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We study distributionally robust chance constrained programs (DRCCPs) with individual chance constraints

and random right-hand sides. The DRCCPs treat the risk tolerances associated with the distributionally

robust chance constraints (DRCCs) as decision variables to trade off between the system cost and risk of

violations by penalizing the risk tolerances in the objective function. We consider two types of Wasserstein

ambiguity sets: one with finite support and one with a continuum of realizations. By exploring the hidden

discrete structures, we develop mixed integer programming reformulations under the two types of ambiguity

sets to determine the optimal risk tolerance for the chance constraint. Valid inequalities are derived to

strengthen the formulations. We test instances with transportation problems of diverse sizes and a demand

response management problem.
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1. Introduction

In many planning and operational problems, chance constraints are often used for ensuring

the quality of service (QoS) or system reliability. For example, chance constraints can be

used to restrict the risk of under-utilizing renewable energy in power systems (e.g., Ma

et al. 2019, Zhang and Dong 2022), to constrain the risk of loss in portfolio optimization

(e.g., Lejeune and Shen 2016), and to impose the probability of satisfying demand in

humanitarian relief networks (e.g., Elçi et al. 2018). In particular, with a predetermined

risk tolerance α∈ [0,1], a generic chance constraint is formulated in the following form.

Pf(T (ξ)x≥ q(ξ))≥ 1−α,
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where x∈Rd and the probability of violating the constraint T (ξ)x≤ q(ξ) is no more than α

with a random vector ξ ∈Rl following distribution distribution f . The technology matrix is

obtained using a function T :Rl 7→Rm×d and the right-hand side is a function q :Rl 7→Rm.

When an accurate estimate of the underlying distribution f is not accessible, distribution-

ally robust optimization (DRO) provides tools to accommodate incomplete distributional

information. Instead of assuming a known underlying distribution, DRO considers a pre-

scribed set D of probability distributions, termed as an ambiguity set. The distributionally

robust variant of chance constraint (1) is as follows.

inf
f∈D

Pf(T (ξ)x≥ q(ξ))≥ 1−α.

In the distributionally robust chance constraint (DRCC), α represents the worst-case prob-

ability of violating constraints T (ξ)x≥ q(ξ) with respect to the ambiguity set D.

In many system planning and operational problems, a higher value of the probability

1−α can lead to potentially better customer satisfaction and/or a lower probability of unfa-

vorable events. However, a too-large 1−α may lead to problem infeasibility and requires

additional resources and operational costs (e.g., Ma et al. 2019). To find a proper balance

between the cost and reliability objectives, alternatively, in this paper, we consider DRCC

problems with an adjustable risk, where the risk tolerance α is treated as a variable.

1.1. Problem Formulation

In particular, with a variable risk tolerance α, we consider

z0 := min
x∈X ,α

c⊤x+ g(α) (1a)

s.t. inf
f∈D

Pf(Tx≥ ξ)≥ 1−α (1b)

α∈ [0, α], (1c)
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where the technology matrix T ∈ Rm×d and a random right-hand side (RHS) vector ξ ∈

Rm. The risk tolerance α is upper bounded by a parameter α < 1. The parameter ᾱ is

predetermined and can be viewed as the most risk of unfavorable events that the decision

maker is willing to take. The objective trades off between the system cost c⊤x with c∈Rd

and the (penalty) cost of allowed violation risk g(α) : [0, ᾱ]→R+
0 . The risk cost function

g(α) is assumed monotonically increasing in α. In this paper, we can assume a linear

risk cost function g(α) = pα, which, however, is not required in the proposed models and

methods. In the following, we focus on individual chance constraints, i.e., m= 1 with the

random RHS ξ following a univariate distribution.

Another motivation for focusing on (individual) chance constraints with adjustable risks

is that they can provide approximation schemes for joint chance constraints. In general,

joint chance constraints are significantly harder than individual chance constraints. The

Bonferroni approximation replaces a joint chance constraint with m individual chance con-

straints and requires the sum of individual-chance-constraint risk tolerances to be upper

bounded by the risk tolerance of the joint chance constraint. Optimizing those risk toler-

ances of individual chance constraints potentially leads to better approximations (see, e.g.,

Prékopa 2003).

Particularly, in the risk-adjustable DRCC (1b), we consider a Wasserstein ambiguity

set D constructed as follows. Given a series of N historical data samples {ξn}Nn=1 drawn

from R, the empirical distribution is constructed as P0(ξ̃ = ξn) = 1/N, n = 1, . . . ,N . For

a positive radius ϵ > 0, the Wasserstein ambiguity set defines a ball around a reference

distribution (e.g., the empirical distribution) in the space of probability distributions as

follows:

D :=
{
f : Pf(ξ̃ ∈R) = 1, W (Pf ,P0)≤ ϵ

}
. (2)
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The Wasserstein distance is defined as

W (Pf ,P0) := inf
Q∼(P1,P2)

EQ

[
∥ξ̃1− ξ̃2∥p

]
, (3)

where ξ̃1 and ξ̃2 are random variables following distribution P1 and P2, Q∼ (P1,P2) denotes

a joint distribution of ξ̃1 and ξ̃2 with marginals P1 and P2, and ∥ · ∥p denotes the p-norm.

Throughout this paper, we focus on the risk-adjustable DRCC model (1) with two

uncertainty types:

A1 Finite distribution: The random vector ξ has a finite support. The mass probability

of each atom is unknown and allowed to vary.

A2 Continuous distribution: The random variable ξ has a continuum (infinite number) of

realizations.

In the rest of the paper, without loss of generality, we assume that the samples are in

a non-increasing order: ξ1 ≥ ξ2 ≥ · · · ≥ ξN . To exclude trivial special cases, throughout the

rest of the paper, we assume that ϵ > 0 and α∈ (0,1).

The remainder of the paper is organized as follows. Section 1.2 reviews the prior work

related to risk-adjustable chance constraints and DRCCs. Section 2 presents preliminary

results regarding individual DRCC with RHS uncertainties. Section 3 utilizes hidden dis-

crete structures to derive mixed integer programming reformulations along with valid

inequalities to strengthen the mixed integer programming reformulations under the two

distributional assumptions A1 and A2. Section 4 demonstrates the computational efficacy

of the proposed approaches for solving a transportation problem with diverse problem sizes

and a demand response management problem. Finally, we draw conclusions in Section 5.

1.2. Literature review

The idea of using variable risk tolerances can be dated back to Evers (1967), where they

trade off between the cost of charge materials and the probability of not meeting specifica-

tions in metal melting furnace operations. It later has wide applications including facility
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sizing (Rengarajan and Morton 2009), flexible ramping capacity (Wang et al. 2018), power

dispatch (Qiu et al. 2016, Ma et al. 2019), portfolio optimization (Lejeune and Shen 2016),

humanitarian relief network design (Elçi et al. 2018), and inventory control problem (Ren-

garajan et al. 2013).

Rengarajan and Morton (2009), Rengarajan et al. (2013) perform Pareto analyses to seek

an efficient frontier for a trade-off between the total investment cost and the probability

of disruptions that cause undesirable events. In particular, they require to solve a series of

chance-constrained programs for a large number of risk-level α choices. Unlike Rengarajan

and Morton (2009), Rengarajan et al. (2013), another stream of research treats the risk

tolerance α as a decision variable and develops nonparametric approaches to trade off the

cost and reliability. With only right-hand side uncertainty, Shen (2014) develops a mixed

integer linear programming (MILP) reformulation for individual chance constraints with

only RHS uncertainty (m = 1 in the chance constraint (1)) under discrete distributions.

Along the same line, Elçi et al. (2018) propose an alternative MILP reformulation for the

same setting using knapsack inequalities. In the context of joint chance constraints (m> 1),

Lejeune and Shen (2016) use Boolean modeling framework to develop exact reformulations

for the case with RHS uncertainty and inner approximations for the case with left-hand

side uncertainty. All these studies assume known underlying (discrete) probability distribu-

tions. In recent work, Zhang and Dong (2022) focus on the distributionally robust variants

of the risk-adjustable chance constraints under ambiguity sets with moment constraints

and Wasserstein metrics, respectively. They consider an individual DRCC with RHS uncer-

tainty. For the moment-based ambiguity set, they develop two second-order cone programs

(SOCPs) with α in different ranges; for the Wasserstein ambiguity set, they propose an

exact MILP reformulation. In particular, their results for the Wasserstein ambiguity set
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require decision variables to be all pure binary to facilitate the linearization of bilinear

terms. Without assuming pure binary decisions, in this paper, we will develop integer

approaches for solving the DRCCs with adjustable risks under Wasserstein metrics.

Main Contributions: The main contributions of the paper are three-fold. First, by

exploiting the (hidden) discrete structures of the individual DRCC with random RHS,

we provide tractable mixed-integer reformulations for risk-adjustable DRCCs using the

Wasserstein ambiguity set. Specifically, a MILP reformulation is proposed under the

finite distribution assumption, and a mixed-integer second-order cone programming (MIS-

OCP) reformulation is derived under the continuous distribution assumption. Second, we

strengthen the proposed mixed-integer reformulations by deriving valid inequalities by

exploring the mixing set structure of the MILP reformulation and submodularity in the

MISOCP reformulation. Third, extensive numerical studies are conducted to demonstrate

the computational efficacy of the proposed solution approaches.

2. Preliminary Results for DRCC with a Known Risk Tolerance α

Proposition 1 (Adapted from Theorem 2 in Chen et al. (2022)). For a given

risk tolerance α, the DRCC (1b) is equivalent to

1

N

αN∑
n=1

(Tx− ξn)+ ≥ ϵ, (4)

where (a)+ = max{a,0} and the summation on the left-hand side is a partial sum for

fractional αN :
∑αN

n=1 kn =
∑⌊αN⌋

n=1 kn+(αN −⌊αN⌋)k⌊αN⌋+1.

The equivalent formulation (4) has a water-filling interpretation as illustrated in Figure

1. The height of patch n is given by ξn and the width is given by 1/N . The region with

a width of α is flooded to a level tα which uses a total amount of water equal to ϵ. Then
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the reformulation of DR chance constraint (4) is equivalent to a linear inequality Tx≥ tα.

The water level tα represents the worst-case value-at-risk (VaR):

tα := inf
v

{
v : inf

f∈D
P(v≥ ξ)≥ 1−α

}
=min

v

{
v :

1

N

αN∑
n=1

(v− ξn)+ ≥ ϵ

}
. (5)

𝜉1

𝜉2

𝜉3

𝜉4

𝜉5 𝜉6

𝜉7

𝑡𝛼

𝛼

= 𝝐

Figure 1 Illustration of the water-filling interpretation for the partial-sum inequality (4).

Let j∗ be the largest index such that when the amount of water that fills the region of

width α to the level ξj
∗
is no less than ϵ. That is,

j∗ :=max

{
j ∈ {1, . . . ,N} : ξj ≥

Nϵ+
∑αN

n=j+1 ξ
n

Nα− j

}
. (6)

For example, in Figure 1, if the water is filled up to the level as ξ1 or ξ2, the amount of

water exceeds ϵ. In this example, j∗ = 2. We note that such index j∗ may not always exist,

i.e., the problem (6) can be infeasible. This happens if the amount of water is strictly less

than ϵ even when the water level reaches ξ1. In this case, one can keep increasing the water

level until the amount of water equals ϵ and let the worst-case VaR tα equal the water

level. Otherwise, the worst-case VaR can be obtained using the propositions below.

Proposition 2 (Adapted from Theorem 2 in Ji and Lejeune (2021)). When

Assumption A1 holds where the random vector ξ has a finite support with unknown mass

probability, the worst-case VaR tdα = ξj
∗
.
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Proposition 3 (Adapted from Theorem 8 in Ji and Lejeune (2021)). When

Assumption A2 holds where the random vector ξ has a continuum of realizations, the

worst-case VaR

tcα =
Nϵ+

∑αN
n=j∗+1 ξ

n

Nα− j∗
.

It is easy to verify that tdα = ξj
∗ ≥ tcα given the definition of the critical index j∗ in (6).

3. Risk-Adjustable DRCC

In this section, we develop tractable mixed-integer reformulations for the risk-adjustable

DRCC (1) under the two assumptions of finite distribution A1 and continuous distribution

A2. First, in Section 3.1, we provide the relation of the optimal values under the two

distribution assumptions. In Section 3.2, we derive solution dominance under different

allowed risk tolerance which later assists to develop tractable reformulations. Then, we

develop tractable mixed-integer reformulations and valid inequalities under the finite and

continuous distribution assumptions in Sections 3.3 and 3.4, respectively.

3.1. Relation of the Optimal Values under the Two Distribution Assumptions

Consider a function t(α) which maps the risk tolerance α to its corresponding worst-case

VaR. If the function is known, the DRCC (1b) is equivalent to a linear constraint of x.

Thus, the risk-adjustable DRCC problem (1) is rewritten as follows.

z(t(α)) := min
x∈X ,α∈[0,ᾱ]

{
c⊤x+ g(α) : Tx≥ t(α)

}
, (7)

where the optimal value depends on the choice of function t(α). Under Assumption A1 of

the finite distribution, let td(α) be the worst-case VaR function and the optimal value of (7)

be zd := z(td(α)). Similarly, under Assumption A2 of the continuum realizations, let tc(α)

be the worst-case VaR function and the optimal value of (7) be zc := z(tc(α)). The next
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proposition presents the relation between the optimal values with finite and continuous

distributions.

Proposition 4. The risk-adjustable DRCC problem (1) under the continuous distribu-

tion assumption A2 yields an optimal value no more than that under the finite distribution

assumption A1, i.e., zd ≥ zc.

The proposition is an immediate result from the fact that, for a given α, tdα ≥ tcα.

3.2. Dominance of Risk Tolerance

The chance constrained programming literature (see, e.g., Prékopa 1990, Dentcheva et al.

2000, Ruszczyński 2002, Prékopa 2003) defines the concept of non-dominated points, or

the so-called p-efficient points, where p refers to 1−α in this paper.

Definition 1 (p-efficient point). (Prékopa 2003, Dentcheva et al. 2000) Let p ∈

(0,1). A point v ∈Rm is a p-efficient point of the probability distribution f , Pf(v)≥ p and

there is no w≤ v, w ̸= v such that Pf(w)≥ p.

The concept can be extended to the DRO variant in the following definition.

Definition 2 (Distributionally Robust p-efficient point). Let p ∈ (0,1). A

point v ∈ Rm is a distributionally robust p-efficient point of the ambiguity set D,

inff∈D Pf(v)≥ p and there is no w≤ v, w ̸= v such that inff∈D Pf(w)≥ p.

In the case of individual chance constraint with an uncertain RHS, under the empirical

distribution of {ξn}Nn=1, the (1−α)-efficient point is the (1−α)-quantile (or (1−α)-VaR) of

the empirical distribution. The distributionally robust (1−α)-efficient point coincides with

the worst-case VaR tα (obtained by assuming either the finite distribution or the continuous

distribution), which is greater than the (1−α)-quantile of the reference distribution in the

Wasserstein ball D. Similar to the (1−α)-quantile, the worst-case VaR is nonincreasing in

the risk tolerance, which is formally stated in the following proposition.
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Proposition 5. Given 0≤ α1 <α2 ≤ ᾱ, let tα1 and tα2 be the worst-case VaRs associ-

ated with α1 and α2, respectively. Then, tα1 ≥ tα2.

The proof can be easily derived based on the water-filling interpretation in Section 2 and

is omitted for brevity.

3.3. Finite Distribution

According to Propositions 2 and 3, the worst-case VaR tdα (if exists) under the finite

distribution assumption is the smallest ξj which is no less than the worst-case VaR tcα

under the continuous distribution assumption. That is, tdα =minj∈{1,...,N} {ξj : ξj ≥ tcα}. We

thus have the following result, which has already been anticipated in Proposition 2.

Corollary 1. Under the finite distribution assumption A1 , for any risk tolerance α∈

(0,1) such that ξj ≥ tcα > ξj+1 for some j ∈ {1, . . . ,N}, the DRCC inff∈D Pf(Tx≥ ξ)≥ 1−α

is equivalent to a linear constraint:

Tx≥ ξj.

Given any fixed α1, α2 ∈ (0,1) such that ξj ≥ tcα1
≥ tcα2

> ξj+1, the DRCCs of the two

risk tolerances yield the same linear reformulation Tx ≥ ξj under the finite distribution

assumption. Thus, in the risk-adjustable DRCC problem (1), it suffices to strengthen α∈

(0, ᾱ] by restricting it to the risk tolerances α such that the corresponding worst-case VaR

tdα ∈ (0,1) belongs to a discrete set:

tdα ∈ {ξ1, . . . , ξN}.

For each sample ξn, n= 1, . . . ,N in the discrete set, a risk tolerance αn, which achieves

the worst-case VaR at tdαn
= ξn, can be obtained using a bisection search method as the

flooded area is non-decreasing in the risk tolerance (see the water-filling interpretation

in Section 1). We note that when ξn is too small, the corresponding risk tolerance may
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not exist. In this section, we assume that the corresponding risk tolerances exist for the

first N ′ ≤ N largest samples {ξn}N
′

n=1 and denote their corresponding risk tolerances by

αn, n= 1, . . . ,N ′.

Theorem 1. Under the finite distribution assumption, the risk-adjustable DRCC prob-

lem (1) is equivalent to the following MILP formulation.

zd = min
x∈X ,y

c⊤x+

N ′−1∑
n=1

∆nyn+∆N ′ (8a)

s.t. Tx≥ ξn−Mn(1− yn), n= 1, . . . ,N ′ − 1 (8b)

N ′−1∑
n=1

(αn−αn+1)yn+αN ′ ∈ (0, ᾱ] (8c)

yn ∈ {0,1}, n= 1, . . . ,N ′− 1, (8d)

where ∆n := g(αn) − g(αn+1) ≤ 0, n = 1, . . . ,N ′ − 1, ∆N ′ := g(αN ′) and Mn is a big-M

constant.

Proof of Theorem 1: To see the equivalence, we need to show (1) zd ≤ z0 and (2) zd ≥ z0.

Recall that z0 is the optimal value of the risk-adjustable DRCC problem (1).

(1) zd ≤ z0: Given an optimal solution (x0, α0) to the risk-adjustable DRCC problem (1),

we will construct a feasible solution to MILP (8). Let ȳn = 1 if Tx0 ≥ ξn and ȳn = 0

otherwise, for n= 1, . . . ,N ′. Then the solution (x0, ȳn, n= 1, . . . ,N ′) satisfy constraints

(8b) and (8d).

Let j∗ be the smallest index such that Tx0 ≥ ξj
∗
. We will show that α0 = αj∗. When

j∗ = 1, tdα0
= ξ1 and α0 = α1. When j∗ ≥ 2, we prove by contradiction by assuming

two cases (i) tdα0
> ξj

∗
and (ii) tdα0

< ξj
∗
. In the first case, tdα0

≤ ξj
∗−1. According to

Proposition 5, α0 > αj∗−1. Then, (x0, αj∗−1) is feasible to the risk-adjustable DRCC

(1) with a smaller objective value than z0 as the function g(α) is increasing in α. In

the second case, α0 ≥ αj∗ due to Proposition 5 and (x0, αj∗) is a feasible solution with
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a smaller objective than z0 in the risk-adjustable DRCC (1). Both cases result in a

contradiction to the fact that z0 is the optimal value of the risk-adjustable DRCC (1).

Since α0 = αj∗ and α0 ∈ (0, ᾱ], αj∗ =
∑N ′

n=2(αn−1−αn)ȳn−1+ ȳN ′αN ′ ∈ (0, ᾱ] satisfies

constraint (8c). Solution (x0, ȳ) is feasible to (8) with c⊤x0+g(αj∗) = z0. Thus, z
d ≤ z0.

(2) zd ≥ z0: Given an optimal solution (x̂, ŷ) to problem (8), we construct a feasible solution

to the risk-adjustable DRCC problem (1). Denote j the smallest index such that

T x̂≥ ξj, or, equivalently, the smallest index such that ŷj = 1. Let α̂= αj. It is easy to

see that (x̂, α̂) is feasible to the risk-adjustable DRCC problem (1) and its objective

value is c⊤x̂+ g(αj) = zd. So zd ≥ z0.

Combining the two statements above completes the proof.

Remark 1. The big-M constant Mn is no less than ξn− ξN
′
.

Recall that the non-increasing order of samples: ξ1 ≥ ξ2 ≥ · · · ≥ ξN . Thus, given an optimal

solution x̄ to MILP (8), there exists a threshold index j∗ such that T x̄≥ ξi, for any i≥ j∗,

and T x̄ < ξi, for any i < j∗. As the objective coefficient ∆n, n= 1, . . . ,N ′ − 1 in (8a) are

non-positive, in the optimal solution (x̄, ȳ), we have ȳn = 1, for i ≥ j∗, and ȳn = 0 for

i > j∗. By exploiting this solution structure, the next proposition presents how the MILP

formulation (8) can be strengthened.

Proposition 6.

i. The following inequalities are valid for the MILP (8):

yn+1 ≥ yn, n= 1, . . . ,N ′− 1. (9)

ii. The strengthened star inequality (Luedtke et al. 2010) is valid for the MILP (8):

Tx≥ ξN
′
+

N ′−1∑
n=1

(ξn− ξn+1)yn. (10)
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Proof of Proposition 6: The valid inequalities (9) follow from the discussion above. To

see the second statement of the extended star inequalities, we introduce binary variable

zn = 1−yn, n= 1, . . . ,N ′−1.Without loss of generality, we assume that ξn ≥ 0. Constraints

(8b) and (8c) lead us to consider a mixing set (Atamtürk et al. 2000, Günlük and Pochet

2001, Luedtke et al. 2010):

P =

{
(t, z)∈R+×{0,1}N ′−1 :

N ′−1∑
n=1

(αn−αn+1)yn+αN ′ ≤ ᾱ, t+ znξ
n ≥ ξn, n= 1, . . . ,N ′

}
(11)

where t = Tx. According to Theorem 2 in Luedtke et al. (2010), constraint (10) is face-

defining for conv(P). The proof is complete.

Remark 2. When the distribution is known, a similar formulation for the stochastic

chance-constrained problem can also be derived based on the Sample Average Approxima-

tion (Luedtke and Ahmed 2008). In this case, let αn be the allowed risk tolerance when the

VaR equals ξn and αn = n/N . The detailed MILP formulation for the stochastic chance-

constrained formulation can be found in Appendix A. We note that the MILP formulation

in Appendix A can be viewed as a hybrid of those in Shen (2014), Elçi et al. (2018).

3.4. Continuous Distribution

Unlike the case with finite distributions, under the continuous distribution assumption A2,

the worst-case VaR cannot be restricted to a discrete set.

For a given risk tolerance α, constraint (4) is equivalent to

(αN − j)(Tx− ξk+1)−
k∑

i=j+1

(ξi − ξk+1)≥Nϵ (12)

where k= ⌊αN⌋ and j is the smallest index such that Tx−ξj+1 ≥ 0. For instance, in Figure

1, j = 2 and k= 5. When the risk tolerance α is not known, we introduce a binary variable

ojk ∈ {0,1} to indicate if j and k are the two critical indices. Denote ξ0 be an upper bound

of ξ. We consider a mild assumption:
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A3 For an optimal solution x̂, T x̂≥ ξN . That is, the optimal solution is restricted by the

smallest realization of ξ.

Theorem 2. Under the continuous distribution assumption A2 and Assumption A3, the

risk-adjustable DRCC problem is equivalent to the following mixed 0-1 conic formulation.

zc = min
x∈X ,o,α,u,w

c⊤x+ g(α) (13a)

s.t. uw≥
N−1∑
j=0

N−1∑
k=j

ojk

k∑
i=j+1

(ξi − ξk+1)+Nϵ (13b)

u≤ αN −
N−1∑
j=0

N−1∑
k=j

jojk (13c)

w≤ Tx−
N−1∑
j=0

N−1∑
k=j

ξk+1ojk (13d)

N−1∑
j=0

N−1∑
k=j

ξjojk ≥ Tx≥
N−1∑
j=0

N−1∑
k=j

ξj+1ojk (13e)

N−1∑
j=0

N−1∑
k=j

(k+1)ojk ≥ αN ≥
N−1∑
j=0

N−1∑
k=j

kojk (13f)

N−1∑
j=0

N−1∑
k=j

ojk = 1 (13g)

α∈ (0, ᾱ] (13h)

w≥ 0, u≥ 0 (13i)

ojk ∈ {0,1}, 0≤ j ≤ k≤N − 1. (13j)

Proof of Theorem 2: To establish the equivalence, we first show that zc ≤ z0 by con-

structing a feasible solution to problem (13) given an optimal solution to the risk-adjustable

DRCC problem (1). Let (x0, α0) be an optimal solution to (1). Denote k∗ = ⌊α0N⌋ and j∗ as

the smallest index such that Tx0− ξj
∗+1 ≥ 0. Let ōj∗k∗ = 1, ōjk = 0, j ̸= j∗, k ̸= k∗, 0≤ j ≤

k ≤N − 1, ū= α0N +1− j∗, and w̄= Tx0 − ξk
∗+1. It is easy to verify that (x0, ō, α0, ū, w̄)

is a feasible solution and its objective value equals z0. Thus, z
c ≤ z0.
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To see the opposite direction zc ≥ z0, consider an optimal solution (x̂, ô, α̂, û, ŵ) to prob-

lem (13). Since ô is feasible, there exists ôĵk̂ such that ôĵk̂ = 1 and ôjk = 0, j ̸= ĵ, k ̸= k̂.

Combining constraints (13b)–(13d), we obtain

(α̂N +1− ĵ)(T x̂− ξk̂+1)−
k̂∑

i=ĵ+1

(ξi − ξk̂+1)≥Nϵ. (14)

Constraints (13e) and (13f) are equivalent to

ξ ĵ ≥ T x̂≥ ξ ĵ+1 and k̂+1≥ αN ≥ k̂, (15)

respectively. Constraints (14) and (15) imply that (x̂, α̂) satisfies the DR chance constraint

(1b). Thus, (x̂, α̂) is feasible to the risk-adjustable DRCC problem (1) and zc ≥ z0 as

expected.

Remark 3. The mixed 0-1 conic reformulation (13) consists of (N 2 − N)/2 (addi-

tional) binary variables and two continuous variables. When the decision x ∈ X ⊂ {0,1}d

is restricted to binary variables, under the continuous distribution assumption, Zhang and

Dong (2022) propose a MILP formulation (details are in Appendix B) by linearizing bilinear

terms in the quadratic constraint (12) using McCormick inequalities (see, e.g., McCormick

1976). In addition to (N 2−N)/2 binary variables as those in the conic reformulatio (13),

the linearization introduces (N 2 −N)(2d+1) continuous variables, where d is the dimen-

sion of x. The MILP reformulation usually does not scale well when the problem size grows,

partly due to the weaker relaxations caused by the big-M type constraints, and also due to

a larger number of added variables and constraints. We will later show the computational

comparison in Section 4.2.2.

In the mixed 0-1 conic reformulation (13), there is a rotated conic quadratic mixed 0-1

constraint (13b). Although the resulting mixed-integer conic reformulation can be directly

solved by optimization solvers, mixed 0-1 conic programs are often time-consuming to solve,
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mainly due to the binary restrictions. In the following, we will develop valid inequalities

for the mixed 0-1 conic reformulation (13) to help accelerate the branch-and-cut algorithm

for solving (13). Specifically, we explore the submodularity structure of constraint (13b) as

follows.

We first note that constraint (13b) can be rewritten in the following form

σ+
N−1∑
j=0

N−1∑
k=j

djkojk ≤ uw, (16)

where σ = Nϵ > 0 and djk =
∑k

i=j(ξ
i − ξk+1) ≥ 0, j = 0, . . . ,N − 1, k = j, . . . ,N − 1. By

introducing auxiliary variable τ ≥ 0, constraint (16) is equivalent to√√√√σ+
N−1∑
j=0

N−1∑
k=j

djkojk ≤ τ (17a)√
τ 2+(w−u)2 ≤w+u. (17b)

The two inequalities (17a)–(17b) above are two second-order conic (SOC) constraints. In

particular, the convex hull of the first constraint (17a) can be fully described utilizing

extended polymatroid inequalities as the left-hand side of constraint (17a) is a submodular

function (see, e.g., Atamtürk and Narayanan 2008, Atamtürk and Gómez 2020).

Definition 3 (Submodular Function). Define the collection of set [(N 2 −N)/2]’s

subsets C := {S : ∀S ⊂ [(N 2 −N)/2]}. Given a set function g: C → R, g is submodular if

and only if

g (S ∪{j})− g(S)≥ g (R∪{j})− g (R) ,

for all subsets S ⊂R⊂C and all elements j ∈ C\R.

We use g(S) and g(o) interchangeably, where o∈ {0,1}(N2−N)/2 denotes the indicating vec-

tor of S ⊂C, i.e., os = 1 if s∈ S and os = 0 otherwise. The left-hand side of constraint (17a),

h(o) :=
√

σ+
∑N−1

j=0

∑N−1
k=j djkojk is a submodular function, where o is a one dimensional

vector consisting of ojk, 0≤ j ≤ k≤N − 1.
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Definition 4 (Extended Polymatroid). For a submodular function g(S), the poly-

hedron

EPg =
{
π ∈R(N2−N)/2 : π(S)≤ g(S), ∀S ⊂C

}
is called an extended polymatroid associated with g, where π(S) =

∑
i∈S πi.

For submodular function h, linear inequality

π⊤o≤ z (18)

is valid for the convex hull of the epigraph of h, i.e., conv{(o, z)∈ {0,1}(N2−N)/2 ×R : z ≥

h(o)}, if and only if π is in the extended polymatroid, i.e., π ∈ EPh (see Atamtürk and

Narayanan 2008). The inequality (18) is called extended polymatroid inequality.

Although it suffices to only impose the extended polymatroid inequality at the extreme

points of the extended polymatroid EPh, there are an exponential number of them. Instead

of adding all of them to the formulation (13), one can add them as needed in a branch-and-

cut algorithm. Moreover, the separation of the valid inequality (18) can be done efficiently

using a O(n logn) time greedy algorithm as follows. Given a solution (ô, ẑ)∈ [0,1](N
2−N)/2×

R+, one can obtain a permutation {(1), . . . , (N 2)} such that the elements of o are sorted in a

non-increasing order, o(1) ≥ . . .≥ o(N2−N)/2. Let S(i) := {(1), . . . , (i)}, i= 1, . . . , (N 2−N)/2.

Calculate π̂(1) = h(S(1)) and π̂(i) = h(S(i))−h(S(i−1)), i= 2, . . . , (N 2−N)/2. If π̂⊤o≤ ẑ, the

current solution (ô, ẑ) is optimal; otherwise, generate a valid inequality π̂⊤o≤ z.

4. Computational Study

In the computational study, we demonstrate the computational effectiveness of the pro-

posed mixed integer programming formulations (with both discrete and continuous distri-

butions) on instances of a DRCC counterpart of the transportation problem with random

demand (Luedtke et al. 2010, Elçi et al. 2018). For continuous distributions, we also com-

pute instances of demand response management using building load where the decisions
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are pure binary to compare the alternative MILP (which can be found in Appendix B)

proposed in Zhang and Dong (2022) and our proposed mixed 0-1 conic reformulation. In

Section 4.1, we describe the instance setup of the transportation problem and the demand

response management problem. There are mainly two parts of results: (1) the computa-

tional performance (with CPU time, optimality gap, etc) of the different risk-adjustable

DRCC models in Section 4.2, and (2) the solution details given by the models in Section

4.3. In particular, Section 4.2 demonstrates the computational efficacy of the proposed

mixed integer formulations and valid inequalities. Section 4.3 shows that the risk-adjustable

DRCC following the finite distribution assumption A1 provides the highest objective val-

ues compared to the risk-adjustable DRCC under the continuous distribution assumption

A2 and the stochastic chance-constrained counterpart (which is presented in Appendix A).

4.1. Computational Setup

Transportation problem: There are I suppliers andD customers. The suppliers have limited

capacity Mi, i= 1, . . . , I. There occurs a transportation cost cij for shipping one unit from

supplier i to customer j. The customer demands ξ̃j, j = 1, . . . ,D are random. Let fj denote

the distribution of ξ̃j and Dj be the Wasserstein ambiguity set regarding the distribution

fj. With a penalty cost p of risk tolerance αj for every customer j, the risk-adjustable

DRCC transportation problem is formulated as follows.

min
x∈X ,α

{
I∑

i=1

D∑
j=1

cijxij + p
D∑
j=1

αj : inf
fj∈Dj

Pfj(
I∑

i=1

xij ≥ ξ̃j)≥ 1−αj, 0≤ αj ≤ ᾱ, j = 1, . . . ,D

}
,

(19)

where X := {x ∈RI×D
+ :

∑D
j=1 xij ≤Mi, i= 1, . . . , I}. Following Elçi et al. (2018), the risk

threshold’s upper bound ᾱ is set to 0.3 and p is set to 106. To break symmetry, a random

perturbation is added to the penalty cost p following a uniform distribution on the interval

[0,100] for every αj, j = 1, . . . ,D. The radius of the Wasserstein ball Dj is 0.05. For other
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parameters (i.e., cij,Mi and samples of ξ̃j), we use the data sets with I = 40 suppliers in

Luedtke et al. (2010) with equal probabilities for all samples.

Building load control problem: There is an aggregate HVAC (i.e., heating, ventilation, and

air conditioning) load of n buildings to absorb random local solar photovoltaic (PV) gen-

eration P̃PV
t over T time periods throughout the day. Let Dt be the Wasserstein ambiguity

regarding the distribution f of PV generation P̃PV
t during period t. For each time period

t, we solve the following risk-adjustable DRCC formulation for deciding the room temper-

ature xt,ℓ and HVAC ON/OFF decision ut,ℓ of building ℓ.

min
(x,u)∈Xt

{
csys

n∑
ℓ=1

|xt,ℓ −xref|+ cswitch

n∑
ℓ=1

ut,ℓ + pαt : inf
f∈Dt

Pf

(
n∑

ℓ=1

Pℓut,ℓ ≥ P̃PV
t

)
≥ 1−αt, 0≤ αt ≤ ᾱ

}
,

(20)

where Xt = {(xt, ut)∈Rn ×{0,1}n : xt,ℓ =Aℓxt−1,ℓ +Bℓut,ℓ +Gℓvℓ, xmin ≤ xt,ℓ ≤ xmax, ℓ= 1, . . . , n}.

The objective minimizes the cost of (1) the user’s discomfort (indicated by the room

temperature deviation from the set-point xref), (2) switching cycles, and (3) risk violation

of PV tracking. The DRCC ensures that PV generation is absorbed by the HCAC fleet

with probability 1 − αt. The indoor temperature xt and binary ON/OFF decision ut

need to satisfy the constraints of temperature comfort band and thermal dynamics in

the feasible set Xt. The parameters Aℓ,Bℓ,Gℓ are obtained from the building’s thermal

resistances, thermal capacity, and cooling capacity. Parameter vℓ is a given system

disturbance. We use all the parameters and data following Zhang and Dong (2022). In

particular, the radius of the Wasserstein ball Dt is 0.02. To solve the ON/OFF decisions

for a planning horizon of T = 53 periods throughout the day, one needs to sequentially

solve 53 problems in the form of (20), one for each period.

The computations are conducted on a Windows 10 Pro machine with Intel(R) Core(TM)

i7-8700 CPU3.20 GHz and 16 GB memory. All models and algorithms are implemented
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in Python 3.7.6 using Gurobi 10.0.1. The Gurobi default settings are used for optimizing

all integer formulations except for the mixed integer conic formulation (13), for which the

Gurobi parameter MIPFocus is set to 3. When implementing the branch-and-cut algorithm,

we add the violated extended polymatroid inequalities using Gurobi callback class by

Model.cbLazy() for integer solutions. For all the nodes in the branch-and-bound tree, we

generate violated cuts at each node as long as any exists. The optimality gap tolerance is

default as 10−4. The time limit is set to 1800 seconds for computing the transportation

problem instances and 100 seconds for solving the building load control problem in one

period.

4.2. CPU and Optimality Gaps

Under the finite distribution assumption A1, we solve the MILP (8) with and without valid

inequalities in Proposition 6. Under the continuous distribution assumption A2, the mixed

0-1 conic formulation (13) can be rewritten as a mixed 0-1 second-order cone programming

(SOCP) formulation if constraint (16) is replaced by constraints (17). We solve the mixed

0-1 SOCP reformulation with and without valid the extended polymatroid inequalities.

With only binary decisions, we also compare the mixed 0-1 SOCP reformulation with the

alternative MILP reformulation in Appendix B. Our valid inequalities significantly reduce

the solution time of directly solving the mixed integer models in Gurobi. The details are

presented as follows.

4.2.1. Finite distributions We first optimize transportation problem instances with

the finite distribution model using the MILP reformulation with and without strengthen-

ing techniques proposed in Proposition 6. Table 1 presents the CPU time (in seconds),

“Opt. Gap” as the optimality gap, and ‘‘Node” as the total number of branching

nodes. The CPU time includes the preprocessing time tBS for calculating the violation
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risk αn corresponding to every sample ξn, n= 1, . . . ,N using the bisection search method,

and the time tMILP for solving the MILP reformulation (8) using Gurobi. In Table 1,

we solve the transportation problem with J ∈ {100,200} customer demands with N =

{50,100,200,1000,2000,3000} samples. For each (J,N) setting, five instances are solved.

Table 1 presents the average CPU times, the average optimality gaps, and the average

number of branching nodes. Details of each instance can be found in Appendix C.

In Table 1, with valid inequalities proposed in Proposition 6, all the instances are solved

optimally at the root node within the time limit (thus optimality gap is zero and omitted).

Whereas, if being solved without the valid inequalities, the instances of more samples (N ≥

1000) cannot be solved within the 18000-second time limit and ends with an optimality

gap up to 5.47%. For larger-sized problems, solving the MILP (8) with valid inequalities is

much faster than solving the MILP (8) directly due to the strength of the strengthened star

inequality (10). With the valid inequalities, most of the CPU time spends on preprocessing

(tBS).

Table 1 Comparison of CPU time (in seconds) and optimality gaps of finite distributions

Demand N

MILP + Valid Ineq. MILP

tBS tMILP Time Node tBS tMILP Time Opt. Gap Node

100 50 0.00 0.04 0.04 1 0.01 0.31 0.31 N/A 1

100 100 0.02 0.07 0.09 1 0.02 1.02 1.04 N/A 158

100 200 0.07 0.09 0.15 1 0.06 6.45 6.52 N/A 2018

100 1000 1.26 0.33 1.60 1 1.21 LIMIT LIMIT 0.09% 33454

100 2000 4.67 0.72 5.39 1 4.64 LIMIT LIMIT 0.65% 9022

200 2000 9.18 1.60 10.79 1 9.39 LIMIT LIMIT 2.58% 6678

200 3000 20.37 2.38 22.75 1 20.59 LIMIT LIMIT 5.47% 6083

4.2.2. Continuous distributions We first focus on the computational performance of

solving the building load control problem with the binary decision. We use the pro-

posed mixed 0-1 SOCP formulation (“MISOCP”) and the alternative MILP formulation
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(“MILP-Binary”) from Zhang and Dong (2022). In particular, the MISOCP is obtained

by replacing the rotated conic constraint (13b) with the SOC constraints (17a)-(17b). The

left-hand side function h(o) of (17a) is submodular and thus the extended polymatroid

inequalities (18) is added in a branch-and-cut (“B&C”) algorithm when being violated.

Table 2 reports, for each instance, the total CPU time of solving the building load control

problem (20) for all 53 periods. If for any period, the problem cannot be solved within

the time limit, we report “#LIMIT” as the number of periods which cannot be solved,

and “Avg. Gap” as their average optimality gap. Owing to its stronger relaxations and

fewer variables, the MISOCP (B&C) quickly solves all the instances, with an average of

only 1.2 seconds per instance. The optimality gaps are all zeros and thus not reported in

the table. In contrast, MILP-Binary fails to be solved within the 100-second time limit for

each period, with an average of 17 periods not solved to optimal.

Table 2 Comparison of CPU time (in seconds) and optimality gaps of continuous distributions with binary

variables

MILP-Binary MISOCP (B&C)

Instance Time #LIMIT Avg. Node Avg. Gap Time #LIMIT Avg. Node

1 2359.28 21 314880 0.34% 1.26 0 1

2 2124.01 18 282644 0.40% 1.32 0 11

3 2165.93 19 205147 0.59% 1.30 0 1

4 2293.98 19 286217 0.62% 1.50 0 14

5 1827.85 14 202231 0.55% 1.22 0 1

6 2206.03 18 246280 0.63% 1.20 0 1

7 2190.73 20 262080 0.62% 1.23 0 18

8 1893.50 15 223771 0.33% 1.00 0 1

9 1720.97 13 211767 0.63% 1.04 0 1

10 1899.43 16 220385 0.47% 1.41 0 60

avg. 2068.17 17 245540 0.52% 1.25 0 11
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Next, we compare the branch-and-cut algorithm using the extended polymatroid inequal-

ities (in column “B&C”) with directly solving the MISOCP (13) (in column “No Cuts”)

on the transportation problem instances. If any instance cannot be solved within the

1800-second time limit, we report the average optimality gap and the number of unsolved

instances in parentheses. In Table 3, the branch-and-cut algorithm solves the MISOCP

faster than directly solving it in Gurobi.

Table 3 Comparison of CPU time (in seconds) and optimality gaps of continuous distributions using MISOCP

Demand N Instance

No Cuts B&C

Time Opt. Gap Node Time Opt. Gap Node

100 50 a 92.33 N/A 9186 7.75 N/A 1

100 50 b 66.09 N/A 16896 10.17 N/A 6

100 50 c 80.81 N/A 11245 10.49 N/A 335

100 50 d 38.65 N/A 6526 15.13 N/A 995

100 50 e 67.36 N/A 6565 8.31 N/A 1

avg. 69.05 N/A 10084 10.37 N/A 268

100 100 a 64.15 N/A 1 40.33 N/A 1

100 100 b 86.54 N/A 46 39.79 N/A 1

100 100 c 367.28 N/A 8467 29.57 N/A 1

100 100 d 46.37 N/A 1 17.59 N/A 1

100 100 e 47.24 N/A 1 29.49 N/A 1

avg. 122.32 N/A 1703 31.36 N/A 1

100 200 a 1455.53 N/A 1743 442.66 N/A 1246

100 200 b LIMIT 0.12% 7211 434.15 N/A 3

100 200 c LIMIT 0.32% 10108 LIMIT 0.18% 116520

100 200 d LIMIT 0.08% 664 366.55 N/A 662

100 200 e LIMIT 0.34% 28139 619.82 N/A 878

avg. 1731.98 0.21% (4) 9573 732.73 0.18% (1) 23862
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4.3. Solution Details of Models with Finite and Continuous Distributions

In this section, we focus on the solution details of the transportation problem, which

are obtained by solving the risk-adjustable DRCC models (assuming finite distributions

(“Finite”) and continuous distributions (“Continuous”)), as well as the risk-adjustable

stochastic chance-constrained model (“Stochastic”). The detailed formulation of the

stochastic chance-constrained model is available in Appendix A. In Section 4.2, we observe

that the branch-and-cut algorithm does not scale as efficiently as the MILP (8) assuming

finite distributions, particularly when the sample size increases. In this section, the solu-

tion details suggest that the MISOCP model assuming continuous distributions can be

effectively approximated by the MILP model (8) for larger sample sizes. The details are

presented below.

4.3.1. Optimal objective Values We compare the optimal objective values obtained

from solving the three models: Finite, Continuous, and Stochastic. In Table 4, the relative

difference (in columns “Diff.”) is calculated as the relative gap with the Finite model.

The positive relative differences of the Continuous models are as indicated by Proposition

4. All the relative differences for both Continuous and Stochastic models are positive,

which indicates the conservatism of the Finite model compared to the other two models.

Furthermore, the differences between the Continuous and the Finite models decrease as the

sample size grows larger. For instance, with a sample size N = 50, the average difference

between the Finite and Continuous models is 7.5%, which reduces to 1.7% when N = 200.

This observation implies that solving the Finite model as a conservative approximation

of the Continuous model becomes more suitable when the sample size is large and the

MISOCP for the Continuous model is time-consuming to solve.
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Table 4 Comparison of objective costs

Demand N Instance

Finite Continuous Stochastic

Obj. Obj. Diff. Obj. Diff.

100 50 a 37891812 34882415 7.9% 35877509 5.3%

100 50 b 39600119 36583112 7.6% 37580027 5.1%

100 50 c 40591537 37591717 7.4% 38591438 4.9%

100 50 d 39992224 36977377 7.5% 37972322 5.1%

100 50 e 41872481 38851630 7.2% 39851708 4.8%

avg. 39989635 36977250 7.5% 37974601 5.0%

100 100 a 36300456 34797106 4.1% 35236038 2.9%

100 100 b 38370855 36931801 3.8% 37356067 2.6%

100 100 c 39353292 37849666 3.8% 38297139 2.7%

100 100 d 38786542 37271588 3.9% 37715295 2.8%

100 100 e 40741978 39244431 3.7% 39710167 2.5%

avg. 38710625 37218919 3.9% 37662941 2.7%

100 200 a 35767904 35150000 1.7% 35202312 1.6%

100 200 b 37895369 37270088 1.7% 37318954 1.5%

100 200 c 38919823 38266132 1.7% 38322395 1.5%

100 200 d 38302041 37643158 1.7% 37668983 1.7%

100 200 e 40113429 39463734 1.6% 39516533 1.5%

avg. 38199713 37558622 1.7% 37605836 1.6%

4.3.2. Allowed risk tolerance In this section, we look into the risk tolerance allowed

by solving the three models. Recall that the transportation problem imposes a chance

constraint for each demand location and with D = 100 customers, there are 100 allowed

risk tolerances αj, j = 1, . . . ,100. Figures 2-4 show the distributions of the risk toler-

ances obtained by solving the Finite, Continuous, and Stochastic models with sample

size N = {50,100,200}. The Stochastic model assigns α’s to smaller values than the two

DRCC models. Additionally, as the sample size increases, there is more overlap between
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the distributions obtained from solving the Finite and Continuous models, which supports

approximating the Continuous model with the Finite model when the sample size is large.

Figure 2 N = 50 Figure 3 N = 100 Figure 4 N = 200

5. Conclusions

In this paper, we investigated distributionally robust individual chance-constrained prob-

lems with a data-driven Wasserstein ambiguity set, where the uncertainty only affects the

right-hand side and the risk tolerance is considered as a decision variable. The goal of

the risk-adjustable DRCC is to trade-off between system costs and risk violation costs via

penalizing the risk tolerance in the objective function. We considered two types of Wasser-

stein ambiguity sets with finite and continuous distributions. We provided a MILP refor-

mulation of the risk-adjustable DRCC problem with finite distributions and a MISOCP

reformulation for the continuous distribution case. Moreover, we derived valid inequali-

ties for both reformulations. Via extensive numerical studies, we demonstrated that our

valid inequalities accelerate solving the risk-adjustable DRCC models when compared to

optimization solvers. Although the MISOCP reformulation does not scale well with larger

sample size, the MILP reformulation can be used as an approximation of the MISOCP

reformulation.
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Günlük O, Pochet Y (2001) Mixing mixed-integer inequalities. Mathematical Programming 90(3):429–457.

Ji R, Lejeune MA (2021) Data-driven distributionally robust chance-constrained optimization with wasser-

stein metric. Journal of Global Optimization 79(4):779–811.

Lejeune MA, Shen S (2016) Multi-objective probabilistically constrained programs with variable risk: Models

for multi-portfolio financial optimization. European Journal of Operational Research 252(2):522–539.

Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints.

SIAM Journal on Optimization 19(2):674–699.

Luedtke J, Ahmed S, Nemhauser GL (2010) An integer programming approach for linear programs with

probabilistic constraints. Mathematical Programming 122(2):247–272.

Ma H, Jiang R, Yan Z (2019) Distributionally robust co-optimization of power dispatch and do-not-exceed

limits. IEEE Transactions on Power Systems 35(2):887–897.



Zhang: Integer Programming Approaches for Risk-Adjustable DRCCs
28

McCormick GP (1976) Computability of global solutions to factorable nonconvex programs: Part I-Convex

underestimating problems. Mathematical programming 10(1):147–175.
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Appendix A: Stochastic Chance Constrained Problem: MILP Reformulation

Let N ′ = ⌈ᾱN⌉.

min
x∈X ,y

c⊤x+

N′−1∑
n=1

∆nyn +∆N′ (21a)

s.t. Tx≥ ξN
′
+

N′−1∑
n=1

(ξn − ξn+1)yn (21b)

yn+1 ≥ yn, n= 1, . . . ,N ′ − 2 (21c)

1

N

(
N ′ − 1−

N′−1∑
n=1

yn

)
∈ (0, ᾱ] (21d)

yn ∈ {0,1}, n= 1, . . . ,N ′ − 1, (21e)

where ∆n := g(n/N)− g((n+1)/N), n= 1, . . . ,N ′ − 1, and ∆N′ := g(N ′/N).

Appendix B: Alternative MILP Reformulation for Risk-adjustable DRCC with
Binary Variables

When all the decision variables are pure binary, i.e., X ⊂ {0,1}d, Zhang and Dong (2022) developed a MILP

reformulation. The reformulation uses a binary variable ojk to identify the critical indices j and k following

the similar idea as in Section 3.4.

N−1∑
j=0

N−1∑
k=j

ojk

[
(αN − j)(Tx− ξk+1)−

k∑
i=j+1

(ξi − ξk+1)

]
≥Nϵ (22)

There are bilinear terms ojkxℓ, αojk and trilinear term ojkαxℓ in constraint (22). When the decisions xℓ, ℓ=

1, . . . , d are pure binary, they can all be linearized using McCormick inequalities (McCormick 1976). The

alternative MILP reformulation is as follows.

min
x∈X ,o,α,u,w

c⊤x+ g(α) (23a)

s.t.

N−1∑
j=0

N−1∑
k=j

[
ojk

k∑
i=j+1

(
ξk+1 − ξi

)
+NT (δjk − jτjk)− ξk+1(εjk − jojk)

]
≥Nϵ (23b)

N−1∑
j=0

N−1∑
k=j

ξjojk ≥ Tx≥
N−1∑
j=0

N−1∑
k=j

ξj+1ojk (23c)

N−1∑
j=0

N−1∑
k=j

(k+1)ojk ≥ αN ≥
N−1∑
j=0

N−1∑
k=j

kojk (23d)

N−1∑
j=0

N−1∑
k=j

ojk = 1 (23e)

α∈ (0, ᾱ] (23f)

εjk ≤ ojk, εjk ≤ α, εjk ≥ α+ ojk − 1, εjk ≥ 0, 0≤ j ≤ k≤N − 1 (23g)
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δℓjk ≤ εjk, δℓjk ≤ xℓ, δℓjk ≥ εjk +xℓ − 1, δℓjk ≥ 0, 0≤ j ≤ k≤N − 1, 1≤ ℓ≤ d (23h)

τℓjk ≤ ojk, τℓjk ≤ xℓ, τℓjk ≥ ojk +xℓ − 1, τℓjk ≥ 0, 0≤ j ≤ k≤N − 1, 1≤ ℓ≤ d (23i)

ojk ∈ {0,1}, 0≤ j ≤ k≤N − 1. (23j)

Appendix C: More results for CPU time and Optimality Gaps with Finite
Distributions
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Table 5 Comparison of CPU time (in seconds) and optimality gaps of finite distributions

Demand N Instance

MILP + Valid Ineq. MILP

tBS tMILP Time Node tBS tMILP Time Opt. Gap Node

100 50 a 0.02 0.05 0.06 1 0.01 0.33 0.34 N/A 1

100 50 b 0.00 0.05 0.05 1 0.01 0.25 0.26 N/A 1

100 50 c 0.00 0.03 0.03 1 0.01 0.31 0.32 N/A 1

100 50 d 0.00 0.03 0.03 1 0.00 0.38 0.38 N/A 1

100 50 e 0.00 0.05 0.05 1 0.00 0.27 0.27 N/A 1

avg. 0.00 0.04 0.04 1 0.01 0.31 0.31 N/A 1

100 100 a 0.02 0.06 0.08 1 0.02 0.91 0.93 N/A 85

100 100 b 0.02 0.06 0.08 1 0.02 0.84 0.87 N/A 1

100 100 c 0.02 0.08 0.09 1 0.02 1.06 1.08 N/A 223

100 100 d 0.02 0.07 0.09 1 0.03 1.37 1.40 N/A 480

100 100 e 0.02 0.08 0.10 1 0.02 0.91 0.93 N/A 1

avg. 0.02 0.07 0.09 1 0.02 1.02 1.04 N/A 158

100 200 a 0.06 0.09 0.15 1 0.07 4.73 4.81 N/A 1420

100 200 b 0.06 0.09 0.14 1 0.06 5.41 5.47 N/A 1705

100 200 c 0.06 0.08 0.14 1 0.06 6.87 6.94 N/A 2605

100 200 d 0.08 0.08 0.16 1 0.06 8.21 8.28 N/A 2559

100 200 e 0.06 0.09 0.16 1 0.06 7.04 7.11 N/A 1800

avg. 0.07 0.09 0.15 1 0.06 6.45 6.52 N/A 2018

100 1000 a 1.20 0.33 1.54 1 1.20 LIMIT LIMIT 0.06% 55681

100 1000 b 1.23 0.35 1.58 1 1.19 LIMIT LIMIT 0.05% 32960

100 1000 c 1.23 0.32 1.55 1 1.20 LIMIT LIMIT 0.06% 25663

100 1000 d 1.47 0.31 1.78 1 1.23 LIMIT LIMIT 0.23% 26593

100 1000 e 1.19 0.35 1.54 1 1.21 LIMIT LIMIT 0.05% 26371

avg. 1.26 0.33 1.60 1 1.21 LIMIT LIMIT 0.09% 33454

100 2000 a 4.62 0.74 5.36 1 4.69 LIMIT LIMIT 0.70% 7529

100 2000 b 4.70 0.75 5.45 1 4.70 LIMIT LIMIT 0.59% 9567

100 2000 c 4.64 0.69 5.33 1 4.58 LIMIT LIMIT 0.67% 8824

100 2000 d 4.72 0.70 5.42 1 4.61 LIMIT LIMIT 0.64% 11390

100 2000 e 4.68 0.70 5.38 1 4.62 LIMIT LIMIT 0.67% 7799

avg. 4.67 0.72 5.39 1 4.64 LIMIT LIMIT 0.65% 9022

200 2000 a 9.12 1.59 10.71 1 9.27 LIMIT LIMIT 1.80% 6840

200 2000 b 9.25 1.61 10.86 1 9.34 LIMIT LIMIT 1.86% 6835

200 2000 c 9.19 1.58 10.77 1 9.43 LIMIT LIMIT 3.98% 6615

200 2000 d 9.26 1.67 10.93 1 9.48 LIMIT LIMIT 3.24% 6479

200 2000 e 9.08 1.58 10.66 1 9.45 LIMIT LIMIT 2.00% 6619

avg. 9.18 1.60 10.79 1 9.39 LIMIT LIMIT 2.58% 6678

200 3000 a 20.20 2.16 22.36 1 20.88 LIMIT LIMIT 5.09% 6549

200 3000 b 20.08 2.58 22.66 1 20.22 LIMIT LIMIT 5.50% 6510

200 3000 c 20.45 2.39 22.84 1 20.54 LIMIT LIMIT 4.81% 6574

200 3000 d 20.73 2.36 23.09 1 20.81 LIMIT LIMIT 6.00% 4232

200 3000 e 20.39 2.39 22.78 1 20.51 LIMIT LIMIT 5.96% 6552

avg. 20.37 2.38 22.75 1 20.59 LIMIT LIMIT 5.47% 6083


