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Abstract. Among the most famous algorithms for solving classification prob-
lems are support vector machines (SVMs), which find a separating hyperplane
for a set of labeled data points. In some applications, however, labels are
only available for a subset of points. Furthermore, this subset can be non-
representative, e.g., due to self-selection in a survey. Semi-supervised SVMs
tackle the setting of labeled and unlabeled data and can often improve the
reliability of the results. Moreover, additional information about the size of
the classes can be available from undisclosed sources. We propose a mixed-
integer quadratic optimization (MIQP) model that covers the setting of la-
beled and unlabeled data points as well as the overall number of points in
each class. Since the MIQP’s solution time rapidly grows as the number of
variables increases, we introduce an iterative clustering approach to reduce the
model’s size. Moreover, we present an update rule for the required big-M val-
ues, prove the correctness of the iterative clustering method as well as derive
tailored dimension-reduction and warm-starting techniques. Our numerical re-
sults show that our approach leads to a similar accuracy and precision than the
MIQP formulation but at much lower computational cost. Thus, we can solve
larger problems. With respect to the original SVM formulation, we observe
that our approach has even better accuracy and precision for biased samples.

1. Introduction

Support vector machines (SVMs) are a standard approach for supervised binary
classification (Boser et al. 1992; Cortes and Vapnik 1995). The core idea is to find
a separating hyperplane that optimally splits the feature space in a positive and a
negative side according to the positive and negative labels of the data.

Obtaining labels for all units of interest can be costly. This is especially the
case if one has to do a classic survey to obtain the labels. In this case, it would
be favorable to train the SVM on only partly labeled data. This yields a semi-
supervised learning setting. Bennett and Demiriz (1998) formulate and solve the
semi-supervised SVM (S3VM) as a mixed-integer linear problem (MILP). Many
strategies for solving S3VM have been proposed in the following decades such as the
transductive approach (TSVM) by Joachims (2002) and Xu Yu (2012) or manifold
regularization (LapSVM) by Belkin et al. (2006) and Melacci and Belkin (2009).
Some researchers also consider a balancing constraint as done in meanS3VM by
Kontonatsios et al. (2017) and in c3SVM by Chapelle et al. (2006). Moreover,
the balancing constraint proposed by Chapelle and Zien (2005) enforces that the
proportion of unlabeled and labeled data on both sides is similar to the proportion
given by the labeled data.
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In many cases, however, the aggregated information about the number of pos-
itive and negative cases in a population is known from an external source. For
example, in population surveys, there are population figures from official statis-
tics agencies. This setting is studied, e.g., by Burgard et al. (2021), who develop
a cardinality-constrained multinomial logit model and apply it in the context of
micro-simulations. As another example, in some businesses, the total amount of
positive labels could be known but not which customer has a positive or a nega-
tive label. An intuitive example is a supermarket for which the amount of cash
payments is known. However, this information is not ex-post attributable to the
individual customers. We propose to add this aggregated additional information
to the optimization model by imposing a cardinality constraint on the predicted
labels for the unlabeled data. As will be shown in our numerical experiments, this
improves the accuracy of the classification of the unlabeled data. Furthermore, the
inclusion of such a cardinality constraint is very useful in the case in which the la-
beled data is not a representative sample from the population. When obtaining the
labels from process data or from online surveys, the inclusion process of the labeled
data is generally not known. This is subsumed under the non-probability sample.
In this case, inverse inclusion probability weighting, as typically done in survey
sampling, is not applicable. By not controlling the inclusion process, strong over-
or under-coverage of relevant information in the data set is possible and should be
taken into account in the analysis. Not accounting for possible biases in the data
generally leads to biased results.

We propose a big-M -based MIQP to solve the semi-supervised SVM problem
with a cardinality constraint for the unlabeled data. Here, we restrict ourselves
to the linear kernel. Other kernels such as Gaussian and polynomial ones can,
in principle, be used as well. However, this would lead to additional nonlinear
constraints in a our mixed-integer model and would thus significantly increase the
computational challenge of solving the problem. Although we strongly suspect that
the problem is NP-hard, we have no proof for it since we focus here on solution
techniques and not on a formal complexity analysis of the problem. The cardinality
constraint helps to account for biased samples since the number of positive predic-
tions on the population is bounded by the constraint. The computation time for
this MIQP grows rapidly with the number of variables—especially for an increasing
number of integer variables. We develop an algorithm that uses a clustering-based
model reduction to reduce the computation time. Similar reduction approaches
can be found for the classic SVM using, e.g., fuzzy clustering (Almasi and Rouhani
2016; Cervantes et al. 2006), clustering-based convex hulls (Birzhandi and Youn
2019), and k-means clustering (Almeida et al. 2000; Yao et al. 2013). We prove
the correctness of our iterative clustering method and further show that it com-
putes feasible points for the original problem. Hence, it also delivers proper upper
bounds. Within our iterative approach, we additionally derive a scheme for updat-
ing the required big-M values and present tailored dimension-reduction as well as
warm-starting techniques.

The paper is organized as follows. In Section 2, we describe our optimization
problem and the big-M -based MIQP formulation. Afterward, the clustering-based
model reduction technique is presented in Section 3. There, we also present our
algorithm that combines the model reduction and the MIQP formulation. In Sec-
tion 4, we discuss some algorithmic improvements such as the handling of data
points that are far away from the hyperplane and the choice of M in the big-M
formulation. In Section 5, we present how to use the solution of our algorithm to
obtain the solution of the initial MIQP formulation by fixing some points on the
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correct side of the hyperplane. Finally, in Section 6, numerical results are reported
and discussed and we conclude in Section 7.

2. An MIQP Formulation for a Cardinality-Constrained
Semi-Supervised SVM

Let X ∈ Rd×N be the data matrix with Xl = [x1, . . . , xn] being the labeled data
and Xu = [xn+1, . . . , xN ] being the unlabeled data. Hence, we have xi ∈ Rd for all
i ∈ [1, N ] := {1, . . . , N}. We set m := N −n and y ∈ {−1, 1}n is the vector of class
labels for the labeled data. When the data is linearly separable, the SVM provides
a hyperplane (ω, b) that separates the positively and negatively labeled data. In
the case that the data is not linearly separable, the standard approach is to use the
`2-SVM by Cortes and Vapnik (1995) given by

min
ω,b,ξ

‖ω‖2

2
+ C1

n∑
i=1

ξi (P1a)

s.t. yi(ω
>xi − b) ≥ 1− ξi, i ∈ [1, n], (P1b)

ξi ≥ 0, i ∈ [1, n]. (P1c)

Here and in what follows, ‖ · ‖ denotes the Euclidean norm. However, other norms
such as the 1- or the max-norm could be used as well. For being able to include
unlabeled data in the optimization process, Bennett and Demiriz (1998) propose the
semi-supervised SVM (S3VM). In many applications, the aggregated information
on the labels is available, e.g., from census data. In the following, we know the
total number τ of positive labels for the unlabeled data from an external source.
We adapt the idea of the S3VM such that we can use τ as an additional information
in the optimization model. Our goal is to find optimal parameters ω∗ ∈ Rd, b∗ ∈ R,
ξ∗ ∈ Rn, and η∗ ∈ R2 that solve the optimization problem

min
ω,b,ξ,η

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2) (P2a)

s.t. yi(ω
>xi − b) ≥ 1− ξi, i ∈ [1, n], (P2b)

τ − η1 ≤
N∑

i=n+1

hω,b(x
i) ≤ τ + η2, (P2c)

ξi ≥ 0, i ∈ [1, n], (P2d)
η1, η2 ≥ 0, (P2e)

with

hω,b(x) =

{
1, if ω>x+ b ≥ 0,

0, otherwise.
Note that the objective function in (P2a) is a compromise between maximizing

the distance between the two classes as well as minimizing the classification error
for the label and the unlabeled data. The penalty parameters C1 > 0 and C2 > 0
aim to control the importance of the slack variables ξ and η, respectively. Con-
straint (P2b) enforces on which side of the hyperplane the labeled data xi should
lie. Constraint (P2c) ensures that we have τ unlabeled data on the positive side.
If η∗1 > 0 holds for a solution (ω∗, b∗, ξ∗, η∗), then less than τ unlabeled points are
classified as positive. On the other hand, if η∗2 > 0 holds, more than τ unlabeled
points are classified as positive. If η∗1 = η∗2 = 0 holds, exactly τ unlabeled points
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are classified in the positive class. Note that, having assigned a very high value to
C1 or C2, the objective function value is dominated by these slack variables.

The function hω,b(·) in Constraint (P2c) is not continuous, which means that
Problem (P2) cannot be easily solved by standard solvers. A typical way to over-
come this problem is to add binary variables to turn on or off the enforcement of
a constraint. By introducing binary variables zi ∈ {0, 1}, i ∈ [n + 1, N ], we can
reformulate the optimization Problem (P2) using the following big-M formulation:

min
ω,b,ξ,η,z

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2) (P3a)

s.t. yi(ω
>xi + b) ≥ 1− ξi, i ∈ [1, n], (P3b)

ω>xi + b ≤ ziM, i ∈ [n+ 1, N ], (P3c)

ω>xi + b ≥ −(1− zi)M, i ∈ [n+ 1, N ], (P3d)

τ − η1 ≤
N∑

i=n+1

zi ≤ τ + η2, (P3e)

ξi ≥ 0, i ∈ [1, n], (P3f)
η1, η2 ≥ 0, (P3g)
zi ∈ {0, 1}, i ∈ [n+ 1, N ], (P3h)

where M needs to be chosen sufficiently large. As zi is binary, Constraints (P3c)
and (P3d) lead to

ω>xi + b > 0 =⇒ zi = 1, i ∈ [n+ 1, N ],

ω>xi + b < 0 =⇒ zi = 0, i ∈ [n+ 1, N ].

If xi lies on the hyperplane, i.e., ω>xi + b = 0, Constraints (P3c) and (P3d) hold
for zi = 1 and zi = 0. In this case, it can be counted either on the positive or
on the negative side. For this reason, Problem (P3) is not formally equivalent to
Problem (P2). Reformulation (P3) is a mixed-integer quadratic problem (MIQP)
in which all constraints are linear but the objective function is quadratic. We refer
to this problem as CS3VM.

Since we now stated our first model, let us shed some light on the results de-
pending on whether the standard SVM or CS3VM is used. Figure 1 shows a 2-
dimensional example data set and the corresponding hyperplanes for SVM and
CS3VM. In this case, τ = 11, i.e., 11 unlabeled points belong the the positive
class. Note that SVM only classifies 6 unlabeled points as positive, while CS3VM
classifies 11 as such. The point that lies on the CS3VM hyperplane is classified as
positive because the binary variable regarding this point is 1. This example shows
that using τ as additional information can improve the classification of unlabeled
points.

In the big-M formulation, the choice of M is crucial. If M is too small, the
problem can become infeasible or optimal solutions could be cut off. If M is chosen
too large, the respective continuous relaxations usually lead to bad lower bounds
and solvers may encounter numerical troubles. The choice of M is discussed in
the following lemma and theorem. In Lemma 1 we show how M is related to the
objective function and the given data. This is then used in Theorem 2 to derive a
provably correct big-M .
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Figure 1. A 2-dimensional example (left) and the hyperplanes
resulting from the SVM and the CS3VM (right).

Lemma 1. Given a feasible point for Problem (P3) with an objective function
value f , an optimal solution (ω∗, b∗, ξ∗, η∗, z∗) of (P3) satisfies

‖ω∗‖ ≤
√

2f and |b∗| ≤ ‖ω∗‖ max
i∈[1,N ]

‖xi‖+ 1

and, consequently, every optimal solution satisfies (P3c) and (P3d) for

M = 2
√

2f max
i∈[1,N ]

‖xi‖+ 1.

Proof. Due to optimality, we get

‖ω∗‖2

2
≤ ‖ω

∗‖2

2
+ C1

n∑
i=1

ξ∗i + C2(η∗1 + η∗2) ≤ f =⇒ ‖ω∗‖ ≤
√

2f.

The second inequality is shown by contradiction. To this end, we w.l.o.g. assume
that b̃ = ‖ω∗‖maxi∈[1,N ] ‖xi‖+ 1 + δ is part of an optimal solution for some δ > 0.
Using the inequality of Cauchy–Schwarz then yields

(ω∗)>xi + b̃ = (ω∗)>xi + ‖ω∗‖ max
j∈[1,N ]

‖xj‖+ 1 + δ

≥ −‖ω∗‖‖xi‖+ ‖ω∗‖ max
j∈[1,N ]

‖xj‖+ 1 + δ

> 1

for all i ∈ [1, N ]. Hence, for all i ∈ [1, n] with yi = 1, we get ξ̃i = 0 from
Constraint (P3b) and the objective function. Moreover, for i ∈ [1, n] with yi = −1,
the same reasoning implies

−(ω∗)>xi − b̃ = 1− ξ̃i =⇒ ξ̃i = 2 + (ω∗)>xi + ‖ω∗‖ max
j∈[1,N ]

‖xj‖+ δ.

Besides that, for the unlabeled data i ∈ [n + 1, N ], since (ω∗)>xi + b̃ > 1, we get
z̃i = 1, which leads to

N∑
i=n+1

z̃i = m =⇒ η̃1 = 0, η̃2 = m− τ.

This means that the objective function value for the point (ω∗, b̃, ξ̃, η̃, z̃) is given by

f̃ :=
‖ω∗‖2

2
+ C1

∑
i:yi=−1

(
2 + (ω∗)>xi + ‖ω∗‖ max

j∈[1,N ]
‖xj‖+ δ

)
+ C2(m− τ).

However, if we set b̄ := ‖ω∗‖maxi∈[1,N ] ‖xi‖+ 1, we get

(ω∗)>xi + b̄ ≥ 1, i ∈ [1, N ],
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i.e., zi = 1 for all i ∈ [n + 1, N ], η̄1 = 0, η̄2 = m − τ , and ξ̄i = 0 for i with yi = 1.
Moreover, for i ∈ [1, n] with yi = −1, from Constraint (P3b) we obtain

−(ω∗)>xi − b̃ = 1− ξ̄i =⇒ ξ̄i = 2 + (ω∗)>xi + ‖ω∗‖ max
i∈[1,N ]

‖xi‖.

All this implies that the objective function value f̄ for the point (ω∗, b̄, ξ̄, η̄, z̄)
satisfies

f̄ :=
‖ω∗‖2

2
+ C1

∑
i:yi=−1

(2 + (ω∗)>xi + ‖ω∗‖ max
j∈[1,N ]

‖xj‖) + C2(m− τ) < f̃,

which contradicts the assumption that f̃ is optimal. Hence,

|b∗| ≤ ‖ω∗‖ max
i∈[1,N ]

‖xi‖+ 1

holds, which proves the second inequality. Note further that

(ω∗)>xi + b∗ ≤ ‖ω∗‖‖xi‖+ |b∗| ≤ 2
√

2f max
j∈[1,N ]

‖xj‖+ 1 = M

and

(ω∗)>xi + b∗ ≥ −‖ω∗‖‖xi‖ − |b∗| ≥ −2
√

2f max
j∈[1,N ]

‖xj‖ − 1 = −M

holds for all i ∈ [n+ 1, N ]. �

We now use the result from the last technical lemma to obtain a provably correct
big-M .

Theorem 2. A valid big-M for Problem (P3) is given by

M = 2
√

2(2C1n̄+ C2(m− τ)) max
i∈[1,N ]

‖xi‖+ 1 (1)

with n̄ := |{i ∈ [1, n] : yi = −1}|.

Proof. Consider the feasible point of (P3) given by ω = 0 ∈ Rd and b = 1. Since
ω>xi + b = 1 holds for all i ∈ [1, N ], Constraint (P3b) implies

ξi =

{
2, if yi = −1,

0, otherwise.

Moreover, using Constraints (P3c)–(P3e) leads to

zi = 1, i ∈ [n+ 1, N ], η1 = 0, η2 = m− τ,
which implies that the objective function for the point (ω, b, ξ, η, z) is given by

f = 0 + 2C1n̄+ C2(m− τ).

Finally, from Lemma 1, we get

M = 2
√

2(2C1n̄+ C2(m− τ)) max
i∈[1,N ]

‖xi‖+ 1. �

3. A Re-Clustering Method for solving CS3VM

In Model (P3) of the last section, each binary variable is related to an unlabeled
point. The larger the number of unlabeled data, the larger the number of binary
variables and, hence, the larger the computational burden to solve Problem (P3).
To reduce this computational burden, we propose to cluster the unlabeled data.
This way, only one binary variable per cluster is needed. For every cluster, we
use its centroid as its representative point. To obtain clusterings, we use minimum
sum-of-squares clustering (MSSC). The MSSC problem is NP-hard; see, e.g., Aloise
et al. (2009), Dasgupta (2007), and Mahajan et al. (2012). However, we do not need
a globally optimal solution for the MSSC problem as will be shown below. Given a
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number k of clusters and a matrix S = [s1, . . . , sp] ∈ Rd×p of given points, the goal
of the MSSC is to find mean vectors cj ∈ Rd, j ∈ [1, k], that solve the problem

c∗ = arg min
c

`(S, c), c = (cj)j=1,...,k,

where the loss function ` is the sum of the squared Euclidean distances, i.e.,

`(S, c) =

k∑
j=1

∑
si∈Cj

‖si − cj‖2

with Cj ⊂ Rd being the set of data points that are assigned to cluster j.
We solve this problem heuristically using the k-means algorithm (Lloyd 1982;

MacQueen 1967) for S = Xu, i.e., we cluster the unlabeled data. Then, instead of
using all unlabeled data as in the last section, we only use the clusters’ centroids
c1, . . . , ck and the numbers e1, . . . , ek of data points in each cluster to obtain the
problem

min
ω,b,ξ,η,z

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2) (P4a)

s.t. yi(ω
>xi + b) ≥ 1− ξi, i ∈ [1, n], (P4b)

ω>cj + b ≤ zjM, j ∈ [1, k], (P4c)

ω>cj + b ≥ −(1− zj)M, j ∈ [1, k], (P4d)

τ − η1 ≤
k∑
j=1

ejzj ≤ τ + η2, (P4e)

ξi ≥ 0, i ∈ [1, n], (P4f)
η1, η2 ≥ 0, (P4g)
zj ∈ {0, 1}, j ∈ [1, k]. (P4h)

A valid big-M is still given by (1) as shown in the next proposition.

Proposition 1. If ej ≥ 1 for all j ∈ [1, k], a valid big-M for Problem (P4) is given
by (1).

Proof. The proof follows the same lines as the proofs of Lemma 1 and Theorem 2
with the additional observation that for all j ∈ [1, k], it holds

‖cj‖ =
1

ej

∥∥∥∥∥∥
∑

i:xi∈Cj

xi

∥∥∥∥∥∥ ≤ ej maxi∈[n+1,N ] ‖xi‖
ej

= max
i∈[n+1,N ]

‖xi‖. �

It can happen that the hyperplane given by (ω∗, b∗) that results from the solution
of Problem (P4) cuts through some cluster. This means that not all data points
of the cluster actually lie on the same side of the hyperplane. If this happens,
the solution of Problem (P4) does not satisfy the cardinality constraint (P3e) of
Problem (P3). To fix this, we propose an iterative method that is formally listed
in Algorithm 1. Note that the use the k-means algorithm is helpful here as it
automatically provides the convex hulls of the clusters. Hence, it is easy to check
if the hyperplane cuts through some cluster or not.

If Algorithm 1 terminates it holds that all points in a cluster are on the same side
of the final hyperplane. This implies the cardinality constraint (P3e) is satisfied.
Note that the k-means algorithm is only called once to initialize the clustering. For
all other iterations, we manually split clusters if they are cut by the hyperplane of
the respective iteration and compute the new centroids directly.
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Algorithm 1: Re-Clustering Method (RCM)

Input : X ∈ Rd×N , y ∈ {−1, 1}n, k1 ∈ N, C1 > 0, C2 > 0, and τ ∈ N.
1 Set t← 1, compute M t as in (1), compute a clustering of Xu in k1 many

clusters using the k-means algorithm, and obtain the centroids c1, . . . , ck
1

as well as the numbers e1, . . . , ek1 of data points in each cluster.
2 Solve Problem (P4) to compute the hyperplane (ωt, bt) as well as ξt, ηt, zt.
3 if the hyperplane (ωt, bt) cuts a cluster then
4 Set kt+1 ← kt.
5 for each cluster that is cut by the hyperplane (ωt, bt) do
6 Split the cluster into two new clusters so that neither of the two new

clusters is cut by the hyperplane (ωt, bt).
7 Update the centroids of the newly created clusters.
8 Set kt+1 ← kt+1 + 1.
9 end

10 Update t← t+ 1 and go to Step 2.
11 else
12 Return the hyperplane (ωt, bt) as well as ξt, ηt, zt.
13 end

The next theorem establishes that Algorithm 1 always terminates after finitely
many iterations.

Theorem 3. Suppose that ej ≥ 1 for all j ∈ [1, k1] after Step 1 of Algorithm 1.
Then, Algorithm 1 terminates after at most m − k1 iterations, where m is the
number of the unlabeled data points and k1 is the number of initial clusters.

Proof. Observe that since we cluster m unlabeled points, the maximum number of
clusters we can obtain is m. Besides that, if in an iteration t, Algorithm 1 does not
terminate, at least one cluster is split Step 6. Because we start with k1 clusters
and since in each iteration, we increase the number of clusters at least by one, the
maximum number of iterations is m− k1. �

Note that the point obtained by Algorithm 1 is not necessarily a minimizer of
Problem (P3). However, the objective function value of the point obtained by
Algorithm 1 is an upper bound for the objective function value of Problem (P3).

Theorem 4. Let (ω̄, b̄, ξ̄, η̄, z̄) be the point returned by Algorithm 1. Then,
(ω̄, b̄, ξ̄, η̄, z̄) is feasible for Problem (P3) with

M = 2

√
2f̄ max

i ∈[1,N ]
‖xi‖ + 1

and, consequently,

f̄ :=
‖ω̄‖2

2
+ C1

n∑
i=1

ξ̄i + C2(η̄1 + η̄2)

is an upper bound of Problem (P3).

Proof. For all clusters Cj , j ∈ {1, . . . , kt}, where t is the final iteration of Algo-
rithm 1, we set z̃i = z̄j for all i with xi ∈ Cj . We now show that (ω̄, b̄, ξ̄, η̄, z̃) is a
feasible point for Problem (P3). Indeed, Constraints (P3b), (P3f), (P3g), and (P3h)
are clearly fulfilled. Furthermore, since∑

i∈Cj

z̃i = ej z̄j
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for all j ∈ [1, kt], using (P4e) we get
N∑

i=n+1

z̃i =

kt∑
j=1

ej z̄j =⇒ τ − η̄1 ≤
N∑

i=n+1

z̃i ≤ τ + η̄2

and Constraint (P3e) is satisfied. Besides that,

‖ω̄‖2

2
≤ f̄ =⇒ ‖ω̄‖ ≤

√
2f̄ (2)

holds and as in Lemma 1, we get

|b̄| ≤ ‖ω̄‖ max
i∈[1,N ]

‖xi‖+ 1. (3)

Moreover, by construction, for all i ∈ {n+ 1, . . . N} with z̃i = 1, xi belongs to a
cluster Cj such that ω̄>cj + b̄ ≥ 0. Using the fact that all points in Cj are on the
same side of the hyperplane, this side must be the positive one. This fact together
with (2) and (3) implies

−(1− z̃i)M = 0 ≤ ω̄>xi + b̄ ≤ ‖ω̄‖ max
i∈[1,N ]

‖xi‖+ |b̄|

≤ 2

√
2f̄ max

i∈[1,N ]
‖xi‖+ 1 = M = z̃iM.

Similarly, for all i ∈ {n+ 1, . . . N} with z̃i = 0, we get

−M = −(1− z̃i)M ≤ ω̄>xi + b̄ ≤ 0 = z̃iM

and (P3c) as well as (P3d) are fulfilled. Because (ω̄, b̄, ξ̄, η̄, z̃) is a feasible point for
Problem (P3), f̄ is an upper bound to the Problem (P3). �

Note, finally, that since the point obtained from Algorithm 1 is feasible for
Problem (P3), we can use it for warm starting.

4. Further Algorithmic Enhancements

In order to reduce computational costs, we propose two additional enhancements.
The first one (see Section 4.1) makes use of the fact that the SVM is mostly influ-
enced by data points that are close to the separating hyperplane. The second one
(see Section 4.2) introduces a rule for updating M in each iteration of Algorithm 1.

4.1. Handling Points far From the Hyperplane. In Algorithm 1, the number
of clusters increases in each iteration. Hence, the time to solve Problem (P4)
increases from iteration to iteration in general. Like in the original SVM, the points
closest to the hyperplane influence the resulting hyperplane more than the other
points. Obviously, eliminating points that do not strongly influence the hyperplane
decreases the size of the problem. Some approaches to eliminate these points have
also been proposed for the original SVM. For a survey, see, e.g., Birzhandi et al.
(2002). However, most of these approaches are heuristics and do not necessarily
yield a feasible point of the problem.

The idea for our setting is the following. Clusters that are far away from the
hyperplane could be omitted as this will not change the solution. The farther a
cluster is from the hyperplane in an iteration, the less likely it is that the cluster
will be split or change sides completely in a future iteration. Hence, the clusters
farthest from the current hyperplane mainly add information about their side and
capacity. However, in a later iteration, the cluster may become relevant again.
Thus, we need to find a way to discard detailed information on certain clusters but
also a way to reactivate the discarded clusters if necessary.

We propose the following procedure to reduce the amount of clusters that have
to be considered in the current iteration of the algorithm. If the number of clusters
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exceeds a fixed value k+, we first fix the cluster with the centroid farthest from the
hyperplane as a kind of residual cluster on a side if this side has points far from the
hyperplane. Second, we discard all clusters in which all points are farther from the
hyperplane than some ∆t and assign them to the residual cluster on their side of
the hyperplane. This way the cardinality constraint remains valid. Moreover, all
formerly discarded clusters are checked for re-consideration. If a discarded cluster
has a point with a distance to the hyperplane less than ∆t or if any point in the
cluster changed the side, the cluster is reactivated.

Let S̄ = (sα(1), . . . , sα(d))
> be the vector of increasingly sorted values of S =

{s1, . . . , sd} and let a ∈ (0, 1). The a-quantile of S, as proposed by Hyndman and
Fan (1996), is given by

PS(a) := sα(q) +
sα(q) − sα(r)

q − r
((d− 1)a− q + 1)

with
q := max

i∈[1,d]

{
i :

i− 1

d− 1
≤ a

}
, r := min

i∈[1,d]

{
i :

i− 1

d− 1
≥ a

}
.

Given a parameter ∆̂t ∈ (0, 1), we choose ∆t in each iteration t according to

∆t = PDt(∆̂t) with Dt
j =

∣∣(ωt)>cj + bt
∣∣ for all j ∈

[
1, kt

]
. (4)

Note that if in an iteration t, a point in some discarded cluster changed the side, the
vector z as part of the current solution does not fit to this change. This happens
when, e.g., (ωt−1)>xi + bt−1 > 0 and (ωt)>xi + bt < 0 but ztj > 0 with Cj being the
cluster with centroid farthest from the hyperplane on the positive side. To avoid
that this happens too often, ∆̂t+1 is increased by a fixed value ∆̃ ∈ (0, 1) when
there is some point in some discarded cluster that has changed sides.

Motivated by the above discussions, we add new steps in the Algorithm 1 that
can be seen in Algorithm 2. In Step 5, if the number of clusters exceeds k+, clusters
far from the hyperplane are discarded. In Steps 9 and 10, clusters discarded with a
point that changed sides or that is closer to the hyperplane than ∆t are reactivated.
In Step 12, ∆̂t is updated.

4.2. Updating the Big-M . As discussed in Section 2, M needs to be sufficiently
large. However, the bigger the M , the more likely we face numerical issues. As
shown in Section 2, the smaller the objective function provided by a feasible point,
the smaller the value of M can be chosen. Based on that, we update M in each
iteration with the aim of decreasing it. We do this by adding Step 16 in Algorithm 2
and the next theorem justifies this.

Theorem 5. Consider X, y,C1, C2, τ , as well as c1, . . . , ck
t

and e1, . . . ekt in an
iteration t of Algorithm 1. Then, the optimal solution (ω̄t, b̄t, ξ̄t, η̄t, z̄t) of Prob-
lem (P4) provides an upper bound

f̃t :=
‖ω̄t‖2

2
+ C1

n∑
i=1

ξ̄i + C2(η̃1 + η̃2), (5)

with

z̃j =

{
1, if (ω̄t)

>
c̃j + b̄t ≥ 0,

0, otherwise,
(6)

and

η̃1 = max

0, τ −
s∑
j=1

ej z̃j

 , η̃2 = max

0,

s∑
j=1

ej z̃j − τ

 , (7)
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Algorithm 2: Improved Re-Clustering Method (IRCM)

Input: X ∈ Rd×N , y ∈ {−1, 1}n, k1 ∈ N, C1 > 0, C2 > 0, τ ∈ N,
∆̂1 ∈ (0, 1), ∆̃ ∈ (0, 1), G1 = ∅, k+ ∈ N.

1 Set t = 1, compute M t as in (1), cluster Xu in k1 clusters using k-means,
leading to centroids c1, . . . , ck

1

and the numbers e1, . . . , ek1 of data points
in each cluster.

2 Solve Problem (P4) to compute the hyperplane (ωt, bt) as well as ξt, ηt, zt.
3 Compute ∆t as in (4).
4 if kt > k+ then
5 update Gt+1 ← Gt ∪ {Cj : |(ωt)>x` + bt| > ∆t ∀x` ∈ Cj}.
6 else
7 set Gt+1 ← Gt.
8 end
9 Set
J t := {Cj ∈ Gt : ∃x` ∈ Cj : sign((ωt)>x` + bt) 6= sign((ωt+1)>x` + bt+1)}.

10 Update Gt+1 ← Gt+1\({Cj ∈ Gt : ∃x` ∈ Gtj with |(ωt)>x` + bt| ≤ ∆t} ∪ J t).
11 if J t 6= ∅ then
12 update ∆̂t+1 ← min{∆̂t + ∆̃, 1}.
13 else
14 set ∆̂t+1 ← ∆̂t

15 end
16 Compute M t+1 as in (8).
17 if J t 6= ∅ or the hyperplane (ωt, bt) cuts a cluster then
18 Set kt+1 ← kt.
19 for each cluster that is cut by the hyperplane (ωt, bt) do
20 Split the cluster into two new clusters so that neither of the two new

clusters is cut by the hyperplane (ωt, bt).
21 Update the centroids of the newly created clusters.
22 Set kt+1 ← kt+1 + 1.
23 end
24 Update t← t+ 1 and back to Step 2.
25 else
26 Return the hyperplane (ωt, bt) as well as ξt, ηt, zt.
27 end

for Problem (P4) with c1, . . . , ck
t+1

and e1, . . . ekt+1 as updated in iteration t with

M = 2

√
2f̃t max

i∈[1,N ]
‖xi‖+ 1. (8)

Proof. Consider z̃ as given in (6) and η̃1, η̃2 as given in (7). We now show that
(ω̄t, b̄t, ξ̄t, z̃, η̃) is a feasible point for Problem (P4). Indeed, Constraints (P4b) and
(P4e)–(P4h) are clearly satisfied. Moreover, (ω̄t, b̄t, ξ̄t, η̄t, z̄t) provides the objective
function value given by (5) and

‖ω̄t‖ ≤
√

2f̃t, |b̄t| ≤ ‖ω̄t‖ max
i∈[1,N ]

‖xi‖+ 1,

see the proof of Lemma 1. This together with ‖cj‖ ≤ maxi∈[n+1,N ] ‖xi‖ implies(
ω̄t
)>
cj + b̄t ≤ ‖ω̄t‖ max

i∈[n+1,N ]
‖xi‖+ |b̄t| ≤ 2

√
2f̃t max

i∈[1,N ]
‖xi‖+ 1 = M
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and (
ω̄t
)>
cj + b̄t ≥ −M.

Hence, Constraints (P4c) and (P4d) are satisfied. Since (ω̄t, b̄t, ξ̄t, z̃, η̃) is a feasible
point for Problem (P4), f̃t is an upper bound for Problem (P4). �

Using Theorem 5, we can update M in each iteration of Algorithm 2 as in (8).
The following theorem establishes that as Algorithm 1, Algorithm 2 always termi-
nates after finitely many iterations.

Theorem 6. The Algorithm 2 terminates after at most

2m− k1 +
(1− ∆̂1)

∆̃

iterations, where m is the number of unlabeled data points, k1 is the number of
initial clusters, and ∆̂1, ∆̃ are inputs of Algorithm 2.

Proof. In Algorithm 2, the number of iterations can only be greater as in Algo-
rithm 1 if there is some iteration t for which J t 6= ∅ holds but the hyperplane does
not cut any cluster. At each iteration in which this happens, ∆̂t is increased and,
in the worst case, i.e.,

t̂ := m− k1 +
(1− ∆̂1)

∆̃
,

we get ∆̂t̂ = 1. This implies that for all further iterations t,

∆t = max
j∈[1,kt]

|(ωt)>cj + bt|

holds. Thus, no cluster is added to the set Gt. Since |G t̂| ≤ m and J t ⊂ G t̂,
Algorithm 2 can only have m more iterations with J t 6= ∅. This means that the
maximum number of iterations is 2m− k1 + (1− ∆̂1)/∆̃. �

Although Theorem 6 shows that, in the worst case, Algorithm 2 can take more
iterations than Algorithm 1 to terminate, Algorithm 2 solves problems with less
binary variable in every iteration, which means that the time per iteration will be
lower compared to Algorithm 1.

Note that the objective function value obtained by Algorithm 2 is an upper
bound for the objective function value of Problem (P3).

Theorem 7. Let (ω̄, b̄, ξ̄, η̄, z̄) be the point returned by Algorithm 2. Then,
(ω̄, b̄, ξ̄, η̄, z̄) is feasible for Problem (P3) with

M = 2

√
2f̄ max

i∈[1,N ]
‖xi‖+ 1

and, consequently,

f̄ :=
‖ω̄‖2

2
+ C1

n∑
i=1

ξ̄i + C2(η̄1 + η̄2)

is an upper bound of Problem (P3).

Proof. Since Algorithm 2 terminates when no cluster changes the side and no cluster
is cut by the hyperplane, the proof is the same as for Theorem 5. �

As before, we can use the point obtained from Algorithm 2 to warm start Prob-
lem (P3).
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5. Using IRCM for Warm-Starting

As stated in Theorem 7, the solution found by Algorithm 2 is feasible for Prob-
lem (P3). Hence, we can use it for warm-starting the solution process of Prob-
lem (P3). The next lemma establishes that unlabeled points can be fixed to be in
one side of the hyperplane.

Lemma 8. Let (ω̄, b̄, ξ̄, η̄, z̄) be a feasible point of Problem (P3) with objective func-
tion value f̄ . Furthermore, let (ω∗, b∗, ξ∗, η∗, z∗) be an optimal solution of Prob-
lem (P3) with objective function value f∗. Set

Pu :=
{
i ∈ [n+ 1, N ] : (ω∗)>xi + b∗ > 0

}
,

Nu :=
{
i ∈ [n+ 1, N ] : (ω∗)>xi + b∗ < 0

}
,

and let Sp ⊆ Pu, Sn ⊆ Nu be arbitrarily chosen subsets and let xs /∈ Sn be an
unlabeled point with ω̄>xs + b̄ < 0. Then, the objective function value f̃ given by
any feasible point of the problem

min
ω,b,ξ,η,z

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2) (P5a)

s.t yi(ω
>xi + b) ≥ 1− ξi, i ∈ [1, n], (P5b)

ω>xi + b ≤ ziM, i ∈ [n+ 1, N ] \ ({s} ∪ Sp ∪ Sn), (P5c)

ω>xi + b ≥ −(1− zi)M, i ∈ [n+ 1, N ] \ ({s} ∪ Sp ∪ Sn), (P5d)

ω>xi + b ≥ 0, i ∈ Sp, (P5e)

ω>xi + b ≤ 0, i ∈ Sn, (P5f)

0 ≤ ω>xs + b ≤ zsM, (P5g)

τ − η1 ≤ |Sp|+
∑

i∈[n+1,N ]\(Sp∪Sn)

zi ≤ τ + η2, (P5h)

ξi ≥ 0, i ∈ [1, n], (P5i)
η1, η2 ≥ 0, (P5j)
zi ∈ {0, 1}, i ∈ [n+ 1, N ] \ (Sp ∪ Sn), (P5k)

with M as defined in (8), satisfies the following properties:
(a) f̃ is an upper bound for f∗,
(b) if f̃ is the optimal objective function value of Problem (P5) and f̄ < f̃ is

satisfied, it holds (ω∗)>xs + b∗ < 0, i.e., xs ∈ Nu.

Proof. (a) The points that satisfy Constraints (P5b)–(P5k) are feasible for
Problem (P3) and provide an objective function value f̃ . Since f∗ is the
optimal objective function value of Problem (P3), f∗ ≤ f̃ holds.

(b) Consider by contradiction that (ω∗)>xs + b∗ ≥ 0 holds. This means that
(ω∗, b∗, ξ∗, η∗, z∗) satisfies (P5b)–(P5k). Moreover, since f̃ is the objective
function for Problem (P5), we get f∗ = f̃ . However, f∗ ≤ f̄ holds. Thus,

f∗ ≤ f̄ < f̃ = f∗

yields a contradiction. �

Note that the last lemma can be adapted for the case ω̄>xs+ b̄ > 0. In this case,
the constraints (P5g) need to be replaced with

− (1− zs)M ≤ ω>xs + b ≤ 0 (9)
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and (b) needs to be replaced with (ω∗)>xs + b∗ > 0, i.e., xs ∈ Pu. Note that the
more points we have fixed on one side, the solution of Problem (P3) tends to be
faster as there are fewer binary variables.

Moreover, the solution of Problem (P3) can be found by solving the problem

min
ω,b,ξ,η,z

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2) (P6a)

s.t. yi(ω
>xi − b) ≥ 1− ξi, i ∈ [1, n], (P6b)

ω>xi + b ≤ ziM, i ∈ [n+ 1, N ] \ (Sp ∪ Sn), (P6c)

ω>xi + b ≥ −(1− zi)M, i ∈ [n+ 1, N ] \ (Sp ∪ Sn), (P6d)

ω>xi + b ≥ 0, i ∈ Sp, (P6e)

ω>xi + b ≤ 0, i ∈ Sn, (P6f)

τ − η1 ≤ |Sp|+
∑

i∈[n+1,N ]\(Sp∪Sn)

zi ≤ τ + η2, (P6g)

ξi ≥ 0, i ∈ [1, n], (P6h)
η1, η2 ≥ 0 (P6i)
zi ∈ {0, 1}, i ∈ [n+ 1, N ] \ (Sp ∪ Sn), (P6j)

where Sp and Sn are subsets of Pu and Nu, respectively.
Based on these results, we propose the following. We compute the point

(ω̄, b̄, ξ̄, η̄, z̄) using Algorithm 2, leading to an objective function value f̄ for Prob-
lem (P3). Afterward, we sort the indices i ∈ {n + 1, N}, indicated by the per-
mutation α : {n + 1, N} → {n + 1, N}, so that |ω̄>xα(i) + b̄| ≥ |ω̄>xα(i)+1 + b̄|
holds.

Consider now a given and fixed parameter Bmax, a factor γ ∈ (1,m/Bmax], and
let β be γBmax rounded to the next integer. While the number of fixed points is
smaller than Bmax, we do the following. For i ∈ {1, . . . , β}, if ω̄>xα(i) + b̄ < 0
holds, we try to solve Problem (P5) using the limit time of Tmax and the upper
bound f̄ . If there is a feasible point of this problem, we set (ω̄, b̄, ξ̄, η̄, z̄) to this
point and update the objective function value f̄ accordingly. If no feasible point
could be computed and if the limit time was not reached, we fix xs to be in the
negative side.

Similarly, we do the same if ω̄>xd` + b̄ > 0 holds with (P5g) replaced by (9).
The method is formally described in Algorithm 3. Finally note that, although
Problem (P5) is an MIQP, it is a feasibility problem, which is often easier to solve
than an optimization problem in practice. Besides that, if the point obtained from
Algorithm 2 is close to the optimum of Problem (P3), many unlabeled points will
be fixed and Problem (P3) will be faster to solve.

6. Numerical Results

In this section, we present and discuss our computational results that illustrate
the benefits of knowing the total amount of each class of unlabeled data and of
using our approaches to speed up the solution process. We evaluate this on different
test sets from the literature. The test sets are described in Section 6.1, while the
computational setup is depicted in Section 6.2. The evaluation criteria are described
in Section 6.3 and the numerical results are discussed in Section 6.4.

6.1. Test Sets. For the computational analysis of the proposed approaches, we
consider the subset of instances presented by Olson et al. (2017) that are suitable
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Algorithm 3: Improved &Warm-Started Re-Clustering Method (WIRCM)

Input: X ∈ Rd×N , y ∈ {−1, 1}n, k1 ∈ N, C1 > 0, C2 > 0, τ ∈ N,
∆̂1 ∈ (0, 1), ∆̃ ∈ (0, 1), G1 = ∅, k+ ∈ N, Tmax > 0, Bmax ∈ N, and
γ ∈ (1,m/Bmax].

1 Compute the hyperplane (ω̄, b̄) and ξ̄, η̄, z̄ using Algorithm 2, leading to the
objective function value f̄ . Let M be the last M t of Algorithm 2.

2 Sort the indices i ∈ {n+ 1, N} such that |ω̄>xα(i) + b̄| ≥ |ω̄>xα(i)+1 + b̄|
holds and set β to be γBmax rounded to the next integer.

3 for i ∈ {1, . . . , β} do
4 if |Sp|+ |Sn| ≤ Bmax then
5 if ω̄>xs + b̄ < 0 then
6 Solve Problem (P5) with upper bound f̄ and a time limit Tmax.
7 if there is a feasible point then
8 update (ω̄, b̄, ξ̄, η̄, z̄), and f̄
9 else if Tmax was not reached then

10 Sn ← Sn ∪ {s}
11 end
12 else if ω̄>xs + b̄ > 0 then
13 Solve the problem (P5) with (P5g) replaced by (9), using f̄ as an

upper bound and a time limit of Tmax.
14 if there is a feasible point then
15 update (ω̄, b̄, ξ̄, η̄, z̄), and f̄
16 else if Tmax was not reached then
17 Sp ← Sp ∪ {s}
18 end
19 end
20 end
21 end
22 Compute the solution (ω∗, b∗, ξ∗, η∗, z∗) of Problem (P6) with (ω̄, b̄, ξ̄, η̄, z̄)

value and f̄ as an upper bound.

for classification problems and that have at most three classes. We restrict ourselves
to instances of at most three classes to obtain an overall test set of manageable
size. Repeated instances are removed and instances with missing information are
reduced to the observations without missing information. If three classes are given
in an instance, we transform them into two classes such that the class with label 1
represents the positive class, and the other two classes represent the negative class.
This results in a final test set of 97 instances; see Table 1 in Appendix A.

To avoid numerical instabilities, we re-scale all data sets as follows. For each
coordinate j ∈ [1, d], we compute

lj = min
i∈[1,N ]

{xij}, uj = max
i∈[1,N ]

{xij}, mj = 0.5 (lj + uj)

and shift each coordinate j of all data points xi via x̄ij = xij −mj . If we do this for
all data points, they get centered around the origin. Moreover, if a coordinate j of
the re-scaled points is still large, i.e., if l̃j = lj −mj < −102 or ũj = uj −mj > 102

holds, it is re-scaled via

x̃ij = (v − v)
x̄ij − l̃j
ũj − l̃j

+ v,
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with v = 102 and v = −102. The corresponding 29 instances that we re-scaled
are marked with an asterisk in Table 1. Note that we use a linear transformation
to scale the datasets. Hence, after computing the hyperplane for the scaled data,
the respective hyperplane for the original data can also be computed ex post by
applying another suitably chosen linear transformation as well.

In our computational study, we want to highlight the importance of cardinality
constraints, especially for the case of non-representative biased samples. Biased
samples occur frequently in non-probability surveys, which are surveys for which
the inclusion process is not monitored and, hence, the inclusion probabilities are un-
known as well. Correction methods like inverse inclusion probability weighting are
therefore not applicable. For an insight into inverse inclusion probability weighting,
see Skinner and D’arrigo (2011) and references therein.

To mimic this situation, we create 5 biased samples with 10 % of the data being
labeled for each instance. Different from a simple random sample in which each
point has an equal probability of being chosen as labeled data, in the biased sample,
the labeled data is chosen with probability 85 % for being on the positive side of
the hyperplane. Then, for each instance, with a time limit of 3600 s, we apply
the approaches listed in Section 6.2. In Appendix C, we also provide the results
under simple random sampling, which produces unbiased samples. We see that the
results form the proposed methods are similar to the plain SVM in that setting.
Hence, besides the additional computational burden, there is no downside to use
the proposed method in case of an unknown sampling process.

6.2. Computational Setup. Our algorithm has been implemented in Julia 1.8.5
and we use Gurobi 9.5.2 and JuMP (Dunning et al. 2017) to solve Problem (P1),
(P3), and (P4). All computations were executed on the high-performance clus-
ter “Elwetritsch”, which is part of the “Alliance of High-Performance Computing
Rheinland-Pfalz” (AHRP). We used a single Intel XEON SP 6126 core with 2.6 GHz
and 64 GB RAM.

For each one of the 485 instances described in Section 6.1, the following ap-
proaches are compared:

(a) SVM as given in Problem (P1), where only labeled data are considered;
(b) CS3VM as given in Problem (P3) with M as given in (1);
(c) IRCM as described in Algorithm 2;
(d) WIRCM as described in Algorithm 3.

Based on our preliminary experiments, we set the penalty parameters C1 = C2 = 1.
For WIRCM, we impose a time limit for solving Problem (P5) of Tmax = 40 s.
Moreover, we choose γ = 1.2 and the maximum number Bmax of unlabeled points
that can be fixed as

Bmax =


0.2m, if m ∈ [1, 100],

0.25m, if m ∈ (100, 500],

0.35m, if m ∈ (500, 1000],

0.45m, otherwise.

Finally, for IRCM and WIRCM, we set ∆̂1 = 0.8, ∆̃ = 0.1, k+ = 50, and the initial
number of clusters is set to

k1 =


10, if m ∈ [1, 500],

20, if m ∈ (500, 1000],

50, otherwise.

A more detailed discussion of the choice of hyperparameters is given in Appendix D.
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6.3. Evaluation Criteria. The first evaluation criterion is the run time of SVM,
CS3VM, IRCM, and WIRCM. The results will help to contextualize other eval-
uation criteria such as accuracy and precision. To compare run times, we use
empirical cumulative distribution functions (ECDFs). Specifically, for S being a
set of solvers (or approaches as above) and for P being a set of problems, we denote
denote by tp,s ≥ 0 the run time of approach s ∈ S applied to problem p ∈ P in
seconds. If tp,s > 3600, we consider problem p as not being solved by approach s.
With these notations, the performance profile of approach s is the graph of the
function γs : [0,∞)→ [0, 1] given by

γs(σ) =
1

|P |
∣∣ {p ∈ P : tp,s ≤ σ}

∣∣. (10)

The second evaluation criterion is based on Theorem 5, where we show that the
objective function value of the point obtained by IRCM is an upper bound for
CS3VM, and consequently for Problem (P4) that is solved with WIRCM. Note
that SVM also provides a feasible point for CS3VM and, consequently, provides
an upper bound as well. Consider (ω, b, ξ) the solution of SVM, we compute the
binary variables zi, i ∈ [n+ 1, N ] as follows:

zi =

{
1, if ω>xi + b > 0,

0, if ω>xi + b < 0.

If ω>xi + b = 0 for some xi, we set

zi =

{
1, if

∑
j∈[n+1,N ]:ω>xj+b 6=0 zi ≤ τ,

0, otherwise.

Finally, we set

η1 = max

{
0, τ −

N∑
i=n+1

zi

}
, η2 = max

{
0,

N∑
i=n+1

zi − τ

}
,

and the objective function value can be computed as

‖ω‖2

2
+ C1

n∑
i=1

ξi + C2(η1 + η2).

Based on that, we compare how close the objective function values obtained from
SVM, CS3VM, IRCM, and WIRCM are to the optimal solution. To this end, we
use ECDFs, for which we replace tp,s by fp,s in Equation (10) with

fp,s :=
bp,s − f∗p

f∗p
, (11)

where f∗p is the optimal objective function value of problem p and bp,s is the objec-
tive function value obtained by approach s.

Besides that, for each instance and for each approach described in Section 6.2,
after computing the hyperplane (ω, b), we classify all points xi as being on the
positive side if ω>xi+b > 0 and as being on the negative side if ω>xi+b < 0 holds.
For CS3VM and WIRCM, if the hyperplane (ω, b) satisfies ω>xi + b = 0 for some
unlabeled point xi, we classify this point as positive or negative depending on the
respective binary variable zi. On the other hand, for IRCM, if ω>xi + b = 0 for
some unlabeled point xi, we classify this point as positive or negative depending on
zj with j so that xi ∈ Cj . For the labeled points in these three approaches and for
all points in the SVM, if ω>xi + b = 0 holds, we classify the point on the correct
side. Note that for the cases in which the IRCMs take more than 3600 s to solve
the instance, we use the last hyperplane found by the algorithm. If we hit the time
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limit in Gurobi when solving CS3VM (either standalone or in the final phase of the
WIRCM), we take the best solution found so far.

Knowing the true label of all points, we then distinguish all points in four cate-
gories: true positive (TP) or true negative (TN) if the point is classified correctly
in the positive or negative class, respectively, as well as false positive (FP) if the
point is misclassified in the positive class and as false negative (FN) if the point
is misclassified in the negative class. Based on that we compute two classification
metrics, for which a higher value indicates a better classification. The first one
is accuracy (AC). It measures the proportion of correctly classified points and is
given by

AC :=
TP + TN

TP + TN + FP + FN
∈ [0, 1]. (12)

The second metric is precision (PR). It measures the proportion of correctly clas-
sified points among all positively classified points and is computed by

PR :=
TP

TP + FP
∈ [0, 1]. (13)

The main comparison in terms of accuracy and precision is w.r.t. the “true hy-
perplane”, i.e., the solution of Problem (P1) on the complete data with all N points
and all labels available. The main question is how close the accuracy and precision
is to the one of the true hyperplane. Hence, we compute the ratios of the accuracy
and precision according to

ÂC :=
AC

ACtrue
, P̂R :=

PR
PRtrue

, (14)

where ACtrue and PRtrue are computed as in Equations (12) and (13) for the true
hyperplane.

We also compare the measures with the SVM method, which only considers the
information of the labeled data. For this purpose, we compute

AC :=
AC−ACSVM

ACSVM
, PR :=

PR− PRSVM

PRSVM
, (15)

where ACSVM and PRSVM are computed as in (12) and (13) for the SVM hyper-
plane. To keep the numerical results section concise, we report on recall and the
false positive rate in Appendix B.

6.4. Numerical Results.

6.4.1. Run Time. Figure 2 shows the ECDFs for the measured run times. Clearly,
SVM is the fastest algorithm. This is expected as the SVM does not include any
binary variables related to the unlabeled points, which is in contrast to other ap-
proaches. It can be seen that the IRCM outperforms both CS3VM and WIRCM.
This shows that the idea to cluster unlabeled data points significantly decreases the
run time. However, we need to be careful with the interpretation of these run times
since termination of SVM and IRCM does not imply that a globally optimal point
is found, whereas this is guaranteed CS3VM and the WIRCM. The quality of the
points found by SVM and IRCM will be discussed in the next section. The figure
also clearly indicates that Problem (P2) is rather challenging: Even IRCM, which
terminates for the most instances within the time limit (indicated by the gray and
dashed vertical line) only does so for 57 % of the instances. Note that the WIRCM
has the worst efficiency. This obviously needs to be the case since due to Step 1 of
Algorithm 3, its run time always includes the run time of the IRCM. To shed some
light on the scalability of the approaches, we also present a brief analysis of the run
times in dependence of the number of samples in Appendix E.
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Figure 2. ECDFs for run time (in seconds).

Figure 3. ECDFs for the quality of the obtained upper bounds.

6.4.2. Quality of the Obtained Upper Bounds. As discussed in the last section, for
some instances none of the three approaches that actually consider the unlabeled
data terminate within the given time limit. This means we do not obtain the
optimal objective function value for these instances, which we, moreover, can only
provably obtain by CS3VM and the WIRCM. In fact, we have the optimal solution
for 179 instances. These are the baseline instances for Figure 3, which shows the
ECDFs for the upper bound quality, as defined in (11). Note that the objective
function value obtained by SVM is very far from the optimal value, while the IRCM
finds an objective function value rather close to the optimal value (with fps ≤ 0.2,
see the gray dashed vertical line) in 90 % of these instances. Besides that, the
WIRCM outperforms CS3VM in this comparison, which means using the IRCM as
a warm start improves the result.

The consequences of the results so far are the following. If one is interested
in getting a rather good feasible point as quickly as possible, one should use the
IRCM. If one is able to spend some more run time, one should use the WIRCM.
Hence, both novel methods derived in this paper have their advantage over just
solving the CS3VM with a standard MIQP solver.

6.4.3. Accuracy. For some instances, none of the three approaches that actually
tackle the unlabeled data terminate within the given time limit. Hence, our first
comparison only considers instances for which CS3VM terminates within the time
limit.
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Figure 4. Relative accuracy ÂC w.r.t. the true hyperplane;
see (14). Only those instances are considered for which CS3VM
terminated. Left: Comparison for all data points. Right: Com-
parison only for unlabeled data points.
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Figure 5. Accuracy values AC w.r.t. the SVM; see (15) only con-
sider the instances that CS3VM terminated. Left: Comparison for
all data points. Right: Comparison only for unlabeled data points.

As can be seen in Figure 4, the relative accuracy ÂC (w.r.t. the true hyperplane)
of CS3VM, is closer to 1 than the relative accuracy of SVM—especially for the un-
labeled data. This means that using the unlabeled points as well as the cardinality
constraint allows to re-produce the classification of the true hyperplane with higher
accuracy than the standard SVM does. Besides that, the relative accuracy of the
SVM is more spread than the one of the other approaches, indicating that there is
comparable more variation in the results as compared the results of CS3VM. The
box in the boxplot depicts the range of the medium 50 % of the values; 25 % of the
values are below and 25 % are above the box.

Figure 5 shows that, in almost 75 % of the cases, CS3VM, has AC values larger
than zero, where zero means the same accuracy as the SVM itself. In the others
25 % of the cases, the AC of CS3VM is slightly smaller than SVM.

The second comparison considers only those three approaches that actually con-
sider the unlabeled data, i.e., CS3VM, IRCM, and WIRCM for all instances. As
can be seen in Figure 6, even though IRCM does not have an optimality guarantee,
it has a better relative accuracy ÂC than the hyperplane obtained from CS3VM
within the time limit. Consequently, as the hyperplane obtained from IRCM is
used as a warm-start in WIRCM, it also has better accuracy. Figure 7 shows that,
in almost 75 % of the cases, CS3VM, the IRCM, and the WIRCM have AC values
larger than zero. That is, in general, our methods have greater accuracy than the
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Figure 6. Relative accuracy ÂC w.r.t. the true hyperplane;
see (14). Left: Comparison for all data points. Right: Comparison
only for unlabeled data points.
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Figure 7. Accuracy values AC w.r.t. the SVM; see (15) consider
all instances. Left: Comparison for all data points. Right: Com-
parison only for unlabeled data points.

SVM. Though, some cases indicate worse AC values for our methods than for the
SVM. This happens because for some instances, the methods (mainly for CS3VM;
see also Figure 2) do not terminate within the time limit. Hence, we expect that
the number of negative values will decrease if we would increase the time limit.

6.4.4. Precision. We again separate the comparisons as in Section 6.4.3. Figure
8 shows that the SVM’s relative precision P̂R is lower than the relative preci-
sion of CS3VM. This means that CS3VM re-produces the classification of the true
hyperplane with higher precision than the original SVM. Hence, SVM has more
false-positive results. This happens because the biased sample is more likely to
have positively labeled data and due to having no information about the unlabeled
data, the SVM ends up classifying points on the positive side. As can be seen in
Figure 9, CS3VM has slightly higher PR values than 0, which is the baseline here
that refers to the SVM itself. This means, CS3VM is slightly more precise than the
SVM.

Figure 10 shows that the P̂R values of the IRCM and the WIRCM are less spread
than the ones of CS3VM. The reason most likely is that the CS3VM approach
terminates on fewer instances than the IRCM and the WIRCM. As can be seen in
Figure 11, the IRCM and the WIRCM also have slightly higher PR values than 0.
This means that our methods are slightly more precise than the SVM. The negative
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Figure 8. Relative precision P̂R w.r.t. the true hyperplane as; see
(14). Only those instances are considered for which CS3VM termi-
nated. Left: Comparison for all data points. Right: Comparison
only for unlabeled data points.
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Figure 9. Precision values PR w.r.t. the SVM; see (15). Only
those instances are considered for which CS3VM terminated. Left:
Comparison for all data points. Right: Comparison only for unla-
beled data points.
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Figure 10. Relative precision P̂R w.r.t. the true hyperplane as;
see (14). Left: Comparison for all data points. Right: Comparison
only for unlabeled data points.
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Figure 11. Precision values PR w.r.t. the SVM; see (15). Left:
Comparison for all data points. Right: Comparison only for unla-
beled data points.

outliers most likely are due to the same reason as those for the respective accuracy
values.

7. Conclusion

For many classification problems, it can be costly to obtain labels for the entire
population of interest. However, aggregate information on how many points are in
each class can be available from external sources. For this situation, we proposed a
semi-supervised SVM that can be modeled via a big-M -based MIQP formulation.
We also presented a rule for updating the big-M in an iterative re-clustering method
and derived further computational techniques such as tailored dimension reduction
and warm-starting to reduce the computational cost.

In case of simple random samples, our proposed semi-supervised methods per-
form as good as the classic SVM approach. However, in many applications, the
available data is coming from non-probability samples. Hence, there is the risk of
obtaining biased samples. Our numerical study shows that our approaches have
better accuracy and precision than the original SVM formulation in this setting.

The problem of considering a cardinality constraint is computationally challeng-
ing. Our proposed clustering approach significantly helps to decrease the run time
and to find an objective function value that is very close to the optimal value. Be-
sides that, the clustering approach maintains the same accuracy and precision as
the MIQP formulation. Moreover, using the clustering approach as a warm-start
and fixing some unlabeled points on one side of the hyperplane helps to improve
the quality of the objective function value again. Hence, the newly proposed meth-
ods lead to a significant improvement compared to just solving the classic MIQP
formulation using a standard solver.

Despite these contributions, there is still room for improvement and future work.
First, we only considered the linear SVM kernel. For future work, the development
of methods for other kernels, such as a Gaussian kernel, can be a valuable topic.
Moreover, the use of other norms than the 2-norm could be analyzed as well and the
formal hardness of the considered problem should be settled. Finally, the adaptation
of our approaches for multiclass SVMs using a one-vs.-rest strategy may be another
reasonable future work.
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1 prnn_synth 250 2
2∗ analcatdata_asbestos 73 3
3∗ lupus 87 3
4 analcatdata_boxing1 120 3
5 analcatdata_boxing2 132 3
6 haberman 289 3
7 analcatdata_happiness 60 3
8∗ analcatdata_aids 50 4
9 analcatdata_lawsuit 263 4
10 iris 147 4
11 hayes_roth 93 4
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12 balance_scale 625 4
13 parity5 32 5
14∗ bupa 341 5
15 irish 470 5
16 phoneme 5349 5
17 tae 110 5
18 new_thyroid 215 5
19∗ analcatdata_bankruptcy 50 6
20∗ analcatdata_creditscore 100 6
21 mux6 64 6
22 monk3 357 6
23 monk1 432 6
24 monk2 432 6
25 appendicitis 106 7
26 prnn_crabs 200 7
27∗ penguins 333 7
28 postoperative_patient_data 78 8
29∗ biomed 209 8
30∗ pima 768 8
31∗ cars 392 8
32 analcatdata_japansolvent 52 9
33 glass2 162 9
34 breast_cancer 272 9
35 saheart 462 9
36 threeOf9 512 9
37 profb 672 9
38 breast_w 463 9
39 tic_tac_toe 958 9
40 xd6 512 9
41 cmc 1425 9
42 analcatdata_cyyoung9302 92 10
43 analcatdata_cyyoung8092 97 10
44 breast 691 10
45 flare 315 10
46 parity5+5 1024 10
47 magic 18905 10
48 analcatdata_fraud 42 11
49 heart_statlog 270 13
50 heart_h 293 13
51 hungarian 293 13
52∗ cleve 302 13
53∗ heart_c 302 13
54 wine_recognition 178 13
55∗ australian 690 14
56∗ adult 48790 14
57∗ schizo 340 14
58∗ buggyCrx 690 15
59 labor 57 16
60 house_votes_84 342 16
61 hepatitis 155 19
62∗ credit_g 1000 20
63 gametes_e_0.1H 1599 20
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64 gametes_e_0.4H 1600 20
65 gametes_e_0.2H 1600 20
66 gametes_h_50 1592 20
67 gametes_h_75 1599 20
68∗ churn 5000 20
69∗ ring 7400 20
70 twonorm 7400 20
71 waveform_21 5000 21
72 ann_thyroid 7129 21
73 spect 228 22
74 horse_colic 357 22
75 agaricus_lepiota 8124 22
76∗ hypothyroid 3086 25
77∗ dis 3711 29
78∗ allhypo 3709 29
79∗ allbp 3711 29
80∗ breast_cancer_wisconsin 569 30
81 backache 180 32
82 ionosphere 351 34
83 chess 3196 36
84 waveform_40 5000 40
85 connect_4 67557 42
86 spectf 267 44
87∗ tokyo1 959 44
88 molecular_biology_promoters 106 57
89∗ spambase 4210 57
90 sonar 208 60
91 splice 2903 60
92 coil2000 8380 85
93∗ Hill_Valley_without_noise 1212 100
94∗ clean1 476 168
95∗ clean2 6598 168
96 dna 3002 180
97 gametes_e_1000atts 1600 1000

Appendix B. Further Numerical Results

Besides the measures of accuracy and precision, we compare two further measures
in this section. First, recall (RE) measures the percentage of points with positive
label that are actually classified as positive. It is formally given by

RE :=
TP

TP + FN
. (16)

Note that for applications such as cancer diagnosis, it is relevant to evaluate recall
because it is more important to flag cancer rather than to do not. Also in cases of
rare positive labels, recall is often the favored metric. Note that values close to 1
indicate a better classification here.

Second, we also compare the false positive rate (FPR), which measures the prob-
ability of points with negative labels being classified as positive:

FPR :=
FP

TN + FP
. (17)
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Figure 12. Relative recall R̂E w.r.t. the true hyperplane; see (18).
Left: Comparison for all data points. Right: Comparison only for
unlabeled data points.

This quantity is important in some applications such as quality control, where a
false positive can cause more issues than a false negative. Note that for FPR, the
lower the value, the better the classification.

The main comparison in terms of recall and false positive rate is w.r.t. the “true
hyperplane”, i.e., the solution of Problem (P1) on the complete data with all N
points and all labels available. The main question is how close the recall and false
positive rate is to the one of the true hyperplane. Hence, we compute the ratios of
the recall and false positive rate according to

R̂E :=
RE

REtrue
, F̂PR :=

FPR
FPRtrue

, (18)

where REtrue and FPRtrue are computed as in (16) and (17) for the true hyperplane.
As can be seen in Figure 12, the SVM’s relative recall is a little bit larger than

the one of the other methods. As in Section 6.4.4, this happens because the biased
sample is more likely to have positive labeled data and having no information about
the unlabeled data, the SVM ends up classifying points on the positive side.

Figure 13 shows that CS3VM, the IRCM, and the WIRCM have lower F̂PR
values than the original SVM. This means that the newly proposed methods have
a lower false positive rate than the original SVM. The fact that CS3VM terminates
for less instances than the IRCM explains why the IRCM has a lower relative false
positive rate than CS3VM. Finally, since the WIRCM uses the IRCM for warm-
starting, the WIRCM also has better relative false positive rates than CS3VM.

Appendix C. Numerical Results for Simple random samples

In Section 6, we focused our computational study on non-representative, biased
samples. The common baseline scenario to check the performance of estimators
is to apply them on simple random samples. Hence, for completeness, we also
present the results under simple random sampling. That is, each unit in the data
set has the same probability πi = n/N to be included into the sample of size n.
The instances are the same as described in Section 6.1. The computational setup
follows the description in Section 6.2. As before, the used evaluation criteria are
ÂC, P̂R as in (14) and R̂E, F̂PR as in (18).

Figure 14 and 15 show similar accuracy and precision performance for all ap-
proaches. This is as expected, as the sample is not biased and hence the cardinal-
ity constraint does not contribute relevant additional information to the problem.
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Figure 13. Relative false positive rate F̂PR w.r.t. the true hy-
perplane; see (18). Left: Comparison for all data points. Right:
Comparison only for unlabeled data points.
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Figure 14. Relative accuracy ÂC w.r.t. the true hyperplane;
see (14), for the simple random samples. Left: Comparison for all
data points. Right: Comparison only for unlabeled data points.

Therefore, the SVM does not tend to classify the points as positive as it is the case
for the biased samples. The outliers, mainly present for CS3VM, are due those
instances that are not solved within the time limit. As can be seen in Figure 16
and 17, recall and false positive rate are also similar for all approaches.

Hence, for the simple random samples our approaches have almost the same
results as the SVM. Note that for the biased samples, they outperformed the SVM.
Hence, in cases for which the type of sample is not known, it is “safe” to use the
newly proposed approaches for classification.

Appendix D. Choosing the Hyperparameters

Each parameter of Algorithm 2 and 3 as well as in Problem (P1) and (P3) can be
chosen from a range. In Table 2 we present plausible ranges for these parameters.

Clearly, C1 ∈ R≥0 holds. However, the closer the value is to 1, the more equally
important are maximizing the margin and minimizing the classification error for
the labeled data. The range of C2 is based on C1 in order to indicate how much
more important the unlabeled data is compared to the labeled data. Again, we
choose C2 = 1 so that both data have the same importance. Besides that, if C2

is much bigger than C1, our preliminary tests showed that this leads to focus on
minimizing the classification error for the unlabeled data, which implies focusing
on the binary variable and, hence, leads to larger run times.



30 REFERENCES

SVM CS³VM IRCM WIRCM
0

0.5

1

1.5

2

2.5

3

SVM CS³VM IRCM WIRCM
0

0.5

1

1.5

Figure 15. Relative precision P̂R w.r.t. the true hyperplane;
see (14), for the simple random samples. Left: Comparison for all
data points. Right: Comparison only for unlabeled data points.
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Figure 16. Relative recall R̂E w.r.t. the true hyperplane; see (18),
for the simple random samples. Left: Comparison for all data
points. Right: Comparison only for unlabeled data points.
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Figure 17. Relative false positive rate F̂PR w.r.t. the true hyper-
plane; see (18), for the simple random samples. Left: Comparison
for all data points. Right: Comparison only for unlabeled data
points.

For choosing the other parameters, we consider the first 3 datasets presented
in Table 1 and varied the parameter choices in a preliminary numerical study.
Based on the results, we now discuss how to choose the remaining parameters. The
parameter k1 can be between 2 and m since we cluster m unlabeled points. Note
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Table 2. Plausible ranges for the hyperparameters

Parameter Plausible Range Current Choice

C1 R≥0 1
C2 [0.5C1, 2C1] 1
k1 [2,m] 10, 20, 50
k+ [k1,m] 50

∆̂1 [0.5, 0.9] 0.8

∆̃ [0.1, 1− ∆̂1] 0.1
Bmax [1,m] 0.2m, 0.25m, 0.35m, 0.45m
γ [1.1,m/Bmax] 1.2
Tmax [10, 100]s 40s

that, the smaller k1, the less time per iteration is needed since we have fewer binary
variables. However, more iterations may be needed to find the solution. On the
other hand, the bigger k1, the more time per iteration is required. We choose to
start with a small value of k1 because in preliminary numerical tests, when the
algorithm terminated, the number of clusters never exceeded m/3. Moreover, in
our preliminary tests, if the algorithm exceeds kt = 50 for some iteration t, it takes
a lot of time to solve Problem (P4). To decrease this time, we reduced the number
of clusters, eliminating the ones being far from the hyperplane. This is the reason
why we choose k+ = 50.

The parameter ∆̂1 indicates that clusters with a distance to the hyperplane
greater than the ∆̂1-quantile of all distances will be deactivated. It is between 0.5
and 0.9 because a smaller value than 0.5 means removing points that are too close
to the hyperplane. This implies that in next iterations many clusters can be reacti-
vated. On the other hand, if it is larger than 0.9, it means that almost no clusters
can be deactivated. We choose 0.8 because in our preliminary numerical tests we
noticed that with a smaller value, many clusters were activated again, which in-
creased the required time per iteration. The range of ∆̃ is justified by the fact
that for all t, the maximum value of ∆̂t is 1. We chose 0.1 because the higher the
value we choose, the smaller the possibility to eliminate clusters becomes. If chosen
smaller, ∆̂t and ∆̂t+1 would be very similar and some clusters would be deactivated
and reactivated several times.

Because we have m unlabeled points, we can fix at most m unlabeled points,
which justifies the range of Bmax and the maximum value of γ. Since some points
are not fixed on some side—they may be on the wrong side or it could take more
than Tmax to solve Problem (P5)—we try to fix at least more than 10 % of Bmax

many unlabeled points. This is why the minimum value of γ is 1.1. The maximum
value of Tmax is 100 s because, if chosen smaller, we observe that there is often not
enough time to solve Problem (P5). On the other hand, if it is larger, we observe
that the time needed to solve the Algorithm 3 increases.

Appendix E. Run Times in Dependence of the Number of Data Points

In this section, we complement Section 6 by presenting the run times in depen-
dence of the number of points in the data set in order to shed some light on the
scalability of our approaches. To this end, we split the entire data set in three
subsets.

The first subset only considers those 46 data sets with N ≤ 500. As can be seen
in Figure 18 (top), IRCM solves more than 75 % of the instances while CS3VM
and WIRCM solve more than 50 %. The second subset contains 11 data sets with
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Figure 18. ECDFs for run time (in seconds). Top: Instances
with N ≥ 500. Middle: Instances with N ∈ (500, 1500]. Bottom:
Instances with N > 1500.

N ∈ (500, 1500]. Figure 18 (middle) shows that for these test sets, IRCM solves
about 40 % of the instances while CS3VM and WIRCM solve more than 10 %. The
last subset contains those 21 data sets with N > 1500. Figure 18 (bottom) shows
that CS3VM and WIRCM do not solve any of these instances and IRCM solves
about 20 %. As expected, the larger the number of points and, thus, the larger
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the number of binary variables, the more challenging it is to solve the instances.
Besides that, SVM solves all instances, which is expected since it does not include
any binary variables.
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