
The Online Shortest Path Problem: Learning Travel
Times Using A Multi-Armed Bandit Framework

Tomás Lagos1, Ramón Auad2, and Felipe Lagos3

1Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
2Department of Industrial Engineering, Universidad Católica del Norte, Antofagasta, Chile

3Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago de Chile 7941169,
Chile

Abstract

In the age of e-commerce, many logistic companies must operate in large road net-
works without accurate knowledge of travel times for their specific fleet of vehicles.
Moreover, millions of dollars are spent on routing services that do not accurately cap-
ture the specific characteristics of the companies’ drivers and the types of vehicles they
must use. In this work, we consider a logistic operator that has limited information
about travel times in a network, and who seeks to find the optimal expected shortest
path of origin-destination pairs. We model this problem as an Online Shortest Path
Problem, common to many last mile routing settings: given a graph whose arcs’ travel
times are stochastic and follow an unknown distribution, the planner seeks to find a
vehicle route of minimum travel time from an origin to a destination. We assume the
planner progressively collects information on the travel conditions as the drivers keep
serving requests. Inspired by combinatorial multi-armed bandit and Kriging litera-
ture, we propose three methods with different characteristics that effectively learn the
optimal shortest path and illustrate the practical advantages of incorporating spatial
correlation in the learning process. Our approach balances the trade-off of exploration
(better estimates for unexplored arcs) vs exploitation (executing the minimum ex-
pected time path) by using the Thompson Sampling algorithm. In each iteration, our
algorithm executes the path minimizing the expected time with data from a posterior
distribution of the arcs’ speeds. We carry out a computational study comprising two
settings: a set of four artificial instances and a real-life case study. The case study uses
empirical data of taxis in the 17km-radius area of the center of Beijing, completely en-
veloping Beijing’s “5th Ring Road”. In both settings, we observe that our algorithms
efficiently and effectively balance the exploration-exploitation trade-off.

Keywords: Last-Mile Logistics; Machine Learning; Multi-Armed Bandits; Thompson Sam-
pling; Online Shortest Path; Kriging.

1

1 Introduction

Urban logistics continuously and deeply impacts our society (Cattaruzza et al. 2017). Over
the past decade, factors such as the steady population growth, the importance of fast trans-
portation in supply chains, and the interest in sustainability have reshaped how logistics
works; moreover, the advent of the Internet and the accelerated adoption of mobile devices
have driven new trends, such as the boom of e-commerce and the sharing economy, in so
allowing the creation of new business models, e.g., ultra-fast parcel delivery, ride-hailing, and
meal delivery (Savelsbergh and Van Woensel 2016, Lafkihi et al. 2019, Al Mashalah et al.
2022).

Specifically, e-commerce sales have experienced double-digit yearly growth over the past
years, with an explosive adoption boost in 2020 due to the COVID-19 pandemic (Insider
Intelligence 2021, Euromonitor 2021). Between 2018 and 2020, US grocery e-commerce
sales percentage relative to US total grocery sales has grown from 2.7% to 10.2%, and it is
projected to reach 21.5% by 2025, estimated in $250 billion, i.e., 60% over pre-pandemic
estimates (Mercatus and Incisiv 2021); moreover, worldwide retail e-commerce sales have
increased from $1.3 trillion in 2014 to over $5.5 trillion in 2022, with sales expectations of
$8.1 trillion in 2026 (Statista 2022).

That exist considerable potential gains in e-commerce is beyond doubt. Yet, the sustained
rise in adoption of e-commerce, the steadily increasing service expectations from customers,
and the stiff competition between logistics service providers lead to new and complex logistics
challenges (Savelsbergh and Van Woensel 2016). Many of these challenges are encountered
in last-mile delivery, i.e., the last segment of the logistics service where goods are delivered
at the customer location; last-mile logistics is typically considered to be the least efficient
and most expensive portion of the supply chain, with associated costs amounting up to 60%
of the total logistics costs (Vanelslander et al. 2013, Lafkihi et al. 2019). Providing a fast,
reliable, and efficient service are among the key factors for e-commerce success, and attaining
these greatly depends on how transportation decisions are made (Mangiaracina et al. 2019).

In e-commerce logistics, customers typically place requests ahead of time and select a
delivery location, and a decision maker coordinates the preparation and delivery processes.
As requests become ready for dispatch, the decision maker decides which routes to follow
to complete their deliveries. These decisions are executed using a fleet of drivers, which
may be composed of a combination of direct employees and independent contractors. One
of the challenges encountered when making these decisions is incorporating travel time un-
certainty. Network travel times can be highly variable (e.g., due to traffic congestion, and
road closures); and failing at accounting for these effects may translate into poor routing
decisions and unreliable service quality, potentially deteriorating the business reputation in
the long-term. Conversely, travel times information allows decision makers to make informed
routing decisions, which ultimately can provide substantial benefits to their business, such
as increased drivers’ productivity and reduced fuel consumption by selecting shorter routes,
and faster and more reliable service for customers by choosing less congested routes (Szeto
et al. 2013, Manufacturing and Logistics IT 2020, Kou et al. 2022).

Although in practice there exist multiple navigation tools that can provide real-time

2

travel time estimations, these solutions come with critical limitations for companies that
have specialized operations. First, they provide time estimations that are primarily based on
historical data on conventional users whose driving behaviors very likely differ significantly
from a company’s specific operators. Second, these solutions are typically designed for
standard vehicles (e.g., cars) whose eligible roads and travel times differ from more specialized
vehicles (e.g., , cars may swiftly traverse through a passageway that a delivery truck cannot
due to size or weight restrictions). Third, these solutions do not scale well with the size of
the system (e.g., the number of drivers and the number of requests) as most of them are
not designed to construct efficient multi-stop routes but are designed to calculate simple
origin-destination (O-D) routes. Lastly, most specialized solutions are commercial and their
consistent usage may raise considerable operational costs, especially as business operations
grow (Fu et al. 2020, Manufacturing and Logistics IT 2020).

Motivated by this, in this paper we propose a learning-based framework that allows
transportation companies to learn over time which are the best routes to traverse as they
operate their own fleet. We consider a setting where the decision maker coordinates the
operations of a fleet of drivers across a transportation network and has limited or no initial
information about the travel times of the network’s arcs; as they make routing decisions
and collect travel time information when serving customer requests, they can improve their
predictions of the network travel conditions. In the literature, this setting is known as the
Online Shortest Path Problem (OSPP), a problem common to many last mile routing set-
tings: given a time period (e.g., a day of operations) and a graph whose arcs’ travel times
are stochastic, the decision maker must find a vehicle route from a source to a destination
to minimize the total travel time. The travel times distribution parameters are unknown
to the decision maker, but they have the ability to observe the realized travel times when
one of its vehicles completes the route and use this gained knowledge to update the infor-
mation about the graph’s travel times. At every time period, the decision maker faces the
well-known “exploration-exploitation trade-off”: if the decision maker only considers the
information obtained up to the current time period and executes the route with the short-
est expected time, they might miss alternative, not yet-visited routes with shorter expected
travel time; if instead, they explore new routes too frequently, the decision maker learns the
distribution parameters but the routing operation becomes inefficient due to the possibility
of finding sub-optimal alternative routes. We formulate this problem as a Combinatorial
Multi-Armed Bandit (CMAB) problem (Cesa-Bianchi and Lugosi 2012), an extension of
the more traditional Multi-Armed Bandit (MAB) setting (Robbins 1952). To address this
trade-off, our framework adapts Thompson Sampling (Thompson 1933), an efficient machine
learning algorithm that effectively balances investment to acquire new information that may
improve future performance, and exploitation of current knowledge to maximize immediate
performance (Chapelle and Li 2011). Moreover, we propose two extensions that leverage the
concept of Kriging (Krige 1951) to incorporate spatial correlation between the travel time
of nearby arcs, a phenomenon that is common in practice but generally disregarded in the
literature to facilitate analysis. We conduct an exhaustive experimental study comprising
synthetic and real-world data to empirically prove the effectiveness of our methods in finding

3

travel time-efficient paths.
Overall, the proposed approach offers multiple practical advantages, such as (i) except

for the cost of exploring the network, it is cost-free for the retailer; (ii) estimations are based
purely on data specific to its own fleet of drivers; (iii) its accuracy improves as the retailer
keeps operating its delivery network and gathers new data; and (iv) it offers adaptability to
potential changes in the travel conditions throughout the network. Furthermore, this work
adds to the developing line of research that combines machine learning with logistics and
illustrates the potential of how learning methods can be leveraged to effectively solve more
complex logistics problems.

We summarize the contributions of this paper as follows:

• To the best of our knowledge, we present the first study of the OSPP in a setting that
considers a general network topology, and without assumptions on the true distribution
of rewards.

• We propose an algorithm that adapts Thompson Sampling to iteratively learn cost-
effective paths across an operating network.

• We further propose two algorithms that build upon our first, which combine Thompson
Sampling and Kriging to incorporate the spatial correlation between the travel times
of close-by arcs, effectively speeding up the learning process.

• We demonstrate the capabilities of our methods by conducting a set of experiments
that compare their performance against a benchmark policy inspired by the existing
literature; and analyze the sensitivity of the performance of our methods with respect
to the selection of their parameters.

The rest of the paper is organized as follows. Section 2 reviews existing literature per-
tinent to our work. Section 3 provides a mathematical definition of the OSPP and its
corresponding CMAB formulation. Section 4 presents a Thompson Sampling-based learn-
ing algorithm to solve the OSPP, and proposes two extensions to handle the OSPP with
spatially-correlated travel times. Section 5 presents an experimental study obtained from
simulations using synthetic and real-world data. Section 6 summarizes the findings of the
paper and proposes directions for future research.

2 Literature Review

The classical MAB problem (Robbins 1952, Lai et al. 1985) consists of a sequential decision
problem where at each decision epoch (typically referred to as rounds), a decision maker
selects an arm (decision) to pull from a pool of available arms. Based on the selected arm,
the decision maker receives a corresponding reward whose distribution is unknown. The
evaluation of the performance of a given policy is typically done by means of its pseudo-
regret, defined as the difference between the expected total reward obtained from following
the policy, and the optimal expected reward attainable if all arms’ reward distribution were

4

known by the decision maker. Solving a MAB problem consists of finding an optimal pol-
icy that minimizes the regret. The MAB problems have gained considerable attention over
the last few years, with recent references describing in detail the problem, its variants and
algorithms, such as the books Lattimore and Szepesvári (2020), Slivkins (2019) and the
monograph Bubeck and Cesa-Bianchi (2012). This problem has arisen in multiple domains
(Bouneffouf et al. 2020), such as online advertising (Chakrabarti et al. 2008), recommenda-
tion services (Zhou et al. 2017), revenue management (Ferreira et al. 2018), and even, in
Artificial Intelligence applications such as AlphaGo (Silver et al. 2016).

One of the variants of the MAB is the CMAB problem (Chen et al. 2013, Cesa-Bianchi
and Lugosi 2012). In contrast to classical MAB problems, in CMAB settings the decision
maker pulls, at each round, a subset of the available arms (i.e., in the literature this subset is
called super-arm). The subsets that can be selected at each round are commonly required to
satisfy a set of constraints, e.g., the set of selected arms cannot exceed a given budget (Nuara
et al. 2022), and the goal is to determine the optimal policy that minimizes the regret. The
OSPP corresponds to a CMAB problem (Chen et al. 2013), wherein the super-arm selected
at every round consists of a set of arcs in the network that describe a path connecting a
given O-D pair, and the associated reward corresponds to the length of the path.

The OSPP has been studied in different contexts. In the transportation domain, it has
shown up when solving reliable routing in stochastic network problems (Khani 2019). In
this problem, an agent must travel from an origin to a destination using a routing policy
with the minimum expected time on a graph. Information about travel times is revealed as
the agent travels along the arcs, and authors solve it using an online shortest path model.
This work differs from ours in that the path is dynamically adapted as it is executed and in
that there is no learning of the distribution of random variables. Instead, the objective is
to find a policy for deciding how to update the routing plan. The OSPP we studied is more
similar to the problem studied in Talebi et al. (2017); however, in this work, the routing
problem is not for vehicles, but for packets transmission in wireless networks, where the
packets are either transmitted or not (Bernoulli distributions) and where the challenge is
to learn the arcs probabilities for packets transmission. The authors consider a stochastic
semi-bandit combinatorial setting for the problem. Another recent work that is similar to
ours is Chen et al. (2020), in which it is studied the problem of routing electric vehicles
that must travel from an origin to a destination. The energy consumption of the vehicles is
learned, considering a semi-bandit setting using an Upper Confidence Bound (UCB) policy.
Zou et al. (2014), Liu and Zhao (2012) also study the OSPP for packet transmission in
wireless networks. To the best of our knowledge, the OSPP for vehicle routing minimizing
travel times has not been studied.

The most widely adopted approaches to solve MAB problems include the UCB (Auer
et al. 2002) and Thompson Sampling (Thompson 1933). UCB-based algorithms can be very
effective with proper selection of UCB, yet their performance is highly dependent on these
bounds, and obtaining high-quality bounds without a closed-form posterior distribution can
be computationally expensive (Russo and Van Roy 2014). By contrast, Thompson Sampling-
based algorithms in general admit an efficient and straightforward implementation, provide

5

theoretical performance guarantees comparable to the UCB approach (Kaufmann et al. 2012,
Agrawal and Goyal 2013), and often attain better empirical results (Chapelle and Li 2011).
Due to these advantages, in this work, we adapt the combinatorial variant of Thompson
Sampling to a shortest path setting to effectively learn travel times in a given transportation
network. To solve CMAB problems, authors have proposed extensions of the UCB and
Thompson Sampling methods from traditional MAB literature, namely Combinatorial UCB
(Chen et al. 2013) and Combinatorial Thompson Sampling (Komiyama et al. 2015).

A distinctive characteristic of the OSPP is the fact that unlike most of the MAB settings
found in the literature, travel times from arcs (i.e., rewards from arms) that are close in
proximity can be correlated, e.g., due to traffic. To model this spatial element, we construct
learning algorithms borrowing ideas from the Kriging literature (Krige 1951). Kriging is a
spatial prediction method that seeks to infer (or krige) unknown values based on observations
at nearby locations (Cressie 1990, 2015, Cressie and Johannesson 2008). Correspondingly,
we formulate the OSPP as a Gaussian Process (GP) where rewards of arcs follow normal
distributions that are spatially correlated with nearby arcs, and progressively learn the un-
known parameters of arcs’ distributions as we traverse paths across the network. Exploiting
the spatial correlations allows us to deduce information about unfrequented arcs based on
the visited paths and improve subsequent routing decisions, ultimately making the overall
learning process more sample-efficient.

GP models are in general a powerful tool to model uncertainty over functions and are
broadly used in the MAB literature (Rasmussen and Williams 2005, Srinivas et al. 2009,
Hoffman et al. 2011, Chowdhury and Gopalan 2017). For example, in Nuara et al. (2022)
the authors study the pay-per-click advertising with budget constraints problem over multiple
channels, and formulate the problem as a combinatorial semi-bandit problem, in which the
dependency of the number of clicks on the bid and daily budget is captured by a Gaussian
process. Upper bounds for the regret and experimental evaluation of the algorithm are
provided. To the best of our knowledge, algorithms combining a Kriging updating approach
with Thompson Sampling have not been proposed and the posterior distribution updating
strategies of our algorithms has not been studied.

Random travel times are usually considered in vehicle routing problems (Toth and Vigo
2014). In general, probability distributions with a positive skew and long tails are assumed,
such as the Log-Normal, Gamma, Weibull, and Burr distributions (Ulmer 2017, Susilawati
et al. 2013). The Log-Normal distribution is considered for different vehicle routing settings,
such as routing on urban corridors or under congestion (Gómez et al. 2016), and it has
been established that it is a distribution that accurately models travel times (Lecluyse et al.
2009, Chen et al. 2018, Srinivasan et al. 2014): it reflects that there is a minimum time
required to cover the distance, after which the probability increases rapidly to a maximum,
and then it decreases slowly with a long tail. Other studies supporting this distribution
include Kharoufeh and Gautam (2004), Taniguchi et al. (2001).

6

3 Problem Formulation

This section formally defines the OSPP. We first provide a mathematical description of the
OSPP setting and introduce necessary notation, and then formulate the OSPP as a CMAB
problem.

3.1 Online Shortest Path Formulation

Let G be a connected and directed network with V nodes, indexed by [V] := {1, . . . , V }, and
arcs indexed by k ∈ [A] := {1, . . . , A}. The planning horizon is T ∈ Z+, with time periods
t ∈ [T] := {1, . . . , T}. At each time t ∈ [T], a decision maker requires to travel from an origin
location ot ∈ [V] to a destination dt ∈ [V], for which they select a simple path in the network
Pt connecting both nodes. As a consequence of selecting path Pt, the decision maker incurs
a (negative) reward equivalent to the total travel time required to traverse through the arcs
of Pt at time t ∈ [T]. The goal of the decision maker at every time period t ∈ [T] is to follow
the path from ot to dt of minimum expected travel time. Such a path can in principle be
determined by solving a standard shortest path problem. Let µk be the true expected travel
time of arc k ∈ [A], and let µ := (µk)k∈[A] be the vector of expected travel times of arcs [A];
if wk denotes a binary decision variable that takes the value 1 if and only if arc k ∈ Pt ⊆ [A],
and δ−v , δ

+
v ⊆ [A] are the sets of arcs inbound and outbound to node v ∈ [V], respectively,

then the shortest path optimization problem can be formulated as follows.

SP(ot, dt, µ) := min
∑
k∈[A]

µkwk (1a)

s.t.
∑
k∈δ+ot

wk = 1 (1b)

∑
k∈δ−dt

wk = 1 (1c)

∑
k∈δ+v

wk −
∑
k∈δ−v

wk = 0 ∀v ∈ [V] \ {ot, dt} (1d)

wk ∈ {0, 1} ∀k ∈ [A] (1e)

Objective (1a) corresponds to the expected total travel time of the path selected by the
decision maker at time t, which is modeled as the sum of the expected travel times µk, k ∈ [A],
associated with each of the arcs in the path. Constraints (1b) and (1c) require that the path
chosen starts at origin ot and ends at destination dt, respectively, while Constraints (1d)
impose flow conservation at every node visited by the path. Finally, Constraints (1e) specify
the binary nature of each decision variable wk, k ∈ [A]. This problem can be efficiently solved
using linear programming or dynamic programming, e.g., Dijkstra’s algorithm (Dijkstra
1959).

7

3.2 Formulation as a CMAB Problem

In practice, however, the decision maker does not have access to either the expectation or the
realization of the travel times across the different arcs of G at each period, instead having
to estimate them online. Achieving this requires that the decision maker faces the well-
known exploration-exploitation dilemma: if they only consider the information obtained up
to the current time period and execute the route with the shortest estimated expected time,
then they might miss alternative routes whose expected times are better; if instead they
explore new routes too frequently, they may learn more about the travel times distribution,
albeit the routing operation may become inefficient. Hence, we formulate the OSPP as a
CMAB problem. The word “combinatorial” references the fact that in the CMAB setting,
the decision maker sequentially selects from a set of available options or arms, a subset or
superarm that satisfies some combinatorial constraints. More precisely, we study a “semi-
bandit” setting where once a superarm is selected, the decision maker observes only the
payoffs corresponding to the arms contained in the selected superarm and gets the associated
reward (as opposed to other settings where the decision maker observes the payoff of every
arm, or only the superarm’s total reward is observed after making a decision Audibert et al.
(2011)). In the OSPP, each arm corresponds to an arc of the network, and at each time
t ∈ [T], a superarm consists of a set of arcs describing a path from the origin ot to the
destination dt. The payoff of every arc is given by its travel time realization, and the reward
of a path is the sum of the payoffs of the arcs defining it.

For t ∈ [T], let Pt be the set of all simple directed paths connecting ot to dt. The
decision maker learns over time which are the most efficient arcs to travel by choosing, at
each period t ∈ [T], a simple path (superarm) Pt ∈ Pt. By choosing path Pt at time t ∈ [T],
the decision maker obtains a (negative) reward equivalent to the total travel time incurred
when traversing the arcs in Pt. We denote the random variable corresponding to the travel
time of arc k ∈ [A] at time t ∈ [T] by X t

k, and the vector of random variables corresponding
to the travel time of the arcs in [A] by X t := (X t

k)k∈[A]. Consequently, the negative reward of
selecting path Pt is the random variable given by

∑
k∈p X

t
k. Furthermore, we assume that the

random travel times X t are jointly distributed with a cumulative distribution (CDF) F (x; θ),
x ∈ RA, and where θ represents a parameter vector whose true values are unknown to the
decision maker and takes values in the parameter space Θ, and with µ := E(X t) ∈ θ, ∀t ∈ [T].

To measure the quality of the decisions made by the decision maker, we compare the
average travel time of the path Pt from ot to dt selected at time t by the decision maker
against the shortest (i.e., optimal) average travel time among all the paths in Pt (provided
by a clairvoyant algorithm that has perfect knowledge of the expected travel times across
the entire network). For each time period t ∈ [T], let P ∗

t be the path that yields the optimal
average travel time; we define the marginal pseudo-regret at t as

∆t :=
∑
k∈Pt

µk −
∑
k∈P ∗

t

µk (2)

8

and the total pseudo-regret as

Rt :=
∑
t′∈[t]

∆t′ (3)

Lastly, we define the time-average pseudo-regret at time t ∈ [T] as the average marginal
regret over all time periods up to t, i.e., Rt

t
. The goal is to design an online routing policy

that minimizes the time-average pseudo-regret at the last time period, RT

T
.

4 Thompson Sampling-based Shortest Path Learning

Algorithm

In this section, we propose a Thompson Sampling-based learning algorithm to solve the
OSPP. Our algorithm combines Thompson Sampling with a standard shortest path opti-
mization routine that determines the best path (i.e., the best action) for a realization of the
mean travel times of the arcs in A. The key idea behind our algorithm is that the information
collected when following sample-optimal paths at each time period is later used to update
the posterior distribution of travel times, thereby improving future decisions. Subsequently,
we propose two extensions to the algorithm that incorporates spatial correlation between the
travel times of nearby arcs, by incorporating ideas from Kriging; as we will see in Section
5, these extensions can significantly speed up the learning process, improving the algorithm
performance.

4.1 General Framework

For period t ∈ [T], let θ̃ be a random travel time parameter vector sampled from the distribu-
tion Θt at time t. We denote the mean travel time of arc k ∈ [A] under distribution parameter
vector θ̃ by Xk(θ̃), and define the corresponding vector of means X(θ̃) := (Xk(θ̃))k∈[A]. Addi-
tionally, we denote the true realization of the travel time across arc k ∈ [A] at time t ∈ [T] by
xt
k, and define the history of observations up to time period t as Ht := {(Pt′ , {xt′

k }k∈Pt′
)}t′∈[t].

We propose a Thompson Sampling-based learning procedure (in the sequel referred to as
the main algorithm) to progressively learn the travel times across the network. The main
algorithm first initializes a parameter vector θ̃ sampled from the prior distribution Θ0, and
then at each time period t ∈ [T] performs an iteration comprising the following four steps:

(i) Compute the mean travel times with respect to θ̃, Xk(θ̃), for each arc k ∈ [A].

(ii) Select path Pt from origin ot to destination dt by solving the shortest path problem
SP(ot, dt, X(θ̃)).

(iii) Observe travel times {xt
k}k∈Pt and update history of observations Ht by incorporating

the newly collected information {(Pt, {xt
k}k∈Pt)}.

(iv) Given Ht, compute the posterior distribution Θt, and sample a parameter vector θ̃
from Θt.

9

Steps (i), (iii), and (iv) are similar to the standard Thompson Sampling algorithm used
for traditional MAB problems. In turn, step (ii) enforces that the selected super-arm defines
a simple directed path connecting ot with dt. This is done by solving shortest path problem
SP(ot, dt, X(θ̃)), which finds a (ot, dt)-path of minimum mean travel time with respect to
sampled parameter vector θ̃; given an optimal solution w∗ ∈ {0, 1}A for SP(ot, dt, X(θ̃)), the
decision maker selects path Pt = {k ∈ [A] : w∗

k = 1}. Then in step (iii) the decision maker
observes the realized travel times xt

k, k ∈ Pt, and stores these observations in the history
Ht. Finally, step (iv) updates the posterior distribution Θt based on Ht, and samples a new
parameter vector θ̃ from the updated posterior distribution Θt for computing X(θ̃) at the
next iteration. Step (iv) is a key part of the algorithm since as the decision maker continues
to visit different arcs, the posterior distribution gradually becomes more informative of travel
times across the network, thereby improving the quality of the paths computed in step (ii)
at future iterations.

4.2 Uncertainty Modeling and Parameters Updating

We devote the rest of this section to describe in detail step (iv). In particular, we discuss how
we model uncertainty, and how we use new observations to update the probabilistic models,
and then present two mechanisms that incorporate spatial correlation between nearby arcs;
as we will see, this can significantly speed up the learning of more efficient paths across the
network.

4.2.1 Random Variables Distribution

Following results from the transportation literature on how to model the distribution of
travel times (Lecluyse et al. 2009, Srinivasan et al. 2014, Chen et al. 2018), we opt to model
the travel time of each arc as a Log-Normal random variable. Although we are interested
in ultimately finding paths that yield the shortest travel time, learning the distribution of
travel time presents some practical challenges; specifying prior information about the travel
times from each arc (i.e., an initial “guess” of the parameters of its distribution) is not
trivial as setting an acceptable prior value for the variance of its travel time might depend
on arc-specific attributes unknown to the decision maker. To avoid this issue, we choose
to instead focus the learning process on random variables related to the travel speed across
arcs, as for these the decision maker can readily initialize a common prior value for all
arcs. Modeling travel time using Log-Normal distributions allows us to easily relate travel
speed with travel times, making it possible to rely on observed travel times to update speed
estimates: if ℓk > 0 is the length of arc k ∈ [A] and Xk ∼ LogN(µtravel

k , λk) represents the
random travel time across k, then the random travel speed across k, Sk, satisfies Sk :=

ℓk
Xk
∼

LogN(−µtravel
k + ln(ℓk), λk), namely the travel speed can also be modeled as a Log-Normal

random variable. Furthermore, Log-Normal random variables have the useful property of
being related to normal distribution; if Z ∼ LogN(µZ , λZ), then ln(Z) ∼ N (µZ , λZ). This
allows us to exploit properties of normal random variables during the learning process,
thereby making it more efficient as we will later show.

10

Consequently, the random variables we consider in the learning process are the arcs’
log-speeds, i.e., Yk := ln(Sk) ∼ N (µk, λk), ∀k ∈ [A] (where µk := −µtravel

k + ln(ℓk)), and the
parameters to be learned are θ = (µ, λ), with λ := (λk)k∈[A]. For simplicity, in the sequel we
assume the decision maker directly observes log-speeds when traversing an arc, noting that
the log-speed of arc k ∈ [A] observed at time t ∈ [T], ytk, can be easily computed from the

corresponding observed travel time xt
k as ytk = ln

(
ℓk
xt
k

)
.

4.2.2 Independent Gaussian Model (IGM)

Let the set of random log-speeds {Yk}k∈[A] be a real-value spatial random process, where we
first assume that random variables Yk are independent, and each has unknown mean µk and
variance λk. To learn these parameters, we derive prior distributions for each and propose
a Bayesian framework that updates them as new realizations of Yk become available, for all
k ∈ [A].

Due to the assumption that arcs are independent, we present the Bayesian framework
for a generic arc k ∈ [A]. Let Yk be a Normal distributed random variable such that
Yk ∼ N (µk, λk). For time period t ∈ [T], let Tk,t ⊆ [t] be the set of time periods up to (and
including) t such that arc k was part of the corresponding selected path, i.e., Tk,t := {t′ ∈
[t] : k ∈ Pt′}, and let {yt′k }t′∈Tk,t

be the observed realizations of log-speed Yk up to time t. We
assume the variance λk follows an Inverse-Gamma prior distribution, i.e., 1

λk
∼ Ga(α0

k, β
0
k),

with known α0
k > 1 and β0

k > 0. We also assume a prior Normal distribution for µk, i.e.,
µk ∼ N (η0k,

λk

κ0
k
), with κ0

k > 0 a known parameter. Note that the initial values for the mean

and variance of Yk are provided by, respectively, parameters η0k and
β0
k

α0
k−1

.

It follows that for each arc k ∈ [A], the prior distribution of (µk, λk) is a Normal-Inverse
Gamma distribution, i.e., µk, λk|η0k, κ0

k, α
0
k, β

0
k ∼ Θ0

k := NIG(η0k, κ
0
k, α

0
k, β

0
k). Hence, for each

iteration t ∈ [T] of the main algorithm (i.e., after observing t paths), the posterior distribu-
tion of (µk, λk) is given by

p(µk, λk|{yt
′

k }t′∈Tk,t
, η0k,κ

0
k, α

0
k, β

0
k) = p({yt′k }t′∈Tk,t

|µk, λk) p(µk, λk|η0k, κ0
k, α

0
k, β

0
k)

= N ({yt′k }t′∈Tk,t
|µk, λk) N

(
µk

∣∣∣η0k, λk

κ0
k

)
IGa

(
λk|α0

k, β
0
k

)
∝
(

1

λk

)αt
k+

3
2

exp

(
− 1

2λk

(
2βt

k + κt
k(µk − ηtk)

2
)) (4)

with

ηtk =
κ0
kη

0
k +

∑
t′∈Tk,t

yt
′

k

κ0
k + |Tk,t|

κt
k = κ0

k + |Tk,t|
αt
k = α0

k +
|Tk,t|
2

βt
k = β0

k +
1
2

∑
t′∈Tk,t

(yt
′

k − ȳk)
2 +

κ0
k|Tk,t|(η0k − ȳtk)

2

2(κ0
k + |Tk,t|)

(5)

11

and ȳtk =
1

|Tk,t|
∑

t′∈Tk,t
yt

′

k if Tk,t ̸= ∅, else 0. Subsequently,

µk, λk|{yt
′

k }t′∈Tk,t
, η0k, κ

0
k, α

0
k, β

0
k ∼ Θt

k := NIG(ηtk, κ
t
k, α

t
kβ

t
k), (6)

Algorithm 1 describes in detail how the main algorithm updates the posterior distribution of
(µ, λ) and how it samples parameters from it at a specific iteration t ∈ [T] (i.e., , step (iv)).
For each arc k ∈ [A], Algorithm 1 first updates the set of time periods at which k has been
visited and the corresponding average of observed log-speed (lines 3 - 5), then computes the
updated parameters for the posterior distribution by evaluating the set of Equations (5), and
finally samples a mean and variance for the arcs’ log-speed (lines 6 and 7; we provide the
derivation of Equations (4) - (6) in Appendix A). Note that in Algorithm 1 (and subsequent
algorithms) we omit the time index t in the history, the vector of average log-speeds, and the
set of visiting times; the reason is that in practice, these are implemented as global variables
and are incrementally updated as new paths are observed. In the rest of the paper, we refer
to this updating and sampling approach as the Independent Gaussian Model (IGM).

Algorithm 1: Posterior Update and Parameter Sampling – IGM

Input : Time period t, set of arcs [A], history of observed paths and log-speeds
H = {(Pt′ , {yt′k }k∈Pt′

)}t′∈[t], prior distributions Θ0 := (Θ0
k)k∈[A], vector of

average observed log-speeds ȳ := (ȳk)k∈[A], sets of time periods each arc
has been visited at {Tk}k∈[A].

Output: Sampled travel time distribution parameters (µ̃, λ̃).

1 Initialize A−dimensional vectors µ̃ := (µ̃k)k∈[A], λ̃ := (λ̃k)k∈[A];
2 forall k ∈ [A] do
3 if k ∈ Pt then

4 ȳk ← |Tk|ȳk+ytk
|Tk|+1

;

5 Tk ← Tk ∪ {t};
6 Compute posterior distribution Θt

k by evaluating set of Equations (5) using
history H parameters from prior distribution Θ0

k;

7 (µ̃k, λ̃k)← Sample from posterior distribution Θt
k;

8 return (µ̃, λ̃)

4.3 Spatial Gaussian Model

Across the literature, random variables associated with arcs in a network are typically as-
sumed to be independent in order to simplify the analysis. In practice, however, vehicles
that traverse through arcs close in proximity at a given time commonly exhibit similar
speeds (e.g., heavier than usual traffic at an artery may decrease the speed of vehicles in the
artery and in nearby arcs). In this section, we incorporate this spatial effect into the travel
log-speeds distributions.

12

Note that in our setting, learning the correlation between every pair of arcs in the net-
work can become impractical: the decision maker would need to explore multiple (likely
sub-optimal) paths to determine the inter-dependencies of the arcs, ultimately incurring a
considerable total regret over the planning horizon. To keep the learning process efficient,
we assume a special structure for the correlation between arcs’ log-speeds. Particularly, we
model log-speed distributions as a spatial Gaussian process that assumes a degree of correla-
tion between each pair of arcs based on the distance between them. Then, when the decision
maker selects a path and observes the travel times (and thus log-speeds) of the associated
arcs, they can use these observations to update not only the distribution parameters of arcs
in the traversed path but also of arcs in its vicinity: for a given travel time realization,
since the random variables follow a Gaussian distribution, we can easily compute the con-
ditional distribution for the unobserved variables. Overall, the spatial Gaussian model we
propose offers two main advantages: it reduces the number of parameters to be learned (i.e.,
the inter-dependencies of arcs); and it allows indirect learning, i.e., the decision maker can
update unobserved arcs’ distribution parameters.

Let Z be a stationary Gaussian process with support in RA and with zero mean that
exhibits spatial correlation. We model the travel log-speed Yk of an arc k ∈ [A] as

Yk = µk + Zk + εerrork (7)

where µk ∈ R is a constant, Zk is a Gaussian process, and εerrork is a Normal distributed
error, εerrork ∼ N (0, σ2).

Let ck := (cxk, c
y
k) be a two-dimensional vector denoting the position of the center of arc

k ∈ [A]. To model the spatial correlation, we define ρkk′ = ∥ck−ck′∥ as the distance between
the centers of arcs k, k′ ∈ [A], and assume that variables Zk and Zk′ (and hence Yk and Yk′)
are more correlated as ρkk′ is closer to zero (and conversely, the correlation decreases as ρkk′
increases). Specifically, for each pair of arcs k, k′ ∈ [A] we denote the correlation between
random variables Yk and Yk′ by ϕkk′ , and correspondingly define it as ϕkk′ = K(ρkk′ , φ),
where φ > 0 is a spatial influence parameter that controls the effect of the distance between
two arcs’ centers on their interdependence, and K(·, ·) denotes the kernel function used to
model the correlation between arcs. Furthermore, we encode all the pairwise correlations
into a correlation matrix Φ := (ϕkk′)k∈[A],k′∈[A]. Given variances λk > 0 for each arc k ∈ [A],
we define the spatial covariance between Zk and Zk′ as

Cov(Zk, Zk′) := ϕkk′

√
λkλk′ (8)

and subsequently, define the log-speed spatial covariance matrix as

Σ := (Cov(Yk, Yk′))k∈[A],k′∈[A] = Λ
1
2ΦΛ

1
2 + σ2I (9)

where Λ = diag(λ), and I denotes the identity matrix of size A.
To incorporate spatial correlations, we slightly modify step (iv) of the main algorithm. At

each t ∈ [T], right after sampling distribution parameters (µ̃, λ̃) from posterior distribution
Θt, we apply an additional update on (µ̃, λ̃) using conditional Normal distributions (i.e.,
conditional on history Ht), based on the following theorem.

13

Theorem 1 (Murphy (2012) Theorem 4.3.1). Suppose the components of the random vector
X = (X1, X2) ∈ Rn1+n2 are jointly Gaussian, with parameters

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then the conditional posterior of X1 given X2 = x2 satisfies

X1|X2 = x2 ∼ N (µ1|2,Σ1|2)

where
µ1|2 = µ1 + Σ12Σ

−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21

Specifically, we propose two alternative strategies for updating the parameters: a path-
based strategy that independently uses the information of each path observed so far to
perform the update; and an aggregated strategy that performs updates based on the average
value of observations. For both strategies, we assume Φ is known. To mathematically
describe these strategies, for a subset of arcs Q ⊆ [A], we define µ̃[Q] := (µ̃k)k∈Q, and denote
the covariance sub-matrix of arcs in Q by Σ[Q] := (Σkk′)k∈Q,k′∈Q. We also define, for each
k ∈ [A] \Q, the vector Σk[Q] := (Σk′k)k′∈Q.

4.3.1 Path-Based (PB) Spatial Updating Strategy

The key idea of this strategy is that right after sampling distribution parameters in step (iv),
the decision maker iteratively adjusts the sample based on paths in the historical information
(i.e., one path at a time, in chronological order); specifically, the decision maker uses log-
speed observations of arcs in each observed path to update the remaining arcs based on
spatial correlations.

Let t ∈ [T] be the current iteration of the main algorithm. For each time period t′ ∈ [t],
we define the vector yt

′
:= (yt

′

k)k∈Pt′
, and for subset of path’s arcs Q ⊆ Pt′ we let the vector

yt
′
[Q] := (yt

′

k)k∈Q (for Q = Pt′ we simply write yt
′
); then given traversed path Pt′ and vectors

of means and variances µ̃ and λ̃ sampled in step (iv) of the current iteration t, it follows
from Theorem 1 that for each arc k ∈ [A], Yk|

⋃
k′∈Pt′

{Yk′ = yt
′

k′} ∼ N (µpost
k (µ̃,Σ, Pt′ , y

t′),

λpost
k (λ̃,Σ, Pt′) + σ2), where σ2 is the unknown internal variance of the Gaussian process (as

defined in Equation (7)), and µpost
k and λpost

k are functions defined as

µpost
k (µ̃,Σ, Pt′ , y

t′) =

{
µ̃k + Σk[Pt′]

⊤Σ[Pt′]
−1(yt

′ − µ̃[Pt′]) if k /∈ Pt′

µ̃k otherwise
(10a)

λpost
k (λ̃,Σ, Pt′) =

{
λ̃k − Σk[Pt′]

⊤Σ[Pt′]
−1Σk[Pt′] if k /∈ Pt′

λ̃k otherwise
(10b)

Thus at each t ∈ [T], the PB strategy iteratively performs “spatial” updates on sampled
vectors µ̃ and λ̃ by applying Equations (10a) and (10b) for each (Pt′ , y

t′) ∈ Ht.

14

Note that in practice, computing the covariance matrix Σ for spatially updating µ̃ and
λ̃ requires estimating σ2. We do so for each (Pt′ , y

t′) ∈ Ht, prior to spatially updating µ̃
and λ̃. Specifically, we first compute a covariance matrix assuming zero internal variance,

Σ̂ := Λ̃
1
2ΦΛ̃

1
2 , where Λ̃ = diag(λ̃); then for each arc k ∈ Pt′ , we use Σ̂ to estimate its

log-speed based on k’s spatial correlation with the remaining observed arcs Pt′ \ {k}, as

ŷt
′

k := µ̃k + Σ̂k[Pt′ \ {k}]⊤Σ̂[Pt′ \ {k}]−1(yt
′
[Pt′ \ {k}]− µ̃[Pt′ \ {k}])

and then estimate the internal variance as the mean squared error between predicted and
observed log-speeds for arcs in Pt′ , i.e., σ̂2 := 1

|Pt′ |
∑

k∈Pt′
(yt

′

k − ŷt
′

k)
2. Finally, we apply

Equations (10a) and (10b) using Σ = Σ̂ + σ̂2I.
Algorithm 2 describes in detail how the PB spatial strategy updates µ̃ and λ̃. First, the

algorithm initializes µ̃ and λ̃ by executing Algorithm 1, and then updates both vectors based
on the PB spatial strategy: for each past time period t′ ∈ [t], the algorithm computes Λ̃
and Σ̂, and use them to compute log-speed predictions of arcs observed in path Pt′ based
on current estimation of arcs’ log-speed means and variances (lines 3 - 6). These predictions
are in turn used to estimate the internal variance σ̂2 (line 7). Lastly, lines 8 and 9 update
µ̃ and λ̃ according to Equations (10a) and (10b), respectively. After the last spatial update,
the algorithm returns updated vectors µ̃ and λ̃.

Algorithm 2: Posterior Update and Parameter Sampling – PB Spa-
tial Strategy

Input : Time period t, set of arcs [A], history of observed paths and
log-speeds H = {(Pt′ , {yt′k }k∈Pt′

)}t′∈[t], prior distributions Θ0,
vector of average observed log-speeds ȳ := (ȳk)k∈[A], sets of
time periods each arc has been visited at (Tk)k∈[A],
correlation matrix Φ.

Output: Updated travel time distribution parameters (µ̃, λ̃).

1 (µ̃, λ̃)← Algorithm 1(t, [A],H,Θ0, ȳ, (Tk)k∈[A]) ;
2 forall t′ ∈ [t] do

3 Λ̃← diag(λ̃) ;

4 Σ̂← Λ̃
1
2ΦΛ̃

1
2 ;

5 forall k ∈ Pt′ do

6 ŷt
′

k ← µ̃k + Σ̂k[Pt′ \ k]⊤Σ̂[Pt′ \ k]−1(yt
′
[Pt′ \ k]− µ̃[Pt′ \ k]) ;

7 σ̂2 ← 1
|Pt′ |

∑
k∈Pt′

(yt
′

k − ŷt
′

k)
2 ;

8 µ̃← µpost(µ̃, Σ̂ + σ̂2I, Pt′ , y
t′) ;

9 λ̃← λpost(λ̃, Σ̂ + σ̂2I, Pt′) ;

10 return (µ̃, λ̃)

15

4.3.2 Path-Aggregated (PA) Spatial Updating Strategy

The PB spatial strategy is able to accelerate the learning process (thus reducing the overall
regret, as we will show later in Section 5). However, this strategy can be computationally
expensive, primarily due to having to invert t correlation matrices at every execution. Hence,
in this section, we propose a less expensive alternative, the Path-Aggregated (PA) spatial
strategy. In contrast to its PB counterpart, the PA strategy only updates arcs that have
never been visited up to the time of the update; furthermore, instead of applying the spatial
effect iteratively over each past time period, this approach averages all observations for each
observed arc and updates all non-observed arcs in one update step, thus requiring inverting
a covariance matrix only once per execution.

Given current iteration t ∈ [T], let Qt ⊆ [A] be the set of arcs that have been visited
at least once, i.e., Qt := {k ∈ [A] : Tk,t ̸= ∅}; and let ȳt := (ȳtk)k∈Qt . Then by Theorem
1, we have that the random log-speed Yk for each k ∈ [A] satisfies Yk|

⋃
k′∈Qt
{Yk′ = ȳtk′} ∼

N (µpost
k (µ̃,Σ, Qt, ȳ

t), λpost
k (λ̃,Σ, Qt) + σ2), with

µpost
k (µ̃,Σ, Qt, ȳ

t) =

{
µ̃k + Σk[Qt]

⊤Σ[Qt]
−1(ȳt − µ̃[Qt]) if k /∈ Qt

µ̃k otherwise
(11a)

λpost
k (λ̃,Σ, Qt) =

{
λ̃k − Σk[Qt]

⊤Σ[Qt]
−1Σk[Qt] if k /∈ Qt

λ̃k otherwise
(11b)

We design the PA strategy to be more consistent with IGM samples by setting σ =
0, which translates into getting µ̃k = µpost

k (µ̃,Σ, Qt, ȳ
t) and λ̃k = λpost

k (λ̃,Σ, Qt) after the
update. This setting, also known as noiseless Kriging (Cressie 1990), assumes the average of
observed values as ground truth log-speeds for each visited arc, and estimates the log-speeds
of unobserved arcs based on their spatial correlation.

Algorithm 3 shows the PA spatial updating strategy for µ̃ and λ̃. Compared to Algorithm
2, it requires one additional input, Qt, which in our implementation is iteratively updated
every time a new path is observed (and thus we omit the time index t). The algorithm
initializes µ̃ and λ̃ by executing Algorithm 1 and then computes Σ̂. Lastly, vectors µ̃ and λ̃
are updated using Equations (11a) and (11b), respectively. The algorithm returns updated
vectors µ̃ and λ̃.

16

Algorithm 3: Posterior Update and Parameter Sampling – PA Spa-
tial Strategy

Input : Time period t, set of arcs [A], history of observed paths and
log-speeds H = {(Pt′ , {yt′k }k∈Pt′

)}t′∈[t], prior distributions Θ0,
vector of average observed log-speeds ȳ, sets of time periods
each arc has been visited at (Tk)k∈[A], correlation matrix Φ,
set of traversed arcs Q.

Output: Updated travel time distribution parameters (µ̃, λ̃).

1 (µ̃, λ̃)← Algorithm 1(t, [A],H,Θ0, ȳ, (Tk)k∈[A]) ;

2 Λ̃← diag(λ̃) ;

3 Σ̂← Λ̃
1
2ΦΛ̃

1
2 ;

4 µ̃← µpost(µ̃, Σ̂, Q, ȳt) ;

5 λ̃← λpost(λ̃, Σ̂, Q) ;

6 return (µ̃, λ̃)

4.4 Main Algorithm

Algorithm 4 shows the implementation of the main algorithm described in Section 4.1. It
first initializes the necessary vectors and sets (lines 1 - 5); in particular, it initializes vectors
µ̃ and λ̃ by sampling from the log-speed priors (line 5). Then for each iteration (i.e., time
period), in lines 7 and 8 the algorithm computes the mean log-speeds of each arc (step (i))
and correspondingly determines the shortest (ot, dt)−path by solving Model (1) (step (ii)).
Subsequently, the decision maker observes the log-speeds from arcs in the shortest path and
updates the history accordingly (step (iii); lines 9 - 11), and ends the iteration by obtaining
the posterior of arcs’ log-speeds based on history, either using only the IGM or applying one
of the proposed spatial updating strategies (step (iv); lines 12 - 18).

5 Computational Experiments

In this section, we show computation results from applying the proposed algorithms to artifi-
cial and real-world instances. The goal of these experiments is to (i) identify the advantages
and disadvantages of each method; (ii) analyze the effect of parameter value selection on
their performances; and (iii) demonstrate the effectiveness of our learning-based algorithms.
We first present results on a set of artificial instances, which allows us to study the methods
in a more controlled setting, and then we show results on an instance constructed using real
taxi data from the city of Beijing.

17

Algorithm 4: Thompson Sampling-based Shortest Path Learning Algorithm

Input : Set of time periods [T], set of arcs [A], prior distributions Θ0, correlation
matrix Φ, set of O-D pairs {(ot, dt)}t∈[T].

1 H ← ∅, Q← ∅;
2 Initialize vectors µ̃ := (µ̃k)k∈[A], λ̃ := (λ̃k)k∈[A], X := (Xk)k∈[A], ȳ := (ȳk)k∈[A];
3 forall k ∈ [A] do
4 Tk ← ∅;
5 (µ̃k, λ̃k)← Sample from prior distribution Θ0

k;

6 forall t ∈ [T] do

7 X ← (exp (µ̃k +
λ̃k

2
))k∈[A];

8 Pt ← Shortest path from solving optimization problem SP(ot, dt, X);
9 forall k ∈ Pt do

10 ytk ← Observed log-speed for arc k;

11 H ← H∪ {(Pt, {ytk}k∈Pt)};
12 if using IGM then

13 (µ̃, λ̃)← Algorithm 1(t, [A],H,Θ0, ȳ, {Tk}k∈[A]);

14 else if using PB Spatial Updating Strategy then

15 (µ̃, λ̃)← Algorithm 2(t, [A],H,Θ0, ȳ, {Tk}k∈[A],Φ);
16 else if using PA Spatial Updating Strategy then
17 Q← Q ∪ Pt;

18 (µ̃, λ̃)← Algorithm 3(t, [A],H,Θ0, ȳ, {Tk}k∈[A],Φ, Q);

18

5.1 Performance on Artificial Instances

The experiments on artificial instances consider the IGM, as well as the PB and PA spatial
updating strategies. For each spatial strategy, we test different configurations, each given
by a combination of values of distance norm ρkk′ , spatial influence parameter φ, and kernel
function K from the ones shown in Table 1. We compare all three approaches in terms of
pseudo-regret. Our goal with these controlled instances is to show which algorithms have
the best performance, as well as to analyze the effect of the algorithmic configurations on
their performance.

Parameter Values
Distance norm ρkk′ Manhattan (∥ck − ck′∥1), Euclidean (∥ck − ck′∥2)
Spatial influence φ 0.67, 1.33, 2, 2.67, 3.33, 4

Kernel K(ρkk′ , φ) Exponential (exp(−ρkk′
φ
)), Gaussian (exp(−(ρkk′

φ
)2))

Table 1: Configurations for PB and PA spatial updating strategies tested on synthetic in-
stances

In order to test the effectiveness of our methods to find the optimal path (in the sequel
also referred to as expert’s solution), we consider a total of four artificial instances, each
defined by a set of different distributions and magnitudes of arcs’ speeds, and a corresponding
expert’s solution (whose expected travel time we denote by z∗), see Figure 1. Based on the
complexity of the expert’s solution, we classify the instances into “simple” and “difficult”.

Instances 1 and 2 correspond to simple instances. In instance 1, the origin and destination
nodes are respectively located at the bottom left and top right corners of the network, and
arcs are constructed such that they become more expensive (slower) the closest they are to
the right and bottom borders; correspondingly, the expert’s solution consists of all arcs in
the top and left borders of the network. Instance 2 shares the same origin node, but the
destination node is now located at the bottom right corner of the network. Furthermore,
this instance considers an obstacle (i.e., set of very expensive arcs) that covers most of the
center of the network except its upper border, hence the optimal path corresponds to all
arcs in the left, top, and right borders of the graph.

In turn, instances 3 and 4 correspond to difficult instances. In instance 3, the origin and
destination nodes are located at the bottom left and top right corners, respectively. The
expert’s solution circumvents two obstacles, describing a “snake-shaped” path. In instance
4, both origin and destination nodes are in opposite corners of a very slow zone in the interior
of the network, and the fastest arcs are located in the network’s borders. Thus instead of
traversing directly towards the destination, the optimal path requires first leaving the slow
zone towards the graph’s top border (in the opposite direction of the destination), and then
traversing clockwise through the network’s borders in order to reach the destination node
from the right. For replication purposes, we include the pseudo-codes used to generate these
instances in Appendix B.1.

For each instance, we construct 500 episodes of T = 50 time periods, each defined by

19

(a) Instance 1: z∗ = 0.77 time units. (b) Instance 2: z∗ = 0.13 time units.

(c) Instance 3: z∗ = 202.49 time units. (d) Instance 4: z∗ = 1.44 time units.

Figure 1: Illustration of artificial instances. The colors represent the true mean of the arcs’
log-speeds. Instances 1 and 2 correspond to simple instances, and instances 3 and 4 to
difficult instances. Paths corresponding to expert’s solutions are depicted using black lines.

an initial prior distribution and realization of arcs’ speeds across all time periods, and then
execute the IGM and all possible configurations of PA and PB spatial strategies on all
episodes. We measure the performance of each approach as its attained average total pseudo-
regret, RT

T
, averaged across all 500 episodes. For the spatial strategies, we use the kernel

functions most used in the literature and specifically in the context of Kriging (Rasmussen
and Williams 2005, Lantuéjoul 2013), although other kernel functions could be readily used.
The values of the parameter φ can be interpreted as the maximum distance within which
two arcs are spatially correlated (which we define as having a spatial correlation that is
greater than 5%). For example, when using the Exponential kernel, for tested values φ ∈
{0.67, 1.33, . . . , 4}, the correlation is considered relevant only for arcs separated by a distance
of 2, 4, . . . , 12 arcs, respectively.

For all four instances, Figure 2 shows the evolution over time of the time-average to-
tal pseudo-regret (normalized by z∗) attained by each proposed method. Each data point
corresponds to the normalized total pseudo-regret at each time period, averaged over the
500 corresponding episodes. For the spatial strategies, these results are obtained using the

20

0 10 20 30 40 50

t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Rt
tz∗

×101

Independent Gaussian

PA (ϕ = 4.0)

PB (ϕ = 4.0)

O(1/
√
t)

(a) Instance 1

0 10 20 30 40 50

t

0.0

0.5

1.0

1.5

2.0

Rt
tz∗

×104

Independent Gaussian

PA (ϕ = 4.0)

PB (ϕ = 4.0)

O(1/
√
t)

(b) Instance 2

0 10 20 30 40 50

t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Rt
tz∗

×101

Independent Gaussian

PA (ϕ = 4.0)

PB (ϕ = 4.0)

O(1/
√
t)

(c) Instance 3

0 10 20 30 40 50

t

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Rt
tz∗

Independent Gaussian

PA (ϕ = 1.33)

PB (ϕ = 1.33)

O(1/
√
t)

(d) Instance 4

Figure 2: Average time-average total pseudo-regret over 500 episodes, for all artificial in-
stances. Spatial strategies use the Exponential kernel and Euclidean distance, and their
corresponding value of φ is set to the one that yields the lowest average total pseudo-regret
by time period t = 50.

Exponential kernel with Euclidean distance, and the spatial influence parameter value that
yields the best average total pseudo-regret for each specific instance.

We observe that in general, the PA and PB strategies outperform the IGM, showing the
most significant performance differences in instances 1, 2, and 3. In terms of performance
relative to z∗, all proposed methods perform better in the difficult instances (see the order
of magnitude on the vertical axes of Figure 2). When comparing both spatial strategies, we
observe that the PA strategy achieves a lower total pseudo-regret by the last iteration for the
simple instances; however, the PB strategy attains better results for the difficult instances.
In particular, for instance 3, the total pseudo-regret from the PA strategy starts to increase at
iteration 25. Our conjecture is that the PB strategy has optimal regret guarantees, whereas
the PA method does not; still, PA reports an overall good empirical performance in our
simulations. We also note that the spatial approaches have decreasing curves in the number

21

of iterations, with the exception of instance 1 where both PA and PB methods experience an
initial increase in their pseudo-regret (iterations 2-3) before trending downwards. Although
we do not provide theoretical guarantees, we observe in our results that the pseudo-regret
curves for both PA and PB describe a pattern close to O(1/

√
T), just as the optimal methods

for MAB problems (Bubeck and Cesa-Bianchi 2012).

Kernel φ Norm
Pseudo-regret % of wins

t = 10 t = 50 t = 10 t = 50
PA PB PA PB PA PB PA PB

Exponential

0.67
1 1.01 1.25 0.72 1.05 0.48 0.13 0.87 0.06
2 0.93 1.30 0.62 1.00 0.60 0.10 0.88 0.08

1.33
1 0.77 1.17 0.48 0.76 0.65 0.17 0.85 0.14
2 0.74 1.05 0.43 0.64 0.67 0.18 0.79 0.21

2
1 0.68 0.99 0.40 0.58 0.67 0.23 0.74 0.26
2 0.66 0.89 0.40 0.49 0.64 0.29 0.63 0.37

2.67
1 0.65 0.89 0.41 0.49 0.61 0.30 0.61 0.39
2 0.56 0.82 0.40 0.45 0.67 0.27 0.56 0.44

3.33
1 0.55 0.85 0.37 0.46 0.68 0.27 0.62 0.38
2 0.49 0.74 0.35 0.41 0.67 0.29 0.59 0.41

4
1 0.48 0.80 0.33 0.42 0.71 0.24 0.64 0.36
2 0.44 0.70 0.28 0.38 0.66 0.30 0.63 0.37

Gaussian

0.67 2 1.09 1.20 0.85 1.08 0.43 0.18 0.71 0.10

1.33 2 0.87 1.24 0.66 0.90 0.66 0.12 0.78 0.18

2 2 0.99 1.23 1.24 0.84 0.55 0.17 0.08 0.72

2.67 2 1.47 1.24 1.55 0.88 0.25 0.27 0.03 0.70

3.33 2 1.80 1.29 1.71 0.94 0.16 0.29 0.02 0.61

4 2 2.14 1.26 1.82 0.98 0.11 0.31 0.01 0.52
IGM 11.05 4.39

Table 2: For instance 1, average (over all episodes) of the time-average total pseudo-regret,
and percentage of episodes in which each method achieves the lowest total pseudo-regret
among all three methods, at iterations t = 10 and t = 50. The pseudo-regret reported for
IGM is normalized by z∗. The pseudo-regret reported for the spatial methods is normalized
by the reported pseudo-regret for the IGM.

Table 2 reports the results obtained for instance 1. Each row represents the results of
a spatial configuration. The first three columns indicate the kernel function, the influence
parameter, and the distance metric used in each spatial configuration. The next four columns
report the average total pseudo-regret obtained by PA and PB strategies for time periods
10 and 50; for an easier comparison, these values are normalized by the total pseudo-regret
attained by the IGM at the corresponding time period, shown in the bottom row. For each
spatial configuration, the last four columns show the percentage of episodes in which each
spatial approach attains the lowest total pseudo-regret of the three methods, at iterations 10
and 50 (the percentage corresponding to the IGM can be computed as the difference between
1 and the sum of the corresponding percentages of PA and PB).

Based on instance 1, the approach with the overall best performance corresponds to

22

Figure 3: For instance 1, selected path and associated normalized pseudo-regrets for all
algorithms at different time periods.

the PA strategy with Exponential kernel, with an average total pseudo-regret that is lower
than the IGM and the PB strategy with Exponential kernel, considering all values of φ and
distance metrics. Moreover, in all configurations, by the last iteration the PA strategy with
Exponential kernel wins over the IGM and the PB exponential model more than 56% of the
episodes (see column % of wins for PB at t = 50, in Table 2). For instance 1, the Gaussian
kernel is generally not as competitive as the Exponential kernel. Still, both approaches and
kernels outperform the IGM (for some φ), attaining better total pseudo-regret values even at
early iterations. For example, for φ = 1.33 and a distance norm of 2, the total pseudo-regret
attained by the PA strategy with either the Exponential or Gaussian kernels corresponds
to only a fraction of the total pseudo-regret of the IGM (43% for the Exponential kernel,
and 66% for the Gaussian kernel). For the Exponential kernel, the value of φ that shows
the best total pseudo-regret is 4; we also observe that for this kernel, the Euclidean distance
performs better than the Manhattan distance. Moreover, our results suggest that for the
Exponential kernel, the correlation between arcs in instance 1 is properly captured when

23

setting a value of φ ≥ 1.33 (i.e., an influence distance of at least 4 arcs), which is consistent
with the instance’s speeds: the arc speeds are similar for arcs separated by a distance of at
least 4-arcs both in the vertical and horizontal direction (on the horizontal direction, this
number is even higher since on some directions the speed does not change at all). For the
Gaussian kernel, φ = 1.33 yields the best total pseudo-regret.

Figure 3 shows the progression over time of the estimated speeds means of the posterior
distributions (average of samples) and origin-destination paths, selected by the IGM and
spatial strategies (with Exponential kernel) as they explore the network. For each approach,
we show its inferred arcs’ speeds (average of the posterior distribution) and the paths it
selects at time periods 2, 20, and 50 of an episode. Note that the spatial strategies achieve a
significantly higher performance than the IGM. At iteration 2, while the IGM is still exploring
paths strictly within the grid, the PA and PB models are already exploring the border of
the graph (where the fastest arcs are located). At iteration 20, the PA model has found the
shortest path while the PB and independent models are still choosing sub-optimal paths.
Notably, the marginal pseudo-regret attained by the IGM at iteration 50 is comparable to
the average total pseudo-regret attained by the PA and PB strategies at iteration 20.

Kernel φ Norm
Pseudo-regret % of wins

t = 10 t = 50 t = 10 t = 50
PA PB PA PB PA PB PA PB

Exponential

0.67
1 0.75 0.90 0.92 0.93 0.99 0.01 0.60 0.38
2 0.72 0.84 0.90 0.90 0.97 0.03 0.51 0.48

1.33
1 0.68 0.70 0.88 0.66 0.63 0.37 0.01 0.99
2 0.67 0.65 0.86 0.58 0.43 0.57 0.01 0.99

2
1 0.68 0.66 0.87 0.66 0.39 0.61 0.09 0.91
2 0.67 0.67 0.85 0.77 0.49 0.51 0.38 0.61

2.67
1 0.69 0.69 0.89 0.87 0.52 0.48 0.49 0.49
2 0.69 0.76 0.85 1.15 0.75 0.25 0.86 0.13

3.33
1 0.71 0.75 0.90 1.16 0.68 0.32 0.82 0.15
2 0.70 0.82 0.86 1.49 0.84 0.16 0.97 0.02

4
1 0.73 0.81 0.91 1.45 0.78 0.22 0.93 0.03
2 0.72 0.87 0.87 1.66 0.86 0.14 0.98 0.00

Gaussian

0.67 2 0.76 0.93 0.93 0.96 0.99 0.01 0.71 0.25

1.33 2 0.74 0.77 0.97 0.81 0.65 0.35 0.01 0.99

2 2 0.82 0.73 1.06 0.72 0.19 0.81 0.00 1.00

2.67 2 0.91 0.71 1.12 0.72 0.08 0.92 0.00 1.00

3.33 2 0.98 0.74 1.12 0.77 0.05 0.95 0.00 0.98

4 2 1.04 0.77 1.14 0.84 0.03 0.96 0.00 0.89
IGM 1.65 0.84

Table 3: For artificial instance 4, average (over all episodes) of the time-average total pseudo-
regret, and percentage of episodes in which each method achieves the lowest total pseudo-
regret among all three methods, at iterations t = 10 and t = 50. The pseudo-regret reported
for IGM is normalized by z∗. The pseudo-regret reported for the spatial methods is normal-
ized by the reported pseudo-regret for the IGM.

Table 3 shows results for instance 4. The columns, parameters, and configurations dis-

24

played are the same as in Table 2. Unlike instance 1, in this instance the best performance is
attained by the PB strategy. In particular, the lowest regret is observed when using the Ex-
ponential kernel with Euclidean norm and φ = 1.33. This value for φ is consistent with the
instance arc speeds distribution: the correlation is meaningful for arcs within 4-arc distance.
As for the PA strategy in instance 1, the Euclidean norm achieves the best performance
for the Exponential kernel for the PB strategy. Overall, most configurations of both spatial
strategies outperform the IGM.

Figure 4: For instance 4, selected path and associated normalized pseudo-regrets for all
algorithms at different time periods.

Figure 4 shows the evolution of selected paths and estimated speeds means across the arcs
for a simulated episode of instance 4, for the IGM and spatial strategies with Exponential
kernel and Euclidean distance, at iterations 2, 20, and 50. By iteration 2, the IGM explores
O-D paths that directly cross the slow zone, whereas the spatial models start recognizing the
slow zone. At iterations 2 and 20, the PB strategy yields a higher marginal pseudo-regret
than the PA strategy, since the PB model still explores paths with high pseudo-regret (for
PB, ∆2

z∗
= 1.3, and ∆20

z∗
= 1.6). However, by iteration 50 the PB (and to some extent the PA)

25

strategy has already learned the arcs’ speeds distributions and selects paths that are very
close to the expert’s solution, ultimately attaining the lowest total pseudo-regret among all
three algorithms. On the other hand, the IGM continues exploring arcs within the grid.

Aggregate results and examples for instances 2 and 3 can be found in Appendix B.

5.2 Case Study: City of Beijing

The previous section shows that the proposed algorithms perform well on artificial instances
under specific distributional assumptions. To empirically demonstrate their practical capa-
bilities, in the remainder of this section, we analyze how our methods perform in a case
study using real data from the city of Beijing. Specifically, in Section 5.2.1 we explain how
the real-world instance is constructed, and in Section 5.2.2 we analyze how the proposed
algorithms perform against a benchmark.

5.2.1 Instance Generation

For our experiments, we seek to model Beijing as a graph with each of its arcs associated with
a travel time distribution; we determine these using empirical distributions based on observed
times (instead of parametric probability distributions) to prevent performance boosts due to
distributional assumptions.

We choose the city of Beijing due to its large population, which causes challenges for
the city’s transportation, and also due to the large publicly available source of GPS data
of vehicles traveling around the city. The graph of Beijing is downloaded from the Open-
StreetMap project (OpenStreetMap contributors 2017), and the GPS points are obtained
from Microsoft Research’s T-Drive trajectory dataset in Zheng (2011). This dataset corre-
sponds to one week of trips of 10,357 taxis. The total number of records in this dataset is
about 15 million, and the total traveled distance of the trajectories amounts to 9 million kilo-
meters; each record specifies a GPS point within a route and its corresponding timestamp,
and each route consists of multiple records. We map these GPS points into O-D data, each
with corresponding departure and arrival times. Figure 5 shows the Beijing area considered
in the case study.

To obtain travel times, we follow three steps: first, we pre-process the records in the
GPS dataset based on geographical projection and average speed thresholds; second, we
iteratively estimate the average travel time for each arc in the graph based on the paths’
travel times from the dataset; and third, we project the travel time values for each GPS O-D
record using the estimated path and times. For the first and second tasks, we follow the
methodology proposed in Bertsimas et al. (2019).

Following the pre-processing done in Bertsimas et al. (2019), we first filter out walkways
and service roads, and eliminate nodes that do not represent the intersection of two or
more arcs. Furthermore, we consider that across each O-D path, the average speed from
one point to another must be within an interval; correspondingly, we discard all O-D data
records whose average speed is less than 2 kph or greater than 110 kph. We then project
each remaining GPS O-D record to corresponding nodes of the graph so both origin and

26

Figure 5: Beijing area selected for the case study.

destination are respectively associated with one of the graph’s nodes, and drop records whose
projected origin (destination) node is not within 250 meters of the origin’s (destination’s)
GPS coordinates specified in the dataset. The pre-processed instance comprises 34,850
nodes, 42,892 arcs, and 238,000 GPS records. For the GPS timestamps, we select taxi trips
completed between 7:00 am and 11:00 am on weekdays as this corresponds to a time of the
day with high traffic. The average GPS travel time between each O-D pair is 356 seconds.

To estimate the average travel times and paths followed by vehicles for each O-D pair,
we use the Bertsimas et al. (2019) methodology. This is an iterative algorithm: first, it
estimates average times for each arc using as input the paths followed by vehicles; then, it
finds the shortest paths using the estimated averages, which in turn are used to update the
average travel time estimations. Our implementation of the algorithm stops when either
(i) the difference in the average number of arcs between the paths found in one iteration
and the next one is less than 0.5, or (ii) after completing 10 iterations. From the algorithm
parameters used in their work, we choose the same regularization parameter value λ = 1000
and set the path memory limit to Π = 2.

Once the average times for each arc and the vehicles’ path are estimated, we project the
time values of each GPS O-D pair. For each arc k in a vehicle’s path, we generate a travel

27

time value x̃k of the form,

x̃k =
x̂kTod

T̂od

, (12)

where x̂k is the estimated average time for arc k, T̂od is the estimated travel time for the path
between o and d, and Tod is the travel time specified in the corresponding GPS O-D record.
We perform this projection for each GPS O-D record and obtain a set of travel time values
for each arc. For our experiments, we use each arc’s empirical distribution defined by these
time values. Thus, when an algorithm selects a path containing a given arc, the observed
travel time for that arc is sampled (with replacement) from the set of time values associated
with that arc.

The generated instance (graph and time values per arc) can be found in the following link
https://github.com/felipelagos/beijing-instance. Figure 6 shows the Beijing graph,
with colored arcs representing the estimated average speeds between 7:00 am to 11:00 am.

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Beijing

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

m
et

er
s/

se
co

nd

Figure 6: Average speed between 7:00 am and 11:00 am for each arc in the graph.

5.2.2 Results and Analysis

These experiments comprise several O-D pairs, which are selected as the pairs that yield
the worst pseudo-regrets from a pool of 100 O-D pairs when using a uniform prior-based
approach (we describe this procedure in detail in Appendix C). Due to the increased size of

28

https://github.com/felipelagos/beijing-instance

the real-world instances (relative to the artificial instances), we increase the number of time
periods to T = 150; in general, we observe that this value is large enough for our approach
to visit the expert’s solution at least once in most of the episodes.

Importantly, these instances result to be too large for the PA and PB strategies due
to requiring considerable memory and computational resources. Hence, out of the three
proposed approaches, we omit the spatial extensions in this section and limit the analysis
to the IGM. Additionally, we provide an alternative baseline approach to test the value
of the IGM. This baseline policy is inspired by the well-known ε-greedy algorithm of the
Reinforcement Learning community (Sutton and Barto 2018); it considers each arc’s travel
time distribution to have a single point estimate, computed as the mean of the observed
values; and for arcs that currently have no observations, it instead uses the mean prior value
(i.e., η0k for arc k). To add an exploration component, after the decision maker selects a first
route and all its arcs have already been visited at least once, with probability ε we allow the
baseline policy to forbid one arc uniformly at random and compute an alternative route. In
the sequel, we refer to this baseline approach as the ε-greedy to facilitate association. Unless
stated otherwise, all comparisons between IGM and the ε-greedy algorithm are done using
the value of ε that yields the best final time-average total pseudo-regret RT

T
.

Priors values used by the IGM and the ε-greedy are initialized by inspection. The average
speed in the city is initialized to η0k = 40 kph, considering that this is typically between 20
and 60 kph depending on the type of road. However, to make the priors not informative
enough for the IGM, we set the initial values of the other parameters to α0

k = κ0
k = 1 and

β0
k = 3; doing so introduces enough variance to the initial samples of the mean log-speed

prior distribution so that algorithms are able to find main roads and highways.
Figure 7 compares IGM and ε-greedy in terms of marginal and average total pseudo-regret

per time period for the instance where ε-greedy attains its best average total pseudo-regret
per time period (see Figure 12 in Appendix C for the tuning of the exploration parameter
ε). These results suggest that in general IGM outperforms the ε-greedy algorithm. The
pseudo-regret of IGM starts higher but improves faster than the pseudo-regret of ε-greedy
, which results in IGM attaining a 47% better time-average total pseudo-regret by the last
time period. In the first periods (t ∈ [0, 40]), we observe that the IGM explores enough
to find high-quality solutions, on average approaching the expert’s optimal value (see the
marginal pseudo-regret curve in Figure 7). By contrast, during these time periods, the ε-
greedy algorithm exploits its incumbent solutions as its exploration mechanism is unlikely to
be triggered (due to most arcs having no observations). By iteration t = 40 the IGM starts
exploiting its incumbent solution and converging, and by iteration t = 60 this exploitation
pays off as IGM surpasses the ε-greedy in terms of average total pseudo-regret per time
period. After t = 30, we occasionally observe pronounced peaks in the marginal pseudo-
regret of ε-greedy due by policy exploration, which slightly deteriorates the time-average total
pseudo-regret. By contrast, the IGM experiences considerably smaller peaks in its marginal
pseudo-regret from exploration, and these do not affect its time-average total pseudo-regret.

Table 4 reports the average performance of IGM and ε-greedy by the last time period
over all episodes. In more than 70% of the cases, the IGM is able to either find the expert’s

29

solution or a solution that yields a marginally higher pseudo-regret (attaining a pseudo-regret
within .5% from the expert’s solution in 9 out of 10 instances). For the ε-greedy approach,
we observe that the values ε ∈ {0.1, 0.3} yield better performance; however, they do so by
exploiting their corresponding incumbent solution, being unable to find the expert’s solution
in any of the episodes. As higher values of ε are considered, i.e., ε ∈ {0.5, 0.7, 0.9}, we observe
a tendency to find the expert’s solution more often, and in some cases even decrease the
pseudo-regret; however, in most cases the more frequent exploration considerably deteriorates
the overall performance of the ε-greedy approach.

0 20 40 60 80 100 120 140
t

0

5

10

15

20

25

30

[m
in

]

t/t Independent Gaussian
t Independent Gaussian
t/t -greedy (= 0.1)
t -greedy (= 0.1)

Figure 7: Average pseudo-regrets obtained from 100 episodes of the Beijing case study with
multiple origin-destination pairs (10 episodes from each of the 10 instances presented in
Appendix C).

6 Conclusions

Motivated by logistic problems currently faced by companies, we studied the OSPP. In this
problem, a planner must find a vehicle route from an origin to a destination that minimizes
the total travel time. Since in practice travel times are stochastic and follow a probability
distribution that is unknown to the planner, they must balance the exploration of new paths
and the exploitation of the most up to date travel time information. This problem has been

30

z∗[min]
IGM

ε-greedy
ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

#v.e. ∆T

z∗
RT

Tz∗
#v.e. ∆T

z∗
RT

Tz∗
#v.e. ∆T

z∗
RT

Tz∗
#v.e. ∆T

z∗
RT

Tz∗
#v.e. ∆T

z∗
RT

Tz∗
#v.e. ∆T

z∗
RT

Tz∗

28.99 7 0.01 0.12 0 0.09 0.11 0 0.11 0.12 1 0.09 0.13 0 0.08 0.14 2 0.08 0.14
29.50 6 0.00 0.12 0 0.06 0.14 0 0.06 0.11 0 0.04 0.12 0 0.04 0.11 1 0.04 0.11
30.02 5 0.00 0.10 0 0.13 0.17 0 0.14 0.17 1 0.16 0.19 1 0.15 0.2 0 0.16 0.21
30.17 5 0.00 0.10 0 0.12 0.16 0 0.12 0.17 0 0.09 0.18 0 0.11 0.18 0 0.17 0.18
31.92 9 0.00 0.09 0 0.14 0.17 0 0.14 0.16 0 0.16 0.18 0 0.13 0.17 0 0.17 0.18
32.40 9 0.00 0.08 0 0.08 0.29 0 0.08 0.68 0 0.07 1.72 0 4.49 3.01 0 8.87 3.16
32.67 5 0.00 0.10 0 0.14 0.16 0 0.13 0.16 0 0.14 0.17 0 0.19 0.17 0 0.16 0.19
33.91 8 0.00 0.08 0 0.05 0.07 0 0.05 0.08 0 0.06 0.09 0 0.07 0.10 0 0.09 0.11
34.26 8 0.00 0.07 0 0.19 0.24 0 0.19 0.21 0 0.14 0.20 0 0.16 0.21 0 0.16 0.22
36.60 9 0.00 0.04 0 0.18 0.17 0 0.13 0.16 0 0.10 0.16 0 0.11 0.16 0 0.14 0.16

Table 4: Average performance per instance. Each row aggregates the results of 10 episodes:
#v.e. denotes the number of episodes each algorithm visits the expert’s solution at least
once, ∆T denotes the average (over episodes) marginal pseudo-regret at time period T , and
RT denotes to the average (over episodes) total pseudo-regret at time period T .

mainly studied for packet transmission in wireless networks but not for logistics operation
(vehicle routing and travel times estimation). Along with introducing a new problem, we
formulate it as a CMAB problem and propose Thompson Sampling-based algorithm that
effectively finds policies that balances the trade-off between exploration and exploitation.

Our work first proposes a Thompson Sampling-based algorithm to find the best paths
within an operating network, the IGM. Then, it develops two new extensions of the Thomp-
son Sampling which exploit the spatial information of the graph to learn parameters more
efficiently, the PB and the PB spatial updating strategies; both of these strategies use Gaus-
sian modeling concepts inspired by the Kriging literature to refine the samples generated
by Thompson Sampling using spatial information, attaining better travel time estimations
and ultimately determining more efficient vehicle routes. We test our algorithms on a set
of simple and difficult artificial instances, and on a case study using real data from the city
of Beijing. We show that by incorporating spatial correlation, our algorithms effectively
produce policies that outperform the Thompson Sampling-based algorithm in terms of total
pseudo-regret. For the case study, the MAB policy is efficient and effective in minimizing
pseudo-regret.

There are several extensions and future work to be drawn from this work. We high-
light determining whether the algorithms we propose offer theoretical guarantees in terms
of pseudo-regret analysis. In our experiments, the PB spatial strategy shows an empirical
performance that surpasses the Thompson Sampling-based algorithm in all instances and
conducted simulations, which leads us to believe that this algorithm may offer better guar-
antees than Thompson Sampling in terms of the optimality constant for the pseudo-regret.
Another possible extension consists of studying different distributions of travel times or
speeds, where our algorithms could be integrated with known methods in Machine Learning
to generate samples of these distributions (e.g., Markov Chain Monte Carlo algorithms). In
addition, future extensions could incorporate the learning of the value of the spatial influence
parameter φ that best fits the underlying correlation between arcs for a given kernel. Finally,
we believe that our methods can be used for adaptive problems, namely, in online settings

31

where at a given time period the planner may decide to deviate from an initially selected
path halfway through it.

32

References

Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs.
In International Conference on Machine Learning, pages 127–135. PMLR.

Al Mashalah, H., Hassini, E., Gunasekaran, A., and Bhatt, D. (2022). The impact of digital
transformation on supply chains through e-commerce: Literature review and a conceptual
framework. Transportation Research Part E: Logistics and Transportation Review, 165:102837.

Audibert, J.-Y., Bubeck, S., and Lugosi, G. (2011). Minimax policies for combinatorial prediction
games. In Proceedings of the 24th Annual Conference on Learning Theory, pages 107–132.
JMLR Workshop and Conference Proceedings.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2):235–256.

Bertsimas, D., Delarue, A., Jaillet, P., and Martin, S. (2019). Travel time estimation in the age of
big data. Operations Research, 67(2):498–515.

Bouneffouf, D., Rish, I., and Aggarwal, C. (2020). Survey on applications of multi-armed and
contextual bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC), pages 1–8.
IEEE.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. arXiv preprint arXiv:1204.5721.

Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J. (2017). Vehicle routing problems for
city logistics. EURO Journal on Transportation and Logistics, 6(1):51–79.

Cesa-Bianchi, N. and Lugosi, G. (2012). Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422.

Chakrabarti, D., Kumar, R., Radlinski, F., and Upfal, E. (2008). Mortal multi-armed bandits.
Advances in Neural Information Processing Systems, 21.

Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson sampling. Advances in Neural
Information Processing Systems, 24.

Chen, P., Tong, R., Lu, G., and Wang, Y. (2018). Exploring travel time distribution and variability
patterns using probe vehicle data: case study in beijing. Journal of Advanced Transportation,
2018.

Chen, W., Wang, Y., and Yuan, Y. (2013). Combinatorial multi-armed bandit: General framework
and applications. In International Conference on Machine Learning, pages 151–159. PMLR.

Chen, X., Xue, J., Qian, X., Suarez, J., and Ukkusuri, S. V. (2020). Online energy-optimal
routing for electric vehicles with combinatorial multi-arm semi-bandit. In 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE.

Chowdhury, S. R. and Gopalan, A. (2017). On kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853. PMLR.

Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3):239–252.

Cressie, N. (2015). Statistics For Spatial Data. John Wiley & Sons.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):209–226.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271.

33

Euromonitor (2021). E-commerce to account for half the growth in global retail by 2025. Accessed
March 22, 2023.

Ferreira, K. J., Simchi-Levi, D., and Wang, H. (2018). Online network revenue management using
Thompson sampling. Operations Research, 66(6):1586–1602.

Fu, K., Meng, F., Ye, J., and Wang, Z. (2020). Compacteta: A fast inference system for travel time
prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3337–3345.

Gómez, A., Mariño, R., Akhavan-Tabatabaei, R., Medaglia, A. L., and Mendoza, J. E. (2016).
On modeling stochastic travel and service times in vehicle routing. Transportation Science,
50(2):627–641.

Hoffman, M., Brochu, E., de Freitas, N., et al. (2011). Portfolio allocation for Bayesian optimization.
In UAI, pages 327–336. Citeseer.

Insider Intelligence (2021). Worldwide e-commerce continues double-digit growth following pan-
demic push to online. Accessed March 22, 2023.

Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson sampling: An asymptotically optimal
finite-time analysis. In International Conference on Algorithmic Learning Theory, pages 199–
213. Springer.

Khani, A. (2019). An online shortest path algorithm for reliable routing in schedule-based transit
networks considering transfer failure probability. Transportation Research Part B: Method-
ological, 126:549–564.

Kharoufeh, J. P. and Gautam, N. (2004). Deriving link travel-time distributions via stochastic
speed processes. Transportation Science, 38(1):97–106.

Komiyama, J., Honda, J., and Nakagawa, H. (2015). Optimal regret analysis of Thompson sampling
in stochastic multi-armed bandit problem with multiple plays. In International Conference on
Machine Learning, pages 1152–1161. PMLR.

Kou, W., Wang, J., Liu, Y., and Li, C. (2022). Last-mile shuttle planning for improving bus com-
muters’ travel time reliability: A case study of Beijing. Journal of Advanced Transportation,
2022:1–15.

Krige, D. G. (1951). A statistical approach to some basic mine valuation problems on the witwa-
tersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):119–139.

Lafkihi, M., Pan, S., and Ballot, E. (2019). Freight transportation service procurement: A literature
review and future research opportunities in omnichannel e-commerce. Transportation Research
Part E: Logistics and Transportation Review, 125:348–365.

Lai, T. L., Robbins, H., et al. (1985). Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6(1):4–22.

Lantuéjoul, C. (2013). Geostatistical Simulation: Models and Algorithms. Springer Science &
Business Media.

Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press.

Lecluyse, C., Van Woensel, T., and Peremans, H. (2009). Vehicle routing with stochastic time-
dependent travel times. 4OR, 7(4):363–377.

Liu, K. and Zhao, Q. (2012). Adaptive shortest-path routing under unknown and stochastically
varying link states. In 2012 10th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), pages 232–237. IEEE.

34

Mangiaracina, R., Perego, A., Seghezzi, A., and Tumino, A. (2019). Innovative solutions to increase
last-mile delivery efficiency in B2C e-commerce: a literature review. International Journal of
Physical Distribution & Logistics Management.

Manufacturing and Logistics IT (2020). How Amazon manages its delivery routes (and how to copy
them). Accessed March 22, 2023.

Mercatus and Incisiv (2021). E-grocery’s new reality: The pandemic’s lasting impact on U.S.
grocery shopping behavior report. Accessed March 22, 2023.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT press.

Nuara, A., Trovò, F., Gatti, N., and Restelli, M. (2022). Online joint bid/daily budget optimization
of internet advertising campaigns. Artificial Intelligence, 305:103663.

OpenStreetMap contributors (2017). Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The
MIT Press.

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535.

Russo, D. and Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243.

Savelsbergh, M. and Van Woensel, T. (2016). 50th anniversary invited article—city logistics:
Challenges and opportunities. Transportation Science, 50(2):579–590.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Slivkins, A. (2019). Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process optimization in
the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995.

Srinivasan, K. K., Prakash, A., and Seshadri, R. (2014). Finding most reliable paths on net-
works with correlated and shifted log–normal travel times. Transportation Research Part B:
Methodological, 66:110–128.

Statista (2022). Retail e-commerce sales worldwide from 2014 to 2026. Accessed March 22, 2023.

Susilawati, S., Taylor, M. A., and Somenahalli, S. V. (2013). Distributions of travel time variability
on urban roads. Journal of Advanced Transportation, 47(8):720–736.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT press.

Szeto, W., Jiang, Y., Wong, K.-I., and Solayappan, M. (2013). Reliability-based stochastic tran-
sit assignment with capacity constraints: Formulation and solution method. Transportation
Research Part C: Emerging Technologies, 35:286–304.

Talebi, M. S., Zou, Z., Combes, R., Proutiere, A., and Johansson, M. (2017). Stochastic online
shortest path routing: The value of feedback. IEEE Transactions on Automatic Control,
63(4):915–930.

Taniguchi, E., Thompson, E., Yamada, T., van Duin, J., and Logistics, C. (2001). Network mod-
elling and intelligent transport systems. City Logistics. Pergamon, Oxford.

35

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294.

Toth, P. and Vigo, D. (2014). Vehicle Routing: Problems, Methods, and Applications. SIAM.

Ulmer, M. W. (2017). Approximate Dynamic Programming For Dynamic Vehicle Routing, volume 1.
Springer.

Vanelslander, T., Deketele, L., and Hove, D. V. (2013). Commonly used e-commerce supply chains
for fast moving consumer goods: comparison and suggestions for improvement. International
Journal of Logistics Research and Applications, 16(3):243–256.

Zheng, Y. (2011). T-drive trajectory data sample. T-Drive sample dataset.

Zhou, Q., Zhang, X., Xu, J., and Liang, B. (2017). Large-scale bandit approaches for recom-
mender systems. In International Conference on Neural Information Processing, pages 811–
821. Springer.

Zou, Z., Proutiere, A., and Johansson, M. (2014). Online shortest path routing: The value of
information. In 2014 American Control Conference, pages 2142–2147. IEEE.

36

Appendices

A Derivation of Prior and Posterior Distributions

This section shows the formal derivation of the posterior distribution of the log-speed of a
single arc. For convenience, we perform the following two notation changes compared to the
main body of the paper: (i) we omit the arc index k, and (ii) we write the time index as a
subscript (instead of using it as a superscript).

Let Y be a random variable that follows a Normal distribution with mean µ and vari-
ance λ, with each parameter being itself a random variable following a prior distribution;
specifically, λ following an Inverse-Gamma distribution with parameters α0 and β0, and µ
following a Normal distribution with mean η0 and variance λ

κ0
. The values of η0, κ0, α0, and

β0 are defined a priori and represent the initially available information about the population.
We have,

Y ∼ N (µ, λ)

λ ∼ IG(α0, β0)

µ ∼ N
(
η0,

λ

κ0

)
From these, it follows that

µ, λ|α0, β0, η0, κ0 ∼ NIG(η0, κ0, α0, β0),

where NIG(η0, κ0, α0, β0) is the probability distribution function of a Normal-Inverse-Gamma
with parameters (η0, κ0, α0, β0). This function is mathematically given by

p(µ|η0, λ, κ0)p(λ|α0, β0) =

√
κ0

2πλ
exp

(
−κ0(µ− η0)

2

2λ

)
βα0
0

Γ(α)

(
1

λ

)α0+1

exp

(
−β0

λ

)
,

=

√
κ0

2π

βα0
0

Γ(α)

(
1

λ

)α0+
3
2

exp

(
−κ0(µ− η0)

2

2λ
− β0

λ

)
,

∼ NIG(η0, κ0, α0, β0).

For t ∈ [T], let Tt ⊆ [t] be the set of time periods up to t where an observation of Y was
collected, and {yt′}t′∈Tt be the corresponding set of observations. Using Bayes’ theorem, we

37

derive the posterior distribution for µ and λ,

p(µ, λ|{yt′}t′∈Tt , η0, κ0, α0, β0) =
p({yt′}t′∈Tt |µ, λ)p(µ, λ|α0, η0, κ0, β0)

p({yt′}t′∈Tt)

∝
(

1

2πλ

) |Tt|
2

exp

(
− 1

2λ

∑
t′∈Tt

(yt′ − µ)2

)√
κ0

2π

βα0
0

Γ(α)

(
1

λ

)α0+
3
2

exp

(
−κ0(µ− η0)

2

2λ
− β0

λ

)

∝
(
1

λ

)α0+
|Tt|
2

+
3
2

exp

(
−κ0(µ− η0)

2

2λ
−
∑

t′∈Tt
(yt′ − µ)2

2λ
− β0

λ

)

=

(
1

λ

)α0+
|Tt|
2

+
3
2

exp

(
− 1

2λ
(κ0 + |Tt|)

(
µ2 − 2µ

(
η0κ0 +

∑
t′∈Tt

yt′

κ0 + |Tt|

)
+

η20κ0 +
∑

t′∈Tt
y2t′

κ0 + |Tt|

)
− β0

λ

)

=

(
1

λ

)αt+
3
2

exp

(
− 1

2λ
κt(µ− ηt)

2 − 1

λ

(
β0 −

η2t κt

2
+

η20κ0 +
∑

t′∈Tt
y2t′

2

))

=

(
1

λ

)αt+
3
2

exp

(
− 1

2λ
κt(µ− ηt)

2 − 1

λ

(
β0 +

1

2

∑
t′∈Tt

(yt′ − ȳ)2 +
|Tt|κ0(ȳ − η0)

2

2(κ0 + |Tt|)

))

=

(
1

λ

)αt+
3
2

exp

(
− 1

2λ
κt(µ− ηt)

2 − βt

λ

)
∼ NIG(ηt, κt, αt, βt),

with new values defined as follows,

ηt =
κ0η0 +

∑
t′∈Tt

yt′

κ0 + |Tt|
,

κt = κ0 + |Tt|,
αt = α0 +

|Tt|
2
,

βt = β0 +
1

2

∑
t′∈Tt

(yt′ − ȳ)2 +
κ0|Tt|(η0 − ȳ)2

2(κ0 + |Tt|)
,

Note that the posterior distribution is also a Normal-Inverse-Gamma distribution, which
is a consequence of choosing a conjugate family of distributions for prior distributions.

For computational convenience, the following equations can be used to sample from the
posterior distribution,

1

λ

∣∣∣∣ {yt′}t′∈Tt , α0, β0 ∼ Ga(αt, βt),

µ| {yt′}t′∈Tt , λ, η0, κ0 ∼ N
(
ηt,

λ

κt

)
.

38

B Artificial Instances

B.1 Instance Generation

This section outlines the procedures used to construct the underlying speed distributions
for artificial instances used in Section 5.1. Recall that the networks in these instances are
square grids, each with a total of A arcs of equal length ℓ, and with N nodes per side. For
artificial instances, we assume that the speed of each arc in the grid follows a Log-Normal
distribution. Correspondingly, Algorithms 5 through 8 outline how the arcs’ true log-speed
means (µk)k∈[A] are computed for artificial instances 1 through 4, respectively. Furthermore,
we set the scale parameter of all Log-Normal distributions to 1√

λk
= log(1.2), ∀k ∈ [A]. Then,

to sample realizations of the log-speed of arcs, we draw a sample of each of these distributions
and compute its logarithm, which then is used to update the posterior distributions.

For all artificial instances, we use the values N = 20, ℓ = 1.5 distance units, and A = 760.
The output given by these algorithms is plotted in Figure 1.

We calibrate the prior parameters for all algorithms by inspection as follows. For all four
instances, we set the values of α0

k and κ0
k to 50 and 1, respectively. For instance 1, we set β0

k

to 7
4
, and 1

2
for instances 2, 3, and 4; and for instances 1 through 4, we set η0k to values 27,

20, 1, and 25, respectively.

Algorithm 5: Travel log-speed generation for artificial instance 1

Input : Set of arcs [A], grid arc length ℓ, grid width N
Output: Vector of true log-speed means (µk)k∈[A].

1 forall i ∈ [2N − 1] do
2 forall k ∈ [A] do

3 b1 ← cxk
ℓ
= i−1

2
;

4 b2 ← cyk
ℓ
= 2N−i−1

2
;

5 b3 ← cxk+cyk
ℓ
≥ N − 1;

6 if b1 or (b2 and b3) then

7 µk ← (i− 3) log
(

2
1+

√
2

)
+ log 50 ;

8 return (µk)k∈[A]

39

Algorithm 6: Travel log-speed generation for artificial instance 2

Input : Set of arcs [A], grid arc length ℓ, grid width N
Output: Vector of true log-speed means (µk)k∈[A].

1 (obstacle positionx, obstacle positiony)←
(
N−1
2

, 0
)
;

2 (orientation effectx, orientation effecty)← (10, 3.5) ;

3 forall k ∈ [A] do

4 value1 ← orientation effectx

∣∣∣ cxkℓ − obstacle positionx

∣∣∣ ;
5 value2 ← orientation effecty

∣∣∣ cykℓ − obstacle positiony

∣∣∣ ;
6 µk ← (max{value1, value2} − 60) log

(
1+

√
2

2

)
+ log 50 ;

7 return (µk)k∈[A]

Algorithm 7: Travel log-speed generation for artificial instance 3

Input : Set of arcs [A], grid arc length ℓ, grid width N
Output: Vector of true log-speed means (µk)k∈[A].

1 (obstacle position1
x, obstacle position1

y)←
(
N−1
3

, N−1
3

)
;

2 (obstacle position2
x, obstacle position2

y)←
(

2(N−1)
3

, 2(N−1)
3

)
;

3 orientation effect ← (10, 3.5);
4 forall k ∈ [A] do

5 value11 ← orientation effect1

∣∣∣ cxkℓ − obstacle position1
x

∣∣∣;
6 value12 ← orientation effect2

∣∣∣ cykℓ − obstacle position1
y

∣∣∣;
7 value21 ← orientation effect1

∣∣∣ cxkℓ − obstacle position2
x

∣∣∣;
8 value22 ← orientation effect2

∣∣∣ cykℓ − obstacle position2
y

∣∣∣;
9 µk ← (mini=1,2 maxj=1,2 value ij − 60) log

(
1+

√
2

2

)
+ log 50;

10 return (µk)k∈[A]

40

Algorithm 8: Travel log-speed generation for artificial instance 4

Input : Set of arcs [A], grid arc length ℓ, grid width N
Output: Vector of true log-speed means (µk)k∈[A].

1 forall i ∈ [N + 1] do
2 forall k ∈ [A] do

3 b1 ←
(

cxk
ℓ
= i−1

2

)
or
(

cxk
ℓ
= N − i+1

2

)
;

4 b2 ←
(

cyk
ℓ
= i−1

2

)
or
(

cyk
ℓ
= N − i+1

2

)
;

5 b3 ← i−1
2
≤ cxk

ℓ
≤ N − i+1

2
;

6 b4 ← i−1
2
≤ cyk

ℓ
≤ N − i+1

2
;

7 if (b1 and b4) or (b2 and b3) then

8 µk ← (i− 3) log
(

2
1+

√
2

)
+ log 50 ;

9 return (µk)k∈[A]

B.2 Artificial Instances: Additional Results

Table 5 reports the results obtained for artificial instance 2 at iterations 10 and 50. In
particular, it reports the time-average total pseudo-regret obtained by the IGM, and the
spatial strategies at iterations (averaged over all run episodes); the reported regrets for the
IGM are normalized by z∗, and the ones reported for PA and PB strategies are normalized
by IGM’s reported regret. The last four columns show the percentage of episodes in which
each spatial strategy attains the lowest total pseudo-regret (the percentage of the IGM can
be computed as 1 minus the sum of the percentages of both spatial methods). Similar results
for artificial instance 3 are reported in Table 6.

Figure 8 shows the estimated speeds mean (average of samples) of the posterior distri-
butions for the IGM and the spatial strategies with the Exponential kernel, for artificial
instance 2. For iterations 2, 20, and 50, we plot the arc’s mean speeds of a simulation and
the path chosen by each method. Figure 9 shows the simulations for artificial instance 3.

C Case Study: Additional Results

The O-D pairs provided in this section are computed from an initial pool of 100 O-D pairs
having at least 25 minutes of expert total travel time. For each of the 100 pairs, we first
compute the shortest path based on distance, and then using a uniform-speed prior policy
we solve the OSPP and calculate the obtained total pseudo-regret. From these results, we
select the 10 pairs for which the policy achieves the worst total pseudo-regret as instances
for the case study. These are displayed in Figures 10 and 11.

The calibration of ε for the ε-greedy baseline algorithm considered in Section 5.2.2
is done according to the time-average total pseudo-regret obtained at iteration t = 150.
Figure 12 shows the marginal and total pseudo-regret curves for different values of ε ∈

41

Kernel φ Norm
Pseudo-regret % of wins

t = 10 t = 50 t = 10 t = 50
PA PB PA PB PA PB PA PB

exponential

0.67
1 0.60 1.00 0.77 1.00 0.95 0.02 0.88 0.06
2 0.56 1.02 0.66 1.00 0.98 0.01 0.98 0.02

1.33
1 0.47 0.91 0.50 0.95 0.98 0.02 1.00 0.00
2 0.41 0.89 0.41 0.92 1.00 0.00 1.00 0.00

2
1 0.40 0.87 0.39 0.89 0.99 0.01 1.00 0.00
2 0.36 0.81 0.34 0.84 0.98 0.02 1.00 0.00

2.67
1 0.38 0.82 0.35 0.84 1.00 0.00 1.00 0.00
2 0.35 0.79 0.31 0.79 0.99 0.01 1.00 0.00

3.33
1 0.36 0.79 0.33 0.80 0.99 0.01 1.00 0.00
2 0.35 0.76 0.30 0.76 0.99 0.01 1.00 0.00

4
1 0.35 0.77 0.30 0.78 0.99 0.01 1.00 0.00
2 0.35 0.77 0.28 0.74 0.99 0.01 1.00 0.00

gaussian

0.67 2 0.72 1.02 0.89 1.02 0.86 0.06 0.75 0.14
1.33 2 0.52 0.91 0.52 0.96 0.97 0.03 0.99 0.01
2 2 0.48 0.91 0.76 0.95 0.95 0.05 0.83 0.11

2.67 2 0.77 0.95 0.86 0.97 0.67 0.21 0.68 0.21
3.33 2 0.95 1.00 0.92 0.98 0.50 0.27 0.62 0.22
4 2 1.02 1.04 1.02 0.98 0.44 0.27 0.42 0.32

Independent 6.56 · 103 1.60 · 103

Table 5: For artificial instance 2, average (over all episodes) of the time-average total pseudo-
regret, and percentage of episodes in which each method achieves the lowest total pseudo-
regret among all three methods, at iterations t = 10 and t = 50. The pseudo-regret reported
for IGM is normalized by z∗. The pseudo-regret reported for the spatial methods is normal-
ized by the reported pseudo-regret for the IGM.

{0.1, 0.3, 0.5, 0.7, 0.9}. We observe that ε-greedy attains the best total pseudo-regret for
ε = 0.1.

42

Figure 8: For artificial instance 2, selected path and associated normalized pseudo-regrets
for all algorithms at different time periods.

43

Kernel φ Norm
Pseudo-regret % of wins

t = 10 t = 50 t = 10 t = 50
PA PB PA PB PA PB PA PB

exponential

0.67
1 0.60 0.90 0.83 0.99 0.99 0.01 1.00 0.00
2 0.57 0.84 0.80 0.98 0.99 0.01 1.00 0.00

1.33
1 0.48 0.65 0.78 0.88 0.94 0.06 0.97 0.03
2 0.43 0.61 0.76 0.80 0.96 0.04 0.74 0.26

2
1 0.40 0.58 0.76 0.75 0.94 0.06 0.45 0.55
2 0.39 0.55 0.75 0.69 0.94 0.06 0.21 0.79

2.67
1 0.38 0.54 0.76 0.67 0.92 0.08 0.11 0.89
2 0.37 0.50 0.74 0.58 0.87 0.13 0.02 0.98

3.33
1 0.36 0.50 0.76 0.59 0.87 0.13 0.02 0.98
2 0.36 0.44 0.74 0.49 0.75 0.25 0.00 1.00

4
1 0.36 0.46 0.76 0.53 0.80 0.20 0.01 0.99
2 0.36 0.39 0.74 0.43 0.61 0.39 0.00 1.00

gaussian

0.67 2 0.67 0.96 0.84 1.00 0.96 0.03 1.00 0.00
1.33 2 0.55 0.79 0.84 0.97 0.96 0.04 0.99 0.01
2 2 0.58 0.73 0.88 0.94 0.80 0.19 0.87 0.13

2.67 2 0.72 0.73 0.93 0.94 0.52 0.47 0.57 0.43
3.33 2 0.79 0.77 0.97 0.96 0.42 0.56 0.41 0.53
4 2 0.85 0.82 0.99 0.97 0.45 0.48 0.40 0.47

Independent 16.75 8.46

Table 6: For artificial instance 3, average (over all episodes) of the time-average total pseudo-
regret, and percentage of episodes in which each method achieves the lowest total pseudo-
regret among all three methods, at iterations t = 10 and t = 50. The pseudo-regret reported
for IGM is normalized by z∗. The pseudo-regret reported for the spatial methods is normal-
ized by the reported pseudo-regret for the IGM.

44

Figure 9: For artificial instance 3, selected path and associated normalized pseudo-regrets
for all algorithms at different time periods.

45

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 28.99 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 29.5 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 30.02 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 30.17 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 31.92 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 32.4 [min]

Figure 10: Expert’s solution for multiple O-D pairs in the case study.

46

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 32.67 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 33.91 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 34.26 [min]

116.20 116.25 116.30 116.35 116.40 116.45 116.50 116.55
Longitude

39.75

39.80

39.85

39.90

39.95

40.00

40.05

La
tit

ud
e

Expert Objective = 36.6 [min]

Figure 11: Expert’s solution for multiple O-D pairs in the case study (continued).

47

0 20 40 60 80 100 120 140
t

5

10

15

20

25

30

[m
in

]

t/t -greedy (= 0.1)
t/t -greedy (= 0.3)
t/t -greedy (= 0.5)
t/t -greedy (= 0.7)
t/t -greedy (= 0.9)

Figure 12: For ε-greedy , average pseudo-regrets obtained from 100 episodes of the Beijing
case study with multiple origin-destination pairs (10 episodes from each of the 10 instances
shown in Figures 10 and 11), for multiple values of ε. The best performance is attained for
ε = 0.1.

48

	Introduction
	Literature Review
	Problem Formulation
	Online Shortest Path Formulation
	Formulation as a CMAB Problem

	Thompson Sampling-based Shortest Path Learning Algorithm
	General Framework
	Uncertainty Modeling and Parameters Updating
	Random Variables Distribution
	Independent Gaussian Model (IGM)

	Spatial Gaussian Model
	Path-Based (PB) Spatial Updating Strategy
	Path-Aggregated (PA) Spatial Updating Strategy

	Main Algorithm

	Computational Experiments
	Performance on Artificial Instances
	Case Study: City of Beijing
	Instance Generation
	Results and Analysis

	Conclusions
	Appendices
	Derivation of Prior and Posterior Distributions
	Artificial Instances
	Instance Generation
	Artificial Instances: Additional Results

	Case Study: Additional Results

