the stochastic cutting plane algorithm proposed in

Section 2, namely the multi-, single-, and k-cut (k = |K|/2) algorithms, in terms of their ability

to obtain a certifiably near-optimal solution with high confidence. We also measure the impact

of warm-starting these methods with cuts obtained from solving the perspective relaxation with

a multi- or single-cut stochastic cutting plane algorithm, and applying these cuts at the root

node in our branch-and-cut scheme (which we refer to as multi-cut or single-cut root node cuts

respectively). For all stochastic methods, we use a sampling rate, |Rt|/|R|, of 10% and a time limit

of 3,600 seconds. Accordingly, we report average computational time (capped at 3,600 seconds) for

solving our small and medium-scale synthetic instances in Table 2. To augment these results, Table

3 reports the average optimality gap at termination, and Table C.1 (see Appendix C.1) reports the
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Table 2 Computational time (in seconds) of the multi-, single-, and k-cut stochastic cutting plane algorithm,

with different warm-start strategies at the root node (none, multi-cut, and single-cut root node cuts). Metrics are

averaged across instances with the same number of nodes |N |.

Multi-Cut Single-Cut k-Cut

|N | None Multi Single None Multi Single None Multi Single

10 175.7 113.1 59.5 85.9 137.6 69.0 124.0 93.1 82.5

30 2587.8 3013.8 2905.4 2773.9 2357.9 1741.8 2582.8 2131.4 2227.7

50 3073.6 3600.0 3600.0 2542.7 2477.4 1715.9 2727.3 2098.1 2532.2

70 3170.6 3527.2 3485.9 2786.9 2956.4 2729.8 2753.3 2590.7 2612.1

100 3220.4 3600.0 3600.0 2849.6 2881.5 2732.6 2992.2 2625.0 3138.7

150 3600.0 3600.0 3547.9 3219.1 2883.1 2779.8 3091.4 2758.7 3113.1

200 3600.0 3600.0 3600.0 2884.2 3093.1 2702.7 3231.0 2761.6 2961.4

Table 3 Relative optimality gap (in %) at termination for multi-, single-, and k-cut algorithms, with different

warm-start strategies at the root node. Metrics are averaged across instances with same number of nodes |N |.

Multi-Cut Single-Cut k-Cut

|N | None Multi Single None Multi Single None Multi Single

10 0.20 0.05 0.93 0.13 0.06 0.23 1.52 0.03 0.27

30 9.66 5.26 4.21 12.03 10.84 4.29 10.71 4.99 4.56

50 11.08 2.78 2.52 7.98 8.60 2.63 7.33 2.74 3.01

70 35.45 10.71 5.10 20.44 17.17 6.13 31.03 11.98 9.17

100 37.05 10.40 4.25 22.69 17.58 6.41 33.99 15.62 8.04

150 46.32 12.18 4.53 30.39 20.72 9.59 38.82 13.46 10.19

200 46.27 17.43 14.18 33.94 22.44 10.36 43.54 15.50 11.75

fraction of instances solved within the time limit. Note that the optimality gaps reported in Table

3 are computed using the true cost of the incumbent solution, using all scenarios in R.

We observe that both the multi-cut and single-cut warm-start strategies are very effective in

reducing the relative optimality gap at termination. Indeed, our root node strategies halve the

optimality gap at termination compared to not applying cuts at the root node. However, a single-

cut strategy at the root node appears to outperform a multi-cut root node strategy in terms of the

relative gap at termination. All in all, applying a single-cut strategy warm-started with a single-cut

method at the root node appears to be the most numerically efficient strategy, because this strategy

usually terminates faster than any other strategy and has a relative optimality gap comparable to

or better than any other strategy. Yet, multi-cut with a single-cut root node strategy and k-cut

with a single-cut root node strategy are also competitive, and indeed multi-cut obtains a smaller

average optimality gap at termination at the price of a higher average runtime.
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Next, we investigate the number of iterations of the outer loop performed by our methods; recall

that in Section 3, we proposed an outer loop procedure that allows our sampling approach to be

safely integrated within a branch-and-cut procedure, without requiring a new branch-and-bound

tree each time we generate a cut. To this end, Figure 1 depicts the number of outer-loop iterations

performed by our single-cut algorithm on the small- and medium-scale instances. We observe that

only one iteration of the outer loop is performed in many cases (∼ 50% for small-scale and 70% for

medium-scale instances). However, in the remaining cases, the first iteration of branch-and-cut with

stochastic cuts terminates with a solution that is not ϵ-optimal but Algorithm 3 is very efficient,

requiring a limited number of additional iterations to identify an optimal solution. This verifies

that a single outer loop iteration often wrongly terminates at a solution that is not optimal. On

the other hand, only a small number of iterations of the outer loop are usually needed to achieve

optimality. Therefore, the tractability of our approach is not compromised by the outer loop.
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Figure 1 Distribution of the number of outer-loop iterations required by the single- and k-cut stochastic cutting

plane algorithms with single-cut root node cuts on small-scale (left) and medium-scale (right) instances.

4.3. Benchmarking Scalability on Synthetic Instances

We now compare the performance of our stochastic cutting plane methods (single- and k-cut)

against two benchmarks: (a) solving Problem (1)’s perspective reformulation directly with Gurobi,

and (b) a deterministic single-cut method. For our stochastic approaches, we use a sampling rate

of 10%. We impose a time limit of 7,200 seconds for all methods. To calibrate our approaches and

verify their correctness, we use the smallest instances to verify that all methods terminate with

the same optimal solution (see Table C.4 in Appendix C.2).

We report the average computational time and optimality gap of all methods, on the small-,

medium-, and large-scale instances, in Table 4, with metrics averaged over instances with the same

number of nodes |N |.
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Table 4 Runtime (in seconds) and final optimality gap (in %) for each algorithm, averaged over instances with

the same number of nodes |N |.

Gurobi with (1) Deterministic Stochastic Stochastic k-Cut

|N | Runtime Gap Runtime Gap Runtime Gap Runtime Gap

10 363.0 0.00 303.6 10.06 83.0 0.27 69.7 1.10

30 7200.0 38.06 7200.0 9.80 4496.1 5.29 4583.7 4.50

50 7200.0 63.42 7192.4 7.70 4166.6 3.02 5813.2 2.79

70 7200.0 74.29 7200.0 10.17 4951.0 5.64 5007.6 5.39

100 - - 6899.5 13.02 5168.7 4.94 6196.7 4.62

150 - - 7004.4 12.54 6140.7 4.33 5822.1 5.31

200 - - 6389.0 16.42 5715.2 5.32 5674.7 4.25

300 - - - - 5025.8 9.48 4866.5 8.80

500 - - - - 5521.4 19.01 6380.5 26.82

700 - - - - 5420.5 37.32 5734.6 40.72

We observe that a perspective reformulation of the original formulation (1) cannot be solved

by Gurobi with 100 or more nodes within the time (2 hours) and memory (> 72GB) limits.

Indeed, while this approach converges within minutes for instances with ten nodes, it fails to

identify an optimal solution within the two-hour time limit for instances with 20-70 nodes and

terminates with large optimality gaps (> 30%) on average. On the other hand, a deterministic

Benders decomposition scheme reaches optimality gaps that are an order of magnitude smaller on

instances with 20-70 nodes, scales to instances with up to 200 nodes, but fails to recover a solution

with a meaningful optimality gap within the time limit for larger problems.

Our stochastic cutting plane algorithms significantly improve upon their deterministic coun-

terpart. On small- and medium-scale instances, they reduce the average computational time by

30-40% on the small instances and 10-25% on the medium ones. A comparison in terms of average

computational times might be misleading, however, because of the time limit, and because many

of these instances are not solved to ϵ-optimality. Accordingly, we also compare in terms of the opti-

mality gap. We observe that our stochastic cutting-plane algorithms terminate with gaps half the

size of deterministic algorithms (i.e., around 5% for the instances with 70-200 nodes compared with

10-15% for the deterministic approach). Finally, the stochastic cutting-plane methods successfully

scale to instances with 300-700 nodes. They obtain bound gaps of less than 10% for instances with

300 nodes and less than 40% with 700 modes (within the same 2-hour time limit), which is one

order of magnitude larger than the instances solved in the stochastic network design literature

(Crainic et al. 2021a). Figure C.1 in Appendix C.2 displays the optimality gap achieved for each

values of |N |, |R|, and |K|, and shows our method is most sensitive to the number of commodities

and nodes.
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Figure 2 Fraction of instances from Crainic et al. (2000) solved by the single-cut stochastic cutting plane

algorithm within a 2-hour time limit and for different target optimality gaps ϵ.

4.4. Benchmarking on the Instances from Crainic et al. (2000)

We now benchmark our methods on network design instances from the literature. Namely, we use

the so-called R instances, originally introduced by Crainic et al. (2000) for deterministic network

design problems and widely used to assess the scalability of methods with respect to the number

of scenarios (Crainic et al. 2021b, 2016, Boland et al. 2016). We use a total 63 instances (see

details in Appendix C.3) with 10–20 nodes and 10–50 commodities. So, compared to our synthetic

instances, the ratio |K|/|N | is higher for these instances. We generate instances with the same

structure (nodes, arcs, commodities, capacities, and costs) as the nominal R instances, and with

demand scenarios that are random perturbations of the nominal demand. The number of scenarios

generated varies from 10 to 1,536. We evaluate the performance of our single-cut stochastic cutting

plane algorithm with a 2% sampling rate and a time limit of 7,200 seconds for all methods.

Figure 2 represents the proportion of instances we solve to a different optimality gaps ϵ (we

keep α= 0.90), as the number of scenarios |R| increases. Our results indicate that the fraction of

instances solved to optimality within 2 hours seems to generally decrease as the number of scenarios

increases. However, we observe that we can achieve an optimality gap below 2.5% for the majority

of instances (≥ 73%) across all values of |R|.

Table 5 reports the average optimality gap achieved after 7,200 seconds, as the number of sce-

narios increases. Although it increases slightly with the number of scenarios, we observe that the

average optimality gap remains around 2.5%. In comparison, Crainic et al. (2021b) only provides

valid lower bounds for up to 256 scenarios. We acknowledge, however, that our instance generation
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strategy differs slightly from theirs, and our formulation involves a strongly convex regularization

term in the objective, so an apples-to-apples comparison between our results is not possible.

Table 5 Optimality gap (in %) achieved by the single-cut stochastic cutting-plane algorithm with a 2-hour

time limit, as the same number of scenarios |R| generated for the instances in Crainic et al. (2000) increases.

Number of scenarios 10 30 64 96 160 256 384 512 768 1,024 1,536

Gap 1.73 1.6 1.6 1.42 1.52 1.46 1.72 1.84 1.58 1.98 2.21

Finally, Figure 3 represents the average runtime (left panel) and the number of cuts (in log

terms, right panel) of our stochastic cutting-plane algorithm for varying sampling rates Rt|/|R|

and different number of scenarios |R|. A single-cut root node cut routine, which samples at a 25%

rate, is used to initiate all algorithms. As expected, we observe that the number of cuts required

for our algorithm to converge increases as the number of scenarios sampled for each cut decreases.

However, this loss in efficiency in number of cuts is outweighted by the computational benefit when

generating each cut, so a lower sampling rate leads to an overall lower total computational time.
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Figure 3 Computational time (left panel) and log-number of cuts generated (right panel) of the single-cut

stochastic cutting plane algorithm on the R instances, for different sampling rates.

5. Conclusion

We propose a stochastic Benders decomposition scheme which solves large-scale data-driven

stochastic network design problems. Our approach mitigates the high computational cost of gener-

ating each cut by sampling a subset of the data at each iteration, while applying a dual-averaging

technique to ensure that the cuts generated remain valid for the original problem. We also propose

an outer loop technique to ensure the safe termination of our algorithm when the Benders decom-

position scheme is implemented via lazy callbacks. We consider multi-, single-, and k-cut variants of

our algorithm and discuss its implementation within a branch-and-cut solver. In numerical experi-

ments, we demonstrate that our stochastic decomposition schemes obtain optimality gaps of 4–5%
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on instances with 100–200 nodes, compared to 13–16% for deterministic Benders schemes. More-

over, we obtain bound gaps of 40% on instances with up to 700 nodes and 50 commodities, i.e.,

problem sizes an order of magnitude larger than any instances addressed by exact methods in the

literature. Beyond network design, we believe our approach could be applied to other two-stage

stochastic optimization problems addressed via sample average approximations.

References

Agrawal A, Klein P, Ravi R (1991) When trees collide: An approximation algorithm for the generalized

Steiner problem on networks. Proceedings of ACM Symposium on Theory of Computing, 134–144.
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Appendix A: Omitted Proofs

A.1. Proof of Proposition 1

Proof of Proposition 1 The minimization problem defining f(z;d) can be seen as the sum of two mini-

mization problems

min
xk∈RE

+
,k∈K

∑
k∈K

⟨fk,xk⟩ s.t. Axk = dk, ∀k ∈K,

and

min
y∈RE

1

2γ

∑
(i,j)∈E

y2i,j s.t. yi,j ≤ ui,j , ∀(i, j)∈ E ,

yi,j = 0 if zi,j = 0, ∀(i, j)∈ E ,

coupled via the constraints
∑

k∈K xk
i,j = yi,j ,∀(i, j) ∈ E . Therefore, by associating a dual variable αi,j ∈ R

with each coupling constraint, we rewrite f(z;d) as

min
xk∈RE

+,k∈K:

Axk=dk,∀k∈K

min
y∈RE :

yi,j≤ui,j ,∀(i,j)∈E
yi,j=0 if zi,j=0,∀(i,j)∈E

max
α∈RE

+

∑
k∈K

⟨fk−α,xk⟩+
∑

(i,j)∈E

(
αi,jyi,j +

1
2γ
y2i,j

)
.

By invoking standard results on saddle-point theorems (see, e.g., Bertsekas 1999), the order of the min-

imization and maximization operators on the function f(z,d) can be exchanged2 without altering the

objective value. Moreover, after exchanging these operators, we can compute the dual of each minimization

problem separately. Indeed,

min
xk∈RE

+,k∈K:

Axk=dk,∀k∈K

∑
k∈K

⟨fk−α,xk⟩ = max
pk∈RN :

A⊤pk≤fk−α,∀k∈K

∑
k∈K

⟨pk,dk⟩.

Second, to dualize

min
y∈RE

∑
(i,j)∈E

(
αi,jyi,j +

1
2γ
y2i,j

)
s.t. yi,j ≤ ui,j , ∀(i, j)∈ E ,

yi,j = 0 if zi,j = 0, ∀(i, j)∈ E ,

let us first observe that we can omit the logical constraints by considering the change of variables yi,j = zi,jwi,j

for w ∈RE . Hence, we obtain

min
w∈RE

∑
(i,j)∈E

[
zi,jαi,jwi,j +

1
2γ
zi,jw

2
i,j

]
s.t. zi,jwi,j ≤ ui,j , ∀(i, j)∈ E

=max
β∈RE

+

min
y∈RE

−⟨β,u⟩ +
∑

(i,j)∈E

[
zi,j(αi,j +βi,j)wi,j +

1
2γ
zi,jw

2
i,j

]
=max

β∈RE
+

−⟨β,u⟩ − γ

2

∑
(i,j)∈E

zi,j(αi,j +βi,j)
2.

All together, we obtain the desired reformulation. □

2 In general, we require that a constraint qualification holds to be able to exchange the order of minimization and

maximization operators (see, e.g., Bertsekas 1999). However, all constraints in Problem (2) are linear and it has a

convex quadratic objective. Therefore, we can exchange the order of the operators in an assumption-free manner.
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A.2. Proof of Proposition 2

In this section, we provide a proof of Proposition 2. To clarify the presentation, we adopt a lighter set of

notations:

Fix z. For any r ∈ R, we denote ξr := (αr,βr,pr) the optimal dual solutions of (4) for d = d·,r. For

any subset S ⊆ R, let us denote ξ̄
S
:= 1

|S|

∑
r∈S ξ

r the average of the optimal dual solutions ξr for r ∈ S.
For a random S ⊆ R of fixed size |S|, we will analyze the sub-optimality gap of ξ̄

S
, i.e., the quantity

q(z,ξr;dr)− q(z, ξ̄
S
;dr) (≥ 0), for scenarios r ∈ Sc :=R\S.

Proof of Proposition 2 Let us denote M :=maxr∈R ∥ξr∥∞. Since ∥ξr∥∞ ≤M , then
∥∥∥ξ̄S

∥∥∥
∞
≤M and there

exists some constant L> 0 such that, for any S and any r /∈ S∣∣∣q(z, ξ̄S
,dr)− q(z,ξr,dr)

∣∣∣≤L
∥∥∥ξ̄S − ξr

∥∥∥ .
We further decompose the right-hand side via a triangle inequality and sum the inequalities above across all

r /∈ S to obtain ∑
r∈Sc

∣∣∣q(z, ξ̄S
,dr)− q(z,ξr,dr)

∣∣∣≤L|Sc|
∥∥∥ξ̄S − ξ̄

R
∥∥∥+L

∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥ .

The first term corresponds to the difference between ξ̄
R

and an unbiased estimate obtained via sampling

without replacement. Denote d the dimension of ξ. Hence, since the ξr are uniformly bounded, by Bardenet

and Maillard (2015, corollary 2.5), there exists some universal constant M1 such that for any δ > 0, we have,

with probability 1− δ on the subset S of fixed size |S|,∥∥∥ξ̄S − ξ̄
R
∥∥∥≤M1

√
d

(
1

|S|
− 1

|R|

)
log(1/δ), (16)

For the second term, we simply use the bound∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥≤√|Sc|

√
1

|Sc|
∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥2.

For interpretation, we denote ν2 :=
1

|R|
∑

r∈R

∥∥∥ξ̄R− ξr
∥∥∥2, which can be interpreted as the variance in optimal

dual variables of our problem. Then, the term on the right-hand side of the inequality above can be viewed

as a bootstrap estimator of ν, which intuitively converges to ν as Sc→R. To formalize this intuition, let us

expand the squared norm term and apply the triangle inequality:∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥2− ν2

∣∣∣∣∣=
∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥ξr∥2− 2⟨ξ̄R
, ξ̄

Sc

⟩− 1

|R|
∑
r∈R

∥ξr∥2 +2⟨ξ̄R
, ξ̄

R⟩

∣∣∣∣∣
≤

∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥ξr∥2− 1

|R|
∑
r∈R

∥ξr∥2
∣∣∣∣∣+2

∣∣∣⟨ξ̄R
, ξ̄

R− ξ̄
Sc

⟩
∣∣∣

≤

∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥ξr∥2− 1

|R|
∑
r∈R

∥ξr∥2
∣∣∣∣∣+2M

∥∥∥ξ̄R− ξ̄
Sc
∥∥∥

By Bardenet and Maillard (2015, corollary 2.5) again, there exists M2 > 0 such that, with probability 1− δ,∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥ξr∥2− 1

|R|
∑
r∈R

∥ξr∥2
∣∣∣∣∣≤M2

√(
1

|Sc|
− 1

|R|

)
log(1/δ),
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and
∥∥∥ξ̄R− ξ̄

Sc
∥∥∥ satisfies a similar inequality as (16). All together, with probability 1− 2δ,∣∣∣∣∣ 1

|Sc|
∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥2− ν2

∣∣∣∣∣≤M2

√(
1

|Sc|
− 1

|R|

)
log(1/δ)+M1

√
d

(
1

|Sc|
− 1

|R|

)
log(1/δ),

yielding ∑
r∈Sc

∥∥∥ξ̄R− ξr
∥∥∥≤√|Sc|ν+

√
|Sc|M3

(
1

|Sc|
− 1

|R|

)1/4

(log(1/δ))
1/4

, (17)

with M3 :=M2 +M1

√
d.

Combining (16) and (17), we obtain that, with probability 1− 3δ over the sample S,∑
r∈Sc

∣∣∣q(z, ξ̄S
,dr)− q(z,ξr,dr)

∣∣∣≤L
√
|Sc|ν+E

where E is a bootstrap error term equal to

E =L|Sc|M1

√
d

(
1

|S|
− 1

|R|

)
log(1/δ)+

√
|Sc|M3L

(
1

|Sc|
− 1

|R|

)1/4

(log(1/δ))
1/4

≤
√
|Sc|M3L

[√
|R|
(

1

|S|
− 1

|R|

)1/2

+

(
1

|Sc|
− 1

|R|

)1/4
]√

log(1/δ),

because M3 ≥M1

√
d and for δ such that log(1/δ)> 1.

To conclude the proof, let us observe that M3 =M2 +M1

√
d and d= 2|E|+ |N |× |K|. □

Appendix B: Effect of Regularizer γ

The regularizing constant γ plays a crucial role in the performance of the algorithm. An appropriate value of

γ is essential for achieving optimal convergence and solution quality. When set too high, the regularizing term

has minimal impact on the objective function, making the problem more challenging to solve. Conversely,

when set too low, the regularizing term dominates the objective function, resulting in easier but less accurate

solutions.

To illustrate this, Figure B.1 presents the results of our experiments on R instances with 160 scenarios,

where we vary the value of γ. It displays the average runtime and the objective value for each value of γ

to provide insights on how the choice of γ affects the solution quality and computational performance of

the algorithm. In the experimental results presented in Section 4, we selected an appropriate value for the

regularizing constant γ in order to strike a balance between the two extremes of the spectrum, as depicted

in Figure B.1.
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Figure B.1 Effect of Regularizer on the Algorithm’s Performance.

Appendix C: Additional Numerical Results

In this section, we present additional numerical results that complement the results in Section 4.

C.1. Comparison of Different Stochastic Cutting-Plane Algorithms

In Section 4.2, we benchmark the performance of different variants of the stochastic cutting plane algorithm

(namely the multi-, single-, and k-cut algorithms) with different warm-starting strategies at the root node.

Recall that we terminate our algorithm after 3,600 seconds or as soon as it achieves an optimality gap of

with confidence level α= 0.90.

Accordingly, the average computational time reported in Table 2 are capped at 3,600 seconds whenever

the algorithm does not converge within this time limit. To appreciate this censoring issue, Table C.1 presents

the fraction of instances solved to ϵ-optimality for each combination of algorithm and warm-start strategy.

Finally, we explore the behavior of the stochastic k-cut algorithm when we vary the number of epigraph

variables k. We vary the ratio k
|R | and report the average runtime and optimality gap in Tables C.2 and C.3

respectively. We observe a trade-off between computational time and optimality gap: A smaller number of

clusters generally results in faster computations, while a larger value for k leads to a smaller optimality gap.

To find a compromise between computation speed and optimality, we opt for k
|R| = 0.5 in our experiments

in Section 4.
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Table C.1 Percentage (in %) of instances for which the algorithm converged within the time limit (3,600

seconds), for the multi-, single-, and k-cut stochastic cutting plane algorithms, with different warm-start

strategies at the root node. Metrics are averaged across instances with the same number of nodes |N |.

Multi-Cut Single-Cut k-Cut

|N | None Multi Single None Multi Single None Multi Single

10 100.00 100.00 80.00 100.00 100.00 100.00 60.00 100.00 100.0

30 46.67 66.67 60.00 33.33 33.33 33.33 40.00 66.67 40.0

50 60.00 66.67 66.67 33.33 33.33 66.67 53.33 66.67 60.0

70 40.00 50.00 50.00 40.00 40.00 45.00 50.00 50.00 50.0

100 45.00 50.00 50.00 35.00 40.00 45.00 50.00 50.00 50.0

150 30.00 50.00 50.00 45.00 35.00 55.00 50.00 50.00 50.0

200 45.00 50.00 45.00 50.00 50.00 50.00 45.00 50.00 50.0

Table C.2 Runtime (in seconds) of the k-cut stochastic cutting plane algorithm, with different fraction of

clusters per number of scenarios, k
∥R∥ . Metrics are averaged across instances with the same number of nodes |N |.

k-cut with k
∥R∥ clusters

|N | 0.001 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 63.26 67.54 72.17 82.25 96.80 119.31 86.34 152.75 132.56 187.49 180.51 191.19

30 2868.71 2759.48 2800.97 2807.02 2747.69 2745.31 2820.14 3220.98 3104.16 3142.78 3135.66 3531.56

50 2545.08 2656.20 2693.95 2630.63 2691.93 2722.20 2783.76 3049.77 3131.54 3435.85 3420.01 3719.07

70 2885.32 2827.23 2710.32 2776.65 2950.30 3091.63 3035.84 3374.40 3572.29 3673.15 3802.27 3841.61

100 3298.48 3121.10 3041.21 3138.44 3270.07 3314.94 3534.80 3682.95 3701.85 3912.04 3995.43 3997.15

150 3693.06 3357.10 3282.66 3288.66 3465.72 3602.85 3687.58 3979.59 4096.43 4129.80 4192.95 4189.60

200 3783.36 3142.35 3240.84 3230.62 3475.07 3654.78 3784.40 3779.90 4009.51 4080.76 4086.29 4047.38

Table C.3 Gap (in %) of the k-cut stochastic cutting plane algorithm, with different fraction of clusters per

number of scenarios, k
∥R∥ . Metrics are averaged across instances with the same number of nodes |N |.

k-cut with k
∥R∥ clusters

|N | 0.001 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 0.88 0.64 0.33 0.25 0.83 1.03 0.66 0.34 0.38 0.56 0.25 0.45

30 8.03 7.34 7.93 7.91 7.85 6.95 6.77 6.66 6.13 5.78 5.79 5.49

50 5.20 5.75 4.80 4.42 4.16 3.74 3.70 3.24 2.95 3.79 2.66 2.58

70 5.45 5.58 4.79 5.43 4.31 3.87 3.56 3.98 2.97 2.76 2.59 3.56

100 6.33 5.73 5.82 5.15 5.52 3.87 3.08 2.52 2.70 2.36 2.17 4.17

150 5.99 8.46 7.12 4.67 5.45 5.13 3.54 3.95 3.97 5.02 2.08 2.96

200 8.70 3.35 6.18 4.05 2.82 3.62 2.72 5.32 3.16 6.75 5.48 6.25

C.2. Benchmarking Scalability on Synthetic Instances

To verify the correctness of our implementation, we use the smallest instances to verify that all methods

terminate with the same optimal solution. To this end, Table C.4 reports the optimality gap (in %) and
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final objective value for each algorithm, averaged over instances with the same number of nodes |N | and for

which Gurobi converged to within 5% of optimality.

Table C.4 Optimality gap (in %) and final objective value for each algorithm, averaged over synthetic

instances with the same number of nodes |N |, where Gurobi converged to within 5% of optimality.

Gurobi with (1) Deterministic Stochastic

|N | Gap Objective Gap Objective Gap Objective

10 0.00 10,502.04 0.07 10,502.05 0.23 10,509.23

30 2.33 153,128.18 0.95 152,705.24 1.94 152,824.44

50 2.09 427,137.66 0.94 426,360.59 1.49 426,424.82

70 2.01 738,840.46 0.75 733,340.07 0.82 731,619.70

Figure C.1 illustrates the scalability of our single-cut method with respect to the number of scenarios and

commodities and depicts the optimality gap achieved depending on the total number of nodes |N | (horizontal

axis), the number of scenarios |R|, and the number of commodities |K|. We observe that the complexity of

the problem (measured in terms of the final optimality gap) increases with all three problem dimensions,

with the number of commodities and nodes having the most noticeable impact.
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Figure C.1 Optimality gaps achieved by the single-cut stochastic cutting plane algorithm on all synthetic

instances. For each combination of number of nodes |N |, number of commodities |K|, and number

of scenarios |R|, results are averaged across 3 random instances.
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C.3. Benchmarking on the Instances from Crainic et al. (2000)

First, we provide further information on how we generate stochastic instances with a specified number of

scenarios |R| from the R instances of Crainic et al. (2000). As in Crainic et al. (2021b, 2016), Boland et al.

(2016), we use the instances from classes 4 to 10 (9 instances per class), yielding 63 different instances (see

Table 1 in Crainic et al. 2016, for a description of the instance classes). For each instance, we consider the

same set of nodes, arcs, and commodities. We take the same arc capacities, edge construction costs, and flow

transportation costs as those provided in the instances. For each commodity, the instance provides a vector

of demand which we refer to as the nominal scenario and denote b̂. We generate scenarios by randomly

inflating/deflating the nominal scenario, i.e., we sample b∼ U(0.5,1.2) · b̂. However, some of these demand

scenarios might be infeasible because of arc capacity constraints. So, we only keep randomly generated

scenarios that are feasible. We do so until we generate the desired number of scenarios, |R|.
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