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Abstract

Supervalid inequalities are a specific type of constraints often used within the branch-and-cut
framework to strengthen the linear relaxation of mixed-integer programs. These inequalities
share the particular characteristic of potentially removing feasible integer solutions as long as
they are already dominated by an incumbent solution. This paper focuses on supervalid inequal-
ities for solving binary interdiction games. Specifically, we provide a general characterization of
inequalities that are derived from bipartitions of the leader’s strategy set and develop an algo-
rithmic approach to use them. This includes the design of two verification subroutines that we
apply for separation purposes. We provide three general examples in which we apply our results
to solve binary interdiction games targeting shortest paths, spanning trees, and vertex covers.
Finally, we prove that the separation procedure is efficient for the class of interdiction games
defined on greedoids — a type of set system that generalizes many others such as matroids and
antimatroids.
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1 Introduction

This paper studies a broad class of Stackelberg competitions called binary interdiction games,
where two players, denoted the leader and follower, sequentially solve interdependent optimization
problems with conflicting objectives. Drawing from the definition and notation established in [59],
binary interdiction games can be characterized as follows. Given a set of elements ∆ representing
the ground set of the game, let collections Π ⊆ 2∆ and Ω ⊆ 2∆ denote the solution spaces of the
leader and follower, respectively. Specifically, set Ω, called the structure set, comprises a collection
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of subsets of ∆ satisfying some structural properties, from which the follower selects one that
minimizes a weight function w : ∆→ R+. In turn, set Π, denoted the strategy set, contains all the
interdiction actions the leader can take to block some of the follower’s structure choices.

For any action pair (U, T ) ∈ Π×Ω, we will say that strategy U blocks structure T if |U ∩T | ≥ 1,
and define ΩU = {T ∈ Ω | |U ∩ T | ≥ 1} to be the collection of structures that are blocked by such
a strategy. Consequently, if the leader chooses as their interdiction strategy the set U , the follower
is then blocked from selecting any structure from ΩU . Given a cost function c : ∆ → R+ and
a predefined threshold value r ∈ R, the objective of the leader is to select a strategy U ∈ Π of
minimum cost such that the optimal choice of the follower is a structure whose weight is no less
than r. In other words, the leader aims to minimize the cost of adopting an interdiction strategy
that ensures a desired disruption level is inflicted on the follower’s objective. This type of binary
interdiction game can be modeled as follows

min
U∈Π

c(U)

s.t. min
T∈Ω\ΩU

w(T ) ≥ r. (1)

It is important to note that many interdiction games in the literature are modeled in terms
of a limited budget: the leader’s objective is set to maximize the weight of the optimal structure
selected by the follower while ensuring that the cost of the chosen interdiction strategy is kept
below a predefined budget b. In what follows, we will focus on binary interdiction games that can
be formulated as (1) and then discuss an extension to address the budget version in Section 6.

Interestingly, considering the abstract nature of the structure and strategy sets in this model, it
is no surprise that binary interdiction encapsulates a wide variety of adversarial games extensively
studied in recent literature. For example, when the ground set ∆ is composed of the edges or
vertices of a given network, the aforementioned characterization can be used to model problems
where the leader aims to restrict the follower’s ability to conduct some operation in the network
represented by structures such as shortest paths [32], spanning trees [60], cliques [23, 24, 42, 43],
connected components [2, 18], matchings [67], dominating sets [46], or vertex covers [8]. Indeed,
applications of such types of problems have found their niche in a wide variety of areas, including
homeland security [26, 30, 31, 45, 63], disaster management [44], immunization strategies [56], sex
trafficking prevention [64], energy systems [51], supply chain management [45], communications
[19, 61], and transportation and logistics [33], among others.

Furthermore, recent interest in interdiction has spurred new developments, including several
variations and extensions for these problems. Some notable examples include three-player interdic-
tion games in which the new player, often called the protector, aims to conduct some preemptive
actions to mitigate the effects of the interdiction strategy on the follower’s structures [3, 13, 39];
two-player simultaneous interdiction games where both players act simultaneously without knowing
in advance the strategy chosen by the other [28, 58]; stochastic interdiction games where some data
of the problem follows some random probability distribution [16]; dynamic interdiction where the
interaction between the two players is repeated through multiple rounds [52]; interdiction games
with incomplete or asymmetric information where the knowledge of the underlying data is incom-
plete for one of the players or perceived differently [12, 49, 66]. Interested readers can refer to [53]
for a general discussion about interdiction games, including solution methods and other variations.

Among the different solution methods, most exact approaches can be classified as either dualize-
and-combine or sampling/enumerative methods [53]. The first type is typically reserved for cases
where the structure set Ω admits a characterization in the form of a convex set (often, a polyhedron).
In such cases, the inner optimization problem of the bi-level model in (1) can be replaced by its dual
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representation. Then, utilizing strong duality and linearization techniques, it can be reformulated
as a single-level optimization problem that can be solved by most off-the-shelf optimization solvers
[16, 32, 37, 60]. Dualize-and-combine approaches like these mainly stem from developments in the
broader class of bi-level optimization of which binary interdiction is a part of [5, 17, 35].

As for the sampling/enumerative algorithms, the main idea is to start with a small sample
of structures in Ω that the leader would like to block and systematically identify new ones as the
algorithm progresses. To this end, most approaches utilize mathematical models that are iteratively
populated with new constraints that force the interdiction strategy to block the new structures that
are progressively generated [15, 23, 32, 39, 43, 46, 60, 61].

For the particular case of binary interdiction games characterized by (1), the authors in [59]
denote Ω̂ = {T ∈ Ω | w(T ) < r} as the set of “critical” structures that the leader should block;
then, by letting x ∈ {0, 1}|∆| be the indicator vector of the leader’s interdiction strategy and XΠ

the characterization of the strategy set Π over the x space, they use the following model as a valid
reformulation of (1)

min
∑
a∈∆

caxa (2a)

s.t.
∑
a∈T

xa ≥ 1 ∀T ∈ Ω̂ (2b)

x ∈ XΠ. (2c)

Here, for the sake of exposition, a linear cost function c is used, but note that the formulation
can be directly adapted to accommodate other types of cost functions. Furthermore, in [59], the
authors also proved that it is sufficient to use only the constraints in (2b) that are associated with
theminimal critical structures in Ω̂, i.e., the critical structures that do not contain any strict subsets
in Ω̂. Hence, we refer to this formulation as the minimal critical structures (MCS) formulation. We
will subsequently refer to (2) by such a name too.

In recent years, several papers have introduced different families of inequalities to strengthen
the mathematical formulations used to solve these problems [21, 23, 32, 37, 43, 46, 55, 60]. While
some efforts have been focused on general cuts that can be applied to multiple types of interdiction
games [15, 39, 60], most of the literature focuses on ad hoc inequalities tailored for some particular
kind of structures [23, 46, 59]. In this paper, we are interested in a specific kind of constraints
generally called supervalid inequalities [7, 32, 34, 50, 60]. In essence, a supervalid inequality is a
constraint that can be added to strengthen a mathematical program such as (2) that may cut off
feasible or even optimal solutions as long as a given incumbent solution already dominates them.
Their usage in the context of interdiction stems from the seminal work by Israeli and Wood [32],
where those are specifically designed to solve shortest-path interdiction games.

In the current literature, despite some promising computational results, these types of inequal-
ities have only been developed sparingly for interdiction games with specific follower’s structures,
such as paths [32], vehicle routing plans [34], or spanning trees [60]. To the best of our knowledge,
this paper is the first to study a general class of supervalid inequalities that can be applied to
the broad class of binary interdiction games. Moreover, the nature of the supervalid inequalities
studied in this paper is quite different from the current developments in the literature. We will
compare our results with those in detail in Section 6. The contributions of this paper follow.

1. We identify a relationship between any bipartition P of the leader’s strategy space Π (i.e., P
is a partition of Π with two parts) and a collection of subsets from ground set ∆, denoted
P-structures, each of which induces a supervalid inequality for the MCS formulation. We
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provide a general characterization of these inequalities and develop an algorithmic approach
to use them in practice.

2. We study the separation process of the proposed supervalid inequalities. First, we develop
an exact verification method used to identify whether any set S ⊆ ∆ is a P-structure. We
show, however, that using such a verification method can be computationally challenging in
practice. To improve the overall efficacy of this separation method, we then identify two types
set constructions, based on which a more efficient verification becomes achievable. As a side
product, all these characterizations also lead to a hierarchy map of the P-structures.

3. We provide three general examples where we apply our results to derive supervalid inequalities
for binary interdiction games targeting shortest paths, spanning trees, and vertex covers. In
doing so, we also identify some interesting properties of the particular P-structures associated
with each of these problems.

4. Finally, we derive a connection between the P-structures and a special type of set system
called greedoid [36]. We prove that, under mild assumptions, the P-structure separation
procedure is guaranteed to be efficient for greedoid interdiction games.

The rest of the paper is organized as follows. In Section 2, we introduce some notation and three
binary interdiction examples used throughout the paper for illustration purposes. In Section 3, we
derive a correspondence between classes of supervalid inequalities and bipartitions of the leader’s
strategy space. In Section 4, we develop several methods to separate the proposed supervalid
inequalities. In Section 5, we explore the connection between the proposed supervalid inequalities
and a particular type of set system called a greedoid. In Section 6, we briefly discuss the application
of the proposed method in interdiction games with a limited budget. In Section 7, we discuss
some concluding remarks. Finally, we provide a computational demonstration of the proposed
developments as part of the Appendix.

2 Preliminaries

2.1 Notation

We now proceed to introduce some notation that will be used throughout the paper. A set system
(∆,K) is defined as a pair composed of a ground set ∆ and a family of subsets K ⊆ 2∆, such that
K is a partially ordered set (poset) under the inclusion (⊆). Some poset-related notions that will
be used hereafter are listed below.

Definition 1. Given a poset (K,⊆),

• let m(K) be the set of all minimal elements in K.

• S is a subposet of K if S is a subset of K with the inherited ordering.

• S is a lower (or upper) set in K if S is a subposet of K and, for any U1, U2 ∈ K such that
U1 ⊆ U2 (or U1 ⊇ U2), U2 ∈ S implies that U1 ∈ S.

• Given a subset U of a poset K,

↑ U = {U ′ ∈ K | U ′ ⊇ U for some U ∈ U} and ↓ U = {U ′ ∈ K | U ′ ⊆ U for some U ∈ U}

are called the upper and lower closure of U in K, respectively. Throughout the paper, we use
↑ U (↓ U) to denote the upper (lower) closure with respect to K = 2∆.
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2.2 Examples of Binary Interdiction Games

In this subsection, we introduce three well-known interdiction games that fit into the binary char-
acterization described before. They will be used for illustrative purposes throughout the paper.

v1

v2

v3

v4

v5

v6

e1

e2

e3 e4

e5

e6

e7

e8

e9

Figure 1: Example of a graph G = (V,E) with V = {v1, . . . , v6} and E = {e1, . . . , e9}.

Example 1 (Spanning Tree Interdiction [60]). Given an undirected graph G = (V,E), with edge
weights {we}e∈E and edge costs {ce}e∈E , a spanning tree is a connected acyclic subgraph that
spans the vertex set V (e.g., {e1, e2, e5, e7, e8} in Figure 1). Let r be an interdiction target value;
then, the spanning tree interdiction problem seeks to identify a subset of edges U ⊆ E of minimum
cost

∑
e∈U ce, so that when removed from G, the minimum weight of any spanning tree left in the

graph is at least r. Here, if the interdiction strategy U disconnects the graph, no spanning tree can
be selected by the follower. Thus, by convention, its objective is assumed to be infinity. In this
problem, Π contains all the edge sets and Ω is the set of spanning trees. △

Example 2 (Shortest Path Interdiction [32]). Given a directed graph G = (V,E), with edge costs
{ce}e∈E and edge lengths {we}e∈E , two terminal vertices s, t ∈ V , and an interdiction target r,
the shortest path interdiction problem aims to identify a set of edges U ⊆ E of minimum cost∑

e∈U ce so that when removed from G, the length of the shortest s-t paths that are left is at least
r. As before, if the interdiction strategy U disconnects terminals s and t, the follower’s objective
is assumed to be infinity. Here, Π contains all the edge sets and Ω is the set of paths. △

Example 3 (Vertex Cover Interdiction [9]). Given a graph G = (V,E), with vertex costs {ci}i∈V
and vertex weights {wi}i∈V , a vertex cover is a vertex subset D ⊆ V such that all edges in G are
incident to at least one vertex in D (e.g., D = {v1, v2, v4, v5} in Figure 1). Given an interdiction
target r, the vertex cover interdiction problem is to identify a set of vertices U ⊆ V of minimum
costs to be blocked so that the weight of any vertex cover D ⊆ V \ U of graph G is at least r.
Similarly, if no vertex cover can be formed by selecting vertices from D ⊆ V \ U , the follower’s
objective is assumed to be infinity. In this problem, Π contains all the vertex sets and Ω is the set
of vertex covers. △

3 Bipartition-Induced Supervalid Inequalities

3.1 Motivation

Many interdiction problems share an interesting feature: when the search for a solution is conducted
over some particular restriction of the leader’s solution space, the resulting problem often becomes
significantly easier to solve. To illustrate this, consider the shortest path interdiction game depicted
in Figure 2. Here, among the five possible s-t paths available for the follower, we will assume that
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the first three are critical—i.e., the lengths of such paths are less than the interdiction target r.
Under these settings, the leader’s strategy set Π = 2E contains all the possible edge subsets in the
graph, and among the feasible solutions (i.e., edge sets in Π that intersect all critical structures in
Ω̂), the minimal strategies that block all the critical paths are the following four edge sets

{e1, e2, e5}, {e3, e4, e5}, {e1, e3, e5}, {e2, e4, e5}.

Notice that the first two strategies are somewhat different from the other two as they are minimal
s-t cuts. In fact, since any s-t cut is a feasible solution for the leader, one can use this property to
produce the following partition of the leader’s solution space Π:

Π1 :=↑ {{e1, e2, e5}, {e3, e4, e5}}, Π0 := Π \Π1.

Here, observe that set Π1 is composed of the two strategies mentioned before and their supersets,
as those are all the s-t cuts of the given graph. Furthermore, considering that finding an s-t cut of
minimum cost can be done in polynomial time [29], solving the shortest path interdiction problem
over the restricted space Π1 is rather easy since it is equivalent to finding a minimum s-t cut,
whereas in general solving the problem over Π is NP-hard [4].

s s

ts

e2
e
5

e1 e3e 6

e4

Ω̂ Ω \ Ω̂

Figure 2: Illustration of bipartition in the shortest path interdiction.

This phenomenon seems to be a common occurrence in binary interdiction. Indeed, for the
minimum spanning tree case, it is easy to see that any (global) edge-cut is a feasible strategy to
block all spanning trees of a graph. Moreover, since finding a minimum cost edge-cut can be done in
polynomial time [54], restricting the search over the set Π1 composed of all edge cuts in the graph
is a simple task while directly searching for an optimal solution over Π is, in general, NP-hard
[10, 22].

In light of this discussion, a reasonable strategy when solving binary interdiction games is to
first identify the best solution out of Π1 and then focus all efforts on the more “difficult” task of
searching for a potentially better solution over the remaining set Π0. To speed up this search, one
may wonder if it is possible to use relevant information about the given bipartition {Π0,Π1} to
produce a tighter mathematical formulation focused on searching for solutions in Π0 rather than
over the entire solution space Π. The goal is to systematically derive inequalities for (2) that are
valid for the feasible solutions in Π0 but may cut off strategies from Π1, as well as some undesired
fractional solutions from the formulation’s original LP relaxation. The expected result is a tighter
formulation defined by supervalid inequalities.

The use of exploratory searches over restricted solution spaces to speed up the running times of
exact optimization solvers has been a common practice in integer programming since its conception.
For example, exact approaches based on branch and bound often use local-search-based algorithms
to explore some predefined neighborhood to identify good candidate solutions that may help prune
unpromising branches [62]. While this type of approach can be directly applied here as well, our
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aim goes beyond using the search over Π1 to heuristically generate candidate solutions. Instead,
we focus on producing stronger mathematical formulations.

As will be discussed in the following sections, our approach relies on exploiting a bipartition of
the solution space Π into a set Π1 whose exploration is “easy” and a set Π0 whose exploration is
“difficult”. An important remark is that here we are using the terms easy/difficult rather loosely,
as our methodology works for any bipartition of the solution space Π—even for cases where finding
the best solution in Π1 is also NP-Hard. However, in practice, our method is better suited for
bipartitions for which solving the problem over Π1 can be done in polynomial time. Furthermore,
considering that the characterization of set Π1 is generally linked to some structural attributes of its
members (e.g., s-t cuts in a graph), in what follows, we will assume that the bipartitions {Π0,Π1}
are induced by some given property.

3.2 Bipartition Property P and the P-Structure Formulation

We begin with the following definitions.

Definition 2 (Bipartition Property). Given a set Π, a bipartition property is a function P : Π →
{0, 1}. We set ΠP

i = {U ∈ Π | P(U) = i} for i ∈ {0, 1}. When P is clear from the context, we
drop the superscript. Given two bipartition properties P1 and P2, we say P2 is stronger than P1,
denoted P1 ⪯ P2, if and only if ΠP1

1 ⊆ ΠP2
1 .

Definition 3 (Cut/Cut Operator). Given a family of sets Π ⊆ 2∆, S ⊆ ∆ is a cut of Π if |S∩U | ≥ 1
for all U ∈ Π. The cut operator C : 2∆ → 2∆ is defined as C(Π) = {S ⊆ ∆ | S is a cut of Π}.

Notice that the cut operator also establishes a connection between the leader’s feasible strategies,
denoted by Π̂, and the follower’s critical structures Ω̂ through the following identity, which can be
verified directly from the definitions

Π̂ = C(Ω̂) ∩Π.

In fact, it is easy to see that each constraint (2b) of the MCS formulation is there to enforce that
the feasible solutions of the leader represent cuts of Ω̂.

Some properties of the cut operator C are listed in the following proposition,

Proposition 1. Given two posets K,K′ ⊆ 2∆ with the ordering inherited from ⊆ on 2∆, the
following statements about the cut operator C are true.

1. C(∅) = 2∆ and C(2∆) = ∅.

2. C(K) = ∅ if ∅ ∈ K.

3. C(K) is an upper set.

4. C(K) = C(m(K)).

5. C is decreasing, i.e., if K ⊆ K′, then C(K) ⊇ C(K′).

6. C(C(K)) =↑ K.

Proof. For 1, the first part is vacuously true, and the second part is true because ∅ ∈ 2∆. Statements
2-5 can be verified directly from the definition of C. For 6, if ∅ ∈ K, then by Statements 1 and 2,
C(C(K)) = 2∆, which is equal to ↑ K in 2∆, since ∅ ∈ K. Suppose ∅ /∈ K, then we have,

U ∈ C(C(K))⇐⇒ ∀S ∈ C(K), |U ∩ S| ≥ 1⇐⇒ U ∈↑ K,
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where the first equivalence follows from the definition of the operator C. For the “⇐” direction of
the second equivalence, U ∈↑ K means U ⊇ U ′ for some U ′ ∈ K. By definition, for all S ∈ C(K),
|S ∩U ′| ≥ 1, then this is also true for the superset U . For “⇒”, we prove the contrapositive. Given
U /∈↑ K and ∅ /∈ K by assumption, then for every U ′ ∈ K, U ′ \ U ̸= ∅. Then, S =

⋃
U ′∈K U ′ \ U

intersects all elements in K, but S ∩ U = ∅ by construction. This negates the second sentence in
the above equivalence chain, completing the proof.

Using the cut operator, we define the following structures that are induced by a given bipartition
property P.

Definition 4 (P-Structure). Given the set of follower’s critical structures Ω̂ ⊆ 2∆, the set of
leader’s strategies Π, and a bipartition property P : Π → {0, 1}, the set of bipartition-induced
structures with respect to P, or simply P-structures, is defined as

Ω̂P := C(C(Ω̂) ∩Π0) = C(Π̂ ∩Π0).

Since Π̂ = C(Ω̂) is the set of all the feasible strategies, we use Π̂0 to denote all the feasible strategies
in Π0. Hence, Ω̂P = C(Π̂0).

Intuitively, a P-structure is a subset of the ground set ∆ that intersects all the feasible strategies
in Π̂0 that resulted from the bipartition property P. These P-structures are particularly important
for our development, as we will soon show that they can directly induce supervalid inequalities for
Formulation (2).

Since every bipartition property P induces a certain set of P-structures, it is then reasonable
to analyze first the following two extreme properties.

Proposition 2. Define bipartition properties 0 and 1 as

0(U) = 0 and 1(U) = 1

for all U ∈ Π. Then, we have Ω̂0 =↑ Ω̂ and Ω̂1 =↑ ∅ = 2∆.

Proof. For 0, we have Π0 = Π, which leads to the following

Ω̂0 = C(Π̂) = C(C(Ω̂)) =↑ Ω̂,

where the first two identities are by Definition 4 and the last is by the statement 6. of Proposition 1.
A similar verification can be done for property 1.

Intuitively, these two extreme properties correspond to the following two cases. First, the 0
property induces the bipartition where set Π1 = ∅, thus all leader strategies are contained in
Π0 = Π. Here, since the problem over Π0 is the same as the problem over Π, the corresponding
P-structure set is simply the upper closure of the critical structures in Ω̂. Second, the 1 property
induces the bipartition where Π1 = Π and thus Π0 = ∅. Here, under the assumption that Π1 is
“easy to explore”, property 1 represents the extreme case where the original interdiction problem
is solvable in polynomial time. Any property P that is strictly sandwiched between 0 and 1 (i.e.,
0 ⪯ P ⪯ 1) will produce nontrivial P-structures. We are interested in these P-structures due to
the following theorem.

Theorem 1. In a binary interdiction game with leader’s strategy set Π and follower’s critical
structure set Ω̂, given any bipartition property P on Π, an optimal strategy U⋆ must satisfy one of
the following two assertions,
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• U⋆ ∈ Π1;

• U⋆ ∈ C(Ω̂P).

Proof. An optimal strategy U⋆ that is not in Π1 must be in Π̂0 since Π0 and Π1 form a bipartition
of Π and U⋆ is feasible. On the other hand, we have

C(Ω̂P) = C(C(Π̂0)) =↑ Π̂0 ⊇ Π̂0,

which concludes the proof.

This theorem allows us to utilize a bipartition on Π and the assumed “easy-to-obtain” solution
in Π1 to set up a stronger formulation for the problem defined over the “difficult-to-explore” space
Π0. In particular, we get the following minimal P-structure (MPS) formulation,

(MPS) min
∑
a∈∆

caxa (3a)

s.t.
∑
a∈T

xa ≥ 1 ∀T ∈ m(Ω̂P) (3b)

x ∈ XΠ. (3c)

Note that this formulation only searches for an optimal strategy within ↑ Π0, thus it has a
smaller solution space than the MCS formulation. In other words, the inequalities in (3b) are
indeed supervalid for the general space Π, as they may remove feasible solutions to the original
problem. The following corollary characterizes the solution space of (3) exactly.

Corollary 1. A strategy U ∈ Π is feasible to the MPS formulation if and only if it is a superset of
some U ′ ∈ Π̂0.

Proof. For sufficiency, note that any U ′ ∈ Π̂0 intersects all elements in Ω̂P by definition, so as
any superset of U ′. For necessity, we assume ∅ /∈ Π̂0, otherwise, all strategies are supersets of ∅.
Hence, to prove the contrapositive, given a strategy U that is not a superset of any U ′ ∈ Π̂0, we
have U ′ \ U ̸= ∅ for all U ′ ∈ Π̂0. Let S =

⋃
U ′∈Π̂0

U ′ \ U , then S is a cut of Π̂0 but S ∩ U = ∅ by
construction. The former implies S ∈ Ω̂P and the latter means U does not intersect the P-structure
S, that is, U is not feasible to the MPS formulation.

The following corollary further analyzes the effect of choosing different bipartition properties.

Corollary 2. Given two bipartition properties P and P ′, if P ⪯ P ′ then Ω̂P ⊆ Ω̂P ′. In particular,
Ω̂ ⊆ Ω̂0 ⊆ Ω̂P for every bipartition property P.

Proof. By definition, P ⪯ P ′ if and only if ΠP
0 ⊇ ΠP ′

0 , which implies Π̂P
0 ⊇ Π̂P ′

0 . Then, the claim
is true since the operator C is decreasing by the statement 5. of Proposition 1.

This result confirms the intuition that the constraint set induced by Ω̂P becomes stronger when
the P carves out a larger portion of the solution space Π into the “easy-to-explore” part Π1.

Next, we will provide three concrete examples to illustrate the corresponding P-structures.
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3.3 Examples of P-Structures

Example 1 (Spanning Tree Interdiction, Cont.). As discussed previously, a natural bipartition
property P for the minimum spanning tree interdiction is whether a solution is an edge-cut of
graph G, since the edge cut of minimum cost can be found in polynomial time [54]. That is, for all
U ∈ Π,

P(U) =

{
1, U is an edge-cut,

0, otherwise.

Figure 3 provides an example of the corresponding P-structures for the minimum spanning tree
interdiction problem over a 4-vertex graph. Here, among the eight spanning trees comprising the
follower’s structure set Ω, we assume the first four are the critical ones. The computation of m(Ω̂P)
follows,

• Ω̂ = {{e1, e2, e3}, {e1, e3, e4}, {e1, e3, e5}, {e1, e2, e4}}.

• m(Π̂) = {{e1}, {e2, e3}, {e3, e4}, {e2, e4, e5}}.

• m(Π̂0) = {{e1}, {e2, e3}}, since the other two are edge-cuts.

• m(Ω̂P) = m(C(m(Π̂0))) = {{e1, e2}, {e1, e3}}.

This leads to the corresponding MPS formulation in Figure 3. Notice that the feasible edge cut
solution {e3, e4} becomes infeasible to this MPS formulation as it violates the first constraint. This
confirms that these inequalities are supervalid for Π. We also note that, in this example, every
P-structure is a subset of some critical spanning tree.

e2

e1 e3

e4

e 5

Ω̂ Ω \ Ω̂

m(Ω̂P)

(MCS) min cx

s.t. x1 + x2 + x3 ≥ 1

x1 + x3 + x4 ≥ 1

x1 + x3 + x5 ≥ 1

x1 + x2 + x4 ≥ 1

x ∈ {0, 1}E

(MPS) min cx

s.t. x1 + x2 ≥ 1

x1 + x3 ≥ 1

x ∈ {0, 1}E

Figure 3: P-structures and supervalid inequalities in the minimum spanning tree interdiction.
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In [60], these minimal P-structures are called critical edge sets and are derived from a different
perspective. △

Example 2 (Shortest Path Interdiction, Cont.). As mentioned before, a natural bipartition prop-
erty for the shortest path interdiction is as follows. For each U ∈ Π,

P(U) =

{
1, U is a s-t cut,

0, otherwise.

Figure 4 provides an example of the corresponding P-structures for the shortest path interdiction
problem over a 4-vertex graph. Here, among the five s-t paths comprising the follower’s structure
set Ω, we assume the first three are the critical ones. As before, we compute all the corresponding
minimal P-structures as follows.

• Ω̂ = {{e1, e4}, {e2, e3}, {e5}}.

• m(Π̂) = {{e1, e2, e5}, {e1, e3, e5}, {e2, e4, e5}, {e3, e4, e5}}.

• m(Π̂0) = {{e1, e3, e5}, {e2, e4, e5}}, since the other two are s-t cuts.

• m(Ω̂P) = m(C(m(Π̂0))) = {{e1, e2}, {e1, e4}, {e2, e3}, {e3, e4}, {e5}}.

This generates the corresponding MPS formulation in Figure 4. Again, the feasible s-t cut solutions
{e1, e2, e5} and {e3, e4, e5} violate constraints x3+x4 ≥ 1 and x1+x2 ≥ 1, respectively, in the MPS
formulation.

s s

ts

e2
e
5

e1 e3e 6

e4

Ω̂ Ω \ Ω̂

m(Ω̂P)

(MCS) min cx

s.t. x5 ≥ 1

x2 + x3 ≥ 1

x1 + x4 ≥ 1

x ∈ {0, 1}E

(MPS) min cx

s.t. x5 ≥ 1

x2 + x3 ≥ 1

x1 + x4 ≥ 1

x1 + x2 ≥ 1

x3 + x4 ≥ 1

x ∈ {0, 1}E

Figure 4: P-structures and supervalid inequalities in the shortest path interdiction.

11



In this example, all the minimal critical s-t paths are also minimal P-structures. One particular
difference with respect to the minimum spanning tree case is that here set m(Ω̂P)contains two extra
structures—{e1, e2} and {e3, e4}—that are not subsets of any s-t path. △

Example 3 (Vertex Cover Interdiction, Cont.). By definition, each edge in a graph G = (V,E)
has at least one endpoint in any vertex cover T ⊆ V . Thus, any vertex set U ∈ Π that contains
two adjacent vertices blocks all the vertex covers in G. Therefore, any feasible solution that does
not satisfy this property must be an independent set. Following this logic, a bipartition property
for the vertex cover interdiction can be defined as follows. For each U ∈ Π,

P(U) =

{
0, U is an independent set,

1, otherwise.

Figure 5 provides an example of the corresponding P-structures for the vertex cover inter-
diction problem over a 4-vertex graph. Here, it is easy to verify that there are six vertex covers
{{v1, v3}, {v2, v3, v4}, {v1, v2, v4}, {v1, v2, v3}, {v1, v3, v4}, {v1, v2, v3, v4}} comprising the follower’s set
Ω. We assume the first two are the critical ones. For convenience, in the figure, we only list the min-
imal vertex covers (in black). As before, we compute all the corresponding minimal P-structures
as follows.

• Ω̂ = {{v1, v3}, {v2, v3, v4}}.

• m(Π̂) = {{v3}, {v1, v2}, {v1, v4}}.

• m(Π̂0) = {{v3}}, since the other two are not independent sets.

• m(Ω̂P) = m(C(m(Π̂0))) = {{v3}}.

This generates the corresponding MPS formulation in Figure 5. Again, the two feasible solutions
{v1, v2} and {v1, v4} are removed by the supervalid constraints in the MPS formulation. Similarly
to the minimum spanning tree example, every P-structure here is a subset of some critical vertex
cover. △

v1 v2

v3v4

m(Ω̂) m(Ω) \m(Ω̂) m(Ω̂P)

(MCS) min cx

s.t. x1 + x3 ≥ 1

x2 + x3 + x4 ≥ 1

x ∈ {0, 1}V

(MPS) min cx

s.t. x3 ≥ 1

x ∈ {0, 1}V

Figure 5: P-structures and supervalid inequalities in vertex cover interdiction.

In the next subsection, we will introduce an algorithm to solve the MPS formulation and prove
its correctness.
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Algorithm 1: MPS Algorithm.

Data: input c,P,Π, Ω̂
1 z̄, x̄←EasySolve(Π1) // get the optimal value and solution on Π1

2 Ω̄P ← ∅ // initialize with an empty set of P-structures
3 z ← −∞, x← 0 // initialize the lower bound

4 while true do
5 z, x←MPS(c, Π, Ω̄P) // solve the MPS formulation with the current Ω̄P
6 if z ≥ z̄ then
7 z⋆ ← z̄, x⋆ ← x̄ // stop due to worse than Π1

8 break

9 else
10 Ω̄x ← MPSeparation(c,Π, x)
11 if Ω̄x = ∅ then
12 z⋆ ← z, x⋆ ← x // stop due to optimality on Π0

13 break

14 else
15 Ω̄P ← Ω̄P ∪ Ω̄x // update the set of P-structures
16 z ← z, x← x // update the lower bound

17 end

18 end

19 end
20 return z⋆, x⋆

3.4 MPS Algorithm

Since the MPS formulation only searches for an optimal solution from Π0, we need to combine the
results from Π1 to obtain the global optimal solution for (2). We call this combined procedure
the MPS algorithm (Algorithm 1). There are three subroutines invoked in this algorithm: (i)
the EasySolve subroutine that solves the problem over the “easy-to-explore” solution space Π1

and obtains the corresponding optimal solution therein; (ii) the MPS subroutine that solves a
relaxed version of the MPS formulation defined over a set Ω̄P ⊆ ΩP ; and (iii) the MPSeparation
subroutine that iteratively updates Ω̄P by identifying new P-structures in ΩP \ Ω̄P . This iterative
procedure terminates when either no new P-structures can be produced or the objective value from
MPS is at greater than or equal to the solution obtained by EasySolve. The following theorem
proves the correctness and finite termination of Algorithm 1.

Theorem 2. The MPS algorithm terminates in finite iterations, and the returned solution x⋆ is
optimal with respect to the MCS formulation.

Proof. We first show that the number of iterations is finite. Let zi and Ω̄i
P denote the value of z

and contents of Ω̄P at Step 5 of the algorithm’s ith iteration. Because of Step 15, we clearly have
zi ≤ zi+1 and Ω̄i

P ⊆ Ω̄i+1
P . Moreover, the latter inclusion is strict since, otherwise, we have Ω̄x = ∅,

and the procedure terminates due to Step 11–13. Since the set of P-structures is finite, we have
two possible cases: (i) at a certain iteration we get Ω̄P = Ω̂P or (ii) the algorithm halts before
(i) happens. For the former case, we have Ω̄x = ∅ at the corresponding iteration, and, again, the
algorithm terminates by Step 11–13, proving the claim.

For correctness, we again focus on the two cases introduced before. For (i), we have generated
the full MPS formulation and have z⋆ < z̄. By Corollary 1, x⋆ is an optimal solution in Π0.
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Moreover, x⋆ is better than the optimal solution in Π1 as z⋆ < z̄. This proves x⋆ is an optimal
solution over the entire solution space Π of the MCS formulation. For Case (ii), the algorithm may
terminate in two different ways: (ii.1 ) z ≥ z̄; (ii.2 ) Ω̄x = ∅. Case (ii.1) implies the optimal solution
in Π0 has an objective value that is greater than or equal to the optimal value in Π1, which proves
the optimality of x⋆ = x̄. Case (ii.2 ) means that solution x obtained at Step 5 is feasible for the
MPS formulation and is optimal for a relaxation of the MPS formulation. Thus, x is also optimal
to the MPS formulation, i.e., it is an optimal solution in Π0. Again, because of z < z̄, the solution
x is optimal over the entire solution space Π.

By assumption, subroutine EasySolve can be computed efficiently, and by Theorem 1 and
Corollary 2, the MPS formulation has a strictly smaller solution space than the MCS formulation
for any nontrivial bipartition property P. Thus, the overall efficiency of the MPS algorithm depends
on the trade-off between the strength of the constraints induced by the P-structures and the
complexity of the MPSeparation subroutine. We will devote the next section to the general
theory of P-structure separation.

4 P-Structure Constraints Separation

Compared to the process of separating inequalities associated with the critical structures in m(Ω̂)
(i.e., constraints (2b) of the MCS formulation), separating the constraints (3b) associated with a
given set of P-structures can be significantly harder. The main reason is that the elements in m(Ω̂)
are feasible solutions for the follower that can be generated via the follower’s optimization problem,
whereas the P-structures are arbitrary subsets of ∆ without a direct method to produce them.

In this section, we focus on developing several methods for verifying whether any given set
S ⊆ ∆ is a P-structure, which will naturally lead to constraint separation methods. Specifically,
given a set S ⊆ ∆, a set of critical structures Ω̂, and a bipartition property P, a P-structure verifier
is a subroutine that returns true if S ∈ Ω̂P and false otherwise. We say the verifier is partial if it
only verifies a subset of Ω̂P , i.e., it may return a false negative but not a false positive.

A naive verification can be done by following the definition directly, as it was done for the three
examples given in Section 3.3. However, this verification process is impractical even for modest-
sized problems, as it requires knowing the entire feasible solution space Π̂. In what follows, we
restrict our attention to a special class of bipartition properties defined as follows.

Definition 5 (Null/Regular Properties). Given the leader’s strategy set Π and the follower’s
structure set Ω, the null property P∅ is defined as follows. For every U ∈ Π,

P∅(U) =

{
1, U ∈ C(Ω),
0, otherwise.

We say a property P is regular if and only if P ⪰ P∅.

Hence, a strategy U belongs to Π
P∅
1 if and only if it nullifies (intersects) every follower’s structure

in Ω (not just the critical structures in Ω̂). In fact, all three examples presented in Section 3.3
use the null property as their bipartition properties. Indeed, in those examples, every edge-cut,
s-t cut, and non-independent set intersects all the spanning trees, s-t paths, and vertex covers,
respectively. We will soon show that the P-structures associated with null properties have some
convenient characteristics that can be exploited for constraint separation purposes. Before diving
into the verification algorithms, we need to provide some notation first.
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4.1 Extended Sets

Definition 6. Given a family of sets Ω, we define

• Ω[S, k] := {T ∈ Ω | |T ∩ S| ≥ |S| − k}.

• Ω[S] := Ω[S, 0] = {T ∈ Ω | T ⊇ S}.

We call Ω[S, k] the set Ω extended on S with degree k and call Ω[S] the set Ω extended on S (with
degree 0).

We have the following properties for the extended sets.

Proposition 3. For sets S ⊆ S′ and numbers k ≤ k′ ∈ N, we have

1. Ω[S, k] = Ω for every k ≥ |S|.

2. Ω[S, k] ⊆ Ω[S, k′].

3. Ω[S, k] ⊇ Ω[S′, k].

Proof. Statement 1 can be verified directly by definition. For 2, give a fixed set S, we have

T ∈ Ω[S, k] =⇒ |T ∩ S| ≥ |S| − k ≥ |S| − k′ =⇒ T ∈ Ω[S, k′].

For 3, we know |S′| = |S′ \ S| + |S| since S′ is a superset of S, and |T ∩ S′| ≤ |T ∩ S| + |S′ \ S|
because T ∩ S′ contains at most everything in S′ \ S besides T ∩ S. Then, we have

T ∈ Ω[S′, k]

=⇒ |T ∩ S′| ≥ |S′| − k

=⇒ |T ∩ S|+ |S′ \ S| ≥ |S′ \ S|+ |S| − k

=⇒ |T ∩ S| ≥ |S| − k

=⇒ T ∈ Ω[S, k].

This completes the proof.

4.2 An Exact Verifier for P∅

When focusing on null property P∅, the following definition characterizes the corresponding set of
P∅-structures from a different perspective.

Definition 7 (Critical Nucleus). A set S is a critical nucleus if for every T ∈ (↑ Ω)[S], there exists
some T ′ ∈ Ω̂ such that T ′ ⊆ T .

By definition, (↑ Ω)[S] is an extended subposet. So, a set S is a critical nucleus if every superset
of S in ↑ Ω (with respect to 2∆) also contains some critical structure. For instance, consider the
edges set S = {e1, e2} in the shortest path interdiction example shown in Figure 2. By definition,
every edge set in (↑ Ω)[S] must contain S along with some T ∈ Ω. Thus, it is sufficient to check
whether every T ∈ Ω \ Ω̂ together with S can contain some critical path. In particular, the critical
paths {e2, e3} and {e1, e4} are contained in the respective S∪{e1, e3, e6} and S∪{e2, e4, e5}, which
renders S as a critical nucleus.

Theorem 3. Given Ω̂ ̸= ∅, S ∈ Ω̂P∅ if and only if S is a critical nucleus.
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Proof. For sufficiency, towards a contradiction, suppose S /∈ Ω̂P∅ = C(Π̂0), then there exists some

feasible strategy U ∈ Π̂0 such that S ∩ U = ∅. By definition of P∅, such U intersects all critical
structures in Ω̂ but not all structures in Ω for otherwise, U ∈ Π1. Hence, we can pick some
T ∈ {T ′ ∈ Ω | T ′ ∩ U = ∅}, and we have (T ∪ S) ∩ U = ∅. Clearly, T ∪ S ∈ (↑ Ω)[S], then the
fact that S is a critical nucleus implies that we can find some critical structure T ′ ∈ Ω̂ such that
T ′ ⊆ T ∪S. By construction, T ′∩U = ∅, which implies U is not a feasible strategy, a contradiction.

For necessity, suppose S is not a critical nucleus, i.e., there is some T ∈ (↑ Ω)[S] such that for
all T ′ ∈ Ω̂, T ′ ̸⊆ T . Then, take U =

⋃
T ′∈Ω̂ T ′ \T , U intersects all the critical structures in Ω̂ hence

is a feasible strategy. Moreover, T is from (↑ Ω)[S] implies T includes some structure T0 ∈ Ω, and
U ∩ T0 = ∅ by construction. Thus, P∅(U) = 0 as U does not block all the structures. So, we have
U ∈ Π̂0 and U ∩ S = ∅, since S ⊆ T by our choice. This implies S is not a cut of Π̂0, thus is not a
P∅-structure.

A direct implication of this theorem is the following corollary.

Corollary 3. For every regular P, Ω̂P contains all the critical nuclei.

Proof. Every regular P is stronger than P∅. Thus, by Corollary 2, we have Ω̂P∅ ⊆ Ω̂P .

For every regular bipartition property P, the above theorem and corollary provide a different
(partial) characterization of the P-structures that does not depend on the feasible solutions space
Π̂ of the MCS formulation. This enables us to develop verifiers based on this new characterization.
In particular, we have the following exact verifier for P∅-structures.

Theorem 4. A set S is a critical nucleus if and only if the following formulation

max
T∈m(Ω)

min
T ′⊆T∪S
T ′∈m(Ω)

w(T ′) (4)

has an optimal value that is less than r.

Proof. It is sufficient to show that S is a critical nucleus if and only if for every T ∈ m(Ω), T ∪ S
contains some critical structure T ′ ∈ Ω̂. The necessity is obvious as the set T ∪S for some T ∈ m(Ω)
belongs to (↑ Ω)[S]. For sufficiency, we prove the contrapositive. Suppose S is not a critical nucleus,
i.e., there exists some T ∈ (↑ Ω)[S] such that every defender’s structure T ′ contained in T ∪ S is
non-critical. Notice such T ′ always exists as we pick T from (↑ Ω). Moreover, either T ′ is minimal
in Ω, or some subset of T ′ is. Without loss of generality, assume T ′ ∈ m(Ω), then by choice, T ′ ∪S
does not contain any critical structure, which completes the proof.

According to this theorem, Formulation (4) provides an exact verifier for the P∅-structures.
Since (4) is a bilevel problem, optimization techniques such as dualize-and-merge and branch-and-
bound can be applied to verify a given S exactly. We provide below several examples to illustrate
this method.

Example 1 (Spanning Tree Interdiction, Cont.). In this problem, m(Ω) is simply the set of span-
ning trees. Thus, we can use the established spanning tree formulations [41] to represent the
constraints of Formulation (4). For the outer level problem, we can use the following constraints
to represent the space of spanning trees. We assume |V | = n and use x = (xe)e∈E as the indicator
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vector for the selected spanning tree, and use E[L] to represent the set of edges with both endpoints
in the vertex set L. ∑

e∈E
xe = n− 1 (5a)∑

e∈E[L]

xe ≤ |L| − 1, ∀L ⊆ V (5b)

xe ∈ {0, 1}, ∀e ∈ E. (5c)

The inner level problem of (4) is to solve the minimum spanning tree problem over the subgraph
induced by the edge set T ∪S. Since the goal is to dualize the inner problem, we choose a compact
linear formulation from [41] as follows,

min
∑
e∈E

weye (6a)∑
{j:{i,j}∈E}

f l
ij −

∑
{j:{i,j}∈E}

f l
ji = bli ∀i ∈ V, l ∈ V \ {k} (6b)

ye ≥ f l
ij + f l′

ji ∀e = {i, j} ∈ E, l ̸= l′ ∈ V \ {k} (6c)∑
e∈E

ye = n− 1 (6d)

f l
ij , f

l
ji ≥ 0 ∀{i, j} ∈ E, l ∈ V \ {k} (6e)

ye ≥ 0 ∀e ∈ E, (6f)

where (ye)e∈E is the indicator vector of the spanning tree to be selected. In this setting, a root
vertex k is arbitrarily selected from V , and a commodity l is defined for every non-root vertex
l ∈ V \ {k}. Then, one unit of each commodity l emanating from the root vertex k must be
delivered to the vertex l. Thus, the parameter bli takes values of 1, −1, or 0 whenever i = k,
i = l, or i ∈ V \ {k, l}, respectively. Finally, we use the following linking constraints to combine
formulations (5) and (6),

ye ≤ xe + 1S(e) ∀e ∈ E, (7)

where 1S is the indicator function of the input edge set S. Thus, an edge e can be used in the inner
problem if either it has been selected as a part of the spanning tree by xe or if it belongs to the
input set S. Then, dualizing the inner problem produces a one-level mixed-integer problem (MIP).
By Theorem 4, S is a critical nucleus if and only if this MIP formulation obtains an upper bound
that is less than r. △

Example 2 (Shortest Path Interdiction, Cont.). In this setting, the outer problem of (4) needs
to impose a solution space of paths, and the inner problem is to solve for a shortest path on the
subgraph restricted on T ∪ S. Thus, we can use the following bilevel formulation.

max
x∈X

min
∑
e∈E

weye∑
e∈δ+(i)

ye −
∑

e∈δ−(i)

ye = bi, ∀i ∈ V

ye ≤ xe + 1S(e), ∀e ∈ E

ye ≥ 0, ∀e ∈ E,
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where bi takes values 1, −1, and 0 whenever i = s, i = t, and i ∈ V \ {s, t}, and X is the space of
indicator vectors of paths as follows,∑

e∈δ+(i)

xe −
∑

e∈δ−(i)

xe = bi, ∀i ∈ V

∑
e∈δ(i)

xe≤ 2, ∀i ∈ V \ {s, t}

xe ∈ {0, 1}, ∀e ∈ E.

We use δ(i) to denote the set of all adjacent edges of i and make the variables integers to prevent the
inner problem from potentially using fractional edges. Together with the flow balance requirements
on s and t, the second constraint set eliminates all the potential cycles, which is essential in this
outer problem for finding a maximum s-t path. In contrast, these constraints are relaxed in the
inner problem since the minimization ensures that the optimal solutions would only indicate simple
paths. Again, we can dualize the inner problem to produce a one-level MIP serving as an exact
verifier for the P∅-structures in this specific problem. △

Example 3 (Vertex Cover Interdiction, Cont.). Let N(v) and N [v] denote the open and closed
neighbors of a vertex v ∈ V in the given graph G, i.e., N [v] = N(v) ∪ {v}, a minimal vertex cover
can be exactly characterized by the following.

Proposition 4. Given G = (V,E), a vertex cover T ⊆ V is minimal if and only if

|T ∩N [v]| ≤ |N(v)|

for every v ∈ V .

Proof. It is known that the complement of a vertex cover is an independent set. Thus, T is a
minimal vertex cover if and only if its complement T̄ is a maximal independent set. According to
[40], an independent set T̄ is maximal if and only if N [v] ∩ T̄ ̸= ∅, which completes the proof.

Using this characterization, we can use the following constraints to describe the space of minimal
vertex covers and denote it as X .

xv + xu ≥ 1, ∀(v, u) ∈ E (8a)∑
u∈N [v]

xu ≤ |N(v)|, ∀v ∈ V (8b)

xv ∈ {0, 1}, ∀v ∈ V. (8c)

Accordingly, we can set up the following bilevel formulation.

max
x∈X

min
y∈X

∑
v∈V

wvyv (9a)

yv ≤ xv + 1S(v), ∀v ∈ V. (9b)

This verifier is a bilevel integer linear program. We can use various bilevel branch-and-bound
methods (e.g., [38, 65]) to solve this problem exactly. △
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In general, suppose the solution space m(Ω) can be represented exactly by a solution space X ,
then Formulation (4) can always be rewritten in the form of (9) using the ground set ∆ in place of
V , the ground set for the vertex cover example.

In all three examples, we have developed mathematical formulations to verify P∅-structures.
However, these verifiers are nowhere near practical since they need to be solved multiple times to
separate new constraints. In fact, it is easy to see that solving some of these separation problems
can be as challenging as solving the original problem.

To overcome such inefficiency, in the following subsection, we shift our focus to the development
of partial verifiers that are allowed only to separate a subset of Ω̂P∅ . To incorporate partial verifiers
in Algorithm 1, we replace the MPS formulation with the MCS formulation in the algorithm, then
generate supervalid inequalities using any given partial verifier. This variant algorithm searches
for an optimal solution from some relaxation of Π0, then compare this solution with the optimal
solution obtained in Π1. Hence, the overall correctness is still guaranteed.

4.3 A Partial Verifier for P∅

Based on Theorem 3, in this section, we will provide two properties about the subsets of the ground
set. We will prove that a structure S ⊆ ∆ that holds both properties is guaranteed to be a P∅-
structure. This will lead to a more efficient procedure to identify P∅-structures. The first concept
is called partial nuclei.

Definition 8 (Partial Nucleus). A set S is a partial nucleus of degree k, or a k-nucleus, if all
elements in m(Ω)[S, k] are critical, i.e., m(Ω)[S, k] ⊆ Ω̂. The set of k-nuclei is denoted by Ω̂c

k.

Recallm(Ω)[S, k] = {T ∈ m(Ω) | |T∩S| ≥ |S|−k} by Definition 6 for some k ∈ N. In particular,
if S is a 0-nucleus, then all minimal structures that contain S are critical, i.e., m(Ω)[S] ⊆ Ω̂. Also,
S is a k-nucleus for some k ≥ |S| if all minimal structures m(Ω) are critical, in which case all
feasible solutions are in Π1. Again, consider the edges set S = {e1, e2} in Figure 2. Since no path
in this example contains S, we trivially have m(Ω)[S, 0] = ∅, which implies that S is a 0-nucleus.
On the other hand, because the non-critical path {e1, e3, e5} intersects S more than |S| − 1 = 1
edges, S is not a 1-nucleus. By this definition, we clearly have the following.

Proposition 5. Ω̂c
k is an upper set and is decreasing on k. That is, for k, k′ ∈ N such that k ≤ k′,

we have Ω̂c
k ⊇ Ω̂c

k′.

Proof. For the first claim, for some S ∈ Ω̂c
k and any S′ ⊇ S, we have m(Ω)[S′, k] ⊆ m(Ω)[S, k] ⊆ Ω̂

by Proposition 3. Thus, S′ ∈ Ω̂c
k. For the second statement, S ∈ Ω̂c

k′ means m(Ω)[S, k′] ⊆ Ω̂. By
Proposition 3, k ≤ k′ implies

m(Ω)[S, k] ⊆ m(Ω)[S, k′] ⊆ Ω̂.

That is, S ∈ Ω̂c
k.

There are two reasons why the membership of a k-nucleus is much easier to verify than the
critical nuclei. First, minimal elements m(Ω) are follower’s structures and thus characterized by the
follower’s problem, whereas the elements in m(↑ Ω[S]) can be arbitrary supersets of the follower’s
structures. Second, we can check whether any upper bound of the following

max
T∈m(Ω)[S,k]

w(T ) (10)

is less than the interdiction target r to verify a k-nucleus instead of solving a bilevel problem,
as it is required to verify a critical nucleus. Unfortunately, being a k-nucleus does not suffice to
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guarantee S ∈ Ω̂P∅ . The following proposition investigates the relationship between k-nuclei and
critical nuclei.

Proposition 6. Ω̂P∅ ⊆ Ω̂c
0. Furthermore, there exist binary interdiction games where this inclusion

is strict.

Proof. Notice that when k = 0, we have m(Ω)[S, k] = m(Ω)[S].
To prove the first statement, for every S ∈ Ω̂P∅ , consider the set m(Ω)[S]. This set is either

empty or not. For the former, we have ∅ ⊆ Ω̂, which makes S a 0-nucleus. For the latter, for every
T ∈ m(Ω)[S], we have T ∈ (↑ Ω)[S]. Because S is a critical nucleus, by definition, T must contain
some critical T ′ ⊆ T . But, T ′ must be taken as T ; otherwise, it will contradict the minimality of T
in Ω. This shows m(Ω)[S] ⊆ Ω̂, i.e., S ∈ Ω̂c

0.
For the second statement, we construct the following instance of the shortest path interdiction

game as a counterexample.

s te3

e1 e2

We assume Ω̂ = {{e1, e2}}. Clearly, {e1} is a 0-nucleus since m(Ω)[{e1}] = {{e1, e2}} = Ω̂.
However, {e1} is not a critical nucleus since taking T as the path {e3}, the union T ∪{e1} does not
contain any critical paths.

By this proposition, Formulation (10) is not a valid partial verifier as it may accept “false
positive” structures. To resolve this issue, we use the following definition.

Definition 9 (Regenerability). A set S is k-regenerable in Ω, if for all T ∈ Ω, there is a T ′ ⊆ T ∪S
such that T ′ ∈ m(Ω)[S, k]. The family of k-regenerable sets is denoted by Ω̂r

k.

Intuitively, a set S is k-regenerable if combining it with any structure T ∈ Ω by union will contain
a minimal structure T ′ ∈ m(Ω) that intersects S with at least |S| − k elements. In particular, 0-
regenerable implies S∪T always regenerates some minimal structure T ′ that contains S as a subset,
which is quite a strong condition. On the other hand, every set S is k-regenerable for all k ≥ |S|
since S ∪ T must contain some minimal structure (either T or some minimal structure contained
in T ). This implies, in contrast to the k-nuclei, Ω̂r

k is increasing on k. To be exact, we have the

following result for Ω̂r
k.

Proposition 7. Ω̂r
k is increasing on k. Moreover, for every S ∈ Ω̂r

k and S′ ⊇ S, we have S′ ∈
Ω̂r
k+|S′|−|S|.

Proof. To prove the first, we take any S ∈ Ω̂r
k. By definition, for every T ∈ Ω, there is some

T ′ ⊆ T ∪ S such that T ′ ∈ m(Ω)[S, k]. By Proposition 3, we have m(Ω)[S, k] ⊆ m(Ω)[S, k′] for
k′ ≥ k. Thus, the same T ′ also exists in m(Ω)[S, k′]. By definition, S ∈ Ω̂r

k′ . For the second
statement, for each T ∪ S′, we can take the same T ′ that is regenerated by T ∪ S, which intersects
T ′ with at least

|S| − k = |S′| − (k + |S′| − |S|)

elements, which completes the proof.

Combining partial nuclei with regenerability, we get the following verification theorem.

Theorem 5 (Partial Verification Theorem). Ω̂c
k ∩ Ω̂r

k ⊆ Ω̂P∅ for all k ∈ N.

20



Figure 6: Hierarchy of Partial Nuclei Ω̂c
k and Regenerable Sets Ω̂r

k. The left figure shows that Ω̂c
k and Ω̂r

k

are decreasing and increasing on k, respectively. In the right figure, their intersections Ω̂cr
k ’s are combined

into the set Ω̂cr, which is sandwiched between m(Ω̂) and Ω̂P∅ . In addition, the set of 0-nuclei contains all

the critical nuclei Ω̂P∅ as a subset.

Proof. Given a set S ∈ Ω̂c
k∩Ω̂r

k for some k, suppose S /∈ Ω̂P∅ , i.e., S is not a cut of the corresponding

Π̂0. Then, there is some feasible strategy U ∈ Π̂0 that does not intersect S. Because P∅(U) = 0,
by the definition of null property, some structure T ∈ Ω is not blocked by U . Thus, we have
(S ∪ T ) ∩ U = ∅. Then, S is k-regenerable in Ω implies there is some T ′ ⊆ S ∪ T such that
T ′ ∈ m(Ω)[S, k]. Moreover, S is a k-nucleus implies such T ′ must be critical. Note U ∩ T ′ = ∅ by
construction, which contradicts the feasibility of U . So, we are done.

Corollary 4. For any k ∈ N, denote Ω̂cr
k := Ω̂c

k∩Ω̂r
k and define Ω̂cr :=

⋃
k∈N Ω̂cr

k . Then, Ω̂cr ⊆ Ω̂P∅.

We omit the proof as it is a trivial consequence of Theorem 5. In particular, this corollary
provides an upper bound of Ω̂cr. On the other hand, the following proposition provides a lower
bound, which can be verified directly from the definitions.

Proposition 8. Every critical structure T ∈ m(Ω̂) is a 0-nucleus and is 0-regenerable in Ω. In
particular, m(Ω̂) ⊆ Ω̂cr

0 ⊆ Ω̂cr.

The relationship between all these sets forms a hierarchy map illustrated in Figure 6. From
a practical perspective, Theorem 5 enables us to split the verification procedure into two parts.
Given a set S, we only need to check: (i) whether it is a k-nucleus using Formulation (10) or any
equivalent algorithms, (ii) whether it is k-regenerable for certain k between 0 and |S|. For the
latter, we can often circumvent the verification step by starting with structures that are known to
be k-regenerable. We provide several examples in the next subsection to illustrate these ideas.

4.4 Examples for the Partial Verifier

Given a set S, we can use the following general formulation to determine the smallest k required
for S to be k-regenerable.

k = |S| − min
T∈m(Ω)

max
T ′⊆S∪T
T ′∈m(Ω)

|S ∩ T ′|.
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However, this is again a bilevel optimization similar to the exact verifier (4). In practice, we can
often skip this verification by identifying k-regenerable structures directly, and then applying partial
nucleus verifier (10) on these regenerable structures to check whether S is a P∅-structure.

Example 1 (Spanning Tree Interdiction, Cont.). In this case, every edge set S that does not contain
a cycle is 0-regenerable due to the edge exchange property of spanning trees. Therefore, we can
start with a critical spanning tree T ∈ Ω̂, then verify its proper subsets using any implementation
of the partial nucleus verifier (10). This verifier computes the maximum weight of the spanning
trees that contain S. A variant of Kruskal’s algorithm has been implemented in [59]. In the same
paper, the authors demonstrated that, with this P-structure verifier for separating Constraint (3b),
the resulting MPS formulation works more efficiently than the MCS formulation. △

Example 2 (Shortest Path Interdiction, Cont.). In contrast to the minimum spanning tree case,
not every subset of a s-t path is 0-regenerable. To identify the regenerable sets in this problem, we
use the following definitions.

Definition 10 (Path Decomposition & Skeletons). Given a graph G = (V,E) and a source-terminal
pair s, t ∈ V , a path decomposition is a sequence of vertex subsets {Xi}ni=0 with three properties:

• s ∈ X0 and t ∈ Xn;

• for every {u, v} ∈ E, there exists some i such that u, v ∈ Xi;

• for every i ≤ j ≤ k, Xi ∩Xk ⊆ Xj .

For each Xi, the source set Si and terminal set Ti are defined as

Si =

{
{s}, i = 0

Xi ∩Xi−1, otherwise.
Ti =

{
{t}, i = n

Xi ∩Xi+1, otherwise.

For a set of vertices X, we define E(X) := {{u, v} ∈ E | u, v ∈ X}. Then, for any part Xi such that
Si∩Ti = ∅, a skeleton K of Xi is a minimal edge set that preserves the connectivity between Si and
Ti, i.e., for every part (s, t) ∈ Si × Ti that is connected through edges in E(Xi) \ (E(Si) ∪ E(Ti)),
there is a path in K that connects them, and K is a minimal edge set that achieves this. Let PK
be all such paths in K, then we define

λ(K) := min
P∈PK

|P |,

i.e., the length of the shortest path (in terms of the number of edges) in K that connects Si to Ti.

This definition is a variant of the path decomposition in [48], and we provide an example in
Figure 7 for illustration. The intuition is that a path decomposition reduces the given graph G
into a simple s-t path on the aggregated level. In particular, for every i ≤ j ≤ k, a path from some
u ∈ Xi to some v ∈ Xk must take some subpath in Xj with a source vertex in Si and a terminal
vertex in Ti. This decomposition is related to regenerable sets by the following proposition.

Proposition 9. In the shortest path interdiction, for an arbitrary path decomposition, every skele-
ton K induces a (|K| − λ(K))-regenerable set.

Proof. For every s-t path P and a skeleton K with respect to a part Xi under some path decom-
position, the subpath of P that passes through some Xi such that Si ∩ Ti = ∅ must connect some
vertex u ∈ Si to some vertex in v ∈ Ti. Swapping this subpath with the unique (u, v)-path in K
produces a new path from s to t. Moreover, the (u, v)-path in K has a length that is greater or
equal to λ(K). Hence, the new path intersects with K in at least λ(K) = |K|− (|K|−λ(K)) edges,
which proves the claim.
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Figure 7: Path decomposition and skeletons. All the vertices are covered by the path decomposition {Xi}4i=0.
For X1, the source set S1 and terminal set T1 are {b, e} and {d, h}, respectively. K1 = {e6, e8}, K2 =
{e4, e5, e9, e10} are both skeletons in X1 since both are minimal edge sets that preserve all the connectivities
between S1 and T1. By definition, we have λ(K1) = 1 and λ(K2) = 2 . In contrast, {e6} and {e4, e5, e6, e8}
are not skeletons as the former breaks the connectivity between e and h while the latter is not minimal.
Another example, for X0, S0 is {s} and T0 = {b, e}. Both K3 = {e1, e2} and K4 = {e3} are skeletons with
λ(K3) = 2 and λ(K4) = 1, while {e3, e7} is not since it contains edges in T0, thus is not minimal.

For instance, in Figure 7, {e1, e2}, {e3}, {e13} are all 0-regenerable; {e6, e8} and {e11, e12} are
both 1-regenerable; {e4, e5, e8} and {e4, e5, e9, e10} are both 2-regenerable. Notice that some re-
generable sets (e.g., {e11, e12} or {e13}) are uninteresting since they are k-nucleus if and only if all
paths are critical. In general, it is easy to see that every s-t cut S is (|S| − 1)-regenerable. Yet,
they are all trivial regenerable sets for the same reason.

Using this definition, we can randomly construct several path decompositions in this problem,
then generate non-trivial skeletons from some parts. For each skeleton K, we can run Formulation
(10) or any equivalent variant of the longest path algorithm to intersect K with at least |K|−λ(K)
edges. Suppose the resulting length is less than the predefined r, we separate a constraint of (3b)
that is associated with K. We also note that these algorithms can be terminated early once any
upper bound is found to be less than r. We provide the corresponding computational experiments in
Appendix 6, where this supervalid inequality approach based on the path decomposition is compared
with the standard MCS formulation (2) tailored for the shortest path interdiction problem. △

Example 3 (Vertex Cover Interdiction, Cont.). Similar to the shortest path case, not every subset
of a vertex cover is 0-regenerable. For instance, T1 = {v1, v2, v4, v5} and T2 = {v1, v2, v3, v6} are
both minimal vertex covers in Figure 1. Take {v5} ⊆ T1, but T2 ∪ {v5} does not contain any
minimal vertex cover that contains {v5} since all the neighbors of v4 (i.e., elements in T2) have
to be included in a minimal vertex cover that excludes v4. The following definition and lemma
identify a certain type of vertex that is 0-regenerable. Recall that, for a vertex v ∈ V , we use N(v)
and N [v] for the open and closed neighbors of v in the graph.

Definition 11 (Sociable Vertices). In a simple graph G = (V,E), a vertex v ∈ V is called sociable
if there exists u ∈ N(v) such that N [u] ⊆ N [v].

Lemma 1. Every singleton {v} for some sociable vertex v is 0-regenerable.

Proof. Pick any minimal vertex cover T ∈ m(Ω), either v ∈ T or not. The former is trivial as we
can pick T ′ = T ⊆ T ∪{v}. Suppose otherwise, we have N(v) ⊆ T to cover all the edges between v
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Figure 8: Swapping and pruning operations on the sociable vertex v.

and its neighbors. Take one vertex u ∈ N(v) such that N [u] ⊆ N [v], we swap u with v to construct
T0 = T ∪ {v} \ {u}. We will show that (i) T0 is a vertex cover and (ii) it contains some minimal
vertex cover T ′ that also contains v. For (i), notice that by this swapping operation (see Figure
8), only the coverage of edges {v} ×N(v) and {u} ×N(u) has been changed. We partition these
edges into three parts,

1. (u, v);

2. {v} × (N(v) \ {u});

3. {u} × (N(u) \ {v}).

This is clearly a partition. For 1, after swapping u and v, the edge {u, v} is still covered; for 2, note
that N(v) \ {u} ⊆ T since v /∈ T , and swapping u and v would not change this containment, i.e.,
N(v) \ {u} ⊆ T0. Thus, all the edges in Case 2 are covered by T0. Case 3 is trivial as N [u] ⊆ N [v].
To prove (ii), we use Proposition 4. That is, we will construct some T ′ that satisfies v ∈ T ′ ⊆ T0

such that, for each v ∈ V , there exists some v′ ∈ N [v] does not belong to T ′. Because only the
vertices in N [v] ∪ N [u] have been affected by the swapping operation, we partition these vertices
as follows,

1. {u, v};

2. N(u) \ {v};

3. N(v) \N [u], which is empty if N [v] = N [u].

This is a valid partition (that may contain empty sets) since N [u] ⊆ N [v]. For Case 1, both u and v
satisfy the characterization as u /∈ T0. All the vertices in Case 2 also satisfy the characterization as
they are neighbors of u. For Case 3, suppose N(v) \N [u] is nonempty (otherwise we are done), we
can sort N(v) \N [u] in an arbitrary order. Then, we perform a pruning operation on N(v) \N [u]
sequentially. Take each element v′ from this set in order, either N [v′] ⊆ T0 or not. For the latter,
we do nothing and go to the next element in the set. For the former, we remove v′ from T0. Notice
that T0 \ {v′} is still a vertex cover, since removing v′ only affects its neighbors. But, the reason
to remove v′ is that all its neighbors are covered in T0, which implies all the edges {v′} × N(v′)
are still covered by T0 \ {v′}. Clearly, after scanning all the elements in N(v) \ N [u], we are left
with a set T ′ where every vertex satisfies the characterization, and T ′ is preserved all along as a
vertex cover. Moreover, since the only operation is removing vertices in T0 other than v, we have
v ∈ T ′ ⊆ T0, which implies v is 0-regenerable.
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Figure 9: Three cases in Proposition 10. The dash-dotted edges exist due to N [ui] ⊆ N [vi], which is implied
by the corresponding swapping operations.

However, a 0-regenerable singleton T is often weak in its quality since the set Ω[T ] could be
quite large, which is unlikely to be contained in Ω̂. The following proposition shows that these
sociable vertices can be merged to a larger 0-regenerable set as long as they keep a certain distance
from each other.

Proposition 10. A set of sociable vertices U ⊆ V is 0-regenerable if it is also an independent set.

Proof. For every minimal vertex cover T and every sociable vertex v ∈ U , the swapping and
pruning operations, if performed, will only add v into T and remove some neighbors in N(v) from
T (including the swapped u). Thus, we only need to show that, after sequentially performing the
two operations on multiple sociable vertices in U , one of the two endpoints of every edge is still
covered by the resulting T ′. Since all the operations within each neighbor are safe by Lemma 1, the
only possibility to cause some edge to be uncovered is that, for some v1, v2 ∈ U such that v1 ̸= v2,
one vertex u1 ∈ N(v1) removed from T along with some u2 ∈ N(v2) removed from T form an edge
(u1, u2). More specifically, we have the following three possible cases (see Figure 9):

1. without loss of generality, u1 and u2 are removed from T due to swapping and pruning
operations, respectively;

2. both u1 and u2 are removed from T due to pruning operations;

3. both u1 and u2 are removed from T due to swapping operations.

We will show all three cases are impossible to occur. Consider we scan each v ∈ U \ T in a
given order and perform the corresponding swapping and pruning operations in each iteration.
First, these operations will not remove any vertex in U ∩ T from T , because these operations only
affect the neighbors of v while the minimum distance between vertices in U is at least two by the
assumption that U is an independent set.

Then, for Case 1, either the swapping operation on v1 is performed before or after the pruning
operation on N(v2). For the former, after the swap, u1, as a neighbor of u2, has been removed from
T . Thus, u2 will not be pruned afterward as not all its neighbors are selected. For the latter, since
v1 is sociable and u1 will be swapped with v1, we have N [u1] ⊆ N [v1] by definition. Clearly, the
edge (u1, u2) is adjacent to u1, thus we also have u2 ∈ N [v1], i.e., v1 ∈ N(u2). Before the swap, we
further have v1 /∈ T . Thus, u2 will not be removed from T by the pruning process as not all the
neighbors of u2 are selected (v1 is not). This completes Case 1.

For Case 2, no matter which pruning operation happens first (say u1), the other pruning oper-
ation will not be carried out since its neighbor u1 is not selected in the constructed vertex cover.

For Case 3, since u1 and u2 in T will be swapped with v1 and v2, respectively. We have
N [ui] ⊆ N [vi] for i = 1, 2. In particular, u1 ∈ N [v2] and u2 ∈ N [v1]. Moreover, v1 is also a
neighbor of u2, so we have

v1 ∈ N [u2] ⊆ N [v2],
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which contradicts the minimum distance between v1 and v2.
Therefore, all three cases are impossible to occur, which implies all the procedures of scanning

v ∈ U \ T and performing the corresponding swapping and pruning operations will never lead to
any conflicts. Then, by Lemma 1, after the entire process, the resulting T ′ is still a vertex cover
that satisfies the characterization of Proposition 4, thus is a minimal vertex cover that satisfies
U ⊆ T ′ ⊆ (U ∪ T ). This completes the proof.

Accordingly, in this problem, we can first identify all (or part of) the sociable vertices U , then
pre-compute their pairwise distance. Then, for every U ′ ⊆ U that satisfies the distance requirement,
we can run the following 0-nucleus verifier

max
x∈X

∑
v∈V

wvxv

(8a)–(8c),

xv = 1, ∀v ∈ U ′.

Suppose the optimal value or any upper bound is less than the predefined target r, then U ′ is a
P∅-structure. Compared to the bilevel integer program (9), this verifier is easier to solve. △

4.5 General P∅-Structure Separation Guidelines

In general, for a specific binary interdiction game, we can separate the P∅-structures using the
following general guidelines. As long as (2) is sufficient for producing an optimal solution, these
supervalid inequalities could be incorporated to speed up the overall solution procedure.

1. Identify the set of follower’s structures Ω.

2. Identify a regular bipartition property P such that the optimal value z(Π1) can be efficiently
determined.

3. Identify a class of regenerable sets in the corresponding problem.

4. Solve the MPS formulation (3) using Algorithm 1.

5. At each iteration of the separation step, heuristically select some regenerable set S, then run
the corresponding k-nucleus verifier (10) on S. If an upper bound of (10) is obtained to be
less than the interdiction target r, then we add the constraint

∑
a∈S xa ≥ 1 into the MPS

formulation.

6. The algorithm terminates when the MPS formulation solves optimally, or its lower bound is
no less than z(Π1).

All the previous examples can set up a separation subroutine based on these guidelines with
deliberately designed implementations. For instance, in the minimum spanning tree interdiction
[60], the authors developed an enumeration tree for the regenerable sets and implemented a binary
search on each branch of the enumeration tree to separate the P∅-structures. Though the regenera-
ble set selection and k-nucleus verifier implementation for different binary interdiction games could
be vastly different, a special class of structures, called the greedoids, shares similar features as the
spanning trees in the P∅-structure separation procedure.
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5 Greedoid Interdiction Games

Previous examples imply that an efficient implementation of the partial verifier requires (i) a set
of easy-to-identify regenerable sets and (ii) an efficient algorithm to obtain a tight upper bound
for (10). In this section, we will show that, for the special class of problems called the greedoid
interdiction games, both requirements are satisfied under mild assumptions.

5.1 Preliminaries on Greedoids

A greedoid is an abstract set system that connects algorithms, combinatoric optimizations, and
classical analysis of mathematical structures [36]. Intuitively, greedoids extract the fundamental
properties of problems where greedy algorithms can produce optimal solutions [11]. It also gen-
eralizes many other abstract set systems, such as interval greedoids, antimatroids, and matroids.
Many applications and research fields are associated with these set systems, including graph theory
[57], electric network theory [47], assignment problems [25], game theory [1], semi-Markov process
[27], poset analysis [6], and many more. We begin with the following definitions.

Definition 12 (Greedoid/Basis/Rank/Closure/Greedoid Optimization [36, p. 10, 44, 158, 160]).
A set system (∆, Ω̃) with Ω̃ ⊆ 2∆ is called a greedoid if it satisfies the following two properties,

• Accessibility : for every T ∈ Ω̃ there exists a ∈ T such that T \ {a} ∈ Ω̃;

• Exchange property : for every T, T ′ ∈ Ω̃ with |T | < |T ′|, there is some a ∈ T ′ \ T such that
T ∪ {a} ∈ Ω̃.

Given a greedoid (∆, Ω̃), all the maximal elements of Ω̃ form the set of bases denoted by Ω. The
rank function r : 2∆ → N and closure operator σ : 2∆ → 2∆ are defined as

r(S) = max
{
|T | | T ⊆ S, T ∈ Ω̃

}
,

σ(S) = {a ∈ ∆ | r(S ∪ {a}) = r(S)} .

A set S is closed if σ(S) = S. We say Ω̃ has the strong exchange property ([36, p. 27]) if for every
S ⊆ T ∈ Ω with S ∈ Ω̃ and every a ∈ ∆ \T with S ∪{a} ∈ Ω̃, there exists some b ∈ T \S such that
both S ∪ {b} and (T \ {b}) ∪ {a} are in Ω̃. The corresponding greedoid optimization is defined as

max
T∈Ω

w(T ),

where Ω is the set of bases of Ω̃ and w(·) is any weight function. We say w(·) is linear if w(T ) =∑
a∈T w(a) for some weight assignment of the ground set w : ∆→ R.

By this definition, it is easy to verify that all bases of a greedoid Ω̃ have the same size, which is
also called the rank of Ω̃. Because of the exchange property, every non-basis element in a greedoid
Ω̃ can be extended gradually to a basis. That is, for every T ∈ Ω̃, define

Γ(T ) := {a ∈ ∆ \ T | T ∪ {a} ∈ Ω̃}.

Then, Γ(T ) is empty if and only if T is a greedoid basis. This observation enables a natural
greedy algorithm (i.e., Algorithm 2) for solving the greedoid optimization problem. The following
proposition gives one of the main results regarding the greedy algorithm on greedoids.
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Algorithm 2: Greedy Algorithm for Greedoids [36, p. 160]

Data: input ∆, Ω̃, w(·)
1 T ← ∅ // start with the minimal structure in Ω̃
2 while Γ(T ) ̸= ∅ do
3 a⋆ ← maxa∈Γ(T )w(a) // select a greedy choice

4 T ← T ∪ {a⋆}
5 end
6 return T

Proposition 11 ([36, p. 160]). Let (∆, Ω̃) be a greedoid with Ω as its bases. Then the following
are equivalent:

• For every linear objective function w(·), the greedy algorithm is optimal.

• ↓ Ω is a matroid and every closed set in (∆, Ω̃) is also closed in (∆, ↓ Ω).

• (∆, Ω̃) has the strong exchange property.

5.2 Partial Verifier in Greedoid Interdiction Games

We can naturally associate a binary interdiction game with each greedoid structure Ω̃. We call this
problem the greedoid interdiction game with respect to Ω̃ and is defined as follows.

Definition 13 (Greedoid Interdiction Games). Given a greedoid (∆, Ω̃) with weights {wa}a∈∆ and
an interdiction target r, the corresponding greedoid interdiction is a binary interdiction game where
the set of minimal structures consists of all the bases in Ω̃ with the objective to interdict every
structure T ∈ Ω̃ such that w(T ) =

∑
a∈T wa < r.

The following theorem shows that the regenerable sets can be effortlessly identified in greedoid
interdiction games.

Theorem 6. Given a greedoid (∆, Ω̃), every S ∈ Ω̃ is 0-regenerable in the associated greedoid
interdiction game.

Proof. Let Ω be the set of bases in Ω̃. By the exchange property of greedoid, for every feasible set
S ∈ Ω̃ and every basis T ∈ Ω, S ∪ T contains some T ′ ∈ Ω that satisfies T ′ ⊇ S, which implies S is
0-regenerable in the associated greedoid interdiction game.

Therefore, for the binary interdiction game associated with a greedoid Ω̃, we can search for some
proper subset S ⊆ T ∈ m(Ω̂) that satisfies S ∈ Ω̃, then run the 0-nucleus verifier (10) over S and
accept it as a P∅-structure if any upper bound of the verifier gets less than the predefined target
value r. Moreover, according to the following theorem, suppose that the greedoid Ω̃ further satisfies
the strong exchange property, then 0-nucleus verifier can be implemented as a greedy algorithm.

Theorem 7. For the greedoid interdiction game associated with a greedoid (∆, Ω̃) that satisfies the
strong exchange property, the corresponding 0-nucleus verifier (10) with a linear weight function
w(·) adopts a greedy algorithm that solves for an optimal solution.
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Proof. Let Ω be the set of bases in the greedoid Ω̃. Then, the 0-nucleus verifier (10) for the
associated greedoid interdiction game can be written as

max
T∈Ω[S]

w(T ). (11)

By Proposition 11, the strong exchange property implies ↓ Ω is a matroid and every closed set in
(∆, Ω̃) is also closed in (∆, ↓ Ω). Fixing partial solution S in the matroid ↓ Ω is also called the
contraction operation relative to S, which induces the contracted matroid (∆ \ S, (↓ Ω)/S) with

(↓ Ω)/S := {T ′ ⊆ ∆ \ S | T ′ ∪ T ∈↓ Ω for some T ∈ B(S)},

where B(S) are the maximal elements in {T ⊆ S | T ∈ Ω̃} (see [36, p. 15]). Thus, (11) is the
greedoid optimization problem associated with this contracted matroid. Moreover, the closed sets
in the contracted matroid are inherited from the closed sets in ↓ Ω. This means the contracted
matroid satisfies the second condition in Proposition 11. Thus, the greedy algorithm is optimal to
solve (11).

These two theorems demonstrate that the P∅-structure separation is often efficient for greedoid
interdiction games.

6 Extension in Interdiction Games with a Limited Budget

Thus far, we have derived the existence and separation of supervalid inequalities solely for inter-
diction games formulated as (1) with a predefined interdiction target value r. However, many
interdiction games in the literature are instead formulated in terms of a limited budget b, which
can be generally described as follows.

z⋆ := max
U∈Π:c(U)≤b

min
T∈Ω\ΩU

w(T ). (12)

This section explores the application of the proposed P-structures in this type of interdiction game.
According to [59], regardless of whether the inner problem is linear or binary, (12) can be equiv-

alently reformulated into Formulation (2) by setting r = z⋆. It is worth noting that the constraints
in (2b) corresponding to Ω̂z⋆ have been identified as the traditional supervalid inequalities in the
literature [14, 32] for the budget version of interdiction games.

In implementation, the unknown value z⋆ along with the corresponding set of critical structures
Ω̂z⋆ can be iteratively refined using the incumbent objective value. Specifically, the cut generation
method based on the following master and sub-problem pair can be used to solve the budget version.

max
x∈{0,1}n:c(x)≤b

c(x)

s.t.
∑
a∈T

xa ≥ 1 ∀T ∈ Ω̂t,
min

T∈Ω\Ωx

w(T ).

We initialize the master problem with Ω̂0 = ∅. Then, in each iteration t, we solve the master problem
under Ω̂t to obtain a solution x, then we generate the optimal structure T from the subproblem
under the current solution x to form Ω̂t+1 := Ω̂t ∪ {T} for the next iteration. This procedure
terminates when the master problem or the sub-problem becomes infeasible and then returns the
incumbent as the optimal interdiction plan. In this sense, the budget version can be considered
as a special case of the target version (2). Intuitively, this approach encourages to keep pushing
the lower bound of the inner problem by changing the leader’s strategies until either running out
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all the budget or blocking all the follower’s structures. Since each iteration of this implementation
is essentially a feasibility test, the objective function can be arbitrary. We choose maxx:c(x)≤b c(x)
simply to speed up the algorithm by exploring only the maximal interdiction strategies. We note
that similar ideas based on this sample-generation method have also been explored in several recent
papers [23, 39].

As a consequence, the supervalid inequalities obtained from the proposed partial verifier can
still be used in this cut generation procedure according to the following two propositions.

Proposition 12. Given follower’s critical structures Ω̂ ⊆ 2∆ and leader’s strategies represented
as the intersection Π ∩ Π′, let P be a bipartition on Π with Ω̂P as the associated P-structures, an
optimal strategy U⋆ must satisfy one of the following two assertions,

• U⋆ ∈ Π1 ∩Π′;

• U⋆ ∈ C(Ω̂P) ∩Π′.

Proof. Theorem 1 implies Π1 ∪ C(Ω̂P) contains all the solutions in Π that interdicts every critical
structures. The above claim becomes evident when noticing that a feasible solution in this case
must also belong to Π′.

In the budget version, let Π be all the leader’s strategies under an unlimited budget and Π′

be the ones that satisfy the budget constraint. The above proposition entails that Algorithm 1 is
still valid by precomputing an optimal solution from Π1 ∩ Π′ as an incumbent and restricting the
problem to block all the P-structures under the budget constraint. The remaining issue is that
the authentic critical structure set Ω̂ = {T ∈ Ω | w(T ) < z⋆} is unknown since z⋆ is the optimal
objective value of the budget version. The following proposition addresses this caveat.

Proposition 13. Let Ω̂z := {T ∈ Ω | w(T ) < z}, then Ω̂z
P ⊆ Ω̂z′

P whenever z ≤ z′.

Proof. For z ≤ z′, we have Ω̂z ⊆ Ω̂z′ . Then, the statement is a direct consequence of the definition
of the P-structures and the order-reserving property of the cut operator C.

In particular, in each iteration of the cut generation procedure for the budget version problem,
the incumbent objective value z from the sub-problem must be less than or equal to z⋆. Thus, the P-
structure generated with respect to z also belongs to Ω̂P = Ω̂z⋆

P . This shows that using Algorithm 1

with P-structures generated with respect to Ω̂z is still applicable for solving the budget version
interdiction games.

7 Conclusion

This paper studies a particular class of supervalid inequalities to solve binary interdiction games.
For an arbitrary bipartition of the leader’s strategy space associated with a property P, we identified
a class of structures called the P-structures, each of which induces a supervalid inequality for the
corresponding problem. To design separation methods, we restricted our attention to the class
of regular bipartition properties and derived a new characterization for the set of P∅-structures,
which results in an exact verification method. We further defined two special types of structures, the
partial nuclei and the regenerable sets, based on which we developed a more efficient partial verifier.
The classification of various types of structures also leads to a hierarchy map of the P∅-structures
for binary interdiction games.

We provided three general examples in which we apply our results to solve binary interdiction
games targeting shortest paths, spanning trees, and vertex covers. Moreover, the realization of the
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regenerable sets in these problems reveals interesting network structures, such as skeletons of a
path decomposition and sociable vertices in a graph, which may deserve further investigation due
to their unique properties.

Finally, we had shown that every feasible set of a greedoid is 0-regenerable in the corresponding
greedoid interdiction game. Moreover, if this greedoid also satisfies the strong exchange property,
the associated 0-core verification subroutine can be implemented as a greedy algorithm. Therefore,
the separation procedure is guaranteed to be efficient in the greedoid interdiction games.

For future work, several promising directions exist to explore the application and extension of
the proposed method. First, although the concept of P-structures is defined for arbitrary bipartition
properties P, our current separation method primarily focuses on the null property. Investigating
other types of bipartition properties to derive easily separable P-structures, particularly by lever-
aging unique aspects of the follower’s structures, presents an intriguing avenue. Second, our three
examples demonstrate that the realization of k-regenerable sets varies significantly across prob-
lems, often revealing interesting network structures. This diversity invites further studies into the
identification of regenerable sets in various contexts. Third, exploring different types of interac-
tions between players and their potential to yield new kinds of supervalid inequalities is another
promising area for investigation.
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Appendix

Computational Experiments on Supervalid Inequalities for Shortest
Path Interdiction Derived from Path Decompositions

In this section, we conduct a computational study to provide some insights into the separation of
supervalid inequalities derived from path decompositions and skeletons (see Section 4.3). These
experiments also serve to analyze the effectiveness of such inequalities. We compare various compu-
tational performance aspects of the MCS formulation (2), as introduced in [59], against the results
obtained by the MPS formulation (3) on a set of randomly generated instances. The computational
experiments were conducted on a computer powered by a 12-core Intel Xeon E5-2620 v3 2.4 GHz
processor, having 128 GB of RAM, and running Linux x86 64, CentOS 7.2. The formulations were
implemented in Python and solved using the commercial optimizer Gurobi 11.0. Each instance was
solved under a time limit of 30 minutes.

To conduct our experiments, we randomly generated a testbed of two-terminal series-parallel
graphs (TTSPGs) [20] of different characteristics and sizes. A TTSPG is defined as a connected
graph constructed by a sequence of series and parallel compositions starting from a set of copies
of a single-edge graph K2 (i.e., a clique of size two) with one terminal set as the source s and the
other as the sink t. Given two TTSPGs G1 and G2, with sources and sinks s1 and s2, and t1 and t2,
respectively, a series composition of G1 and G2 consists of a new graph G created by merging sink
t1 with source s2, leaving s1 and t2 as the source and sink of G. In contrast, a parallel composition
of G1 and G2 is a new graph G created by merging the sources s1 and s2 to produce the source of
G and merging the sinks t1 and t2 to produce the sink of G.

The specific choice of graph type for these experiments is motivated by the fact that the vertex
sets of all bi-connected components of a TTSPG directly induce a path decomposition, as described
in Definition 10. This allows us to generate instances where multiple skeletons can be identified
and tested to verify whether they induce one of the proposed supervalid inequalities. Also, the
longest s-t path of a TTSPG can be identified in polynomial time, which allows us to verify the
partial nuclei efficiently.
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The graph generation was conducted as follows. First, we denote a q-block as a bi-connected
TTSPG created by a sequence of parallel and series compositions of q single edge graphs K2 so that
the last composition is a parallel composition. This step ensures that the resulting q-block is bi-
connected, thereby preventing the creation of trivial instances in which the attacker can disconnect
the graph by interdicting just one edge. Specifically, we generate a random q-block by initializing
a collection Q of q copies of K2 and then progressively replacing two randomly selected graphs
from Q with the result of either a series or a parallel composition chosen at random until only two
graphs remain. Then, the resulting q-block is produced by applying a parallel composition to the
remaining graphs in Q.

We generated each instance for our experiments by sequentially applying series compositions to
k randomly generated q-blocks. Consequently, each graph in our testbed is a randomly generated
TTSPG composed of k bi-connected components (each being a q-block). To produce instances of
different sizes, for each value of k ∈ {5, 10, 20}, we chose three different values of q so that the
resulting sizes—measured in terms of the number of vertices and edges—can be roughly classified
either as small, medium, or large. For each possible assignments of k and q, we generated five
random instances with edge costs ({ce}e∈E) and edge lengths ({we}e∈E) distributed uniformly in
the interval [1, 100].

In addition to the graph size, the complexity of the instances also depends on the values chosen
for r, as this parameter dictates the number of s-t paths in Ω̂ that must be interdicted. We
solve the problem for all generated graphs with five different levels for r. Specifically, we pick
r = (lp(G) − sp(G)) × γ, for γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, where lp(G) and sp(G) stand for the
lengths of the longest and shortest path and γ is referred to as the interdiction requirement. We
call each triple (k, q, γ) an instance configuration. In total, the MCS and the MPS formulations
were tested over 45 (graphs) × 5 (interdiction requirements) = 225 instances. Finally, since any
minimum-cost s-t cut is a feasible solution for the attacker and is optimal in Π1, we find one in
the preprocessing step and feed it to the MCS formulation as an initial incumbent solution, as
described in Algorithm 1.

Table 1 reports the results obtained for both the MCS and MPS formulations. For each instance
configuration (k, q, γ), we show the average size of the five randomly generated instances in terms
of the average number of vertices ñ and edges m̃, the percentage of instances solved to optimality
(Opt), the average run time in seconds (Time), the average optimality gap (Gap), and the number
of cuts generated (Cuts). For the particular case of the MPS formulation, we specify the number
of base cuts (i.e., the same type of cuts produced by the MCS formulation) and the number of
supervalid cuts. We highlight in bold the best results obtained for each of these metrics.

From the data presented in the table, it is evident that MPS consistently outperforms MCS
in most scenarios, particularly in larger instance sizes and when the interdiction requirement γ is
high. A notable example is observed when (k, q) equals (20, 40); here, MCS failed to solve any
instances for γ ≥ 0.2, whereas MPS successfully solved all. Furthermore, as γ increases, there is a
significant reduction in the average computational times for MPS.

Even in cases where neither algorithms reached a solution, MPS generally achieved a smaller
optimality gap. This is highlighted in the (10, 150) instances where, at γ ≥ 0.2, neither algorithm
solved any instance. However, MPS displayed superior performance in terms of average optimality
gaps, which also improved progressively with higher γ values.

An additional noteworthy point is the number of cuts generated by each algorithm. MPS demon-
strated an enhanced capability to separate more supervalid constraints at higher γ values, leading
to shorter solution times. This feature of MPS is further underscored in scenarios where MCS
performed better; these instances coincided with situations where MPS produced no supervalid
inequalities. Moreover, when MPS outperformed MCS, the total number of cuts it generated was
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Configration Avg. Size Opt (%) Time (s) Gap (%) Cuts MCS Cuts MPS
k q γ ñ m̃ MCS MPS MCS MPS MCS MPS base sv

0.1 73 114 100 100 0.01 0.01 0 0 17 17 0
0.2 73 114 100 100 0.03 0.03 0 0 48 39 5

5 25 0.3 73 114 100 100 0.07 0.03 0 0 87 24 30
0.4 73 114 100 100 0.09 0.04 0 0 114 9 42
0.5 73 114 100 100 0.08 0.03 0 0 124 0 37
0.1 438 667 100 100 0.58 0.45 0 0 251 251 0
0.2 438 667 100 100 41.91 47.24 0 0 5,638 5,638 0

5 150 0.3 438 667 80 80 626.93 627.57 20 28 20,960 22,429 0
0.4 438 667 80 80 713.74 698.64 3 4 32,460 30,003 324
0.5 438 667 100 100 814.05 270.58 0 0 36,207 20,016 2,617
0.1 587 892 100 100 2.93 2.97 0 0 1,308 1,378 0
0.2 587 892 0 20 903.86 915.43 44 44 37,411 38,131 0

5 200 0.3 587 892 20 20 1,540.84 1,495.4 27 29 56,547 56,919 5
0.4 587 892 0 0 1,800 1,800 27 15 60,283 53,676 2,631
0.5 587 892 0 40 1,800 1,254.06 26 8 60,194 32,029 8,088
0.1 283 447 100 100 0.17 0.14 0 0 97 97 0
0.2 283 447 100 100 13.23 9.53 0 0 6,064 3,940 1,054

10 50 0.3 283 447 60 80 1,272.34 827.86 7 3 59,989 6,376 34,078
0.4 283 447 60 100 1,283.67 284.7 8 0 57,913 1 27,952
0.5 283 447 60 100 1,340.93 81.72 7 0 62,042 0 17,062
0.1 592 896 100 100 29.61 29.95 0 0 5,471 5,312 0
0.2 592 896 0 20 1,800 1,589.33 24 23 62,702 59,947 1,975

10 100 0.3 592 896 0 20 1,800 1,420.78 24 17 63,865 421 56,952
0.4 592 896 0 20 1,800 1,334.32 25 17 61,618 0 52,013
0.5 592 896 0 20 1,800 1,252.16 28 8 61,221 0 46,461
0.1 890 1,351 100 100 212.35 288.75 0 0 22,482 22,961 0
0.2 890 1,351 0 0 1,800 1,800 55 48 61,861 52,021 10,457

10 150 0.3 890 1,351 0 0 1,800 1,800 58 36 62,751 0 63,301
0.4 890 1,351 0 0 1,800 1,800 55 22 62,662 0 56,385
0.5 890 1,351 0 0 1,800 1,800 55 21 62,924 0 59,319
0.1 293 456 100 100 5.53 2.87 0 0 3,058 760 1,483
0.2 293 456 100 100 436.72 48.65 0 0 25,879 12 10,547

20 25 0.3 293 456 100 100 360.15 10.21 0 0 25,890 0 6,481
0.4 293 456 100 100 215.89 4.38 0 0 25,889 0 3,891
0.5 293 456 100 100 208.4 2.51 0 0 25,889 0 2,339
0.1 458 720 0 0 1,800 1,800 8 2 77,145 29224 54,621
0.2 458 720 0 100 1,800 1,064.84 8 0 75,699 0 58,562

20 40 0.3 458 720 0 100 1,800 833.87 12 0 61,267 0 38,925
0.4 458 720 0 100 1,800 201.48 6 0 86,448 0 23,447
0.5 458 720 0 100 1,800 58.78 8 0 77,122 0 8,935
0.1 886 1,346 60 100 1,064.08 1,289.53 0 0 46,188 46,357 0
0.2 886 1,346 0 0 1,800 1,800 94 103 62,182 59,119 161

20 60 0.3 886 1,346 0 0 1,800 1,800 97 81 61,363 0 61,018
0.4 886 1,346 0 0 1,800 1,800 99 83 57,294 0 57,494
0.5 886 1,346 0 0 1,800 1,800 99 67 55,835 0 53,974

Table 1: Computational results for the MCS and MPS formulations. For each graph configuration, we show
the average size of the five randomly generated instances in terms of the average number of vertices ñ and
edges m̃, the percentage of instances solved to optimality (Opt), the average run time in seconds (Time),
the average optimality gap (Gap), and the number of cuts generated (Cuts). For the particular case of the
MPS formulation, we specify the number of base cuts (i.e., the same type of cuts produced by the MCS
formulation) and the supervalid cuts.

significantly fewer than those by MCS. This underscores the effectiveness of supervalid inequalities
in reducing the solution space and enhancing the lower bound of the problem.

In summary, this series of experiments demonstrates that incorporating the proposed supervalid
inequalities into the MCS formulation yields a significant computational advantage. It is important
to note that the proposed supervalid inequalities can also be incorporated as part of other solution
approaches, like the dualize-and-combine method, as they can help strengthen the resulting formu-
lations when solving shortest path interdiction on graphs with other topologies. For the particular
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case of our computational experiments, given the unique nature of series-parallel graphs, the re-
sults highlight the potential benefits of our framework for solving some specific binary interdiction
games.
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