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Abstract

In this study, we investigate the connection between the efficient frontier (EF) of a general
multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted
value function (RVF) of a closely related single-objective MILP. In the first part of the paper, we
detail the mathematical structure of the RVF, including characterizing the set of points at which
it is differentiable, the gradients at such points, and the subdifferential at all nondifferentiable
points. We then show that the EF of the multiobjective MILP is comprised of points on the
boundary of the epigraph of the RVF and that any description of the EF suffices to describe
the RVF and vice versa. Because of the close relationship of the RVF to the EF, we observe
that methods for constructing the so-called value function (VF) of an MILP and methods for
constructing the EF of a multiobjective optimization problem are effectively interchangeable.
Exploiting this observation, we propose a generalized cutting-plane algorithm for constructing
the EF of a multiobjective MILP that arises from an existing algorithm for constructing the
classical MILP VF. The algorithm identifies the set of all integer parts of solutions on the EF.
We prove that the algorithm converges finitely under a standard boundedness assumption and
comes with a performance guarantee if terminated early.

1 Introduction

In this study, we consider the relationship between the efficient frontier (EF) of a multiobjective
mixed integer linear optimization problem (MILP) and a certain value function (VF), which we
refer to as the restricted value function (RVF), associated with a closely related mixed integer linear
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optimization problem. Our main result is that any description of the EF suffices to describe the
RVF and vice versa. Specifically, we demonstrate that the EF is composed of a subset of the points
on the boundary of the epigraph of the RVF (also referred to as the graph of the RVF), and that
any point on the boundary and not in the EF has (i) the same objective value as a point on the EF
that dominates it, and (ii) a directional derivative of zero, in the direction towards the dominating
point.

Although our results demonstrate that the EF and the RVF are closely related and indeed effectively
interchangeable, their relationship seems not to have been previously observed mainly because of the
disparate ways in which these mathematical objects have been described in the separate literatures
in which the concepts have been developed. Upon closer examination, however, the relationship
between the RVF and the EF is quite intuitive. While we believe this work is the first to formally
and explicitly establish the relationship, it can be seen implicitly in the results of several previous
works, such as those by [Trapp et al., 2013], [Hassanzadeh and Ralphs, 2014], and [Bodur et al.,
2022]. The so-called minimal tenders utilized in Trapp et al.’s algorithm for constructing the VF of
a pure integer linear optimization problem (PILP) can be seen as the points on the EF of a related
multiobjective problem. Hassanzadeh and Ralphs [2014] generalized this concept in their work
on the structure of the VF of a general MILP. More recently, Bodur et al. [2022] observed that
in block-structured problems, the solution to the column generation subproblem can be viewed
as equivalent to evaluating a certain VF, and solutions can thus be restricted only to so-called
nondominated points.

The relationship described in the remainder of the paper has some apparently broad-ranging impli-
cations, including that algorithms designed for the construction and/or approximation of the EF
are effectively interchangeable with algorithms for the construction and/or approximation of the
RVF and VFs in general. Because algorithms for these two tasks have so far been used in very
different application domains and for very different purposes, there are likely many possibilities for
the cross-pollination of ideas. To illustrate this, we propose a generalized cutting-plane algorithm
for constructing both the RVF and the EF. The approach we suggest is finitely convergent, exploits
the discrete structure of the RVF, and provides a performance guarantee if terminated early. It
is a modified version of an existing algorithm for constructing the full VF, and to the best of our
knowledge, the approach is entirely different from existing algorithms for the construction of the
EF. Additionally, our algorithm is one of few algorithms developed to date that addresses multiob-
jective MILPs in the presence of continuous variables with any number of objectives, and it yields
improved bounds on the number and size of subproblems that need to be solved to determine the
discrete structure of the EF. These bounds are also comparable to existing algorithms for the PILP
case (without continuous variables).

In the remainder of this section, we set the stage by formally defining the important terms and
concepts. We first describe the terminology and basic properties related to multiobjective MILPs
and their associated EFs before introducing the concept of the RVF. Although the RVF that we
introduce is closely related to the classical VF of a single-objective MILP (it can be viewed as a
generalization), we are not aware of any previous study of it. Its properties are much more difficult
to characterize than those of the classical VF.
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Multiobjective Optimization. The multiobjective MILP that serves as the focus of our study
is defined as

vinf(xI ,xC)∈XMO
CIxI + CCxC , (MO-MILP)

where
XMO =

{
(xI , xC) ∈ Zr

+ × Rn−r
+ : AIxI +ACxC = b

}
,

is the feasible region; A ∈ Qm×n is the coefficient matrix of the constraints; b ∈ Qm is the right-hand
side (RHS) of the constraints; and the rows of matrix C ∈ Q(ℓ+1)×n are the multiple objectives of
the problem and denoted by {c0, c1, . . . , cℓ}. The vinf operator indicates that this is a vector min-
imization (multiobjective) problem, which means that there is not a single optimal value; the vinf
operator returns a set of nondominated vectors of objective values, as described below 1. AI and CI

are the submatrices of A and C consisting of columns associated with the integer variables (indexed
by set I = {0, . . . , r − 1}), as opposed to AC and CC , which are the submatrices corresponding
to the columns associated with the continuous variables (indexed by set C = {r, . . . , n − 1}). We
assume that the feasible region XMO is bounded.

The aim of multiobjective optimization is to characterize the trade-offs inherent in optimizing
multiple objectives simultaneously. This analysis is most naturally done in the (ℓ+1)-dimensional
space known as the criterion space, which contains the vectors of objective values associated with
points in the n-dimensional decision space, the space containing the feasible region XMO. While
solving an MILP with a single objective means determining its unique optimal value, solving a
multiobjective MILP means generating the set of all vectors in criterion space associated with the
so-called efficient solutions, those for which there is no other solution for which the objective value
is at least as good for every objective and strictly better for at least one objective.

We briefly review some concepts in multiobjective optimization, referring interested readers to
[Ehrgott, 2005] for more details. An important concept in this context is that of dominance.
The point CIxI + CCxC ∈ Rℓ+1 in criterion space, associated with (xI , xC) ∈ XMO, dominates
CIx

′
I + CCx

′
C ∈ Rℓ+1, associated with (x′I , x

′
C) ∈ XMO, if CIxI + CCxC ≨ CIx

′
I + CCx

′
C , i.e.,

(CIxI +CCxC)j ≤ (CIx
′
I +CCx

′
C)j for all j = {0, 1, . . . , l} and (CIxI +CCxC)j < (CIx

′
I +CCx

′
C)j

for at least one index j ∈ {0, 1, . . . , l}. A point in criterion space that is not dominated by any other
point is called a nondominated point (NDP). The set of all NDPs is the aforementioned efficient
frontier. A preimage of an NDP in the decision space is referred to as an efficient solution. A
point (xI , xC) ∈ XMO that is not necessarily efficient but for which there does not exist (x′I , x

′
C) ∈

XMO such that CIx
′
I + CCx

′
C < CIxI + CCxC is called weakly efficient, and the associated point

CIxI +CCxC in criterion space is referred to as a weakly nondominated point or a weak NDP. It is
important to note that a weak NDP that is not also an NDP is, in fact, a dominated point.

Restricted Value Function. What we call the RVF provides another way of analyzing the
trade-offs in the multiobjective optimization problem. Specifically, we consider the following related
MILP with a single objective obtained by imposing all but one of the objectives in (MO-MILP) as
constraints, which we refer to as the parametric constraints. This MILP can be written as follows:

inf
(xI ,xC)∈X

c0IxI + c0CxC , (MILP)

1We use inf rather than min because the definition of the RVF below introduces the possibility of MILPs with
irrational right-hand sides for which attainment of the optimal value is not guaranteed
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where
X =

{
(xI , xC) ∈ Zr

+ × Rn−r
+ : C1:ℓ

I xI + C1:ℓ
C xC ≤ f, AIxI +ACxC = b

}
,

is the feasible region; c0 is the first row of the matrix C; C1:ℓ is the submatrix consisting of the
remaining rows of C, and f ∈ Qℓ is a fixed vector to be replaced shortly by a parameter to obtain
the aforementioned RVF. The particular objective that is chosen as c0 is arbitrary and the results
hold no matter what objective is chosen.

We now define the RVF z : Rℓ → R ∪ {±∞} associated with (MILP) to be the function

z(ζ) = inf
(xI ,xC)∈S(ζ)

c0IxI + c0CxC , (RVF)

that returns the optimal solution value of (MILP) as a function of a RHS parameter ζ ∈ Rℓ, where

S(ζ) =
{
(xI , xC) ∈ Zr

+ × Rn−r
+ : C1:ℓ

I xI + C1:ℓ
C xC ≤ ζ, AIxI +ACxC = b

}
.

Note that the classical VF [Blair and Jeroslow, 1977, 1979, Güzelsoy and Ralphs, 2007, Hassanzadeh
and Ralphs, 2014] is closely related and is the special case of the RVF in which the only constraints
with a fixed right-hand side are the bound constraints (m = 0). As usual, we let z(ζ) = +∞ for
ζ ̸∈ C, where

C =
{
ζ ∈ Rℓ : S(ζ) ̸= ∅

}
.

The function z is always bounded from below because of our assumption that the feasible region
XMO of the multiobjective MILP is bounded.

Example 1. Here, we illustrate the concepts discussed so far. Consider an RVF defined by

z(ζ) = min 2x1 + 5x2 + 7x4 + 10x5 + 2x6 + 10x7
s.t. −x1 − 10x2 + 10x3 − 8x4 + x5 − 7x6 + 6x7 ≤ ζ

−x1 + 4x2 + 9x3 + 3x4 + 2x5 + 6x6 − 10x7 = 4
5x2 + x4 + x8 = 5
5x2 + x7 + x9 = 5
xj ∈ {0, 1}, ∀j ∈ {1, 2}
xj ∈ R+, ∀j ∈ {3, 4, . . . , 9},

for all ζ ∈ R. This is not precisely in our standard form because the fixed upper bounds on the integer
variables are embedded in their definition. However, it can easily be converted to our standard
form. Figure 1a below shows the VF for the MILP, while Figure 1b shows the EF for the associated
multiobjective optimization problem. Note that the graph of the VF and the EF are identical except
for the horizontal line segment between the points (−10, 5) and (−75

6 , 5), which has been thickened
in the figure for emphasis.

In the remainder of the study, we demonstrate that the RVF and the EF capture the same informa-
tion and that algorithms for the construction of the two are effectively interchangeable. Throughout
the study, we consider the given instance (MILP), with its associated RVF and the corresponding
instance of (MO-MILP). The study is organized as follows. We begin by reviewing related work
in Section 2. In Section 3, we provide a characterization of the RVF in terms of a discrete set of
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(a) RVF (b) EF

Figure 1: The portion of the RVF and the EF associated with Example 1 with ζ ≥ −15. Note that
the frontier extends to the left up to ζ = −572

3 ; the finite domain of z is C = [−572
3 ,+∞). The

complete EF is shown in Figure 7.

integer parts of NDPs. In Section 4, we formalize the relationship between the RVF and the EF. In
Section 5, we present our cutting-plane algorithm for constructing both the EF and the VF. Both
the VF representation and the cutting-plane algorithm are finite under our assumption that XMO is
bounded. We analyze the theoretical performance of the algorithm compared with that of existing
algorithms. Finally, we summarize our findings and concluding remarks and suggest directions for
future work in Section 6.

2 Related Work

Methods both for constructing the EF of a multiobjective optimization problem and for constructing
the VF of an MILP have been extensively studied in the open literature. As the literature is vast,
we focus here on the most closely related works.

2.1 Multiobjective Optimization

Multiobjective optimization, the analysis of trade-offs between multiple conflicting objective func-
tions, has numerous applications across various fields, as most real-world problems arising in prac-
tice do have multiple objectives. In this study, we address the generation of the exact EF for
multiobjective MILPs. For a recent survey and a comprehensive overview of algorithms, we recom-
mend [Halffmann et al., 2022].

Algorithms in the multiobjective area can be roughly classified into two categories: scalarization-
based and non-scalarization-based methods. Scalarization techniques are the most common and
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involve solving a sequence of single-objective problems, each one producing a single NDP or other-
wise yielding information about a local region of the EF. Non-scalarization methods, on the other
hand, take a more global view, using, e.g., an outer approximation to bound the EF by convex or
nonconvex bounding functions. In the MILP case, some variant of branch-and-bound is typically
used to implement these algorithms.

A wide variety of scalarization-based methods have been proposed, including the weighted sum
method [Zadeh, 1963], the perpendicular search method [Chalmet et al., 1986], the weighted Tcheby-
cheff method [Bowman, 1976, Yu, 1973, Zeleny, 1973], the ϵ-constraint method [Haimes, 1971], the
Hybrid method [Guddat et al., 1985], Benson’s method [Benson, 1978], and the Pacoletti-Serafini’s
method [Pascoletti and Serafini, 1984]. These methods typically involve an iterative process in
which a list of discovered NDPs and a list of unexplored regions of the criterion space are main-
tained. At each iteration, the algorithm produces a new NDP within an unexplored region of the
criterion space. The process is repeated until there are no more unexplored regions. For a com-
prehensive review of scalarization methods in the multiobjective optimization field, the reader is
referred to [Ehrgott, 2006].

The most straightforward scalarization method is the weighted sum method. The single objective
created by this method is a weighted sum of the original objectives. When the weights are all
positive, the solution to the weighted sum problem is guaranteed to be nondominated. On the
other hand, not all nondominated solutions can be generated as a solution to some weighted sum
problem in the MILP case—only the so-called supported NDPs can be generated in this way. The
NDPs that can be found via weighted sum-based scalarization are called supported NDPs.

Several methods have been developed to address unsupported NDPs. The augmented weighted
Tchebycheff method [Bowman, 1976] seeks to find NDPs within the exploration region by minimiz-
ing the distance to the ideal point, which is defined as the point whose components are obtained by
minimizing the objective functions. Ralphs et al. [2006] proposed a weighted Tchebycheff scalar-
ization algorithm for constructing the EF of a biobjective integer programming problem.

The ϵ-constraint method, which involves minimizing a primary objective while restricting the other
objectives through inequality constraints, is widely used with many existing variants. This algorith-
mic approach has an obvious connection to the RVF. Tamby and Vanderpooten [2021] has recently
expanded the use of the ϵ-constraint method to address problems involving two or more objectives.
The proposed algorithm divides the search area into segments that can be individually explored by
solving an integer program.

To the best of our knowledge, the GoNDEF algorithm developed by [Rasmi and Türkay, 2019]
is currently the only algorithm that utilizes scalarization techniques to address MILPs with more
than two objectives. GoNDEF first finds all integer parts of NDPs (as our proposed algorithm also
does) and then attempts to describe the non-dominated facets of the stability regions associated
with each integer part.

Recently, a number of non-scalarization-based methods have been proposed. Forget et al. in 2022b
and 2022a focuses on 0-1 problems and employs outer approximation for computing the linear re-
laxation to generate lower bound sets using a Benson-like algorithm. Most other non-scalarization-
based algorithms are focused on the more general multiobjective mixed integer convex and non-
convex optimization settings with any number of objectives. In particular, the MOMIX [De Santis
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et al., 2020] and HyPaD [Eichfelder and Warnow, 2021a,b] algorithms address multiobjective mixed
integer convex optimization problems, while the algorithms proposed in [Eichfelder et al., 2021,
2022, Link and Volkwein, 2022] address both the convex and nonconvex cases. All of these algo-
rithms compute some kind of enclosure of the EF, which is iteratively refined until a convergence
criterion is achieved. The RVF algorithm proposed herein similarly maintains a kind of enclosure,
maintaining a global upper bounding function, but the upper bounding function converged to the
EF without the need for a lower bounding function. On the other hand, this is why the RVF
algorithm requires the solutions of a mixed integer nonlinear optimization problem in each iter-
ation. Because of their focus on the general nonlinear setting, the alternatives mentioned above
also have a convergence criterion based on error bounds and do not produce the same kind of
discrete representation of the EF that the RVF produces when applied to problems with only linear
constraints.

More recently, Dunbar et al. [2023] considered the optimization of multiobjective integer programs
through various relaxation and duality approaches, including continuous, convex hull, and La-
grangian relaxations, as well as Lagrangian duals and set- and vector-valued superadditive duals,
offering alternative solution methods. For more on approaches to approximating the EF using outer
approximations, we refer the interested reader to [Benson, 1998, Hamel et al., 2014, Csirmaz, 2016,
Löhne and Weißing, 2015, Ruzika and Wiecek, 2005]. A comprehensive survey of branch-and-bound
methods for multiobjective linear integer problems can be found in [Przybylski and Gandibleux,
2017]. For a detailed review of the literature on multiobjective optimization, we refer the interested
reader to [Ehrgott and Gandibleux, 2000, Ehrgott and Wiecek, 2005, Ehrgott et al., 2016].

2.2 Value Function

The classical VF of an MILP is well-studied, and understanding its structure is crucial for many ap-
plications due to its role as a core ingredient in optimality conditions used in a variety of algorithms
for solving optimization problems. These optimality conditions are also employed in formulating
and solving important classes of multistage and multilevel optimization problems, in which op-
timality conditions are embedded as constraints in a larger optimization problem. Additionally,
optimality conditions are also the basis for techniques used for warm-starting and sensitivity anal-
ysis, which are the areas in which the connection to multiobjective optimization is most apparent.

There have been several studies investigating the structure of the VF in MILPs. Blair and Jeroslow
[1977] and Blair and Jeroslow [1979] identified fundamental properties of the VF, including that it
is comprised of a minimum of a finite number of polyhedral functions. Blair and Jeroslow [1982]
showed that the VF of a PILP is a Gomory function, which is the maximum of subadditive functions
known as Chvátal functions. Blair and Jeroslow [1984] extended this result to general MILPs,
demonstrating that they are the maximum of Gomory functions. Finally, Blair [1995] identified
what was then referred to as a “closed-form” representation of the MILP VF, the so-called Jeroslow
formula, though this did not lead to what could be considered a practical representation. Güzelsoy
and Ralphs [2007] further studied the properties of the VF as it is related to methods of warm-
starting and sensitivity analysis and also suggested a method of construction for the case of an
MILP with a single constraint. Hassanzadeh and Ralphs [2014] extended this work by providing
further details on the structure and properties of the VF for a general MILP and suggesting a
practical representation.
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Most methods for constructing the VF have focused on the case of PILP, where the discrete structure
is the most evident and finite representation is the easiest to achieve. Wolsey [1981] used a cutting-
plane method to derive a sequence of Chvátal functions that leads to constructing the full VF
for a PILP. Conti and Traverso [1991] employed reduced Gröbner bases and modified the classical
Buchberger’s algorithm to solve PILPs. Later, Schultz et al. [1998] used Gröbner basis methods
to solve two-stage stochastic programs with complete integer recourse and different RHSs. The
authors identified a countable set known as the candidate set of the first-stage variables in which the
optimal solution is contained. Then Ahmed et al. [2004] developed a global optimization algorithm
for solving general two-stage stochastic programs with integer recourse and discrete distributions
by exploiting the structure of the second-stage integer problem VF. The authors demonstrated that
their algorithm avoids enumerating the search space. Kong et al. [2006] considered a two-stage PILP
and presented a superadditive dual formulation that exploits the VF in both stages, solving that
reformulation by a global branch-and-bound or level-set approach. Trapp and Prokopyev [2015]
proposed a constraint aggregation-based approach to alleviate the memory requirement for storing
the VF. Zhang and Özaltın [2021] first generalized the complementary slackness theorem to bilevel
IP (BIP) and showed that it can be an advantage for constructing the VFs of BIP. The authors
also demonstrated that the VFs of BIPs can be constructed by bilevel minimal RHS vectors and
presented a dynamic programming algorithm for constructing the BIP VF. Finally, Brown et al.
[2021] used a Gilmore-Gomory approach to construct the IP VF.

There have been relatively few algorithmic advances in finding the VF of a general MILP. Bank et al.
[1982] studied the qualitative and quantitative stability properties of mixed integer multiobjective
optimization problems, which can also be considered an MILP VF. Güzelsoy and Ralphs [2008]
proposed algorithms for constructing the VF of an MILP with a single constraint. The properties
of the VF and a method for constructing the VF in the case of a general MILP were discussed
in Hassanzadeh and Ralphs [2014]. In the current work, we generalize the work in Hassanzadeh
and Ralphs [2014] to the multiobjective setting. Our hope is that methods of constructing the
VF will now quickly be advanced by the adoption of techniques developed in the multiobjective
community.

3 The Restricted Value Function

Before presenting the main result detailing the relationship between the RVF and the EF in Sec-
tion 4, we describe here some basic properties of the RVF. In doing this, we hope to demonstrate
that certain properties of the EF arise more naturally by considering the structure of the RVF.
For example, the gradients and subdifferentials of the RVF provide a means to understand the
trade-offs between objectives in a local region of the EF and we show that these can be fully char-
acterized by considering the dual feasible region of the so-called continuous restriction, whose own
value function is the so-called restricted LP value function (RLPVF), described next in Section 3.1.
In Section 3.2, we show that the RVF can be described as the minimum of a set of translations of
the RLPVF and characterize its gradients and subdifferentials.
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3.1 Structure of the Restricted LP Value Function

The RLPVF is the special case of the RVF when there are no integer variables (r = 0). We define
the RLPVF zLP : Rℓ → R ∪ {±∞} by

zLP(ζ) = inf c0CxC (RLPVF-a)

s.t. C1:ℓ
C xC ≤ ζ (RLPVF-b)

ACxC = β (RLPVF-c)

xC ∈ Rn−r
+ , (RLPVF-d)

for all ζ ∈ Rℓ. As with the RVF, we define zLP to take values in the extended reals rather than
restricting it to its finite domain, which affects the analysis in significant ways that we discuss
below. In this section, we consider β ∈ Qm to be a fixed vector throughout, while in Section 3.2,
we consider a parametric class of functions of this form, with different values of β arising from
fixing the integer part of the solution in (RVF). As previously, we assume that zLP is bounded
from below.

The structure of the classical LP value function, where the entire right-hand side is parametric
(m = 0), is well-studied. It is well established that in this special case, the function zLP is a
polyhedral function whose epigraph is a polyhedral cone described by facets associated with the
extremal elements of the dual feasible region PD, defined below. In the more general case of the
RLPVF, the function is instead a slice of this full LP VF, and its epigraph is hence the intersection
of a hyperplane with a polyhedral cone.

In order to analyze the structure of this function, we consider the dual of the LP that arises in the
evaluation of zLP(ζ̂) for ζ̂ ∈ Rℓ, which is

sup
(u,v)∈PD

ζ̂⊤u+ β⊤v, (D-RLP)

where u is the vector of dual variables associated with the parametric constraints (RLPVF-b), v
is the vector of dual variables associated with the nonparametric constraints (RLPVF-c), and the
feasible region is

PD =
{
(u, v) ∈ Rℓ

− × Rm : C1:ℓ
C

⊤
u+A⊤

Cv ≤ c0C

}
.

By assumption, PD is nonempty, since zLP is bounded below. Note that the feasible region PD
of (D-RLP) does not depend on ζ.

Next, let E and R be the sets of extreme points and extreme rays of PD, respectively. Recall that
R represents the set of extreme elements of the recession cone{

(e, h) ∈ Rℓ × Rm : C1:ℓ
C

⊤
e+A⊤

Ch ≤ 0
}
.

By Farkas’ lemma [Farkas, 1902], zLP(ζ) is finite (the problem (D-RLP) has an optimal solution)
if and only if ζ ∈ CLP, where

CLP =
{
ζ ∈ Rℓ : ζ⊤e+ β⊤h ≤ 0 ∀(e, h) ∈ R

}
.
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Otherwise, we have zLP(ζ) = +∞. Note that CLP is a polyhedron.

Putting all of this together, we have the following proposition characterizing zLP and yielding a
finite combinatorial description.

Proposition 3.1. zLP is a polyhedral function over CLP and we have that

zLP(ζ) := max
(u,v)∈PD

(ζ⊤u+ β⊤v) = max
(u,v)∈E

(ζ⊤u+ β⊤v), ∀ζ ∈ CLP. (D-RLPVF)

Proof. By (D-RLPVF), the epigraph of RLPVF over CLP is{
(ζ, w) ∈ CLP × R : ζ⊤u+ β⊤v ≤ w, ∀(u, v) ∈ E

}
,

which is a polyhedron (E must be finite, since it is the set of extreme points of a polyhedron).
Therefore, zLP is a polyhedral function over CLP. The characterization (D-RLPVF) follows from
strong duality and the well-known fact that when an LP has a finite optimum, that optimum is
achieved at an extreme point. ■

For an illustration, see Appendix A, where we detail the RLPVF obtained by setting (x1, x2) = (0, 0)
in Example 1. Since all polyhedral functions are convex, it follows that zLP is convex over CLP.

In the remainder of this section, we characterize the directional derivatives and the subdifferentials
of the RLPVF. For the classical VF associated with an LP, it is well-known that the subdifferential
at a given right-hand side vector within the finite domain of the VF is the set of all optimal
solutions to the dual of the LP associated with that given right-hand side. A similar result can be
obtained for the RLPVF by projecting this set of optimal dual solutions onto the subspace of the
dual variables associated with the parametric constraints (RLPVF-b). The projection will also be
useful in characterizing the directional derivatives.

We start by describing the face of all optimal solutions of the LP dual (D-RLP) for a given ζ ∈ CLP.
By adding an optimality constraint to the constraints of PD, we get that the set of optimal solutions
with respect to objective vector (ζ, β) is the face

OPT (ζ) = {(u, v) ∈ Rℓ
− × Rm : C1:ℓ

C
⊤
u+A⊤

Cv ≤ c0C , ζ⊤u+ β⊤v = zLP(ζ)} (1)

of PD (itself a polyhedron). It is well-known how to project a polyhedron into a subspace (see, e.g.,
Theorem 3.46 of Conforti et al. [2014]). Applying this procedure, we get

proju(OPT (ζ)) = {u ∈ Rℓ
− : ∃v ∈ Rm s.t. A⊤

Cv ≤ c0C − C1:ℓ
C

⊤
u, β⊤v = zLP(ζ)− ζ⊤u}

= {u ∈ Rℓ
− : (C1:ℓ

C r + sζ)⊤u ≤ r⊤c0C + szLP(ζ), ∀(r, s) ∈ Q},
(2)

where Q are the extreme rays of {(xC , t) ∈ Rn−r
+ × R : ACxC + tβ = 0}.

Note that for (x̂C , t̂) with t̂ < 0, we can scale the resulting ray so without loss of generality, t̂ = −1
and then AC x̂C = β, so that x̂C is an extreme point of {xC ∈ Rn−r

+ : ACxC = β}, the feasible
region of the relaxation obtained by relaxing (RLPVF-b). Then we can re-write the condition for
u to be in the projection as

(c0C − C1:ℓ
C

⊤
u)⊤r ≥ zLP(ζ)− ζ⊤u, (3)

11



which has an interpretation in terms of the reduced costs associated with u. Note that the above
implies that if we precompute the set Q, we can easily obtain a description of proju(OPT (ζ)) for
any ζ ∈ Rℓ.

We now state the main result of this section, which is that the set proju(OPT (ζ)) is precisely the
subdifferential of the RLPVF at ζ ∈ CLP. We apply the standard definition for the subdifferential
of a convex function [Rockafellar, 1997], which states that the subdifferential of zLP at ζ̂ ∈ CLP is2

∂zLP(ζ̂) =
{
g ∈ Rℓ : zLP(ζ) ≥ g⊤(ζ − ζ̂) + zLP(ζ̂), ∀ζ ∈ CLP

}
.

Proposition 3.2. For all ζ ∈ CLP,

∂zLP(ζ) = proju(OPT (ζ)).

The proof relies on Lemmas C.2, C.3, and C.4, all stated and proven in Appendix C. A consequence
of this result is that zLP is differentiable at points in the interior of its domain at which the dual
LP has a unique solution. We formalize this in Corollary C.5 in Appendix C.

We now examine the properties of the directional derivatives to highlight how the function behaves
at the boundaries of the finite domain CLP. From the definition of CLP, the following characterization
of its interior and boundary can be easily derived.

• ζ ∈ int CLP if and only if ζ⊤e+ β⊤h < 0 ∀(e, h) ∈ R.

• ζ ∈ CLP is on the boundary of CLP if and only if ζ⊤e+β⊤h ≤ 0 ∀(e, h) ∈ R and there exists
(ê, ĥ) ∈ R such that ζ⊤ê+ β⊤ĥ = 0.

• ζ ̸∈ CLP if and only if there exists (ê, ĥ) ∈ R such that ζ⊤ê+ β⊤ĥ > 0.

Now consider a given ζ̂ on the boundary of CLP. By the characterization above, there exists
(ê, ĥ) ∈ R such that ζ̂⊤ê+ β⊤ĥ = 0. As an aside, it is interesting to observe that this means that
specifically for points on the boundary of CLP, we have zLP(ζ̂) < +∞ (there is a finite optimal
value), while the set of optimal solutions to the LP (D-RLP) is unbounded. This is because the
rays of the optimal face have an objective value of zero.

Let d ∈ Rℓ be such that d⊤ê > 0. Then we have that ζ̂ + ϵd ̸∈ CLP for all ϵ > 0, since (ζ̂ + ϵd)⊤ê+
β⊤ĥ > 0. Thus, we can interpret d as a direction pointing out of CLP. Per the above discussion, we
define the set

δ−(ζ) = cone({d ∈ Rℓ : ∃(e, h) ∈ R such that ζ⊤e+ β⊤h = 0, d⊤e > 0}) \ {0},

to be the set of all directions pointing out of CLP at ζ ∈ CLP. Note that with this definition, we
have δ−(ζ) = ∅ for ζ ∈ int CLP, as expected.

In what follows, we consider several results characterizing the directional derivatives of both the
RLPVF and the RVF. For general f : Rn → R, we take the directional derivative of f at x̄ in
direction d to be

∇df(x̄) = lim
t↘0

f(x̄+ td)− f(x̄)

t
.

2This is obviously equivalent to ∂zLP(ζ̂) = {g ∈ Rℓ : zLP(ζ) ≥ g⊤(ζ − ζ̂) + zLP(ζ̂), ∀ζ ∈ Rℓ}, since zLP(ζ) = +∞
for ζ ̸∈ CLP.

12



For both the RLPVF and the RVF considered in the next section, this limit may go to +∞ at points
of discontinuity and we take the directional derivative to have the value +∞ in such cases. For
zLP, we have continuity over the finite domain CLP, but discontinuities at points on the boundary
of CLP, since we define zLP over the extended reals. Then the directional derivative ∇dzLP(ζ) of
zLP at ζ ∈ CLP in direction d is finite if and only if d ̸∈ δ−(ζ). For ζ ∈ int CLP, δ−(ζ) = ∅ and the
directional derivative is finite in all directions.

From the properties of convex functions and subdifferentials, we can alternatively characterize the
directional derivative as

∇dzLP(ζ) = max
u∈∂zLP(ζ)

u⊤d,

where ∂zLP(ζ) denotes the subdifferential of zLP at ζ ∈ Rℓ. As a result, we have that for ζ ∈ CLP,
we have that

∇dzLP(ζ) =

{
maxu∈proju(OPT (ζ)) u

⊤d, if d ̸∈ δ−(ζ),

+∞, otherwise,

for all d ∈ Rℓ. Proposition C.1 in Appendix C formally establishes this from first principles, though
it can also be seen as a corollary of our more general characterization of the subdifferentials of the
RLPVF, which is the main result of this section.

3.2 Structure of the Restricted Value Function

We now characterize the structure of the RVF by observing that the RVF is the minimum of a finite
number of translations of functions of the form (RLPVF) for different values of the (previously)
non-parametric RHS β. Each of these translated functions defines a stability region over which the
integer part of all solutions defining points on the graph of the associated RLPVF is fixed.

To further develop our characterization of the VF, we define the following sets of integer parts of
solutions by projecting S(ζ) onto the space of the integer variables:

SI(ζ) = projI S(ζ) =
{
xI ∈ Zr

+ : (xI , xC) ∈ S(ζ)
}
, and

SI =
⋃
ζ∈C
SI(ζ).

Thus, SI is the set of all integer parts of points in S(ζ) for some ζ ∈ C. For a given x̂I ∈ SI , the
continuous restriction (CR) with respect to x̂I is the function3

z̄(ζ; x̂I) = c0I x̂I + zLP(ζ − C1:ℓ
I x̂I ; b−AI x̂I) ∀ζ ∈ C, (CR)

which is defined in terms of the previously defined function zLP, but with an additional secondary
parameter. In particular, zLP(·; β) is similar to the previously defined zLP except that we now
allow for a parametric family of such functions with different vectors for the non-parametric RHS
β in (RLPVF). The form shown above is precisely a translation of a function of the form (RLPVF)
for β = b − AI x̂I . In the remainder of the study, we refer to functions z̄(·; xI) for xI ∈ SI as
bounding functions, since they bound the RVF from above, as demonstrated in Proposition 3.3.

3In the multiobjective optimization literature, the corresponding multiobjective LP is sometimes referred to as a
slice problem [Belotti et al., 2013].
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Proposition 3.3. For any x̂I ∈ SI , z̄(·; x̂I) bounds z from above.

Proof. For x̂I ∈ SI , we have

z̄(ζ; x̂I) = c0I x̂I+ zLP(ζ − C1:ℓ
I x̂I ; b−AI x̂I) ≥

min
xI∈SI

(
c0IxI + zLP(ζ − C1:ℓ

I xI ; b−AIxI)
)
= z(ζ), ∀ζ ∈ C.

■

Proposition 3.3 shows that any collection of points from SI yields an upper approximation of z
simply by taking the minimum of the associated set of bounding functions, previously defined as
z̄(·; xI) for xI ∈ SI . The algorithm described in Section 5 constructs a subset of SI that fully
describes the RVF by iteratively approximating it from above.

We first focus on characterizing the RVF as the minimum of a set of bounding functions, as defined
in Proposition 3.3. When XMO is bounded, SI is finite, so the number of such functions required
is finite. As such, the main result of this section is the following discrete characterization.

Theorem 3.4. Let S be any subset of SI with the property that for any ζ ∈ C, there exist xI ∈ S
and xC ∈ Rn−r

+ such that C1:ℓ
I xI + C1:ℓ

C xC ≤ ζ, AIxI +ACxC = b, and c0IxI + c0CxC = z(ζ). Then
for any ζ ∈ C we have

z(ζ) = min
xI∈SI

z̄(ζ; xI) = min
xI∈S

z̄(ζ; xI).

Proof. Let ζ ∈ C. Since S ⊆ SI , then by Proposition 3.3, we have that

z(ζ) ≤ min
xI∈S

z̄(ζ; xI).

Now by definition of S, there exists x̂I ∈ S and x̂C ∈ Rn−r
+ such that C1:ℓ

I x̂I +C1:ℓ
C x̂C ≤ ζ, AI x̂I +

AC x̂C = b, and c0I x̂I + c0C x̂C = z(ζ). So

min
xI∈S

z̄(ζ; xI) = min
xI∈S

(
c0IxI + zLP(ζ − C1:ℓ

I xI ; b−AIxI)
)

≤ c0I x̂I + zLP(ζ − C1:ℓ
I x̂I ; b−AI x̂I)

≤ c0I x̂I + c0C x̂C = z(ζ),

where the first equation follows from (CR), the subsequent inequality follows since x̂I ∈ S, the
next since, by its definition, x̂C is feasible for zLP(ζ − C1:ℓ

I x̂I ; b − AI x̂I), and the final equation
follows from the definition of x̂I and x̂C . We thus have both that z(ζ) is no greater and no less
than minxI∈S z̄(ζ; xI), and the result follows. ■

We call a set S with the properties described in the above theorem a description of the RVF. Of
course, what constitutes a full “description” of this function is largely a philosophical question.
Given the complexity of the function itself, there is obviously a trade-off between the time needed
to construct a given description and the ease with which information about the function can be
extracted. Determining the “best” description is itself a multiobjective problem, The description
proposed here allows for z to be evaluated in time polynomial in the size of the original problem
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Figure 2: Stability regions and corresponding members of SI in Example 1, for the region ζ ≥ −15,
stability regions from left to right correspond to (x1, x2) ∈ {(1, 0), (1, 1), (0, 1), (1, 0), (0, 0)}.

data and |S|. We also show below that with a little additional computation, we can also describe
the function’s gradients and subdifferential (the latter are polyhedra).

It is clearly desirable to construct a description that is minimal with respect to the properties of
Theorem 3.4. Although such a minimal description is clearly not necessarily unique, we denote any
such a minimal description by the notation Smin, since the particular one chosen does not affect
our results. Each member x̂I ∈ Smin is associated with its own stability region, denoted by C(x̂I),
and defined to be

C(x̂I) = {ζ ∈ C : z(ζ) = z̄(ζ; x̂I)} .

Informally, this is the subset of C for which the bounding function associated with x̂I agrees with
the RVF. We discuss the properties of stability regions below, but generally, stability regions do
not have to be closed or connected, as exemplified in the following example.

Example 2. The stability regions in Example 1 are depicted in Figure 2 for the domain ζ ≥ −15.
Here, SI = Smin = {(0, 0), (0, 1), (1, 0), (1, 1). The stability regions are

C((1, 1)) = [−12.167,−10)
C((0, 1)) = [−10,−7.833]
C((1, 0)) = [−55.464,−12.167) ∪ [−7.833,−6.4]
C((0, 0)) = [−6.4,+∞).

Note that the stability region for (1, 0) consists of two disjoint intervals, one of which is open. The
stability region for (0, 0) is a single interval, closed at both ends. The stability region for (0, 1) is
a single closed interval on which the RVF has a zero gradient. Further insights can be obtained by
examining the bounding functions associated with each element of SI , provided in Appendix B.
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Even when connected, a stability region may be nonconvex and open, as illustrated in Example 3.

Example 3. Consider the RVF instance given by

z(ζ) = min x2

s.t. x3 ≤ ζ1

x4 ≤ ζ2

2(1− x1) ≤ xj ≤ 2(1− x1) + 5x1, j = 2, 3, 4

x2 + x3 ≥ 5x1

x1 ∈ {0, 1}
xj ≤ 5, xj ∈ R+, j = 2, 3, 4.

As in previous examples, although this is not in the standard form as in (RVF), it can easily be
made so with the addition of slack and surplus variables. Since these do not change the RVF or
stability regions, we keep the instance in its natural form. The VF for this instance can be written
explicitly as

z(ζ) =


2, ζ1 ∈ [2, 3] and ζ2 ≥ 2,
5− ζ1, ζ1 ≤ 5 and ζ2 < 2 or ζ1 ∈ [0, 2) ∪ (3, 5],
0, otherwise,

for ζ = (ζ1, ζ2) ∈ C = R2
+. The stability region for xI = (x1) = (1) is

{ζ ∈ R2
+ : ζ1 < 2 or ζ1 ≥ 3 or ζ2 < 2},

which is shown in Figure 3, which displays both stability regions for this example. The stability
region for xI = x1 = 1 is connected but is neither convex nor closed.

In general, we do not expect there to be a minimal description that is unique; it is possible for
multiple integer solutions x1I , x

2
I ∈ SI with x1I ̸= x2I to satisfy z̄(·; x1I) = z̄(·; x2I), e.g., in the trivial

case of duplicate variables. Furthermore, for any point (ζ, z(ζ)) on the graph of the RVF, there
may be more than one integer part xI with this point lying on the RVF for its associated bounding
function. In other words, it is possible that stability regions may overlap, even for integer parts
in a given minimal description. Such a case occurs in Example 1: points in the purple-colored
line segment seen in Figure 3 are in the stability regions of two different integer parts, both of
which are in Smin. Of course, for each integer part xI ∈ Smin, there must exist at least one point
on the boundary of the epigraph of the associated bounding function that is on the boundary of
the epigraph of the RVF itself and is not on the boundary of the epigraph of any other bounding
function; otherwise, Smin would not be minimal. All we can say for sure is that elements of SI that
have an empty stability region will not be present in any minimal description.

We now turn our attention from the structure of stability regions and properties of minimal descrip-
tions to properties of the RVF itself arising from the finite description of Theorem 3.4. Figure 1a
illustrates the RVF of the MILP described in Example 1. The RVF is piecewise polyhedral, non-
increasing, and lower semi-continuous (here, nonincreasing means that ζ1 ≥ ζ2, ζ1, ζ2 ∈ Rℓ ⇒
z(ζ1) ≤ z(ζ2)). We formalize this in Proposition C.6, which can be viewed as a generalization of
the previous results by [Nemhauser and Wolsey, 1988] and [Bank et al., 1982] for the full MILP
VF. We articulate this within Proposition C.6 found in Appendix C.
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Figure 3: Stability regions of the instance in Example 3. The area shaded in red, including the red
boundary lines, is not in the stability region for x1 = 1, which is thus neither convex nor closed.
The line segment shaded in purple is in the stability region of both x1 = 0 and x1 = 1.

The RVF may be discontinuous due to the fact that individual bounding functions themselves
are discontinuous at the boundaries of their finite domains. When the RVF is discontinuous, the
discontinuities occur at (some of) the boundaries between stability regions. At such points, as well
as at points on the boundary of C, there may be directions in which the directional derivative of z
is infinite, exactly as can occur at points on the boundary of CLP in the RLPVF.

Next, we describe the directional derivative of z at a point ζ ∈ C in terms of the faces of optimal
solutions to the duals of the LPs associated with the bounding functions in directions for which the
directional derivative is finite. To characterize these directions, we need the analogues of the sets
of optimal extreme points and extreme rays characterizing the optimal faces of solutions to the LP
dual, as we had in the RLPVF case, but with the integer part of the solution fixed. For xI ∈ SI
and ζ ∈ Rℓ, we define

proju(OPT (ζ;xI)) = {u ∈ Rℓ
− : ∃v ∈ Rm s.t. A⊤

Cv ≤ c0C − C1:ℓ
C

⊤
u, β⊤v = z̄(ζ; xI)− (ζ − C1:ℓ

I xI)
⊤u}

= {u ∈ Rℓ
− : (C1:ℓ

C r + s(ζ − C1:ℓ
I xI))

⊤u ≤ r⊤c0C + sz̄(ζ; xI), ∀(r, s) ∈ Q},
(4)

where Q is defined as previously to be the extreme rays of {(xC , t) ∈ Rn−r
+ ×R : ACxC + tβ = 0}.

We further need to know the set of integer vectors associated with the bounding functions that
agree with the RVF at a given point, which we denote as

S∗
I (ζ) =

{
xI ∈ SI(ζ) : c0IxI + c0CxC = z(ζ), ∃xC s.t. (xI , xC) ∈ S(ζ)

}
= {xI ∈ SI(ζ) : z̄(ζ; xI) = z(ζ)} .

With all of this notation established, let us now consider a point ζ̂ ∈ Rℓ at which the RVF is
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discontinuous. As with the RLPVF, the directional derivative of a bounding function associated
with xI ∈ SI is infinite in direction d ∈ Rℓ at ζ̂ if and only if d is contained in the set

δ−(ζ̂; xI) = cone({d ∈ Rℓ : ∃(e, h) ∈ R such that

(ζ̂ − C1:ℓ
I xI)

⊤e+ (b−AIxI)
⊤h = 0, d⊤e > 0}) \ {0}.

Finally, for the directional derivative of z itself to be infinite in direction d ∈ Rℓ at ζ̂ ∈ Rℓ, the
derivatives of all bounding functions that agree with z at ζ must also be infinite, so we have the
following proposition, whose proof appears in Appendix C.

Proposition 3.5. For ζ ∈ C and d ∈ Rℓ,

∇dz(ζ) = min
xI∈S∗

I (ζ)∩Smin

∇dz̄(ζ; xI)

=

 min
xI∈S∗

I (ζ)∩Smin

(maxu∈proju(OPT (ζ; xI)) u
⊤d), if d ̸∈ ∩xI∈S∗

I (ζ)∩Smin
δ−(ζ; xI),

∞, otherwise,

where Smin is any minimal description of the RVF.

Even though the RVF is not convex, nor expected to be continuous, it is still possible to define
a notion of subdifferential by considering the local structure of the VF at a given point, which
is inherited from the bounding functions that are active at the point and necessary to a minimal
description of the VF.

Definition 3.6 (Local Subdifferential). Let f : Rℓ → R and ζ ∈ Rℓ. Then q ∈ Rℓ is a local
subgradient of f at ζ ′ ∈ Rℓ if there exists ϵ > 0 such that

f(ζ) ≥ f(ζ ′) + q⊤(ζ − ζ ′), ∀ζ ∈ Rℓ such that ∥ζ − ζ ′∥ ≤ ϵ. (5)

The local subdifferential of f at ζ, denoted ∂Lf(ζ), is defined as the set of all local subgradients of
f at ζ.

Our definition of a local subgradient is closely related to that of the proximal subgradient given
in [Rockafellar and Wets, 2009] (Definition 8.45). The main difference is that we drop the quadratic
term σ∥ζ ′ − ζ∥2 in the definition of the proximal subgradient, since σ = 0 is always valid in our
setting. In particular, for functions that are piecewise affine or convex, our local subdifferential and
the proximal subdifferential are identical.

Finally, we are ready to state the main result of this section, that the intersection of the subdiffer-
entials of these active and necessary bounding functions at a point yields the local subdifferential of
the VF at that point. The proof of this result depends crucially on the following observation, stated
formally as Lemma C.7 in Appendix C. Since (by Proposition C.6) z is comprised of a minimum of a
finite number of polyhedral functions, each associated with a member of some minimal description
Smin, as per in Theorem 3.4, then z must agree with the upper bounding function associated with
some member of Smin in the local neighborhood of any ζ ∈ C. The remaining details of the proof
appear in Appendix C.
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Proposition 3.7. The local subdifferential of z at ζ ∈ C is given by

∂Lz(ζ) =
⋂

xI∈S∗
I (ζ)∩Smin

proju(OPT (ζ − C1:ℓ
I xI ; b−AIxI)),

where Smin is a minimal description of the RVF.

4 The RVF and the EF

We now formalize the relationship between the RVF and the EF. Informally, Theorem 4.1 below
states that the boundary of the epigraph of the RVF and the EF effectively encode the same
information, with the boundary of the epigraph including weak NDPs, while the EF does not.

Theorem 4.1. The EF associated with (MO-MILP) is a (possibly strict) subset of the boundary
of the epigraph of the RVF. In particular, the following statements hold.

1. If CIxI + CCxC belongs to the EF for some (xI , xC) ∈ XMO, then (C1:ℓ
I xI + C1:ℓ

C xC , c
0
IxI +

c0CxC) is a point on the boundary of the epigraph of z.

2. If (ζ, z(ζ)) is a point on the boundary of the epigraph of z, then there exists an efficient
solution (xI , xC) ∈ XMO such that c0IxI + c0CxC = z(ζ) and C1:ℓ

I xI + C1:ℓ
C xC ≤ ζ. Further,

C1:ℓ
I xI + C1:ℓ

C xC = ζ if and only if ∇dz(ζ) > 0 for all d ∈ Rℓ
− \ {0}.

Proof. 1. To prove statement 1, let (x̂I , x̂C) ∈ XMO be a given efficient solution and let ζ̂ =
C1:ℓ
I x̂I + C1:ℓ

C x̂C . Now (x̂I , x̂C) ∈ XMO and ζ̂ = C1:ℓ
I x̂I + C1:ℓ

C x̂C implies, from definitions,

that (x̂I , x̂C) ∈ S(ζ̂). We want to show that (ζ̂, c0I x̂I + c0C x̂C) is a point on the boundary of

the epigraph of the RVF z. Since z(ζ̂) = min(xI ,xC)∈S(ζ̂) c
0
IxI + c0CxC , by definition, and since

(x̂I , x̂C) ∈ S(ζ̂), it must be that z(ζ̂) ≤ c0I x̂I + c0C x̂C . Assume, for the sake of contradiction,

that c0I x̂I + c0C x̂C ̸= z(ζ̂). Then it must be that c0I x̂I + c0C x̂C > z(ζ̂). Now, by the definition of

z(ζ̂), there must exist (xI , xC) ∈ S(ζ̂) with z(ζ̂) = c0IxI+c0CxC . Furthermore, (xI , xC) ∈ S(ζ̂)
implies C1:ℓ

I xI +C1:ℓ
C xC ≤ ζ̂ = C1:ℓ

I x̂I +C1:ℓ
C x̂C , while c0IxI + c0CxC = z(ζ̂) < c0I x̂I + c0C x̂C , so

CIxI + CCxC ≨ CI x̂I + CC x̂C . This contradicts the hypothesis that (x̂I , x̂C) is an efficient
solution, and the result follows.

2. To prove the first part of 2, let ζ ∈ C be given, so that (ζ, z(ζ)) is a point on the boundary
of the epigraph of z. Then there exists (x̃I , x̃C) ∈ S(ζ) such that c0I x̃I + c0C x̃C = z(ζ). There
are two cases. If (x̃I , x̃C) is an efficient solution, the result follows trivially. Otherwise, there
must exist an efficient solution (xI , xC) ∈ XMO that dominates (x̃I , x̃C) at least weakly, i.e.,
such that CIxI + CCxC ≤ CI x̃I + CC x̃C . Then C1:ℓ

I xI + C1:ℓ
C xC ≤ C1:ℓ

I x̃I + C1:ℓ
C x̃C ≤ ζ,

which means (xI , xC) ∈ S(ζ) and we also have c0IxI + c0CxC ≤ c0I x̃I + c0C x̃C = z(ζ). But
by the optimality of z(ζ), we must also have that c0IxI + c0CxC ≥ z(ζ), so we conclude that
c0IxI + c0CxC = z(ζ). Since (xI , xC) is an efficient solution, the result follows.

For the second part, there are two directions.
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⇐ Suppose that ∇dz(ζ) > 0 for all d ∈ Rℓ
− \ {0} and assume for the sake of contradiction

that ζ ≩ C1:ℓ
I xI + C1:ℓ

C xC . Let ζ̃ = C1:ℓ
I xI + C1:ℓ

C xC . Now S(ζ̃) ⊆ S(ζ ′) ⊆ S(ζ) for
all ζ ′ with ζ̃ ≤ ζ ′ ≤ ζ. Thus, since (xI , xC) minimizes the objective over S(ζ) and
(xI , xC) ∈ S(ζ̃), it must be that z(ζ ′) = c0IxI + c0CxC for all ζ ′ ∈ [ζ̃, ζ]. So z(ζ ′) = z(ζ)

for all ζ ′ ∈ [ζ̃, ζ]. Recalling that ζ ≩ ζ̃, it must thus be that d̂ = ζ̃ − ζ ∈ Rℓ
− \ {0}

and ∇d̂z(ζ) = 0, which is a contradiction to the initial hypothesis. Therefore, ζ =
C1:ℓ
I xI + C1:ℓ

C xC .

⇒ We prove the contrapositive. Therefore, suppose there exists d ∈ Rℓ
− \ {0} such that

∇dz(ζ) = 0. Then, by Proposition C.6, there must exist ζ̃ ≨ ζ with z(ζ̃) = z(ζ). By
the proof of the first part of 2, above, there must exist (x̃I , x̃C) an efficient solution with
(x̃I , x̃C) ∈ S(ζ̃) and c0I x̃I + c0C x̃C = z(ζ̃). Now the former condition implies C1:ℓ

I x̃I +
C1:ℓ
C x̃C ≤ ζ̃ ≨ ζ while the latter implies that c0I x̃I + c0C x̃C = z(ζ), since z(ζ̃) = z(ζ). The

result follows.

■

Since the theorem is somewhat technical, we now further explain the intuition of the result. Part 1
is a straightforward statement that every point on the EF is also a point on the boundary of the
epigraph of the RVF. The technicalities in Part 2 arise from the aforementioned fact that there
are points on the boundary of the epigraph of the RVF that are not in the EF. A point on the
boundary of the epigraph that is not contained in the EF corresponds to a weak NDP and can thus
be associated with the one or more NDPs that weakly dominate it.

For illustration, consider (ζ, zLP(ζ)) on the boundary of the epigraph of z. If the function value
strictly increases whenever any component of the argument ζ decreases, then the directional deriva-
tive is positive in all negative directions and this point must correspond to an NDP. For example,
in Example 1, ∇dz(−11) > 0 for d = −1 (see Figure 2) and thus (−11, z(−11)) corresponds to an
NDP.

On the other hand, if there is a direction d in which the directional derivative is zero at ζ, then the
point (ζ, zLP(ζ)) must be a weak NDP, since moving in the direction d from ζ corresponds to strictly
improving the value of one or more of the multiple objectives that correspond to the parametric
constraints, while the objective of (MILP) remains unchanged. For example, in Example 1, points
in the interior of the stability region associated with (0, 1) (e.g., ζ = −9) correspond to weak NDPs
since they are dominated by the point (−10, 5).

The conditions involving directional derivatives also have another interpretation that is possibly
more intuitive. Recall from the previous section that when ∇dz(ζ̂) is finite for ζ̂ ∈ Rℓ, we have that
∇dz(ζ̂) = d⊤û for some optimal solution û ∈ PD to (D-RLP). This allows us to re-interpret the
above conditions involving directional derivatives in terms of solutions to (D-RLP). In particular,
the condition ∇dz(ζ̂) > 0 for all d ∈ Rℓ

− \ {0} is equivalent to u < 0 for all alternative optimal

solutions (u, v) ∈ PD for (D-RLP) associated with ζ̂, while a zero directional derivative implies
that the dual variable associated with one of the constraints is zero. This makes sense, as a zero
dual value implies that the constraint can be tightened without changing the optimal solution,
and this is exactly the condition that would indicate a given solution is not nondominated in the
multiobjective context.

20



Note that when all directional derivatives in directions d ∈ Rℓ
− \ {0} are strictly positive (the

function is strictly decreasing everywhere), then the boundary of the epigraph of the RVF and the
EF exactly coincide. This case is illustrated in Example 4 below.

Example 4. We consider the following instance of (RVF):

z(ζ) = min x1 +
1

4
x2 +

1

2
y1 −

3

4
y2

s.t.
4

5
x1 +

1

2
x2 +

1

3
y1 + 0y2 ≤ ζ

3

5
x1 +

1

3
x2 +

1

4
y1 −

1

5
y2 = 4

xi ∈ Z+, ∀i ∈ {1, 2}
yj ∈ R+, ∀j ∈ {1, 2}.

Figure 4 shows the EF in Example 4, which exactly coincides with the boundary of the epigraph of
the associated RVF.

Figure 4: EF and RVF for the MILP in Example 4

It is worth noting that it is possible to avoid the difficulty of the weak NDPs that aren’t part of
the EF by changing from “≤” to equality for the constraints associated with the objectives of the
multiobjective version of the problem. However, in that case, a different difficulty is introduced—
there may then be parts of the RVF that are increasing (strictly positive directional derivative in
the direction d ∈ Rℓ

+), and we then have that the boundary of the epigraph for those parts of the
RVF is not part of the EF. As such, this approach therefore does not make the statement of the
theorem any cleaner. In Appendix D, we state the equivalent Theorem D.1, noting that the only
deviation from the original statement is replacing ≤ with = for the parametric constraints.

Before closing this section, we use the results of Theorem 4.1 to connect the description of the
RVF, from Theorem 3.4, and the EF of the (MO-MILP). Specifically, we will see that not only
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does a minimal subset Smin give us a description of the VF but also a description of the EF (under
the previous caveat that what constitutes a “description” is context dependent). In doing so, we
provide some insight into the role of the objective vector c0, which is distinguished in the (RVF)
problem but is indistinguishable from other objectives in the (MO-MILP).

First, suppose that the (MO-MILP) has been solved in some way to obtain a set F that is the set
of points on the EF. We wish to determine the RVF. The first part of Theorem 4.1 says

z(ζ) = min
γ∈F

{
γ0 : γ1:ℓ ≤ ζ

}
, ∀ζ ∈ C.

Alternatively, the (MO-MILP) may be solved by providing some set of integer parts of efficient
solutions, denoted as SEI ⊆ SI so that for all γ ∈ F there must exist an efficient solution (xI , xC) ∈
XMO with xI ∈ SEI and γ = CIxI + CCxC . Then, by Theorem 3.4, there is a minimal description
Smin ⊆ SEI .

Now we take the opposite perspective: suppose that we can determine a RVF (by finding Smin as
per Theorem 3.4) and wish to determine a solution to a given (MO-MILP) that has p objectives,
encoded as rows 1, . . . , p in the matrix D ∈ Rp×n. It is well known in multiobjective optimization
(and straightforward to prove) that adding an objective of the form λ⊤D to the (MO-MILP)
does not change the set of efficient solutions, provided λ ≥ 0, and nor does removing any duplicate
objective. We may thus consider any restricted value problem with (i) c0 = Dk:k, the kth objective,
and C1:ℓ consisting of D with the kth row deleted, so ℓ = p−1, for any k = 1, . . . , p, or (ii) c0 = λ⊤D
and C1:ℓ = D, so ℓ = p, for any λ ≥ 0. In any case of (i) or (ii), the set of efficient solutions of
vinf{Dx : x ∈ XMO} is precisely the set of efficient solutions of vinf{Cx : x ∈ XMO}. We may
thus determine the EF of the former by finding Smin for the RVF associated with the latter. We
are assured, by the first part of Theorem 4.1, that if γ ∈ F where (x′I , x

′
C) is an efficient solution

with γ = CIx
′
I + CCx

′
C , then there exists ζ ∈ C with ζ = γ1:ℓ and z(ζ) = γ0. Now Theorem 3.4

ensures that for such ζ, there must exist (xI , xC) ∈ XMO with xI ∈ Smin so that γ = CIxI +CCxC .
Thus integer parts in Smin are sufficient to describe the EF, F .

5 Finite Algorithm for Construction

In this section, we present an algorithm for constructing a discrete representation of both the RVF
and the EF, as described in the previous section.

The purpose of the proposed algorithm is to construct a subset of SI , the elements of which
constitute a description of the RVF, as codified in Theorem 3.4. The proposed algorithm is a
generalized cutting-plane method that iteratively improves an upper approximation of the RVF
until it converges to the true function. The “cuts” in this context refer to the convex bounding
functions described in (RLPVF). At iteration k, The upper approximation is the function z̄k, given
by

z̄k(ζ) = min

{
min
xI∈Sk

z̄(ζ; xI), U

}
∀ζ ∈ C, (6)

where Sk is the set of points in SI identified so far and U ∈ R is an upper bound on the VF, i.e.
z(ζ) ≤ U for all ζ ∈ C. The selection of the U will be addressed in Section 5.3.
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The algorithm proceeds by identifying in iteration k the point ζ∗ ∈ C at which the difference
between the approximate value z̄k(ζ∗) and the true value z(ζ∗) is maximized. This point is given
by

ζ∗ = C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ,

where
(xk+1

I , xk+1
C ) ∈ argmax

(xI ,xC)∈XMO

(
z̄k(C1:ℓ

I xI + C1:ℓ
C xC)− (c0IxI + c0CxC)

)
. (7)

Here z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ) = z̄k(ζ∗) is the value of the upper approximation at ζ∗ and—as we

shall argue later—the true value at ζ∗ is z(ζ∗) = c0Ix
k+1
I + c0Cx

k+1
C . In the algorithm, this difference

is denoted as
θk+1 = z̄k(C1:ℓ

I xk+1
I + C1:ℓ

C xk+1
C )− (c0Ix

k+1
I + c0Cx

k+1
C )

= max
(xI ,xC)∈XMO

(
z̄k(C1:ℓ

I xI + C1:ℓ
C xC)− (c0IxI + c0CxC)

)
.

Note that (xk+1
I , xk+1

C ) found via (7) may be only weakly efficient, whereas only (strongly) efficient

solutions are required to describe the RVF. Thus, before adding the integer part of (xk+1
I , xk+1

C ) to
Sk, we first convert it to an efficient solution via a process common in multiobjective optimization:
we replace (xk+1

I , xk+1
C ) by an element of

argmin
(xI ,xC)∈XMO

{
1⊤(CIxI + CCxC) : CIxI + CCxC ≤ CIx

k+1
I + CCx

k+1
C

}
. (8)

It is easily proved that any optimal solution to (8) must also solve (7). (See Lemma F.2 in Ap-
pendix F.) In the case of multiple optimal solutions for (7), solving (8) ensures an efficient solution
for the multiobjective problem is selected. Provided that the maximum difference between the
upper approximation to the VF and the true VF is strictly positive, indicated by θk+1 > 0, this
yields a new stability region associated with a new member of SI , which we add to obtain Sk+1.
The algorithm is designed to iterate until the approximation is exact, detected by reaching θk = 0.
A high-level overview of the algorithm is provided below.

RVF Algorithm : Algorithm for constructing the RVF and the associated EF

Input: XMO, C ∈ Q(ℓ+1)×n, U an upper bound on z(ζ) over ζ ∈ C.
Output: Sk such that z(ζ) = z̄k(ζ) = min

xI∈Sk
z̄(ζ; xI), ∀ζ ∈ C.

1 Initialize z̄0(ζ) = U for all ζ ∈ Rℓ, k = 0, S0 = ∅, θ0 = +∞.

2 while θk > 0 do

3 Determine (xk+1
I , xk+1

C ) ∈ argmax
(xI ,xC)∈XMO

(
z̄k(C1:ℓ

I xI + C1:ℓ
C xC)− (c0IxI + c0CxC)

)
.

4 Convert (xk+1
I , xk+1

C ) to an efficient solution (for example, by using optimization problem (8)).

5 Set Sk+1 ← Sk ∪ {xk+1
I }.

6 Set θk+1 = z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C )− (c0Ix
k+1
I + c0Cx

k+1
C ).

7 z̄k+1(ζ) = min
{
z̄k(ζ), z̄(ζ; xk+1

I )
}
for all ζ ∈ C.

8 k ← k + 1.

9 end

A few important details regarding the RVF Algorithm are worth noting. The RVF Algorithm
generates a sequence of points in XMO, but only stores the integer parts of these points in the set
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Sk. The upper approximation to the RVF at each iteration, denoted by z̄k, is initialized and then
updated inductively at each iteration k according to (6). It is important to note that the upper
approximation z̄k is not explicitly constructed: the expression (6) is a description of the upper
approximating function; it is the set Sk that is constructed by the algorithm. Thus, in the first
step of each iteration, we need a method for optimization of the upper approximating function. We
defer the explanation of this to Section 5.2 below. Here we first illustrate the steps of the algorithm
on Example 1 and then establish its correctness.

Example 5. Illustrative Example for the RVF Algorithm: The steps of the RVF Algo-
rithm as applied to Example 1 are depicted graphically in Figure 5 below. In the first iteration,
the RVF Algorithm identifies the point (ζ, z(ζ)) = (44

9 , 0), with stability region corresponding to
(x1, x2) = (0, 0), and updates the upper approximation to the blue convex function. In the subse-
quent iteration, the algorithm searches for the point with the largest difference between the current
upper approximation and the RVF (the red piecewise linear function). The point of largest differ-
ence actually occurs at the far left, outside of the region shown in the figure, at ζ = −55.5, but we
illustrate the gap at ζ = −15 (refer to Appendix B to view the full extent of the LP EFs). This
point lies within the stability region corresponding to (x1, x2) = (1, 0). The RVF Algorithm then
updates the upper approximation again and, in the subsequent iteration, finds the point with the
most difference between the upper approximation and the RVF, which occurs at ζ = −121

6 . The
RVF Algorithm continues in this manner, next finding ζ = −10, until, at the next iteration, there
is no such point. Thus the RVF Algorithm terminates in iteration 4 with θ = 0 when the upper
approximation and the VF are the same.

5.1 Correctness of the RVF Algorithm

The proof of the correctness of the RVF Algorithm relies on the fact that z̄k is a nonincreasing
function for the same reason that the RVF is nonincreasing, namely that it is the minimum of a
finite set of nonincreasing bounding functions by (6). Additionally, in iteration k of the algorithm,
θk+1 = maxζ∈C z̄

k(ζ) − z(ζ) (see Lemma E.2 in Appendix E). Furthermore, any optimal solution
(xk+1

I , xk+1
C ) to the optimization problem in Equation (7) having optimal value θk+1 > 0 has the

property that xk+1
I ̸∈ Sk (see Lemma E.3 in Appendix E.)

Now, with Theorem 5.1, we show the correctness of the RVF Algorithm by proving that it terminates
finitely and returns the correct VF.

Theorem 5.1. (Correctness of the RVF Algorithm) At termination, we have that z(ζ) = z̄k(ζ) for
all ζ ∈ C, so that Sk describes both the VF and the EF. Furthermore, the RVF Algorithm terminates
in finitely many iterations under the assumption that XMO is bounded.

Proof. When XMO is bounded, SI is finite. Therefore, by Lemma E.3, which states that each
iteration of the algorithm produces a new element of SI , the number of iterations must be finite.
To show that z = z̄k at termination, assume not for the sake of contradiction. Then there must
exist ζ ∈ Rℓ such that z(ζ) < z̄k(ζ). But, by Lemma E.2, this is a contradiction to the assumption
that θk = 0 at termination. This completes the proof. ■

Proposition F.3 in Appendix F shows that the algorithm has one seemingly advantageous property
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Figure 5: RVF and upper approximation in iterations of the RVF Algorithm with Example 1. The
RVF z is illustrated on the range ζ ∈ [−15, 5]. Note that the first cut occurs at ζ = −55.5, which
is outside of this range. Please refer to Appendix B to view the full EF or RVF.

that we briefly describe here. As the description is being constructed, each newly added integer
part is guaranteed to be associated with a nonempty stability region. In fact, it is not difficult to see
that the added region must be non-redundant at the time it is added. In other words, we must have
that z̄k ̸= z̄k+1 at iteration k. Equivalently, there exists ζ ∈ C such that z̄k+1(ζ) < z̄k(ζ), namely
ζk+1 from the proof of Lemma E.2. Unfortunately, this property does not translate into a guarantee
that the stability region associated with xk is non-redundant in the end, so the algorithm is not
guaranteed to produce a minimal description. It would be possible to postprocess the description
to make it minimal if this was important for a particular application.

5.2 Solving the Subproblem

The RVF Algorithm was presented in the previous section at a high level of abstraction to simplify
the exposition. In the next two sections, we provide further details on how the algorithm can
actually be implemented in practice. In this section, we start by clarifying how the subproblem
that needs to be solved in each iteration can be solved in practice by formulating it as a standard
mathematical optimization problem.

The optimization problem in (7), solved in Step 3 of the algorithm, can be formulated as a mixed
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integer nonlinear optimization problem (MINLP) as follows. First, we model it using an auxiliary
variable θ to move z̄k into the constraints:

θk+1 = max θ
subject to θ ≤ z̄k(C1:ℓ

I xI + C1:ℓ
C xC)− (c0IxI + c0CxC)

(xI , xC) ∈ XMO

θ ∈ R.

(9)

Next, we use (6) and (CR) to expand (9) to the k + 1 constraints

θ + c0IxI + c0CxC ≤ U, (10)

and

θ + c0IxI + c0CxC ≤ c0Ix
i
I + zLP(C

1:ℓ
I xI + C1:ℓ

C xC − C1:ℓ
I xiI ; b−AIx

i
I), i = 1, . . . , k. (11)

(Recall Sk = {x1I , . . . , xkI}.) We can model the term involving zLP for each i by using its LP dual
problem, which via (D-RLP) is given by

max
(ui,vi)∈PD

(C1:ℓ
I xI + C1:ℓ

C xC − C1:ℓ
I xiI)

⊤ui + (b−AIx
i
I)

⊤vi. (12)

If (xI , xC) ∈ XMO satisfies (11) for some i, then by strong LP duality, there must exist (ui, vi) ∈ PD
(optimal for the dual of the LP after fixing the values of the integer variables to xiI) such that

θ + c0IxI + c0CxC ≤ c0Ix
i
I + zLP(C

1:ℓ
I xI + C1:ℓ

C xC − C1:ℓ
I xiI ; b−AIx

i
I)

= c0Ix
i
I + (C1:ℓ

I xI + C1:ℓ
C xC − C1:ℓ

I xiI)
⊤ui + (b−AIx

i
I)

⊤vi.

Conversely, if there exists some (ui, vi) ∈ PD such that (xI , xC) ∈ XMO satisfies

θ + c0IxI + c0CxC ≤ c0Ix
i
I + (C1:ℓ

I xI + C1:ℓ
C xC − C1:ℓ

I xiI)
⊤ui + (b−AIx

i
I)

⊤vi,

then by weak duality, it must be that (xI , xC) satisfies (11) for this i. This shows that the following
explicit MINLP is a valid formulation of the optimization problem in (7):

θk+1 = max θ (13)

subject to θ + c0IxI + c0CxC ≤ c0Ix
i
I+

(C1:ℓ
I xI + C1:ℓ

C xC − C1:ℓ
I xiI)

⊤ui + (b−AIx
i
I)

⊤vi, i = 1, . . . , k (14)

θ + c0IxI + c0CxC ≤ U (15)

(ui, vi) ∈ PD, i = 1, . . . , k (16)

(xI , xC) ∈ XMO (17)

θ ∈ R. (18)

Note that the constraint (14) makes the problem nonlinear: it has bilinear terms (C1:ℓ
I xI)

⊤ui and
(C1:ℓ

C xC)
⊤ui linking the ui and (xI , xC) variables for each i. However, the problem (13)–(18),

which we refer to as the MINLP subproblem, can be solved either with an off-the-shelf nonconvex
quadratic solver or possibly with a customized algorithm.
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5.3 Initialization and Termination

The most important aspect of algorithm initialization is determining an initial upper bound U . One
possible approach is to solve the LP relaxation of the MILP max{c0IxI + c0CxC : (xI , xC) ∈ XMO}.
This would provide a valid initial upper bound for the optimization problem.

It is important to note that in the final iteration, when θk+1 takes value 0, there is no need to convert
the solution (xk+1

I , xk+1
C ) into an NDP and add it to Sk unless its objective value c0Ix

k+1
I + c0Cx

k+1
C

happens to coincide with the initial upper bound, U .

Finally, observe that if the RVF Algorithm is terminated early, while θk > 0, then the value of
the final optimization problem solved in Step 2 provides a natural performance guarantee on the
quality of the current upper approximation to the VF: it measures the maximum error between the
true VF, z, and the upper approximation, z̄k, over any point in its domain.

5.4 Publicly Available Implementation

We provide a Python package, implemented using the RVF Algorithm, for enumerating all integer
parts required to construct the NDPs for instances of multiobjective integer and mixed integer
programs with an arbitrary number of objective functions. The MINLP subproblems encountered
at each iteration are solved using Couenne [Belotti, 2009]. This package is available at https:

//github.com/SamiraFallah/RestrictedValueFunction.

6 Conclusions

In this study, we discussed the relationship between the restricted value function, RVF, and the
EF of a multiobjective integer linear program (MO-MILP). We demonstrated that the EF lies
on a subset of the boundary of the epigraph of the RVF. In so doing, we highlight an important
relationship that connects two parts of the literature that had been considered distinct. We also
demonstrated that the RVF is the minimum of polyhedral functions associated with RLPVF and
discussed the structure of the RVF, including its continuity and differentiability. Finally, we showed
that under the assumption that the XMO is bounded, there exists a finite description of both RVF
and the EF in which each element of the description corresponds to a stability region.

In this context, we have introduced the RVF algorithm with the aim of identifying all efficient integer
solutions essential for constructing the RVF or EF in the domain of a multiobjective optimization
problem. Our proposed algorithm offers an alternative that operates on quite different principles
from existing algorithms for constructing the frontier. The algorithm is somewhat unique in the
MO-MILP literature in its degree of generality—it can construct a discrete representation of the
EF for arbitrarily many objectives and in the presence of continuous variables, as well as provide a
performance guarantee if terminated early. We also provide a Python package that demonstrates
the practical effectiveness of the proposed algorithm.

The basic algorithm we introduced can be improved in several ways and work on enhancing its
practical efficiency is ongoing. For example, it is clear that solving the MINLP subproblem in
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each iteration from a cold start is wasteful when the problem is only slightly modified from one
already solved in the previous iteration. We hope that the ideas presented here will open up new
avenues of inquiry with respect to algorithmic development in multiobjective optimization, as well
as broadening the applications of such ideas into other areas not seen as related until now.
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Appendix A An Instance of RLPVF

Example 6. In Figure 6, we plot an instance of (RLPVF) obtained from Example 1 by setting
(x1, x2) = (0, 0). In the plot, the affine functions associated with each extreme point of PD are
shown for a part of the finite domain. For this example, the dual problem (D-RLPVF) can be
expressed as

zLP(ζ) = max ζu+ 4v1 + 5v2 + 5v3 (Ex1-D)

s.t. 10u+ 9v1 ≤ 0, − 8u+ 3v1 + v2 ≤ 7, u+ 2v1 ≤ 10, − 7u+ 6v1 ≤ 2

6u− 10v1 + v3 ≤ 10, u ≤ 0, v2 ≤ 0, v3 ≤ 0,

and we have that the set of extreme points, E, and the set of extreme rays, R, of PD are

E = {(−0.15, 0.16, 0, 0), (0, 0, 0, 0), (−2.35,−2.41,−4.59, 0),
(−1.33,−1.22, 0, 0), (−1.61,−1.97, 0, 0), (0,−1, 0, 0)},

R = {(0, 0, 0,−1), (0,−1, 0,−10), (−1,−2.66, 0,−20.66),
(−1,−1.166,−4.5,−5.66), (0, 0,−1, 0)}.

As expected, the function defined by (RLPVF) is a polyhedral function with the nondifferentiable
points being those at which the optimal basis changes. Not all affine pieces are needed to describe

Figure 6: The RLPVF associated with Example 1 when (x1, x2) = (0, 0)
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the function and a minimal description is as follows. The finite domain is CLP = [−55.464,+∞)
and for ζ ∈ CLP, we have

zLP(ζ) = max(0,−2.35ζ − 2.41 · 4− 4.59 · 5,−1.61ζ − 1.97 · 4,−1.33ζ − 1.22 · 4,−0.15ζ + 0.16 · 4).

Observe that the gradients of the RLPVF are precisely the optimal dual solutions corresponding
to the parametric constraints. At points of nondifferentiability (the breakpoints), the directional
derivatives in direction d (in this case, we have d ∈ {1,−1}) of the RLPVF are given by d⊤u,
where u is one of the alternative optimal dual solutions corresponding to the parametric constraint.

Appendix B The LP Frontiers of Example 1

The entire EF for Example 1 is shown below in Figure 7. The bounding functions associated with
each integer vector of Example 1 are illustrated in Figure 8. To highlight the detail in the bottom
right parts of the frontiers more clearly, an enlarged view is presented in Figure 9.
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Appendix C Proofs Regarding the Structure of RVF

Here, we present the detailed proofs of results from Section 3, along with the statements of and
proofs for supporting lemmas and propositions.

Proposition C.1. For ζ ∈ CLP, we have that

∇dzLP(ζ) =

{
maxu∈proju(OPT (ζ)) u

⊤d, if d ̸∈ δ−(ζ),

+∞, otherwise,

for all d ∈ Rℓ.

Proof. We let ζ ∈ CLP and d ∈ Rℓ be given and consider ∇dzLP(ζ). There are two cases.

(i) If d ∈ δ−(ζ), then we have already seen that ∇dzLP(ζ) = +∞, since zLP(ζ+ ϵd) = +∞ for all
ϵ > 0. Equivalently, we have that proju(OPT (ζ+ϵd)) = ∅ and thus maxu∈proju(OPT (ζ)) u

⊤d =
+∞, proving the result in this first case.

(ii) If d ̸∈ δ−(ζ), by (D-RLPVF), there exists ϵ > 0 such that zLP(ζ + ϵd) < +∞. As such, there
exists (û, v̂) ∈ E such that

zLP(ζ + td) = (ζ + td)⊤û+ β⊤v̂, ∀t ∈ [0, ϵ]. (19)

Thus ∇dzLP(ζ) = û⊤d. Note that by taking t = 0 we have that û ∈ proju(OPT (ζ)). Now
suppose, for the sake of contradiction, that u⊤d > û⊤d for some u ∈ proju(OPT (ζ)). Then
by (2), there must exist (u, v) ∈ E with u ∈ proju(OPT (ζ)) and u⊤d > û⊤d. But then for
any t ∈ (0, ϵ], we have

(ζ + td)⊤u+ β⊤v = zLP(ζ) + td⊤u > zLP(ζ) + td⊤û = ζ⊤û+ β⊤v̂ + td⊤û

= zLP(ζ + td),

34



10

5

15

-15 -10 -5 5

Figure 9: The (truncated at the left) LP frontiers. Brown is for (x1, x2) = (0, 0). Green is for
(x1, x2) = (1, 0). Red is for (x1, x2) = (1, 1). Blue is for (x1, x2) = (0, 1)

where the final equality follows from (19), which contradicts (D-RLPVF) at ζ+td. The result
follows.

■

Proof of Prosition 3.2. The result follows from lemmas C.2, C.3, and C.4, which together show
containment and reverse containment of proju(OPT (ζ)) and ∂zLP(ζ). Lemma C.3 is a known
result needed to prove Lemma C.4, which we prove here again because part of the proof is referred
to later.

■

Lemma C.2. For all ζ ∈ CLP, we have that

proju(OPT (ζ)) ⊆ ∂zLP(ζ).

Proof. Let ζ̂ ∈ CLP and û ∈ proju(OPT (ζ̂)) be given. We show that û ∈ ∂zLP(ζ̂). Let v̂ be such
that (û, v̂) ∈ PD and ζ̂⊤û+ β⊤v̂ = zLP(ζ̂). Such v̂ must exist by the definitions of proju(OPT (ζ̂)).
Then for any ζ ∈ CLP, we have

(ζ − ζ̂)⊤û+ zLP(ζ̂) = ζ⊤û− ζ̂⊤û+ ζ̂⊤û+ βv̂

= ζ⊤û+ βv̂

≤ zLP(ζ).

(20)

It follows directly that û ∈ ∂zLP(ζ̂). Since ζ̂ was chosen arbitrarily, the result follows. ■

Lemma C.3 ([Hassanzadeh and Ralphs, 2014]).

epi zLP =
{
(ζ, w) : ζ⊤e+ β⊤h ≤ 0, ∀(e, h) ∈ R and

w ≥ ζ⊤u+ β⊤v, ∀(u, v) ∈ E
}
.

(21)
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Proof. By Proposition 3.1, zLP is a polyhedral function, so its epigraph, given by

epi zLP =
{
(ζ, w) ∈ Rℓ × R : ζ ∈ CLP, w ≥ zLP(ζ)

}
,

is a polyhedron. By the definition of the subdifferential, for any ζ̂ ∈ CLP and subgradient g ∈
∂zLP(ζ̂), the hyperplane{

(ζ, w) ∈ Rℓ × R : (−g, 1)⊤
(

ζ
w

)
= zLP(ζ̂)− g⊤ζ̂

}
,

is a hyperplane that supports epi zLP at ζ = ζ̂ and the inequality

(−g, 1)⊤
(

ζ
w

)
≥ zLP(ζ̂)− g⊤ζ̂, (22)

is satisfied by all (ζ, w) ∈ epi zLP, with equality attained at (ζ̂, zLP(ζ̂)).

The proof also makes use of the extreme points and extreme rays of the dual LP feasible set. Recall
that E and R are the (finite) sets of extreme points and extreme rays of PD, respectively. Recall
that for ζ ∈ CLP, we have that

ζ⊤e+ β⊤h ≤ 0, ∀(e, h) ∈ R,

and that by LP duality, we have

zLP(ζ) = max
{
ζ⊤u+ β⊤v : (u, v) ∈ E

}
.

■

Lemma C.4. For all ζ ∈ CLP,
∂zLP(ζ) ⊆ proju(OPT (ζ)).

Proof. Let ζ̂ ∈ CLP and g ∈ ∂zLP(ζ̂) be given. Then by Lemma C.3 (and (22)), it must be that
(ζ̂, zLP(ζ̂)) is an optimal solution of the LP min (−g, 1)⊤

(
ζ
w

)
s.t. (ζ, w) ∈ epi zLP

=


minζ,w −g⊤ζ + w
s.t. ζ⊤e+ β⊤h ≤ 0, ∀(e, h) ∈ R,

w ≥ ζ⊤u+ β⊤v, ∀(u, v) ∈ E ,
(23)

which has LP dual
maxλ,γ

∑
(u,v)∈E

λuvβ
⊤v +

∑
(e,h)∈R

γehβ
⊤h

s.t.
∑

(u,v)∈E

λuvu+
∑

(e,h)∈R

γehe = g∑
(u,v)∈E

λuv = 1

λ ∈ RE
+, γ ∈ RR

+ ,

(24)
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where the γ is the vector of dual variables associated with the first set of constraints, and λ is the
vector of dual variables associated with the second set of constraints. Recall that (ζ̂, zLP(ζ̂)) is an
optimal solution of (23) and let (λ∗, γ∗) be an optimal solution of (24). Then taking

(u∗, v∗) =
∑

(u,v)∈E

λ∗
uv(u, v)

(e∗, h∗) =
∑

(e,h)∈R

λ∗
eh(e, h),

(25)

we have that (u∗ + e∗, v∗ + h∗) ∈ PD and also that ζ̂⊤(u∗ + e∗) = zLP(ζ̂) − β⊤(v∗ + h∗). And
finally, since the constraints state that g = u∗ + e∗, we have that g ∈ proju(OPT (ζ̂)). Since ζ̂ was
arbitrary, the result follows. ■

Corollary C.5. zLP(ζ) is differentiable at ζ if and only if ζ ∈ int CLP and the dual problem (D-
RLP) has a unique optimal solution.

Proof. For ζ ∈ int CLP, proju(OPT (ζ)) consists of a singleton if and only if (D-RLP) has a unique
optimum. By Proposition 3.2, the subdifferential ∂zLP(ζ) is also a singleton if and only if the dual
problem given in (D-RLP) has a unique optimum. The result follows. ■

Proposition C.6. The restricted value function (RVF) z is a lower semi-continuous, nonincreasing
function that is composed of a minimum of a finite number of polyhedral functions.

Proof. The RVF is the minimum of a finite number of functions, all of which are polyhedral by
Proposition 3.1. The lower semi-continuity property can be established using a proof similar to
that presented in [Nemhauser and Wolsey, 1988]. The nonincreasing property of the VF follows
from the fact that it is the minimum of a set of nonincreasing functions and must therefore be
nonincreasing itself. ■

Proof of Proposition 3.5. Let d ∈ Rℓ, and a minimal description Smin of z be given. By Theo-
rem 3.4, z is the minimum of a finite set of functions, z(·; xI), for each xI ∈ Smin, which is a finite
set. Furthermore, by Proposition 3.1, each of these functions is polyhedral. Thus, Proposition G.1
(in Appendix G), which is a general result about functions that are the minimum of a finite number
of polyhedral functions, applies and yields the first part.

The second part follows by substituting the formula for the directional derivative of the bounding
function from Proposition C.1.

■

Lemma C.7. For any ζ ∈ C and any minimal description Smin, there exists ϵ > 0 such that

z(ζ ′) ≥ min
xI∈S∗

I (ζ)∩Smin

z(ζ ′; xI), ∀ζ ′ ∈ B(ζ; ϵ), (26)

where B(ζ; ϵ) denotes the open ball of radius ϵ centered on ζ.
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Proof. Let Smin be given as per Theorem 3.4 and let ζ ∈ C. Recall that by Theorem 3.4,

z(ζ ′) = min
xI∈Smin

z(ζ ′; xI), ∀ζ ′ ∈ Rℓ. (27)

Define
α(ζ ′) = min

xI∈S∗
I (ζ)∩Smin

z(ζ ′; xI), ∀ζ ′ ∈ Rℓ.

Here, the bounding functions z(·; xI) for xI ∈ S∗
I (ζ) ∩ Smin are those that are both active at ζ

and included in the given minimal description of the RVF provided by Smin. Using the notation
just introduced, the inequality (26) simply says z(ζ ′) ≥ α(ζ ′). Now suppose that (26) does not
hold. Since the inequality trivially holds for ζ ′ ̸∈ C (z(ζ ′) = +∞ in that case), then this means
that there is some ζ ′ ∈ B(ζ; ϵ) ∩ C such that for every ϵ > 0, there exists xI ∈ Smin with
z(ζ ′; xI) < α(ζ ′). This is because z(ζ ′) = z(ζ ′; xI) for some xI ∈ Smin, by (27). Since there are
only a finite number of xI ∈ Smin, and each bounding function z(·; xI) is polyhedral, actually there
must exist one x̂I ∈ Smin so that for all ϵ > 0, some ζ ′ ∈ B(ζ; ϵ) has z(ζ ′; x̂I) < α(ζ ′). Now
z(·; x̂I) is continuous on its finite domain, which is a closed set, so it must be that z(ζ; x̂I) ≤ α(ζ).
But α(ζ) = z(ζ) ≤ z(ζ; x̂I). So it must be that z(ζ; x̂I) = z(ζ), and x̂I ∈ S∗I (ζ). But then
x̂I ∈ S∗I (ζ) ∩ Smin, so in fact z(ζ ′; x̂I) ≥ α(ζ ′) for all ζ ′ ∈ Rℓ, and we obtain a contradiction. The
result follows. ■

Proof of Proposition 3.7. Let Smin be a minimal description of the RVF, and consider ζ ∈ C. Let
g ∈ ∂Lz(ζ). Then there exists ϵ > 0 such that

z(ζ ′) ≥ z(ζ) + g⊤(ζ ′ − ζ), ∀ζ ′ ∈ B(ζ; ϵ).

Let xI ∈ S∗
I (ζ) be chosen arbitrarily. Now for any ζ ′ ∈ B(ζ; ϵ),

z(ζ ′; xI) ≥ z(ζ ′) ≥ z(ζ) + g⊤(ζ ′ − ζ) = z(ζ; xI) + g⊤(ζ ′ − ζ),

where the first inequality follows from the definition of z, the second since g is a local subgradient
of z at ζ, and the final equality follows since xI ∈ S∗

I (ζ). Thus g is also a local subgradient of
z(·; xI) at ζ. But z(·; xI) is a (RLPVF), and so is a convex function over a convex finite domain.
Hence

g ∈ ∂z(ζ; xI) = ∂zLP(ζ − C1:ℓ
I xI ; b−AIxI).

Since xI was chosen arbitrarily from S∗
I (ζ), we have proved that

∂Lz(ζ) ⊆
⋂

xI∈S∗
I (ζ)

∂zLP(ζ − C1:ℓ
I xI ; b−AIxI) ⊆

⋂
xI∈S∗

I (ζ)∩Smin

∂zLP(ζ − C1:ℓ
I xI ; b−AIxI).

To prove containment in the opposite direction, let

g ∈
⋂

xI∈S∗
I (ζ)∩Smin

∂zLP(ζ − C1:ℓ
I xI ; b−AIxI) =

⋂
xI∈S∗

I (ζ)∩Smin

∂z(ζ; xI).

By Lemma C.7, there must exist ϵ > 0 so that (26) holds. Choose ζ ′ ∈ B(ζ; ϵ) arbitrarily. Then,
by (26),

z(ζ ′) ≥ min
xI∈S∗

I (ζ)∩Smin

z(ζ ′; xI),
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and so there exists some xI ∈ S∗
I (ζ) ∩ Smin with

z(ζ ′) ≥ z(ζ ′; xI) ≥ z(ζ; xI) + g⊤(ζ ′ − ζ) = z(ζ) + g⊤(ζ ′ − ζ),

where the second inequality follows since g ∈ ∂z(ζ; xI) and the final equality follows since xI ∈
S∗
I (ζ). Thus g ∈ ∂Lz(ζ) and it must be that

∂Lz(ζ) ⊇
⋂

xI∈S∗
I (ζ)∩Smin

∂zLP(ζ − C1:ℓ
I xI ; b−AIxI).

Hence
∂Lz(ζ) =

⋂
xI∈S∗

I (ζ)∩Smin

∂zLP(ζ − C1:ℓ
I xI ; b−AIxI).

The result follows by Proposition 3.2. ■

Appendix D Theorem 4.1 with C1:ℓx = ζ

As mentioned in Section 4, we can have another representation of Theorem 4.1. Consider the RVF
z′ : Rℓ → R ∪ {±∞} as

z′(ζ) = inf
(xI ,xC)∈S(ζ)

c0IxI + c0CxC , (RVF′)

where
S(ζ) =

{
(xI , xC) ∈ Zr

+ × Rn−r
+ : C1:ℓ

I xI + C1:ℓ
C xC = ζ, AIxI +ACxC = b

}
.

It is worth noting that the only distinction here is that we have an equality sign for the constraints
that serve as our objectives. We formalize the relationship between the RVF and the EF through
the following theorem.

Theorem D.1. The following statements hold for XMO and the (RVF′) z′.

(a) If (xI , xC) ∈ XMO is an efficient solution (equivalently, CIxI + CCxC is an NDP), then
(ζ, c0xI + c0xC) is a point on the boundary of the epigraph of z′ for ζ = C1:ℓ

I xI + C1:ℓ
C xC .

(b) If (ζ, z′(ζ)) is a point on the boundary of the epigraph of z′ and ∇dz
′(ζ) > 0 for all d ∈ Rℓ

−\{0}
for which ∇dz

′(ζ) exists, then there exists an efficient solution (xI , xC) ∈ XMO that yields
z′(ζ) and satisfies C1:ℓ

I xI + C1:ℓ
C xC = ζ.

Proof. The proofs for Part (a) and Part (b) are in accordance with the proofs for Part 1 and Part 2
with the exception of the portion designated by ⇐ in Theorem 4.1. ■

Here we have a very similar proposition compared to Proposition C.6 as follows.

Proposition D.2. The restricted value function (RVF) is a lower semi-continuous function and
decreasing over C where the optimal dual value is negative. Furthermore, it is comprised of a
minimum of a finite number of polyhedral functions.
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Proof. The proof for the property of semi-continuity and being a minimum of a finite number of
polyhedral functions is the same as that in Proposition C.6. The decreasing property is straight-
forward; with negative optimal dual values, the VF is decreasing. ■

Therefore, in the steps of the algorithm, although we have equality for the constraints with the
parametric RHS, i.e., the constraints that serve as our objectives, we must have negative dual
variables u ∈ Rℓ

−, which relates to the constraints with the parametric RHS. In this case, the
algorithm generates that part of the VF, which is decreasing and is the same as the related EF. As
a result, the VF algorithm remains unchanged in this scenario.

Appendix E Proofs of Correctness for the RVF Algorithm

The following lemmas are used to prove the correctness of the RVF algorithm, given in Theorem 5.1.
We start with the following simple observation.

Lemma E.1. For all (x̂I , x̂C) ∈ XMO, we have that

z̄(C1:ℓ
I x̂I + C1:ℓ

C x̂C ; x̂I) ≤ c0I x̂I + c0C x̂C .

Proof. The bounding function (CR) associated with x̂I is equivalently expressed as

z̄(ζ; x̂I) = min
{
c0IxI + c0CxC : (xI , xC) ∈ XMO, xI = x̂I , C1:ℓ

I xI + C1:ℓ
C xC ≤ ζ

}
. (28)

The result follows as (x̂I , x̂C) is feasible for the problem above for ζ = C1:ℓ
I x̂I + C1:ℓ

C x̂C . ■

The following lemma helps to establish that the integer parts added to Sk by the algorithm even-
tually suffice to describe the whole VF.

Lemma E.2. At iteration k of the algorithm, θk+1 = maxζ∈C z̄
k(ζ)− z(ζ).

Proof. Let ζ∗ = argmaxζ∈C(z̄
k(ζ) − z(ζ)) and denote ζk+1 = C1:ℓ

I xk+1
I + C1:ℓ

C xk+1
C . Since ζ∗ ∈ C

there must exist (x̂I , x̂C) ∈ XMO with ζ̂ := C1:ℓ
I x̂I + C1:ℓ

C x̂C ≤ ζ∗ and z(ζ∗) = c0I x̂I + c0C x̂C = z(ζ̂).

Further, since z̄k is nonincreasing, z̄k(ζ̂) ≥ z̄k(ζ∗), and hence

z̄k(ζ̂)− z(ζ̂) ≥ z̄k(ζ∗)− z(ζ̂)

= z̄k(ζ∗)− z(ζ∗)

≥ z̄k(ζk+1)− z(ζk+1).

The last of these inequalities follows from the fact that ζk+1 ∈ C. Since

(xk+1
I , xk+1

C ) ∈ argmax
(xI ,xC)∈XMO

(
z̄k(C1:ℓ

I xI + C1:ℓ
C xC)− (c0IxI + c0CxC)

)
,

it follows that

z̄k(ζk+1)− z(ζk+1) ≥ z̄k(ζ̂)− z(ζ̂)⇒ z̄k(ζk+1)− z(ζk+1) = z̄k(ζ̂)− z(ζ̂).
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Finally, by the definition of θk+1, we have

θk+1 = z̄k(ζk+1)− z(ζk+1) = z̄k(ζ∗)− z(ζ∗),

and the result follows. ■

The crucial property for establishing termination of the algorithm is that as long as z̄k ̸= z, then in
iteration k, we are guaranteed to produce a point not already contained in Sk. This is established
in the lemma below, which states that unless the optimal value of the optimization problem in (7)
is zero, the integer part of the solution obtained is not contained in Sk.

Lemma E.3. Any optimal solution (xk+1
I , xk+1

C ) to the optimization problem in (7) having optimal

value θk+1 > 0 has the property that xk+1
I ̸∈ Sk.

Proof. We show the contrapositive of the lemma as follows. Let (xk+1
I , xk+1

C ) solve the optimization

problem in (7) having optimal value θk+1 and suppose that xk+1
I ∈ Sk. Then

z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ) ≤ z̄(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ; xk+1
I ) ≤ c0Ix

k+1
I + c0Cx

k+1
C ,

where the first inequality follows from (6), since xk+1
I ∈ Sk, and the second inequality follows from

Lemma E.1, since (xk+1
I , xk+1

C ) ∈ XMO. It thus follows, by the definition of θk+1 and xk+1, that

θk+1 = z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C )− (c0Ix
k+1
I + c0Cx

k+1
C ) ≤ 0,

as required to obtain the contrapositive. ■

Appendix F Proof of the Nonempty Stability Region of the Inte-
ger Part in Each Iteration

In this appendix, we show the details of the proof that the integer part added to Sk in iteration k
has a nonempty stability region at the time it is added. Note, however, that this stability region
may end up being redundant by the end of the algorithm. First, we show that the true VF
z(ζ∗) = c0Ix

k+1
I + c0Cx

k+1
C whenever (xk+1

I , xk+1
C ) solves the optimization problem (7) and ζ∗ =

C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C .

Lemma F.1. If (xk+1
I , xk+1

C ) is defined by (7) then z(ζ∗) = c0Ix
k+1
I +c0Cx

k+1
C where ζ∗ = C1:ℓ

I xk+1
I +

C1:ℓ
C xk+1

C .

Proof. Let (xk+1
I , xk+1

C ) be defined by (7) and suppose, for the sake of contradiction, that

z(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ) ̸= c0Ix
k+1
I + c0Cx

k+1
C . Then there must exist (x̂I , x̂C) a solution of the

optimization problem that defines the RVF, z(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ), given by

z(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ) = min
{
c0IxI + c0CxC : (xI , xC) ∈ XMO,

C1:ℓ
I xI + C1:ℓ

C xC ≤ C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C

}
,
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and it must be that

z(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ) = c0I x̂I + c0C x̂C < c0Ix
k+1
I + c0Cx

k+1
C .

Now since z̄k is nonincreasing, and, by definition, (x̂I , x̂C) satisfies

C1:ℓ
I x̂I + C1:ℓ

C x̂C ≤ C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ,

it must be that
z̄k(C1:ℓ

I x̂I + C1:ℓ
C x̂C) ≥ z̄k(C1:ℓ

I xk+1
I + C1:ℓ

C xk+1
C ).

Thus

z̄k(C1:ℓ
I x̂I + C1:ℓ

C x̂C)− (c0I x̂I + c0C x̂C) > z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C )− (c0Ix
k+1
I + c0Cx

k+1
C ),

and (x̂I , x̂C) must be a feasible solution for the optimization problem in (7) having better objective
value than (xk+1

I , xk+1
C ), which is a contradiction. ■

Next, we justify our claim that converting to a (strong) efficient solution via (8) again yields a
solution to (7). We omit formal proof that the resulting solution must be efficient for (MO-MILP)
since this is a straightforward and well-known result from multiobjective optimization.

Lemma F.2. If (xk+1
I , xk+1

C ) is defined by (7) and (x̂I , x̂C) solves (8) then (x̂I , x̂C) is also an
optimal solution for the optimization problem in (7).

Proof. Let (xk+1
I , xk+1

C ) be defined by (7) and suppose (x̂I , x̂C) solves (8). Then (x̂I , x̂C) ∈ XMO,
so is feasible for the optimization problem in (7). Furthermore,

CI x̂I + CC x̂C ≤ CIx
k+1
I + CCx

k+1
C ,

so
c0I x̂I + c0C x̂C ≤ c0Ix

k+1
I + c0Cx

k+1
C ,

and
C1:ℓ
I x̂I + C1:ℓ

C x̂C ≤ C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C .

Since z̄k is nonincreasing it must thus be that

z̄k(C1:ℓ
I x̂I + C1:ℓ

C x̂C) ≥ z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C ),

and so

z̄k(C1:ℓ
I x̂I + C1:ℓ

C x̂C)− (c0I x̂I + c0C x̂C) ≥ z̄k(C1:ℓ
I xk+1

I + C1:ℓ
C xk+1

C )− (c0Ix
k+1
I + c0Cx

k+1
C ).

Since (x̂I , x̂C) is feasible for the optimization problem in (7) and has at least as good an objective
value as that of (xk+1

I , xk+1
C ), it must also solve the optimization problem in (7). ■

These two lemmas combine to prove that the integer part added to Sk at each iteration k of the
algorithm has a nonempty stability region.
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Proposition F.3. If xk+1
I is added to Sk in iteration k of the RVF Algorithm then its stability

region C(xk+1
I ) is nonempty.

Proof. By Lemmas F.1 and F.2, if xk+1
I is added to Sk in iteration k of the RVF Algorithm,

then xk+1
C found in the process has c0Ix

k+1
I + c0Cx

k+1
C = z(ζ) where ζ = C1:ℓ

I xk+1
I + C1:ℓ

C xk+1
C . But

by the characterization of the VF as the minimum of a finite set of bounding functions (as per
Theorem 3.4), we have that

z(ζ) ≤ z̄(ζ; xk+1
I ) ≤ c0Ix

k+1
I + c0Cx

k+1
C ,

where the latter inequality follows by Lemma E.1, since (xk+1
I , xk+1

C ) ∈ XMO. Thus it must be that

z(ζ) = z̄(ζ; xk+1
I ), so ζ ∈ C(xk+1

I ) and the stability region C(xk+1
I ) is nonempty, as required. ■

Appendix G Directional Derivatives of the Minimum of Polyhe-
dral Functions

Here, we describe the directional derivatives of a function formed by taking the minimum of a finite
set of polyhedral functions. We are particularly interested in functions defined over the extended
reals.

The properties we identify here are for any such function; they are not specific to VFs. We think
it is very likely that the material we provide here has already been published. However we have
been unable to locate a source for it, so include it for the sake of completeness.

First, we give definitions and conventions for directional derivatives of functions defined over the
extended reals. Then we briefly review the properties of polyhedral functions, before giving our
main result on the directional derivatives of the minimum of a finite set of polyhedral functions.

Consider f : Rn → R ∪ {+∞}, a function defined over the extended reals that is bounded below,
and so cannot have the value −∞. We refer to the set of points x ∈ Rn for which f(x) < +∞ as
the finite domain of f . We are interested in functions with closed finite domain. The directional
derivative of f at the point x ∈ Rn in direction d ∈ Rn is denoted by ∇df(x) and is defined by

∇df(x) = lim
t→0+

f(x+ td)− f(x)

t
.

We take ∇df(x) = 0 if f(x) = +∞ (meaning x is not in the finite domain of f). If f(x) < +∞ and
there exists ϵ > 0 such that f(x+ td) = +∞ for all t ∈ (0, ϵ), then we say x is on the boundary of
the finite domain of f and d points out of it. In this case, ∇df(x) = +∞.

We now turn our attention to the case of a function defined as the minimum of a finite set of
polyhedral functions.

Say zk : Rn → R ∪ {+∞} is a given polyhedral function for each k = 1, . . . ,K, which means that
the epigraph over its finite domain is a polyhedron. A property of a polyhedral function is that for
any point x and direction d, one of the following cases must hold:
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1. x is not in the finite domain of zk, in which case ∇dz
k(x) = 0,

2. x is on the boundary of the finite domain of zk and d points out of it, in which case ∇dz
k(x) =

+∞, or

3. there exists ϵ > 0 such that x + td is in the finite domain of zk for all t ∈ [0, ϵ], and,
furthermore, ϵ may be taken to be sufficiently small that all points in the line segment
defined as {x + td : 0 ≤ t ≤ ϵ} lie on the same facet of the polyhedron created by the
epigraph of zk over its finite domain. In this case, there exists a ∈ Rn and b ∈ R such that
zk(x + td) = a⊤(x + td) + b for all t ∈ [0, ϵ]. Note that a and b depend on x and d, but not
on ϵ, and it follows that ∇dz

k(x) = a⊤d.

It is also helpful to observe that the finite domain of a polyhedral function must itself be a polyhe-
dron, which is closed.

Let z : Rn → R ∪ {+∞} be defined to be

z(x) = min
k=1....,K

zk(x).

Since each function zk bounds z from above, we call zk a bounding function. Define

κ∗(x) = {k ∈ {1, . . . ,K} : zk(x) = z(x)},

to be the index set of the bounding functions that are active at x. Clearly, the finite domain of z
is the union of the finite domains of its bounding functions, so is the union of a finite collection of
closed sets, and hence is closed.

It is useful to observe that in the case that x is in the finite domain of z and d does not point out
of it, then it may be that there is a jump, or discontinuity, in z when moving away from x in the
direction d. In other words, for such x and d, it may be that

lim
t→0+

z(x+ td) > z(x).

In such a case, there must exist k ∈ {1, . . . ,K} and ϵ > 0 so that z(x + td) = zk(x + td) for all
t ∈ (0, ϵ), where, importantly, t = 0 is not included in this interval. So

lim
t→0+

z(x+ td) = lim
t→0+

zk(x+ td) = zk(x) > z(x),

and it follows that ∇dz(x) = +∞.

Whether or not z has a discontinuity when moving away from x in direction d, the structure of z
as a minimum of a finite set of polyhedral functions ensures that when x is in the finite domain of
z and d does not point out of it, there must exist k ∈ {1, . . . ,K}, a ∈ Rn and b ∈ R defining a facet
of the epigraph of zk over its finite domain, and ϵ > 0 sufficiently small so that

z(x+ td) = zk(x+ td) = a⊤(x+ td) + b, ∀t ∈ (0, ϵ).

We say that the facet of zk defined by (a, b) yields z when moving away from x in direction d.

We now give the main result.

44



Proposition G.1. For any point x ∈ Rn and any direction d ∈ Rn,

∇dz(x) = min
k∈κ∗(x)

∇dz
k(x).

Proof. Let the point x ∈ Rn and direction d ∈ Rn be given. There are three main cases.
Case 1: x is not in the finite domain of z.
In this case, ∇dz(x) = 0. Furthermore, since z(x) = +∞, it follows from the definition of z that
zk(x) = +∞, and hence ∇dz

k(x) = 0, for all k = 1, . . . ,K. The result follows.
Case 2: x is in the boundary of the finite domain of z and d points out of it.
This means that there exists ϵ > 0 so that z(x+ td) = +∞ for all t ∈ (0, ϵ). By the definition of z,
it must be that for all k = 1, . . . ,K, zk(x+ td) = +∞ for all t ∈ (0, ϵ). Now for all k ∈ κ∗(x), x is
in the finite domain of the bounding function zk, since zk(x) = z(x) < +∞. Thus ∇dz

k(x) = +∞
and the result follows.
Case 3. there exists ϵ > 0 such that z(x+ td) < +∞ for all t ∈ [0, ϵ).
Note that t = 0 is included in the definition of this case, since x not in the finite domain of z was
covered in Case 1. Assume, without loss of generality, that k = 1 is the index of the bounding
function having a facet that yields z when moving away from x in direction d. Thus there must
exist ϵ′ > 0, a ∈ Rn and b ∈ R such that

z(x+ td) = z1(x+ td) = a⊤(x+ td) + b, ∀t ∈ (0, ϵ′).

Let k∗ denote the minimizer of ∇dz
k(x) over k ∈ κ∗(x). Note that ∇dz

1(x) = a⊤d, which is finite.
So 1 ∈ κ∗(x) implies ∇dz

k∗(x) is finite. Thus if ∇dz
k∗(x) = +∞ it must be that 1 ̸∈ κ∗(x). Hence

lim
t→0+

z(x+ td) = lim
t→0+

z1(x+ td) = z1(x) > z(x),

and ∇dz(x) = +∞ = ∇dz
k∗(x), as required. Now consider the case that ∇dz

k∗(x) is finite. By the
properties of polyhedral functions discussed above, there must exist ϵ′′ > 0, â ∈ Rn and b̂ ∈ R such
that zk

∗
(x+ td) = â⊤(x+ td) + b̂ for all t ∈ [0, ϵ′′), so ∇dz

k∗(x) = â⊤d. To summarize, we have

min
k∈κ∗(x)

∇dz
k(x) = â⊤d and ∇dz(x) = a⊤d.

Now suppose, for the sake of contradiction, that â⊤d ̸= a⊤d. Define ϵ′′′ by

ϵ′′′ =

{
+∞, if â⊤d < a⊤d
z1(x)−z(x)
â⊤d−a⊤d

, if â⊤d > a⊤d.

Observe that ϵ′′′ > 0 since 1 ∈ κ∗(x) implies â⊤d = ∇dz
k∗(x) ≤ ∇dz

1(x) = a⊤d, so the case
â⊤d > a⊤d implies that 1 ̸∈ κ∗(x), and so z1(x) > z(x). Then for 0 < t < ϵ′′′ we have that

t(â⊤d− a⊤d) < z1(x)− z(x).

Now z(x) = â⊤x + b̂ since k∗ ∈ κ∗(x), and by continuity of z1, we also have z1(x) = a⊤x + b.
Substituting these in, we obtain

t(â⊤d− a⊤d) < a⊤x+ b− (â⊤x+ b̂),
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which is equivalently written as

â⊤(x+ td) + b̂ < a⊤(x+ td) + b.

Since t > 0, t < ϵ′ and t < ϵ′′, it must be that

zk
∗
(x+ td) = â⊤(x+ td) + b̂ < a⊤(x+ td) + b = z(x+ td),

which contradicts the definition of z. Thus it must be that â⊤d = a⊤d, as required. ■
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