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Abstract

This paper is concerned with the exact solution of mixed-integer
programs (MIPs) over the rational numbers, i.e., without any roundoff
errors and error tolerances. Here, one computational bottleneck that
should be avoided whenever possible is to employ large-scale symbolic
computations. Instead it is often possible to use safe directed rounding
methods, e.g., to generate provably correct dual bounds. In this work,
we continue to leverage this paradigm and extend an exact branch-and-
bound framework by separation routines for safe cutting planes, based
on the approach first introduced by Cook, Dash, Fukasawa, and Goy-
coolea in 2009. Constraints are aggregated safely using approximate
dual multipliers from an LP solve, followed by mixed-integer rounding
to generate provably valid, although slightly weaker inequalities.

We generalize this approach to problem data that is not repre-
sentable in floating-point arithmetic, add routines for controlling the
encoding length of the resulting cutting planes, and show how these
cutting planes can be verified according to the VIPR certificate stan-
dard. Furthermore, we analyze the performance impact of these cut-
ting planes in the context of an exact MIP framework, showing that
we can solve 21.5% more instances and reduce solving times by 26.8%
on the MIPLIB 2017 benchmark test set.

∗The work for this article has been conducted within the Research Campus Modal
funded by the German Federal Ministry of Education and Research (BMBF grant numbers
05M14ZAM, 05M20ZBM).
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1 Introduction
Even though the problem class of mixed-integer programs (MIPs) is NP-
hard [10], state-of-the-art MIP solvers manage to solve a large number of
such problems with up to millions of variables and constraints [17]. While
the core algorithm, LP-based branch-and-bound, is straightforward, it is
a long list of sophisticated solving techniques such as presolving, cutting
planes, primal heuristics, conflict analysis, and branching rules that make
this remarkable performance possible.

However, virtually all established solvers that contain these techniques
rely on fast floating-point arithmetic, combined with numerical error tol-
erances to achieve a high degree of numerical stability. For most applica-
tions, especially in industry, this is completely sufficient. Nevertheless, some
problem cases require exact proofs of optimality or infeasibility without the
slight numerical inaccuracies that result from rounding errors in floating-
point arithmetic. This is the case when mixed-integer programs are used as
a tool in mathematics, e.g., to computationally investigate open conjectures.
Recent examples of such approaches include [5, 7, 14, 24, 27, 34]. Examples
for industrial applications where the correctness of results is paramount are,
e.g., hardware verification [1], compiler optimization [39], or more recently
infeasibility analysis in hydro unit commitment [35].

To the best of our knowledge, the first fully general, exact MIP solver
that can handle MIPs with rational input data is presented by Cook, Koch,
Steffy, and Wolter [12]. Their hybrid-precision framework uses both sym-
bolic as well as numeric computations and applies different dual bounding
methods [16, 32, 37] to generate provably valid dual bounds. However, be-
sides employing reliability pseudocost branching, this framework still lacks
the previously mentioned advanced solving techniques since their application
in the roundoff-error free setting is often not trivial.

While a direct translation of methods using symbolic computations is
always possible, it is often prohibitively slow in practice. Safe methods that
try to avoid symbolic computations in favour of safe rounding techniques
can often provide better results. A first step in the direction of closing
this algorithmic gap between exact and inexact MIP was established [13]
by revising the approach of Cook et al. [12] and extending it by symbolic
presolving routines, as well as a repair step that enables the usage of all
existing primal heuristics [13].

One key feature missing to date is a separation routine for cutting planes,
which is known to be among the most important components to make MIP
solvers perform well in practice, as reported, e.g., by Achterberg and Wun-
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derling [2]. Among different types of cutting planes, they found that espe-
cially mixed-integer rounding (MIR) cuts (48% speedup), as well as Gomory
cuts (28% speedup), seem to provide the most benefit. However, designing
an efficient roundoff-error-free separation procedure for Gomory cuts is non-
trivial since a purely symbolic approach would require an exact LP tableau
row. To compute the tableau, the LP relaxation needs to be solved exactly
and LP rows need to be aggregated, both of which are computationally
expensive operations. Instead, Cook, Dash, Fukasawa, and Goycoolea [11]
introduced a technique that can be used to construct numerically safe cuts,
using safe rounding techniques. These cuts are guaranteed to be exactly fea-
sible, without any symbolic computations, but at the cost of slightly weaker
efficacy. While the focus of Cook et al. was to provide safe cutting planes
within a normal floating-point MIP solver, the technique can be generalized
to the exact MIP setting.

This generalization is our first contribution. We show how to relax ra-
tional problem data to be usable for the safe rounding technique and gener-
alize the approach of [11] to allow for negative variable bounds. Our second
contribution is adapted scaling and a new post-processing technique that
improves the performance of safe cutting planes in the exact MIP frame-
work. Finally, our third major contribution is the independent verification
of these cutting planes using the VIPR [9] certificate format.

To motivate the last point further, note that although the exact MIP
framework guarantees an exactly optimal solution in theory, the imple-
mented computer program is very complex and a user might not have full
confidence that the result is correct in practice. Our goal is for the solving
algorithm to provide a certificate of optimality for each instance it solves
which can be verified independently. Such proof-logging features are stan-
dard in the world of satisfiability solvers [22, 38] and have also been adapted
to pseudo-Boolean [15, 19] and maximum satisfiability solvers [4]. In the
context of integer programming, certifaction has been employed in the past
for the travelling salesman problem [3], to verify an optimal tour with 85,900
cities by a problem-specific branch-and-cut certificate. For general purpose
exact MIP, the VIPR certificate standard [9] is a possibility to encode a
proof for the optimality of a branch-and-bound tree, using only elementary
branching logic and basic arithmetic. We introduce an explicit verification
of MIR cuts using only the logic of VIPR, as well as an algorithm to account
for the rounding errors introduced through the safe rounding procedure.

The overall goal of this research is twofold. First, we aim to further
reduce the algorithmic gap between exact and floating-point MIP solvers
to make exact MIP solving a real alternative for researchers going forward.
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Second, we aim to better understand the practical differences between nu-
merically safe cutting planes in exact MIP and normal ones in conventional
floating-point MIP, especially the impact they have on LP solving behaviour.
We conduct a detailed computational study, investigating both of these
points.

The paper is structured as follows. In Section 2, we present the con-
struction of numerically safe Gomory mixed-integer cuts in an exact MIP
setting, discuss scaling, and introduce a new post-processing routine that
controls the encoding length of cut coefficients. In Section 3, we present
verification routines for MIR cuts and a completion algorithm that accounts
for the rounding errors introduced during safe rounding. Section 4 consti-
tutes our computational study, where the performance of all new features is
evaluated and compared against an analogue experiment within a floating-
point solver. We conclude with remarks on further research directions in
Section 5.

All the code for completing and checking the certificates is freely available
on GitHub [8].

2 Safe Gomory mixed-integer cuts for exact MIP
We consider the general rational mixed-integer program (MIP) of the form

min{ cTx : Ax ≤ b, ` ≤ x ≤ u, and xj ∈ Z for all j ∈ I }

where A ∈ Qm×n, c, `, u ∈ Qn, b ∈ Qm and I ⊆ {1, . . . , n}. We denote the
set of all feasible points for this MIP by P .

The variable bounds are allowed to be ±∞, but we assume throughout
this paper that all variables appearing in a cut have either a finite lower or
a finite upper bound:

Assumption 1. For any valid inequality aTx ≤ b encountered during the
construction of a cut, if ai 6= 0 then either ui <∞ or `i > −∞ holds. Thus
we can choose sets U,L such that ui < ∞ for all i ∈ U , `i > −∞ for all
i ∈ L, and ai = 0 for all i /∈ U ∪ L.

Note that this assumption can always be fulfilled by splitting variables
with infinite bounds into their positive and negative part; however, it is
necessary to introduce new auxiliary variables explicitly for these parts.
In practice, after presolving, Assumption 1 usually seems to hold and we
did not encounter any problems where cuts needed to be discarded in our
experiments.
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To give an overview, our steps for generating safe MIR cuts in general and
safe Gomory mixed-integer cuts in particular are as follows:

1. Approximate rows by a floating-point representable relaxation.

2. Generate a valid, floating-point representable inequality for P using
safe aggregation of rows.

3. Construct the MIR cut:

(a) Safely transform this inequality into non-negative variable space.
(b) Apply the safe MIR technique to the transformed inequality and

retransform to original variable space.
(c) Substitute slack variables.

4. Post-process the cut:

(a) Scale the resulting cut to improve numerical stability and possibly
make coefficients integer.

(b) Control the encoding length of the generated cut.

Steps 2 and 3 are in essence the procedure described in [11], although slight
differences exist because we allow for variables with negative lower bounds
in `. In the following sections, we describe all steps in more detail.

2.1 Safe MIR cuts by directed rounding

Let αTx ≤ β be a valid inequality for P . If all integer variables are non-
negative, then the mixed-integer rounding cut∑

i∈I

(
bαic+

(fi − f)+

1− f

)
xi +

∑
i/∈I,ai<0

αi

1− f
xi ≤ bβc (1)

with f = β − bβc and fi = αi − bαic, i ∈ I, is valid for P [30]. If not
all integer variables are non-negative but Assumption 1 holds, then we can
transform all integer variables to a non-negative space via

x′i :=

{
ui − xi for all i ∈ U ∩ I,

xi − `i for all i ∈ L ∩ I.
(2)

Gomory mixed-integer (GMI) cuts are obtained by applying the MIR tech-
nique to one row of an optimal simplex tableau that corresponds to an
integer variable with a fractional LP solution value.
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The naïve approach to computing exact GMI cuts for P by roundoff-
error-free rational arithmetic can become prohibitively expensive not only
due to the operations involved in (1). Most of all, obtaining αTx ≤ β as an
exact tableau row requires a rational LU factorization of the basis matrix.
In recent approaches to solve MIPs exactly, however, only an approximate
floating-point LP solution is at hand [13].

Instead of performing all computations in exact arithmetic, a better op-
tion is to construct numerically safe cuts as proposed by [11]. By usnoing
safe directed rounding, valid inequalities can be generated that are guaran-
teed to be exactly feasible for P , without symbolic computations, though
at the cost of obtaining slightly weaker cuts. Hence, let us first define the
notation used for safe rounding that will be needed throughout this paper.

Let F ⊆ Q denote the set of floating-point numbers. In practice, these
will usually be standard IEEE double-precision numbers with 11 bits for the
exponent and 52 bits for the mantissa. This means any number f ∈ F can
be written as f = s ∗ m ∗ 2e, where the sign is s ∈ {−1, 1}, the mantissa
m = (1,M)2 is a binary number between 1 and 2 with 52 bits, and the
exponent e is a binary number with up to 11 bits, centered around 0, i.e.,
e ∈ [−1022, 1023]. For a detailed description of the format, see e.g., [33].
It is clear that not all rational numbers can be exactly represented in this
format and that F is not closed under addition, subtraction, multiplication,
or division. Hence, the result of these operations is rounded up or down to
a nearest representable number; the rounding direction can be controlled in
computer code.

Definition 1. Let x ∈ Q be a rational number. We denote the closest upper
and lower floating-point representable approximations of x in F by

x := min{y ∈ F : y ≥ x} and x := max{y ∈ F : y ≤ x},

respectively. We call x F-representable if x ∈ F. We call an inequality
aTx ≤ b F-representable if a ∈ Fn and b ∈ F. Finally, for n ≥ 2 and
λ1, . . . , λn ∈ F, we define recursively

n∑
i=1

λi := λ1 +

n∑
i=2

λi and
n∑

i=1

λi := λ1 +

n∑
i=2

λi.

We handle other arithmetic operations, i.e., subtraction, multiplication,
and division, as well as combinations thereof, analogously. We note that
this is consistent with how modern computers handle floating-point num-
bers. Specifically, computers have the following rounding modes: down, up,
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towards zero, and to nearest. These can be changed by the algorithm to
ensure the desired over- or underestimation.

Note that this definition means that no rational computations are nec-
essary to compute

∑n
i=1 λi. On the other hand, the order of summation

changes the result since we round after each pairwise addition.

2.2 Approximating problem data

Some coefficients in rows of the original problem formulation may not be
in F. Affected inequalities can be made F-representable by relaxing them
slightly according to the following formula, which relies on Assumption 1.

Lemma 1. Let aTx ≤ b, with a ∈ Qn, b ∈ Q be valid for P . Then the
F-representable inequality∑

i∈U
aixi +

∑
i∈L

aixi ≤ b+
∑
i∈U

(ai − ai)ui +
∑
i∈L

(ai − ai)`i

is also valid for P .

Proof. The first step is to transform all variables into a non-negative form.
Define x′i according to (2) for all i ∈ I. Substituting x for x′ yields∑

i∈U
ai(ui − x′i) +

∑
i∈L

ai(`i + x′i) ≤ b.

Moving all constants to the right-hand side∑
i∈U
−aix′i +

∑
i∈L

aix
′
i ≤ b−

∑
i∈U

aiui −
∑
i∈L

ai`i.

Since x′i ≥ 0, we can round down all coefficients on the left-hand side. With
−ai = −ai, we get∑

i∈U
−aix′i +

∑
i∈L

aix
′
i ≤ b−

∑
i∈U

aiui −
∑
i∈L

ai`i.

Substituting x for x′ yields∑
i∈U

aixi +
∑
i∈L

aixi ≤ b+
∑
i∈U

(ai − ai)ui +
∑
i∈L

(ai − ai)`i.

Finally, rounding the whole right-hand side upwards, we get the final in-
equality.
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This procedure of implicitly transforming to non-negative variable space,
rounding in the correct direction, retransforming, and finally rounding again
is the essential technique from [11] that is used for all the safe operations
in this manuscript. Since the correction factor on the right-hand side of
the inequalities always has non-negative coefficients for i ∈ U and non-
positive coefficients for i ∈ L, we always use u or `, if the bounds are not
F-representable. To avoid notational clutter, we will omit the bars on the
bounds for the remainder of the manuscript.

2.3 Safe aggregation of rows

The technique from the previous Lemma can also be applied to aggregate
two F-representable rows safely.

Corollary 2. Let aTx ≤ b and cTx ≤ d be two valid, F-representable
inequalities, and 0 < λ ∈ F. If Assumption 1 holds, we can generate an F-
representable, valid approximation of the aggregated inequality (a+λc)Tx ≤
b+ λd by∑

i∈U
αixi +

∑
i∈L

αixi ≤ b+ λd+
∑

i∈U,ui>0

(αi − αi)ui +
∑

i∈L,`i<0

(αi − αi)`i,

with αi := ai + ciλ.

Proof. The proof follows the same steps as in Lemma 1.

The rows of an optimal simplex tableau, which form the base inequalities
αTx ≤ β to derive GMI cuts via the MIR formula (1), can be alternatively
obtained as an aggregation of inequalities from the LP relaxation. As a mat-
ter of fact, this is also how GMI cuts are computed in floating-point MIP
solvers to minimize numerical errors. Similarly, we can perform safe aggrega-
tion of problem inequalities according to Corollary 2, using multipliers from
an approximate row of the basis inverse to generate a valid, F-representable
base inequality αTx ≤ β. This is hopefully a good approximation to the
exact simplex tableau row, at least if the approximate floating-point LP so-
lution from which we obtain the dual multipliers is a good approximation
to the optimum of the exact, rational LP relaxation.

2.4 Constructing the MIR cut

After obtaining such a row αTx ≤ β, we proceed as we normally would in
deriving a MIR cutting plane. In the following, we go through those steps
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again to highlight at which points operations have to be performed in a
numerically safe fashion.

First, for each variable one of the bounds is chosen to transform to
non-negative variable space, since the MIR formula requires non-negative
variables. If the variable has both finite upper and lower bound, we use
the bound that is closest to the value of the current LP solution for that
variable. Denote by U the index set of variables for which the upper bound
is chosen, by L the set for which the lower bound is chosen, and by x′i the
transformed variables according to (2).

We first obtain the aggregated inequality in transformed space∑
i∈U
−αix

′
i +

∑
i∈L

αix
′
i ≤ β −

∑
i∈U

αiui −
∑
i∈L

αi`i := d. (3)

Next, we compute the coefficients in the cut, according to (1). Denote the
transformed coefficients by

α′
i =

{
αi for i ∈ L

−αi for i ∈ U,
(4)

and the fractionalities by f = d − bdc, fi = α′
i − bα′

ic. Then the safe MIR
cut in the transformed space is∑

i∈I

(
bα′

ic+
(fi − f)+

1− f

)
x′i +

∑
i/∈I:α′

i<0

( α′
i

1− f

)
x′i ≤ bdc. (5)

Transforming back to original variable space as in Lemma 1 yields the final
safe MIR cut.

We give some additional, slightly technical details that will be especially
relevant for the verification described in Section 3. Whenever we consider a
row aTi x ≤ bi for aggregation, we implicitly turn it into an equation using
a slack variable, i.e., aTi x+ si = bi, si ≥ 0. This allows two generalizations.
Firstly, we can aggregate with a multiplier of any sign. If we use a negative
multiplier λi for a row without additional integrality information, the slack
is treated as a continuous variable and thus gets assigned the coefficient

λi
(1−f) , where f is the fractionality of the one-row relaxation’s right-hand side.
Secondly, and more importantly, if we know that all non-zero coefficients as
well as their corresponding variables are integer, then s can be treated as
an integer variable for the MIR procedure and gets assigned the coefficient
bλic+ (fi−f)+

(1−f) , regardless of the sign of λ.
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At the very end, the slack is eliminated using its definition si = bi−a>i x
to return to the space of original variables. Since si is by definition non-
negative, it is straightforward to do this safely using directed rounding.
We simply need to underapproximate the coefficient and perform the back-
substitution exactly as an aggregation according to Corollary 2.

2.5 Post-processing steps

The steps outlined in the previous section yield a new valid, F-representable
inequality αTx ≤ β. We present two post-processing ideas that aim to
improve LP performance after adding such inequalities.

2.5.1 Scaling

An important aspect to improve the numerical stability of cutting plane
algorithms, both in the exact and in the inexact setting, is scaling. Large
coefficient ranges in the problem are known to detriment the performance
and accuracy of LP solvers. This is especially relevant for the exact MIP
setting. Given a cut αTx ≤ β and a scaling coefficient s ≥ 0, we can safely
scale the cut using the same approach as in the previous subsection.

Lemma 3. Given a valid cut αTx ≤ β and a scaling factor s ≥ 0, the safely
scaled cut∑
i∈U

sαixi +
∑
i∈L

sαixi ≤ sβ +
∑

i∈U,ui>0

(sαi − sαi)ui +
∑

i∈L,`i<0

(sαi − sαi)`i

is valid and F-representable.

Proof. Analogous to Lemma 1.

We employ two different scaling approaches, similar to the ones that are
used by the corresponding floating-point algorithm in SCIP. If continuous
variables appear in the cut, we simply scale to equilibrium, meaning we scale
such that the largest absolute value of any coefficient becomes 1.

If the cut contains only integer variables, we attempt to find a scaling
factor that makes all coefficients close to integer. This approach uses the
euclidean algorithm to compute a rational approximation and then multi-
plies by the least common multiple (LCM) of all denominators. We impose
a limit of 10−6 on the error in the rational representation and of 105 on the
size of the LCM. If this proves successful, we round the coefficients to the
nearest integer and offset the right-hand side to account for the difference.
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Consequently, we can round down the right-hand side to strengthen the cut.
If some of the working limits are exceeded and the approach fails, we re-
vert to scaling to equilibrium. This is the same approach that is used in
presolving for linear constraints and is detailed in [1, Algorithm 10.2.4].

2.5.2 Controlling the encoding length

If scaling to integer values as outlined in the previous section was not possible
or not successful, the coefficients αi will often have large encoding lengths
when represented as a rational number αi =

ni
di

, ni ∈ Z, di ∈ N.
This is not an issue when the inequality is added to the floating-point

relaxation of the LP. However, we sometimes need to (or want to) solve
the rational LP relaxation of P exactly, i.e., using an exact LP solver. Our
experiments in Section 4 show that the exact LP solver may struggle with
LPs that contain cuts with coefficients of large encoding length, in some
cases causing large spikes in LP solving times.

This empirical observation also has a theoretical counterpart. The con-
vergence analysis of the LP iterative refinement algorithm for solving ra-
tional LPs exactly is related to the smallest possible violation of any basic
solution to a rational LP. In turn, this smallest possible violation is linked
to the encoding length of the whole problem [18, Lemma 5]. This analysis
suggests investigating whether the practical performance of the iterative re-
finement algorithm can be improved by decreasing the encoding length of
the generated cuts.

Given a limit M > 0 on the size of denominators allowed in the cut, we
wish to compute a relaxation

∑n
i=1

n̂i

d̂i
xi ≤ b̂ such that d̂i ≤ M . Depending

on the available bounds for each of the variables, we may additionally require
that n̂i

d̂i
≤ αi or n̂i

d̂i
≥ αi, since we use one variable bound to offset the right-

hand side for maintaining feasibility of the inequality. The algorithm we use
to achieve this approximation is based on continued fraction approximations
(see, e.g., [36, Section 6.1]). For r ∈ Q we compute the continued fraction

[r0; r1, . . . , rn] = r0 +
1

r1 +
1

r2+
1

r3+...

≈ r

and a sequence of convergents (piqi )
n
i=1 using the following recursive formulas:

ρ0 = r r0 = bρ0c

ρi+1 =
1

ρi − ri
ri+1 = bρi+1c
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for i = 0, 1, . . . as long as ρi 6∈ Z, and

p0 = r0 q0 = 1

p1 = r0r1 + 1 q1 = r1

pi+1 = ri+1pi + pi−1 qi+1 = ri+1qi + qi−1.

It is known that all convergents pi
qi

of the continued fraction approx-
imations are best approximations in the sense that there exist no better
approximations with a smaller denominator than qi. This has even been
proven for a stronger notion of best approximation [25, Theorem 17]. How-
ever, if we impose a fixed limit M on the denominator, as is the case here,
we are not guaranteed that the best approximation

argmin
{∣∣n

d
− r

∣∣ : n ∈ Z, d = 1, 2, . . . ,M
}

with respect to that limit is a convergent of the continued fraction approxi-
mation.

To compute the best approximation in that sense we need to consider
so-called intermediate fractions. If pi

qi
, pi+1

qi+1
are consecutive convergents of a

continued fraction approximation, then we define the intermediate fractions

pji+1 = jpi + pi−1 qji+1 = jqi + qi−1

for j = 1, . . . , ri+1. We can now state the desired best approximation guar-
antee [25, Theorem 15].

Lemma 4. Given M > 0 and r ∈ Q, the best approximation of r by a
rational number with denominator at most M is either a convergent or an
intermediate fraction of the continued fraction approximation for r.

We mention two more results from the literature that we will use to
make computing the best possible approximation as efficient as possible.
First, we note that all convergents with even index form a strictly increasing
sequence, while the convergents with odd index form a strictly decreasing
one [28, Theorem 5], i.e.,

p0
q0

<
p2
q2

< . . . <
p2k
q2k

< . . . < r < . . . <
p2k+1

q2k+1
< . . . <

p1
q1

.

Furthermore, we know that the intermediate fractions do the same [28, The-
orem 9], i.e., if n is even, then

pn
qn

<
p1n+2

q1n+2

< . . . <
p
rn+2

n+2

q
rn+2

n+2

=
pn+2

qn+2
< . . . .
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Using this monotonicity, we can formulate an algorithm to compute the best
approximation n

d of a rational number r with denominator at most M .
The trivial case of d ≤ M requires no work. Otherwise, we compute

convergents of the continued fraction approximation for r until qn > M for
some n ∈ N. Then, since both pn−1

qn−1
, as well as pn

qn
are best approximations

with respect to their denominators, we know that the best approximation
with respect to M is either pn−1

qn−1
or one of the intermediate fractions pkn

qkn
for some k ∈ {1, . . . , rn}. Instead of computing all intermediate fractions
and choosing the best one, we know due to monotonicity that the best is
the one with the largest possible denominator, i.e., with k = b (M−qn−2)

qn−1
c.

Furthermore, the intermediate fractions that are best approximations are
exactly the ones with j ≥ brn/2c+ 1.1 Hence, it is trivial to check whether
the intermediate fraction or the last convergent pn−1

qn−1
should be chosen.

One last case to consider is when the corresponding variable is only
bounded in one direction but lacks either an upper or lower bound. In that
case, we are required to find an approximation that is either not larger or
not smaller than the original number r. This poses no additional challenge
since we know that

• convergents with even index are always less than or equal to r, and

• convergents with odd index are always greater than or equal to r,

and the same holds for intermediate fractions [28]. W.l.o.g. , assume that
we are required to compute an approximation that is not larger than r.
Again, assume that pn

qn
is the first convergent such that qn > M . If n is odd,

then we know immediately that pn−1

qn−1
is the best approximation, since all

intermediate convergents pkn
qkn

> r. If n is even, then we know that pn−1

qn−1
> r

and should therefore not be considered. Instead, we immediately choose the
intermediate fraction pkn

qkn
with k = bM−qn−2

qn−1
c, as described above.

A compact algorithmic description of the whole procedure for obtaining
the best approximation p

q ≤ r is presented in Algorithm 1.

3 Generating elementary certificates
Although we have proven mathematically that the proposed methods are
correct and can therefore be used to solve MIPs exactly, it is unrealistic

1We could not find a proof for this in the literature and have included it in the
Appendix A, Lemma 7
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Algorithm 1 Approximate r = n
d ∈ Q by a rational number with bounded

denominator.
Input: r = n

d ∈ Q,M ∈ Z+

Output: p, q ∈ Z with p
q = argmin{|ab − r| : a

b ≤ r, b = 1, 2, . . . ,M}
Compute [r0; r1, . . . , rn] and p1

q1
, . . . , pnqn with qn−1 ≤M , qn > M

if n odd, i.e., pn−1

qn−1
≤ r < pn

qn
then

p← pn−1

else
j = bM−qn−2

qn−1
c

p← jpn−1 + pn−2

q ← jqn−1 + qn−2

end if
Return p

q

to offer a formal guarantee of correctness for an implementation of these
methods. Due to the high algorithmic complexity and the sheer code size, it
is neither easy for a user to verify that the implementation is indeed correct,
nor is it feasible to prove correctness formally. A more realistic goal is to
provide a certificate of optimality for each individually solved instance that
follows a much simpler logic and can be checked and verified independently
of the solving algorithm.

For MIPs, the VIPR [9] certificate format provides a standard for verifi-
cation. It can be viewed as a tree-less encoding of (the leaves of) a branch-
and-bound tree. To guarantee a high degree of confidence, the format only
supports the following three elementary steps:

• aggregation of constraints,

• disjunction logic,

• Chvátal-Gomory cuts, i.e., rounding down the right-hand side of a
constraint if all coefficients and variables are integer.

We give a short overview of that certificate language, for a more detailed
description, see [9]. A VIPR certificate consists of the problem statement,
the optimal solution and objective value, followed by a derivation section
that proves a lower bound or infeasibility. That derivation section is a
list of constraints with proofs of their validity. Bounds on the objective
function are also seen as one type of constraint. For an aggregation, that
proof is a list of multipliers and line indices. For disjunction logic, there
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Given
x1, x2 ∈ Z

C1 : 2x1 + 3x2 ≥ 1
C2 : 3x1 − 4x2 ≤ 2
C3 : −x1 + 6x2 ≤ 3

Derived Reason Assumptions
A1 : x1 ≤ 0 {assume}
A2 : x1 ≥ 1 {assume}
A3 : x2 ≤ 0 {assume}
C4 : 0 ≥ 1 {C1 + (−2) ·A1 + (−3) ·A3} A1, A3
A4 : x2 ≥ 1 {assume}
C5 : 0 ≥ 1

{(
− 1

3

)
· C3 +

(
− 1

3

)
·A1 + 2 ·A4

}
A1, A4

C6 : x2 ≥ 1
4

{(
− 1

4

)
· C2 +

(
3
4

)
·A2

}
A2

C7 : x2 ≥ 1 {round up C6} A2
C8 : 0 ≥ 1

{(
− 1

3

)
· C2 + (−1) · C3 + 14

3 · C7
}

A2
C9 : 0 ≥ 1 {unsplit C4, C5 on A3, A4} A1
C10 : 0 ≥ 1 {unsplit C8, C9 on A2, A1}

Figure 1: Certificate example for an infeasible instance [9].

are two operations. A new disjunction can be introduced by printing two
assumption constraints, and then other constraints can use that assumption
as part of a derivation. If at some point a constraint holds for both parts
of a disjunction, it can be unsplit and the disjunction can be discharged.
At the end of the checking procedure, the checker needs to ensure that
no undischarged assumptions remain. Figure 1 shows a short example of
a VIPR certificate for an infeasible instance. Note that the assumptions
column is not provided in the certificate, but is tracked during verification.

For the verification of MIR cuts, let us first consider the theoretical case
where all operations (aggregation, rounding, substitution) are carried out in
exact arithmetic. In that case, assuming the aggregation has already been
certified, a disjunctive proof can be extracted directly from [30].

Lemma 5. Given the simple case of a two-variable set

X = {(w, u) ∈ Z× R+ : w − u ≤ b}, (6)

the MIR cut
w − u

1− f
≤ bbc, with f := b− bbc
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is valid for X.

The proof introduces a simple split disjunction:

X1 = X ∪ {(w, u) : w ≤ bbc} and X2 = X ∪ {(w, u) : w ≥ bbc+ 1}.

Then validity of the cut for X1 is proven by aggregating w ≤ bbc and u ≥ 0
with weights 1 and −1

1−f , respectively. For X2 the inequalities w ≥ bbc + 1

and w − u ≤ b are aggregated with coefficients − f
1−f and 1

1−f , respectively.
For the multi-variable version needed in practice we have:

Theorem 6. Given a ∈ Rn, b ∈ R, the single-constraint set

X = {(x, y+, y−) ∈ Z|N |
+ × R+ × R+ : aTx+ y+ ≤ b+ y−}, (7)

and let f = b− bbc, fj = aj − bajc. Then the MIR cut

∑
j∈N

(
bajc+

(fj − f)+

1− f

)
xj −

y−

1− f
≤ bbc (8)

is valid for X.

The proof first defines two index sets N1 = {j : fj ≤ f} and N2 = {j : fj >
f}. Based on these, we define w =

∑
j∈N1
bajcxj+

∑
j∈N2
dajexj , which takes

the place of the single integer variable of Lemma 5. For the continuous part
u = y− +

∑
j∈N2

(daje − aj)xj) is used. Variable y+ is discarded.
Therefore, to certify the correctness of inequality (8), we need to first

print the split disjunction for w as well as a proof for u ≥ 0 to the certificate.
Then we aggregate both sides of the disjunction as pointed out in the proof of
Lemma 5, unsplit both sides, and have proven validity under the restrictions
of VIPR.

In practice, we perform all operations using the safe directed rounding
approach discussed in the previous section. This means that we need to
account for the rounding errors that were made during the solving process. A
derivation for an inequality aTx ≤ b is only accepted if the exact aggregation
ãTx ≤ b̃ dominates aTx ≤ b, meaning that a = ã and b̃ ≤ b. However, a = ã
will not necessarily hold when safe rounding was used to derive a, since the
coefficients were not computed in exact arithmetic.

In order to handle this without creating additional overhead for gener-
ating the certificate during the solving process, we extend the certificate
language by a notion of weak domination as follows.
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Definition 2. An inequality aTx ≤ b weakly dominates a′Tx ≤ b′ with
respect to bounds ` ≤ x ≤ u if there exist coefficients δ+i , δ

−
i ≥ 0 such that

ai + δ+i − δ−i = a′i for all i = 1, . . . , n,

b+
∑

i:δ+i >0

δ+i ui −
∑

i:δ−i >0

δ−i `i ≤ b′.

If a derived inequality is weakly dominating, then it is easy to post-process
that derivation into a (strongly) dominating inequality by iterating through
the variables, computing the coefficient differences δi = a′i − ai, and adding
them as additional aggregation multipliers with their corresponding bound
constraints.

Note that the safe rounding technique uses precisely the “opposite” con-
cept: Each arithmetic operation is accompanied by adding an overestima-
tion of the rounding error to the right-hand side. Therefore, if we print the
proof according to Theorem 6 to the certificate using safe rounding, we are
guaranteed to obtain a weakly dominating inequality. Figure 2 shows a toy
example of such a weak domination and its completed strong part.

To work with this extended certificate language, we extended the certifi-
cate checking software available for VIPR2 by a newly created completion
script viprcomp that converts certificates containing weakly dominating in-
equalities into classic VIPR certificate files. This has the benefit of not
complicating the logic used inside the proof checker itself. Thus, confidence
in the certification process remains as high as before.

Note that in theory it would be possible to perform this completion step
already during the solving process, directly inside the MIP solver. However,
in practice this would negate all positive performance impact from using fast
safe rounding instead of expensive symbolic computations. Performing the
completion a posteriori has further advantages. Only selected cuts must be
post-processed, and we know in advance how many cuts need to be certified;
these could be post-processed independently in parallel.

One issue that this approach cannot fix is the slight floating-point inac-
curacy incurred from the elimination of slack variables as described at the
end of Section 2.4. To illustrate this issue, consider a slack variable si that
is present in the cut, belonging to some row aTi x ≤ bi. After safely apply-
ing the MIR procedure, that slack variable has some coefficient ri in the
resulting cut. The same procedure applied in exact arithmetic would yield
a slightly different coefficient r′i. If we could compute the difference r′i − ri

2The code for VIPR is open-source and available on [8].
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Given
x, y ∈ Z

C1 : 3x1 − 4x2 ≤ 2
C2 : −x1 + 6x2 ≤ 3
B3 : x2 ≤ 4

Derived Reason Comment
C4 : 4 2

3x2 ≤ 3 2
3

1
3 · C1 + C2 Exact derivation

C5 : 5x2 ≤ 5 1
3 · C1 + C2 Incomplete

C6 : 5x2 ≤ 5 1
3 · C1 + C2 + 1

3 ·B3 Completed version of C5

Figure 2: Toy example for weak domination. C4 is the actually derived con-
straint using the multipliers 1

3 , and 1. Using the same multipliers, we might
have obtained (by using some rounding operations) C5 instead. The reason-
ing for C5 is incomplete, but it can be converted into a proper derivation
by taking into account B3.

in the certificate completion step, we could correct for the rounding errror
using the definition of si = bi− aTi x ≥ 0. However, inside the certificate, we
can only observe the coefficients in the finalized cut, where the slack variable
has been eliminated. Therefore, we cannot compute the correction factor
just from the difference in coefficients since it is not possible to determine
which rows contributed how much to the inaccuracy.

To overcome this issue, we need to actually compute the exact coefficients
r′i for slack variables inside the solver and print the difference r′i − ri to the
certificate. While this does increase the number of symbolic computations
needed during the solve, we can limit it to only those cuts that are selected
to enter the LP, and need to perform it only when certificate printing is
enabled.

A different approach to verifying any kind of constraint that can be de-
rived by aggregation is to solve an exact LP in the certificate completion
step. Assume we are given an inequality αTx ≤ β that should be veri-
fied. Given the initial model constraints Ax ≤ b, as well as additional local
constraints Alx ≤ bl,

max{αTx : Ax ≤ b, Alx ≤ bl }.

If the optimal value of that exact LP is at most β, we know that αTx ≤ β
is valid, and we can print a proof by aggregation using the dual multipliers
of the exact LP solution. We have extended the viprcomp script to also
contain that feature. It is not the default option to complete certificate files
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for two reasons. Firstly, solving an exact LP for every cut that should be
verified is computationally expensive. Secondly, it is not guaranteed that
the exact LP solver can prove optimality for each cut, e.g., due to numerical
troubles, which would render the whole certificate useless. The completion
using only the variable bounds, on the other hand, is guaranteed to always
work.

4 Computational analysis
We investigate the performance of the techniques covered in the previous
sections in a practical setting. Our goal is to answer three main questions.

First, how does the separation of safe GMI cuts affect the solving be-
haviour? To answer this question we evaluate safe GMI cuts both with
and without rounding to small denominators as proposed in Section 2.5.2.
Besides comparing the number of solved instances, runtime, and number
of branch-and-bound nodes, we measure the gap closed both after the root
node and after the time limit.

Second, how does the effect of safe GMI cuts in the exact MIP framework
compare to that of non-safe GMI cuts in the floating-point MIP setting? To
analyze this, we first create a common baseline by disabling all features that
do not exist in exact SCIP also in the floating-point version of SCIP. Within
that reduced solver, we then perform experiments with and without GMI
cuts and compare the results to the results with numerically safe cuts in the
exact setting.

Third, what is the overhead for producing, completing, and verifying
certificates? Here, we are particularly interested to see how the certification
of cuts impacts the overhead beyond the pure branch-and-bound setting.

In total, we compare the following five configurations of SCIP:

• nocuts: Exact solving mode with separation disabled.

• safegmi: Exact solving mode with separation enabled, but without
rounding to small denominators according to Section 2.5.2.

• densmall: Exact solving mode with separation enabled and size of
denominators limited to 217; this value proved a good tradeoff between
accuracy and speed.

• fpnocuts: floating-point mode with all plugins disabled that are not
available in exact solving mode and no separation.
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• fpgmi: floating-point mode with all plugins disabled that are not
available in exact solving mode and enabled the separation of GMI
cuts.

4.1 Computational setup

All experiments were performed on a cluster of Intel Xeon Gold 5122 CPUs
with 3.6 GHz and 96 GB main memory. We use SoPlex 6.0.2 [31] for
solving all LP and exact LP subproblems. For all symbolic computations,
we use the GNU Multiple Precision Library (GMP) 6.1.2 [20]. For symbolic
presolving, we use PaPILO 2.0.1 [23]; all other SCIP presolvers are disabled.

As test set we use the MIPLIB 2017 benchmark instances; in order to
save computational effort, we exclude all those that could not be solved
by the floating-point default version of SCIP 8.0 within two hours. We
use three random seeds for the remaining 132 instances, making the size of
our test set 396. The time limit was set to 7200 seconds for all experiments.
Unless stated otherwise, all averages are reported as shifted geometric means
with a shift of 1 seconds and 100 nodes, respectively.

4.2 Dual bound improvement

First, we analyze the gap closed to understand how much the added safe GMI
cuts help at improving dual bounds. Given a reference bound p, the dual
bound d1 after the first LP solve, and the dual bound d2 after the algorithm
terminates, the gap closed is defined as GC(p, d1, d2) =

(d2−d1)
(p−d1)

. As reference
solutions, we used the best-known floating-point feasible solutions to the
MIPLIB 2017 instances. We exclude all infeasible instances, as well as all
instances where the floating-point and exact solutions do not agree (e.g.,
because the instance is infeasible in the exact setting, but not in the floating-
point setting). The results for the remaining 367 instances are shown in
Table 1.

We observe almost identical values for the runs with safegmi and dens-
mall. densmall closes on average 0.2% more gap at the root (0.152
vs. 0.150) and 0.5% more gap after the time limit (0.580 vs. 0.585). This
shows that the further weakening of the cuts from that technique is not se-
vere. Although this experiment does not present a clear picture as to which
setting should be preferred, we will see a much clearer picture in favor of
densmall when looking at runtime experiments in Section 4.3.

When comparing the impact of GMI cuts in the exact and the floating-
point setting, we first observe that there is very little difference at the root
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Table 1: Arithmetic means of gap closed at the root node and after the time
limit.

nocuts safegmi densmall fpnocuts fpgmi

gap closed root - 0.150 0.152 - 0.161
gap closed tlim 0.485 0.580 0.585 0.543 0.653

node: fpgmi closes only 0.9% more gap than densmall (0.161 vs. 0.152).
After time limit, 11% more gap is closed by enabling cuts in the floating-
point setting (0.653 vs. 0.543). In the exact setting 9.5% additional gap is
closed by safegmi (0.580 vs. 0.485) and 10% by densmall (0.585 vs. 0.485).
All in all, although safely generated MIR cuts are in general weaker than
floating-point cuts, our experiments show that their relative impact on the
average dual performance of the respective solvers is only minimally reduced.

Since mean values often do not show the complete picture, Figure 3
provides pairwise comparisons between different settings.While we can also
observe the very similar root node performance for safegmi and densmall
(Figure 3a), there exists a significant amount of instances, where either
densmall or safegmi vastly outperforms the other after time limit (Fig-
ure 3b); some of these may be due to performance variability, which is more
pronounced when comparing runs involving branching. In Figure 3c it is
clearly visible that safe GMI cuts help with closing the gap in exact solving
mode. When comparing the impact in the exact and in the floating-point
setting (Figure 3c vs. Figure 3d), we see a slightly more consistent posi-
tive impact in the floating-point setting. The number of instances where
enabling cuts leads to smaller gaps closed after time limit is larger in the
exact setting.

4.3 Runtime experiments

Table 2 reports aggregated results for the number of instances solved, the
number of nodes, and the running times for the three exact settings. Com-
paring the safegmi against the nocuts setting shows 34 new instances
could be solved, while 12 could be solved with nocuts but not with safegmi,
leading to a total of 22 more instances solved.

The number of branch-and-bound nodes was reduced by 50.9%, and
solving time was reduced by 18.4%. Furthermore, we observe that while the
time spent in (floating-point) LP solving expectedly decreases by 33.1% due
to the smaller tree sizes, the time spent in exact LP solving increases by
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Figure 3: Comparison of gap closed with different versions of safe GMI cuts.

163.4%.
While the overall time spent in exact LP calls is still low, only looking

at averages does not tell the full story. For many of the instances that
can be solved to optimality by nocuts but not by safegmi, the exact
LP solving time is the major bottleneck. The issue that arises within the
exact LP solver for some of the subproblems is that the numerical accuracy
of the underlying double-precision floating-point solver is not high enough,
and that after computing the residuals and rescaling inside the iterative
refinement procedure, the resulting refinement LP is numerically too difficult
to solve. This results either in large solving time spikes for some exact LPs
or even for the exact LP solver to terminate without solving the problem to
optimality.

In comparison to that, densmall solves 6 more instances than safegmi
(10 gained, 4 lost), with a reduction in nodes by 50.5%, and a reduction
in solving time by 26.8% when comparing with nocuts. The average time
spent solving exact LPs still increases by 56.3% compared to nocuts, but
most of the bottlenecks in exact LP solving disappear, and thus performance
is improved. This is although the size of the branch-and-bound tree increases
slightly compared to safegmi.
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Table 2: Comparison of safe cutting plane variants on all MIPLIB 2017
benchmark instances that could be solved by at least one solver. Columns
exLP anf fpLP show the time spent in exact LP solving and floating-point
LP solving, respectively.

time [s]

setting solved nodes (rel) total (rel) exLP fpLP

nocuts 130 20106.5 1.00 1121.06 1.00 7.1 324.0
safegmi 152 9867.5 0.49 914.26 0.82 18.7 216.8
densmall 158 9952.9 0.5 820.69 0.73 11.1 209.5

Table 3: Impact of GMI cuts in floating-point setting on all MIPLIB 2017
benchmark instances that could be solved by at least one solver.

time [s]

setting solved nodes (rel) total (rel) LP

fpnocuts 164 32741.6 1.00 695.29 1.00 378.7
fpgmi 203 12604.8 0.38 451.12 0.65 233.1

This brings us to the second question, of how this measures up to the
benefit from GMI cuts in the floating-point setting. The results for fp-
nocuts and fpgmi are presented in Table 3. Enabling GMI cuts in that
setting solves 39 more instances, reduces the number of nodes by 61.5%, and
reduces solving time by 35.1%. We see two main reasons for this slightly
better performance in the floating-point case. First, the cuts are weakened
by using the safe rounding procedure, both in their construction as well as
during post-processing. We believe that this would not pose such a drastic
effect in the floating-point setting, where tolerances are used to detect opti-
mality and prune nodes. However, since both feasibility as well as optimality
tolerance is exactly zero in the exact setting, even a slight weakening of cuts
may prevent nodes from being pruned or optimality from being detected.
We also have to note that performance drastically worsens if the frequency
of exact LP calls is increased. In this experiment, we only solve exact LPs
when strictly necessary.
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4.4 Certificate overhead

We measure the overhead that is introduced by enabling the verification
using VIPR certificates as described in Section 3. Since the overhead is not
subject to performance variability, we only compare for a single seed, and
only for our best setting, densmall. To ensure that the same number of
instances is solved, we extended the time limit for the run with enabled
verification to 6 hours. As in [13], presolving reductions are currently not
certified, so we only verify that the presolved problem has been solved cor-
rectly. However, we do check the optimal solution for feasibility in the
original problem space.

SCIP does not force all generated cuts to enter the LP, but rather adds
them to a storage from which efficacious cuts are selected greedily and redun-
dant or near-orthogonal cuts are filtered. Therefore, it would be unnecessary
and inefficient to write all generated cuts to the certificate file. Instead, we
only print the verification of a safe GMI cut to the certificate when the
corresponding row enters the LP. To make this possible we save the aggre-
gation information, the split information, which variable bounds are used in
transformation, and the scaling factor in a hashmap.

We observe an increase of 47.1% in MIP solving time, which is very
similar to what was measured in [13] for the pure branch-and-bound version.
This shows that the additional verification of cuts does not increase the
proportional overhead for printing certificates.

The total overhead during solving, completion, and checking is on aver-
age 57.7%, which is slightly smaller than the 65.8% reported in [13], although
the extra step of completing the certificates is added. This reduction shows
that the effort added for verifying cutting planes is more than compensated
by the effort saved due to the smaller tree sizes observed in Section 4.3.

The time spent on completing the weakly dominating inequalities is the
smallest fraction of the overhead. The biggest share stems from bookkeeping
and printing of certificates during the MIP solve. All except one instance
that could be solved within a time limit of two hours without certification
could be solved and successfully certified within 3 hours; the only outlier
was instance mas74, which took almost 8 hours to solve and verify.

Comparing this with the overhead from other certified algorithms, e.g.,
in recent work on symmetry breaking for pseudo-Boolean solvers [6], shows
that the behaviour is quite different. In exact MIP, the overhead for printing
is much larger, while the certification overhead is much smaller. The main
reason for this difference is that the logic allowed in VIPR certificates is more
elementary than in [6], thus putting more strain on the solver to produce
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Table 4: Overhead from producing and verifying certificates for densmall
on the 49 MIPLIB 2017 benchmark instances that could be solved to opti-
mality within two hours without certification.

time [s]

solving completion checking total

Baseline 621.5 - - 621.5
With verification 914.4 25.73 40.10 980.2

Overhead 47.1% - - 57.7%

certificates that are accepted.

5 Conclusion
In this paper, we adapt the numerically safe Gomory mixed-integer cuts
introduced by Cook et al. [11] to the setting of exact rational mixed-integer
programming. We identify exact LP solving as the main difficulty in making
safe cutting planes performant, and show ways to overcome this difficulty
by post-processing their coefficients. Using these methods, our algorithm
is able to solve 21.5% more instances with a reduction of 26.8% in solving
time on the MIPLIB 2017 benchmark test set. This is a significant improve-
ment, although it is slightly less than what is achievable in the floating-point
setting.

We conjecture that a slight weakening of the cuts from the numerically
safe method together with the absence of error tolerances are the reasons
for the smaller speedup in the exact setting.

We see several future research opportunities to further improve the per-
formance of safe cutting planes. Extending the iterative refinement proce-
dure of the exact LP solver to be able to perform precision-boosting would
help with LPs that become difficult due to the separation of cutting planes.
In a more straightforward direction, it might also be possible to tune sep-
aration parameters for the exact MIP setting, whereas in our experiments
we use default settings of the floating-point solver to make the results as
comparable as possible.

On the verification side, we show that the VIPR certificate format can
be used to verify the correctness of the safe GMI cuts, without significantly
increasing the overall certificate overhead.

All in all, we show that a careful implementation of numerically safe
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cutting planes can significantly improve the solving behaviour of an exact
MIP solver. It should be pointed out that this result was achieved for one
of the numerically most challenging class of cutting planes: cuts generated
from the simplex tableaux. Hence, we are reasonably confident that there is
room for further improvement with the addition of other types of cuts that
are arithmetically easier to generate and exhibit nicer numerical properties,
such as cover cuts for knapsack constraints [29], flow covers [21], or zero-half
cuts [26].
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A Proof for intermediate fractions
We consider a rational number q, a bound on the denominator M > 0, its
continuous fraction

[ri; r0, . . . , rn] = r0 +
1

r1 +
1

r2+
1

r3+...

,

convergents (piqi )i=1,...,n, and intermediate fractions (piqi )
j
i=1,...,n. Then the

following holds

Lemma 7. Exactly the intermediate fractions with j ≥ b ri2 c + 1 are best
approximations for q.

Proof. Due to the monotonicity of intermediate fractions, we only need to
prove that pji+1

qji+1

is a best approximation for j = b ri2 c+1, and that it is not a

best approximation for b ri2 c. Furthermore, we only need to prove that pji+1

qji+1

is a better approximation than pi
qi

, i.e., that∣∣∣∣∣p
j
i+1

qji+1

− r

∣∣∣∣∣ <
∣∣∣∣piqi − r

∣∣∣∣ .
We know by ([25, Theorem 9] and [25, Theorem 13] that

1

qi(qi+1 + qi)
<

∣∣∣∣piqi − r

∣∣∣∣ ≤ 1

qiqi+1
. (9)

Since pji+1

qji+1

and pi
qi

lie on opposite sides of r, it holds that∣∣∣∣∣p
j
i+1

qji+1

− r

∣∣∣∣∣ =
∣∣∣∣∣p

j
i+1

qji+1

− pi
qi

∣∣∣∣∣−
∣∣∣∣piqi − r

∣∣∣∣ , (10)

and ∣∣∣∣∣p
j
i+1

qji+1

− pi
qi

∣∣∣∣∣ =
∣∣∣∣∣qi(jpi + pi−1)− pi(jqi + qi−1)

qiq
j
i+1

∣∣∣∣∣ =
∣∣∣∣∣qipi−1 − piqi−1

qiq
j
i+1

∣∣∣∣∣ .
Iteratively applying the definitions of pi, qi, it is easy to see that |qipi−1 − piqi−1| =

1, so we have shown ∣∣∣∣∣p
j
i+1

qji+1

− pi
qi

∣∣∣∣∣ = 1

qiq
j
i+1

(11)
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Using this with (10) and (9) yields∣∣∣∣∣p
j
i+1

qji+1

− r

∣∣∣∣∣ < 1

qiq
j
i+1

− 1

qi(qi+1 + qi)
=

qi+1 + qi − qji+1

qiq
j
i+1(qi+1 + qi)

=
ri+1qi + qi−1 + qi − (jqi + qi−1)

qiq
j
i+1(qi+1 + qi)

=
q
1+ri+1−j
i+1 − qi−1

qiq
j
i+1(qi+1 + qi)

<
q
1+ri+1−j
i+1

qiq
j
i+1(qi+1 + qi)

Setting j = bri+1/2c+ 1 yields∣∣∣∣∣p
j
i+1

qji+1

− r

∣∣∣∣∣ < q
dri+1/2e
i+1

qiq
bri+1/2c+1
i+1 (qi+1 + qi)

≤ 1

qi(qi+1 + qi)
≤

∣∣∣∣piqi − r

∣∣∣∣
It still remains to show pji+1

qji+1

is not a best approximation for j = b ri+1

2 c. The
idea is the same, we just use the other direction of (9).∣∣∣∣∣p

j
i+1

qji+1

− r

∣∣∣∣∣ ≥ 1

qiq
j
i+1

− 1

qiqi+1
=

(ri+1 − j)qi

qiq
j
i+1qi+1

=
d ri+1

2 e
(b ri+1

2 c)qi+1qi + qi+1qi−1

≥
d ri+1

2 e
(b ri+1

2 c)qi+1qi
≥ 1

qi+1qi
≥

∣∣∣∣piqi − r

∣∣∣∣
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