
AN INEXACT PROXIMAL-INDEFINITE STOCHASTIC ADMM
WITH APPLICATIONS IN 3D CT RECONSTRUCTION ∗

JIANCHAO BAI† , YANG CHEN‡ , AND XUE YU§

Abstract. In this paper, we develop an Inexact Proximal-indefinite Stochastic ADMM (abbre-
viated as IPS-ADMM) for solving a class of separable convex optimization problems whose objective
functions consist of two parts: one is an average of many smooth convex functions and another is a
convex but possibly nonsmooth function. The involved smooth subproblem is tackled by an inexact
accelerated stochastic gradient method based on an adaptive expansion step to avoid the case that
the sample size can be huge so that computing the objective function value or its gradient is much
expensive. The restulting nonsmooth subproblem is solved inexactly under a relative error criteri-
on to avoid the case that the proximal operator is potentially unavailable. Since the dual variable
updates twice, it allows a more flexible and larger stepsize region compared with standard deter-
ministic and stochastic ADMMs. By a variational analysis, we characterize the generated iterates
as a variational inequality and finally establish the sublinear convergence rate of this IPS-ADMM
in terms of the objective function gap and constraint violation. The efficacy of our IPS-ADMM is
demonstrated by comparing with several state-of-the-art methods for solving the three-dimensional
(3D) CT reconstruction problem in medical imaging.
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1. Introduction. One of important tasts in large-scale machine learning is to
design efficient and reliable methods for structural empirical risk minimization prob-
lem, that is, to minimize a finite-sum of loss functions and an empirical regularizer
subject to linear constraints:

min
x,y

{
f(x) + g(y) | Ax+By = b, x ∈ Rm, y ∈ Rn

}
, (1.1)

where f is an average of K real-valued convex functions, that is, f(x) = 1
K

∑K
i=1 fi(x);

g : Rn → R ∪ {+∞} is a convex but possibly nonsmooth function; A ∈ Rl×m, B ∈
Rl×n, b ∈ Rl are given data. Hereafter, the symbols R,Rm, and Rl×m denote the
sets of real numbers, m dimensional real column vectors, and l × m real matrices,
respectively. Problems in the form of (1.1) arise in 3D CT image reconstruction,
graph-guided fused lasso and 6G multi-access edge computing networks, cf. [1, 2, 3,
5, 20, 25] to list a few.

Let the Lagrangian function of (1.1) be

L(x, y, λ) = f(x) + g(y)− λ>(Ax+By − b)
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and the augmented Lagrangian function with penalty β > 0 be

Lβ(x, y, λ) = L(x, y, λ) +
β

2

∥∥Ax+By − b
∥∥2. (1.2)

A popular Lagrangian-based method for solving the problem (1.1) is the Alternating
Direction Method of Multipliers (ADMM, [13, 15]). Starting with given (yk, λk),
ADMM generates (xk+1, yk+1, λk+1) by the following scheme

xk+1 = arg min
x
Lβ(x, yk, λk),

yk+1 = arg min
y
Lβ(xk+1, y, λk),

λk+1 = λk − sβ(Axk+1 +Byk+1 − b),

where s ∈ (0, 1+
√
5

2 ) denotes the stepsize of the dual variable λ. ADMM has been ex-
tensively investigated due to its simplicity and wide applications in machine learning,
statistic learning, image processing, signal processing and so forth, and it also has
certain relationships with some first-order algorithms. As explained in [18], the aug-
mented Lagrangian method, ADMM, proximal point method, proximal-like contrac-
tion method, primal-dual hybrid gradient algorithm, Douglas-Rachford/Peaceman-
Rachford splitting method can be viewed as variational-based first-order algorithms.
Especially, if the Peaceman-Rachford splitting method [22] is applied to the dual form
of (1.1) and the dual variable is updated twice with suitable stepsizes, we can obtain
the following symmetric ADMM

xk+1 = arg min
x
Lβ(x, yk, λk),

λk+
1
2 = λk − τβ(Axk+1 +Byk − b),

yk+1 = arg min
y
Lβ(xk+1, y, λk+

1
2 ),

λk+1 = λk+
1
2 − sβ(Axk+1 +Byk+1 − b).

Its global convergence and sublinear complexity had been carefully established by He,
et al. [17]. Moreover, the above symmetric ADMM was extended to a multi-block
version [4] that enjoys the following relatively flexible stepsize region

∆0 =
{

(τ, s) | τ + s > 0, τ ≤ 1, − τ2 − s2 − τs+ τ + s+ 1 > 0
}
.

By adding a quadratic proximal term 1
2‖y − y

k‖2D with D = rI − βB>B to the
y-subproblem of the standard ADMM, it is easy to obtain the following linearized
ADMM iterations

xk+1 = arg min
x
Lβ(x, yk, λk),

yk+1 = arg min
y

{
θ2(y) + r

2

∥∥y − yk − 1
rB
>[λk − β(Axk+1 +Byk − b)

]∥∥2},
λk+1 = λk − β(Axk+1 +Byk+1 − b).

Generally speaking, the proximal parameter r needs to satisfy r > β
∥∥B>B∥∥ to further

guarantee convergence of the algorithm. However, in this case r might be very large
while a smaller value of r is preferred from the viewpoint of numerical performance.
In 2020, He, et al.[19] developed an optimal linearized ADMM as follows

xk+1 = arg min
x
Lβ(x, yk, λk),

yk+1 = arg min
y

{
Lβ(xk+1, y, λk) + 1

2

∥∥y − yk∥∥2
D0

}
,

λk+1 = λk − β(Axk+1 +Byk+1 − b),
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where

D0 = τrI− βB>B with r > β
∥∥B>B∥∥ and τ ∈ (0.75, 1).

The above parametric conditions imply that the matrix D might be positive indef-
inite since a smaller proximal parameter is allowed. For more details on using the
indefinite proximal matrix, we refer to [3, 8, 24] to list a few. In practice, it is dif-
ficult to solve the core subproblems exactly when applying ADMM-type methods to
solve real application problems in e.g. image restoration [7] and medical imaging [3].
Consequently, inexact techniques are introduced to obtain an approximate solution to
improve the efficiency of ADMM and to simplify the solving difficulty of subproblems.
In 1992, Eckstein and Bertsekas [10] proposed an inexact ADMM which tackles the
subproblems approximately and gradually increases its precision without disrupting
the convergence properties. Later, He, et al. [16] extends the inexact method [10] to
solve a class of variational inequality problems. Recently, some simple yet useful rel-
ative error criteria were proposed in [7, 11, 12]. Inspired by these inexact techniques,
in this paper we would propose an Inexact Proximal-indefinite Stochastic ADMM
(IPS-ADMM) framework which enjoys an indefinite proximal term and an adaptive
expansion step with an Armijo-type linesearch approach to improve the algorithm
performance as well as reduce the sensitivity of the parameter choice. Our proposed
algorithm and its main features are organized in the forthcoming section.

Notations. We follow the same notations as introduced in [6]. The bold I de-
notes the identity matrix and 0 denotes the zero matrix/vector. For any symmetric
matrices A and B having the same dimension, A � B(A � B) represents a pos-
itive definite(semidefinite) matrix. For any symmetric matrix G, we simply denote

x>Gx := ‖x‖2G and specially
√
x>Gx = ‖x‖G means a weighted norm if G � 0, where

the superscript > represents the transpose operator. The subdifferential of a convex
function f is denoted as ∂f(·) and it reduces to ∇f(·) if f is differentiable. The
mathematical expectation of a random variable is denoted as E[·]. For convenience of
analysis, we denote F (w) = f(x) + g(y) and define

w =

 x
y
λ

 , wk =

 xk

yk

λk

 ,J (w) =

 −A>λ
−B>λ

Ax+By − b

 ,J (wk) =

 −A>λk

−B>λk

Axk +Byk − b

 .

(1.3)

2. Development of IPS-ADMM. In this section, we describe the development
of our IPS-ADMM based on a preliminary assumption which reduces to the general
Lipschitz continuity when H is an identity matrix.

Assumption 2.1. For any symmetric positive definite matrix H, there exists a
constant v > 0 such that the gradients ∇fi satisfy the Lipschitz condition∥∥∇fi(x1)−∇fi(x2)

∥∥
H−1 ≤ v

∥∥x1 − x2∥∥H
for every x1, x2 ∈ Rm and i = 1, 2, · · · , N .

By the well-known Taylor expansion the above assumption suggests that the
function f is v-bounded in the sense of

f(x1) ≤ f(x2) + 〈∇f(x2), x1 − x2〉+
v

2
‖x1 − x2‖2H. (2.1)

Now, we present our inexact stochastic ADMM as shown in ALG. 2.1 which enjoys an
adaptive expansion step with the Armijo-type linesearch for the x-iterate and shares
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ALG. 2.1. Inexact Proximal-indefinite Stochastic ADMM (IPS-ADMM)

Parameters: β > 0, H � 0, $ > 1, (τ, s) ∈ ∆ given by (2.9).

Initialization: (x0, y0, λ0, v0) ∈ Rm × Rn × Rl × Rn, x̆0 = x0.
For k = 0, 1, · · ·
1. Choose mk > 0, ϑk > 0, and Mk such that 1

αk
Mk − βA>A � 0.

2. hk = −A>
[
λk − β(Axk +Byk − b)

]
.

3. (xk, x̆k+1) = xsub(xk, x̆k, hk).

4. Update the expansion step: xk+1 = xk + αkd
k
, where d

k
= xk − xk,

αk = $j with j ≥ 0 being the largest integer such that

Lβ(xk+1,yk, λk) ≤ Lβ(xk,yk, λk)− 1
αk−1

∥∥xk+1 − xk
∥∥2
Mk−

1+αk
2 βA>A

,

if j > 0; otherwise, αk = 1 and xk+1 = xk(without expansion step).

5. λk+
1
2 = λk − τβ(Axk+1 +Byk − b).

6. Update yk+1 by (2.4) such that the condition in (2.6) holds

with dk+1 satisfying (2.7).

7. Update the auxiliary variable vk+1 = vk − dk+1.

8. λk+1 = λk+
1
2 − sβ(Axk+1 +Byk+1 − b).

end

(x+, x̆+) = xsub(x1, x̆1, h).
For t = 1, 2, . . . ,mk

1. Randomly select ξt ∈ {1, 2, . . . ,K} with uniform probability.

2. βt = 2/(t+ 1), γt = 2/(tϑk), x̂t = βtx̆t + (1− βt)xt.
3. dt = ĝt + et, and ĝt = ∇fξt(x̂t), et is a random vector

satisfying E
[
et
]

= 0.

4. x̆t+1 = arg min
x∈Rm

{〈
dt + h, x

〉
+ γt

2

∥∥x− x̆t∥∥2H + 1
2

∥∥x− xk∥∥2Mk

}
.

5. xt+1 = βtx̆t+1 + (1− βt)xt.
end
Return (x+, x̆+) = (xmk+1, x̆mk+1).

Note: In step 4, Mk − 1+αk
2 βA>A � 0 since αk > 1 for any j > 0.

the same routine xsub as in [5] to obtain an inexact solution. The routine xsub is
actually deduced by solving the proximal problem inexactly:

min
x∈Rm

Lβ(x, yk, λk) +
1

2

∥∥x− xk∥∥2Dk , Dk =Mk − βA>A, (2.2)

that is,

min
x∈Rm

1

K

K∑
i=1

fi(x)+
β

2

(∥∥Ax+Byk−b− λ
k

β

∥∥2−∥∥A(x−xk)
∥∥2)+

1

2

∥∥x−xk∥∥2Mk
. (2.3)

More precisely, we linearize the bracketed terms β
2 (·) in (2.3) as

〈
−A>[λk−β(Axk +

Byk − b)], x
〉
, apply (2.1) to the first summable term in (2.3) by replacing the full

gradient by a stochastic gradient, and exploit the popular momentum acceleration
technique to obtain the solver xsub. For inexact solution of the y-subproblem, we
update it by employing an indefinite proximal term:
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yk+1 ≈ arg min
y∈Rn

{
g(y) +

β

2

∥∥∥Axk+1 +By − b− λk+
1
2

β

∥∥∥2 +
1

2

∥∥y − yk∥∥2
L0

}
, (2.4)

where

L0 = L− (1− γ)βB>B with γ ∈ (η, 1] and η ∈ (0.75, 1) (2.5)

for any arbitrarily positive semidefinite matrix L. When L is appropriately chosen
and the proximal operator of g(y) is available, the difficulty of solving the subproblem
(2.4) could be greatly alleviated. For more general case, we shall compute yk+1 from
(2.4) such that the following relative error criteria

2(1− τ)

1 + τ

∣∣〈yk − yk+1, dk+1 − dk
〉∣∣+ 2

∣∣〈vk − yk+1, dk+1
〉∣∣+

∥∥dk+1
∥∥2

≤σ1
∥∥yk+1 − yk

∥∥2
L

+ σ2
∥∥yk − yk−1∥∥2

L
+ (2− τ − s)σ3β

∥∥Axk+1 +Byk+1 − b
∥∥2 (2.6)

holds with vk+1 = vk − dk+1 and

dk+1 ∈ ∂g(yk+1)−B>λk+ 1
2 + βB>(Axk+1 +Byk+1 − b) + L0(yk+1 − yk). (2.7)

In the last inequality, σi(i = 1, 2, 3) are some negative constants to control the accu-
racy of an inexact solution of the y-subproblem and they satisfy

σ1 + σ2 ∈ [0, 1), σi ∈ [0, 1), i = 1, 2, 3, (2.8)

(τ, s) are the stepsize parameters of the dual variable belonging to

∆ =

{
(τ, s)

∣∣∣∣ τ + s > 0, τ ≤ 3η − 2−
√

(1− η)(13− 9η),
(2− γ − η)(1− s)2 − (1− η)(1− σ3)(1 + τ)(2− τ − s) ≤ 0

}
. (2.9)

The relative error criteria in (2.6) implies that the the iterate dk+1 involved in
the optimality condition of y-subproblem can be controlled by the y-residual and/or
the equality residual. Several main features and contributions of the proposed IPS-
ADMM are summarized as the following three aspects:

(i) Flexibility of the dual stepsize. Unlike the classical ADMM, the proposed
IPS-ADMM updates the dual variable twice with a relatively flexible step-
size region as in (2.9). Especially, IPS-ADMM reduces to the existing SAS-
ADMM [6] with an extra expansion linesearch step if we take γ = 1, σ3 = 0
and η → 1. By special choices for the parameters (σ3, γ, η), four instances of
the region ∆ are depicted in yellow area of Figure 2.1 and they seem to be
enlarged or shrunken of the existing region ∆0:

– If (σ3, γ) = (0, 1) and η → 1, the domain of (τ, s) is depicted as Figure 2.1
(a), where the top boundary curve is actually obtained by the inequality
in the sequel (3.30), that is, −τ2 − s2 − τs+ τ + s+ 1 = 0.

– If (σ3, γ) = (0, 1) and η = 0.99, the domain of (τ, s) is depicted in the
shadow area of Figure 2.1 (b).

– If (σ3, γ) = (0, 1) and η = 0.9, the domain of (τ, s) is depicted in the
shadow area of Figure 2.1 (c).

– If (σ3, γ) = (0, 0.95) and η = 0.9, the domain of (τ, s) is depicted in the
shadow area of Figure 2.1 (d).
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The first three cases shows that ∆ contains the classical region (0, 1+
√
5

2 ).
Moreover, in the first two cases, the stepsize s could be 5/3 which is larger

than 1+
√
5

2 . The subsequent Remark 3.2 presents another stepsize region ∆1

under a different relative error criteria and two instances of ∆1 are depicted
in Figure 3.1. These instances suggest that our dual variable allows more
flexible stepsizes than some in the literature.

Fig. 2.1: Four instances of the stepsize region ∆

(ii) Generality of the algorithm. First and foremost, our IPS-ADMM has
low memory requirement, since the x-subproblem is solved inexactly by an
accelerated stochastic gradient method and there is no need to save pre-
vious stochastic gradients and iterates. The relative error criteria (2.6) is
provided to solve the y-subproblem inexactly and ensure the convergence of
IPS-ADMM. When the parameters (σ1, σ2, σ3) are zero, i.e., dk+1 = 0, the
y-subproblem is solved exactly. However, different from most of ADMM-type
methods [4, 9, 21, 23] that employ a positive definite/semidefinite matrix,
our proximal matrix L0 is possibly positive-indefinite according to (2.5) and
the lower bound of the parameter involved in L0 is still 0.75 (the same value
to [19]). Except the relative error criteria (2.6), Remark 3.2 also provides
another relative error criteria while still maintaining a similar stepsize region
to ∆. These cases implies the generality and flexibility of IPS-ADMM.

(iii) Convergence and performance guaranteed. By the way of a unified vari-
ational characterization for the saddle-point of the problem and the generated
iterates, we eventually show that IPS-ADMM under the generalized Lipschitz
condition has the worst-case sublinear ergodic convergence rate in terms of
the expectation of both the objective value gap and the constraint violation,
and similar results can be found in e.g. [5, 21, 25]. A key step for proving the

convergence of IPS-ADMM is to estimate the lower bound of
∥∥wk − w̃k∥∥2

Gk
.
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Although Gk is positive indefinite, convergence of IPS-ADMM is still estab-
lished by making full use of the optimality condition of y-subproblem and
several variants of the Cauchy-Schwarz inequality. Numerical results on test-
ing the real 3D CT reconstruction problem in medical imaging demonstrate
the feasibility and effectiveness of the proposed IPS-ADMM, showing numer-
ical improvements over several existing state-of-the-art methods.

3. Convergence analysis. In this section, we first provide a variational charac-
terization for the saddle-point of (1.1) and a similar variational reformulation for the
iterates generated by IPS-ADMM. Then, we analyze the convergence of IPS-ADMM
according to the first-order optimality conditions of each subproblem.

3.1. Variational characterization. Let Ω := Rm×Rn×Rl. Since any saddle-
point of (1.2) is the primal-dual solution of the convex optimization problem (1.1),
we thus focus on the saddle-point of (1.1) in the following discussions. We call w∗ =
(x∗; y∗;λ∗) ∈ Ω the saddle-point of (1.1) if

L(x∗, y∗, λ) ≤ L(x∗, y∗, λ∗) ≤ L(x, y, λ∗)

holds for any w ∈ Ω, i.e.,
f(x)− f(x∗) +

〈
x− x∗,−A>λ∗

〉
≥ 0,

g(y)− g(y∗) +
〈
y − y∗,−B>λ∗

〉
≥ 0,

Ax∗ +By∗ − b = 0.

Write these inequalities in a more compact form to obtain

F (w)− F (w∗) +
〈
w − w∗,J (w∗)

〉
≥ 0, (3.1)

namely,

F (w)− F (w∗) +
〈
w − w∗,J (w)

〉
≥ 0 (3.2)

because the affine mapping J (w) defined by (1.3) satisfies〈
w − w,J (w)− J (w)

〉
= 0, ∀w,w ∈ Ω. (3.3)

Motivated by these discussions, a natural conjecture is that the iterative sequence
generated by IPS-ADMM shall converge to the primal-dual solution w∗ if the se-
quence can be characterized as a similar variational inequality to (3.2). To verify this
conjecture, we first provide the following lemma about the iterates generated by the
routine xsub.

Lemma 3.1. Let δt = ∇f(x̂t) − dt and D̃k = 1
αk
Mk − βA>A. Suppose ϑk ∈

(0, 1/v) and Assumption 2.1 holds. Then, the iterates generated by IPS-ADMM satisfy

f(x)− f(xk+1) +
〈
x− xk+1,−A>λ̃k

〉
≥
〈
xk+1 − x, D̃k(xk+1 − xk)

〉
+ ζk, (3.4)

where λ̃k = λk − β(Axk+1 +Byk − b) and

ζk =
2

mk(mk + 1)

 1
ϑk

(∥∥x− x̆k+1
∥∥2
H −

∥∥x− x̆k∥∥2H)
−
∑mk
t=1 t

〈
δt, x̆t − x

〉
− ϑk

4(1−ϑkv)
∑mk
t=1 t

2
∥∥δt∥∥2H−1

 . (3.5)
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Proof. On the one hand, for any j > 0 we have by [5, Lemma 3.2] that

f(x)− f(xk) +
〈
x− xk,−A>

[
λk − β(Axk +Byk − b)

]
+Dk(xk − xk)

〉
≥ ζk, (3.6)

where Dk and ζk are given by (2.2) and (3.5) repsectively. If j = 0, then (3.6) becomes
(3.4) with αk = 1 and xk = xk+1. On the other hand, it follows from the inequality
in the fourth step of IPS-ADMM that

f(xk)− f(xk+1) +
〈
xk − xk+1,−A>

[
λk − β(Axk+1 +Byk − b)

]〉
≥ 1

αk − 1

∥∥xk+1 − xk
∥∥2
Mk−

1+αk
2 βA>A

− β

2

∥∥A(xk − xk+1)
∥∥2. (3.7)

Sum up the inequalities (3.6) and (3.7) together with the notation of Dk and the

relation λ̃k = λk − β(Axk+1 +Byk − b) to obtain

f(x)− f(xk+1) +
〈
x− xk+1,−A>λ̃k

〉
+
〈
x− xk, βA>A(xk − xk+1) +Dk(xk − xk)

〉
+
β

2

∥∥A(xk − xk+1)
∥∥2

≥ 1

αk − 1

∥∥xk+1 − xk
∥∥2
Mk−

1+αk
2 βA>A

+ ζk.

(3.8)

Notice that by the expansion step xk+1 = αkx
k + (1− αk)xk, we have

xk − xk =
1

αk
(xk+1 − xk) and xk+1 − xk =

αk
αk − 1

(xk+1 − xk),

which, by Dk =Mk − βA>A, implies〈
x− xk, βA>A(xk − xk+1) +Dk(xk − xk)

〉
+
β

2

∥∥A(xk − xk+1)
∥∥2

=
〈
x− xk+1 + xk+1 − xk, βA>A(xk − xk+1)

〉
+
〈
x− xk,Mk(xk − xk)

〉
+
β

2

∥∥A(xk − xk+1)
∥∥2

=
〈
x− xk+1, βA>A(xk − xk+1

〉
+
〈
x− xk,Mk(xk − xk)

〉
+
〈
xk − xk+1,

β

2
A>A

(
xk − xk + xk+1 − xk

)〉
=
〈
x− xk+1, βA>A(xk − xk+1

〉
+
〈
x− xk+1 + xk+1 − xk, 1

αk
Mk(xk+1 − xk)

〉
+
〈
xk − xk+1,

β

2
A>A

(
1 +

1

αk

)
(xk+1 − xk)

〉
=
〈
x− xk+1,

( 1

αk
Mk − βA>A

)
(xk+1 − xk)

〉
+

1

αk − 1

∥∥xk+1 − xk
∥∥2
Mk−

1+αk
2 βA>A

.

Inserting this relation into (3.8) with simple algebra confirms the result in (3.4) im-
mediately.

In the above Lemma 3.1, ϑk ∈ (0, 1/v) is a necessary and sufficient condition
to ensure the positveness of the last term in ζk. Next, we provide a variational
characterization for the iterates generated by IPS-ADMM and a direct corollary by
some identical transformations.
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Lemma 3.2. Suppose ϑk ∈ (0, 1/v). Then, the iterates generated by IPS-ADMM
satisfy

F (w)−F (w̃k)+
〈
w−w̃k,J (w̃k)

〉
−
〈
y− ỹk, dk+1

〉
≥
〈
w−w̃k, Qk(wk−w̃k)

〉
+ζk (3.9)

for all w ∈ Ω, where

w̃k =

x̃kỹk
λ̃k

 =

xk+1

yk+1

λ̃k

 and Qk =

 D̃k L0 + βB>B −τB>
−B 1

β I

 . (3.10)

Proof. By the definition of λk+
1
2 and λ̃k, we have

λk+
1
2 = λk − τ(λk − λ̃k) = λ̃k + (τ − 1)(λ̃k − λk). (3.11)

Then, combine the convexity of g and (2.7) to obtain

g(y)− g(ỹk) +
〈
y − ỹk,−B>

(
λ̃k + (τ − 1)(λ̃k − λk)

)
+ βB>(Ax̃k +Bỹk − b) + L0(ỹk − yk)− dk+1

〉
≥ 0, ∀y ∈ Rn.

(3.12)

Next, we focus on the {·} term in (3.12). Since β(Ax̃k +Byk − b) = −(λ̃k − λk),

−B>
(
λ̃k + (τ − 1)(λ̃k − λk)

)
+ βB>(Ax̃k +Bỹk − b) + L0(ỹk − yk)− dk+1

=−B>
(
λ̃k + (τ − 1)(λ̃k − λk)

)
+ βB>B(ỹk − yk)− dk+1

+ βB>(Ax̃k +Byk − b) + L0(ỹk − yk)

=−B>λ̃k − τB>(λ̃k − λk) + (βB>B + L0)(ỹk − yk)− dk+1.

Substituting the above relation into (3.12) gives

g(y)− g(ỹk) +

〈
y − ỹk, −B

>λ̃k − τB>(λ̃k − λk)− dk+1

+(L0 + βB>B)(ỹk − yk)

〉
≥ 0. (3.13)

Besides, the definition of λ̃k implies〈
λ− λ̃k, (Ax̃k +Bỹk − b)−B(ỹk − yk) +

1

β
(λ̃k − λk)

〉
≥ 0, ∀λ ∈ Rl. (3.14)

Finally, the result (3.9) is confirmed by the previous (3.4), (3.13) and (3.14).
Corollary 3.3. Suppose ϑk ∈ (0, 1/v). Then, we have

F (w)− F (w̃k) +
〈
w − w̃k,J (w)

〉
−
〈
y − ỹk, dk+1

〉
≥1

2

(∥∥w − wk+1
∥∥2
Hk
−
∥∥w − wk∥∥2

Hk

)
+

1

2

∥∥wk − w̃k∥∥2
Gk

+ ζk
(3.15)

for all w ∈ Ω, where

Hk =

 D̃k L0 + (1− τs
τ+s )βB>B − τ

τ+sB
>

− τ
τ+sB

1
β(τ+s)I
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and

Gk =

 D̃k L0 + (1− s)βB>B (s− 1)B>

(s− 1)B 2−τ−s
β I

.
Proof. It holds by the updates of λk+1, λ̃k, and (3.11) that

λk+1 =λk+
1
2 − sβ(Axk+1 +Byk − b) + sβB(yk − yk+1)

=λk − τ(λk − λ̃k)− s(λk − λ̃k) + sβB(yk − ỹk),

that is,

λk − λk+1 = −sβB(yk − ỹk) + (τ + s)(λk − λ̃k).

Combine this equality together with x̃k = xk+1 and ỹk = yk+1 to have

wk − wk+1 = P (wk − w̃k), where P =

 I
I

−sβB (τ + s)I

 (3.16)

is clearly invertible. Let

Hk = QkP
−1 =

 D̃k L0 + (1− τs
τ+s )βB>B − τ

τ+sB
>

− τ
τ+sB

1
β(τ+s)I

 . (3.17)

Then, we have from (3.3), (3.9) and (3.16) that

F (w)− F (w̃k) +
〈
w − w̃k,J (w̃k)

〉
−
〈
y − ỹk, dk+1

〉
=F (w)− F (w̃k) +

〈
w − w̃k,J (w)

〉
−
〈
y − ỹk, dk+1

〉
≥ζk +

〈
w − w̃k, Hk(wk − wk+1)

〉
=ζk +

1

2

{∥∥w − wk+1
∥∥2
Hk
−
∥∥w − wk∥∥2

Hk

}
+

1

2

{∥∥wk − w̃k∥∥2
Hk
−
∥∥wk+1 − w̃k

∥∥2
Hk

}
,

(3.18)

where the equality uses the following popularly used identity〈
u− v,Hk(p− q)

〉
=

1

2

{
‖u− q‖2Hk − ‖u− p‖

2
Hk

+ ‖v − p‖2Hk − ‖v − q‖
2
Hk

}
(3.19)

with specifications u := w, v := w̃k, p := wk, q := wk+1.
Now, we focus on the last {·} term in (3.18). It holds by (3.16) that∥∥wk − w̃k∥∥2

Hk
−
∥∥wk+1 − w̃k

∥∥2
Hk

=
∥∥wk − w̃k∥∥2

Hk
−
∥∥wk+1 − wk + wk − w̃k

∥∥2
Hk

=
∥∥wk − w̃k∥∥2

Hk
−
∥∥wk − w̃k − P (wk − w̃k)

∥∥2
Hk

=
∥∥wk − w̃k∥∥2

Gk

,
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where

Gk = P>Hk +H>k P − P>HkP = Q>k +Qk − P>HkP

=

 D̃k L0 + (1− s)βB>B (s− 1)B>

(s− 1)B 2−τ−s
β I

 .
Then, (3.15) follows from (3.18) and the above discussions.

3.2. More technical results. If both Hk and Gk are positive semidefinite ma-
trices, then convergence of IPS-ADMM can be proved by Corollary 3.3. However,
these two matrices are not necessarily positive semidefinite for any stepsize parame-
ters (τ, s), which brings new challenges in the convergence analysis of IPS-ADMM. To
proceed, a feasible scheme is to provide a condition to ensure Hk � 0 and to estimate

a lower bound of
∥∥wk − w̃k∥∥2

Gk
.

Lemma 3.4. Let L � (τ − γ)βB>B. Then, the matrix Hk given by (3.17) is
symmetric positive semidefinite for any (τ, s) ∈ ∆.

Proof. The first step of IPS-ADMM ensures D̃k � 0. Recalling the structure of
Hk, we only needs to demonstrate the positive semi-definiteness of its lower-upper
2-by-2 block, i.e.,[
L0 + (1− τs

τ+s )βB>B − τ
τ+sB

>

− τ
τ+sB

1
β(τ+s)I

]
=

[
L+ (γ − τs

τ+s )βB>B − τ
τ+sB

>

− τ
τ+sB

1
β(τ+s)I

]
:= HL

k

For any L � (τ − γ)βB>B and β > 0, we have

HL
k �

[
(τ − τs

τ+s )βB>B − τ
τ+sB

>

− τ
τ+sB

1
β(τ+s)I

]
=

1

τ + s

( √
βτB>

− 1√
β
I

)> ( √
βτB − 1√

β
I
)
.

Clearly, the matrix in the right-hand-side of the last equality is positive semidefinite
for any τ + s > 0. Consequently, the matrix HL

k is positive semidefinite.
Notice that, the condition in Lemma 3.4 with γ = 1 is the same to that in [6,

Lemma 4.3], which together with the condition below (2.5) shows that L is a positive
semidefinite matrix. This suggests that our proximal matrix is more relaxed than that

in [19]. Before evaluating the term
∥∥wk − w̃k∥∥2

Gk
, we estimate the involved crossing

term (Axk + Byk − b)>B(yk − yk+1) in quadratic forms based on a variant of the
Cauchy-Schwarz inequality.

Lemma 3.5. For any constants n1, n2 and δ ∈ (0, 1/2], it holds

n1n2
〈
Axk +Byk − b, B(yk − yk+1)

〉
≥− (

1

4
+

1

2
δ)n21

∥∥B(yk − yk+1)
∥∥2 − (1− δ)n22

∥∥Axk +Byk − b
∥∥2.

Moreover, take δ = γ−η
2(1−η) with η ∈ (0, 1) to obtain

n1n2
〈
Axk +Byk − b, B(yk − yk+1)

〉
≥− 1 + γ − 2η

4(1− η)
n21
∥∥B(yk − yk+1)

∥∥2 − 2− γ − η
2(1− η)

n22
∥∥Axk +Byk − b

∥∥2. (3.20)
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Proof. For any δ ∈ (0, 1), we have from the Cauchy-Schwarz inequality that

n1n2
〈
Axk +Byk − b, B(yk − yk+1)

〉
≥− 1

4(1− δ)
n21
∥∥B(yk − yk+1)

∥∥2 − (1− δ)n22
∥∥Axk +Byk − b

∥∥2.
Let δ ∈ (0, 0.5], then 1

4(1−δ) ≤
1
4 + 1

2δ and hence the first result is confirmed. In

particular, by taking δ = γ−η
2(1−η) with η ∈ (0, 1), the inequality (3.20) is obtained.

Finally, δ ∈ (0, 0.5] implies

0 <
γ − η

2(1− η)
≤ 1

2
.

The left inequality is ensured by η ∈ (0, 1) and γ ∈ (η, 1] as in (2.5), while the right
inequality is ensured by γ ≤ 1.

Lemma 3.6. Let

ω0 =

(
2− τ − s− (2− η − γ)(1− s)2

(1− η)(1 + τ)

)
β,

ω1 =
(2− η − γ)(1− s)2

(1− η)(1 + τ)
β, ω2 =

1− τ
1 + τ

,

ω3 =

(
τ2 + (1− 3γ)τ + 5γ − 4

1 + τ
− (1 + γ − 2η)(1− τ)2

2(1− η)(1 + τ)

)
β.

(3.21)

Then, the iterates generated by IPS-ADMM satisfy∥∥wk − w̃k∥∥2
Gk

≥
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+ ω0

∥∥Axk+1 +Byk+1 − b
∥∥2

+ ω1

(∥∥Axk+1 +Byk+1 − b
∥∥2 − ∥∥Axk +Byk − b

∥∥2)+ ω2

[∥∥yk − yk+1
∥∥2
L

−
∥∥yk−1 − yk∥∥2

L
+ (1− γ)β

(∥∥B(yk − yk+1)
∥∥2 − ∥∥B(yk−1 − yk)

∥∥2)]
+ ω3

∥∥B(yk − yk+1)
∥∥2 +

2(1− τ)

1 + τ

〈
yk − yk+1, dk+1 − dk

〉
.

(3.22)

Proof. Combine the definition of λ̃k in Lemma 3.1 and the notation w̃k in (3.10)
to obtain

(Ax̃k +Bỹk − b)−B(ỹk − yk) +
1

β
(λ̃k − λk) = 0,

which, by the structure of Gk, further shows∥∥wk − w̃k∥∥2
Gk

=
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L+(γ−s)βB>B

+ 2(s− 1)
〈
λk − λ̃k, B(yk − yk+1)

〉
+

2− τ − s
β

∥∥λk − λ̃k∥∥2
=
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+ (2− τ − s)β
∥∥Axk+1 +Byk+1 − b

∥∥2 + (γ − τ)β
∥∥B(yk − yk+1)

∥∥2
+ 2(1− τ)β

〈
Axk+1 +Byk+1 − b, B(yk − yk+1)

〉
.

(3.23)
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Next, we analyze the crossing term in the second equality of (3.23). Setting y = yk

in (3.12) and y = yk+1 in (3.12) at the (k − 1)-th iteration respectively, we have

g(yk)− g(yk+1) +

〈
yk − yk+1,

−B>λk+ 1
2 + βB>(Axk+1 +Byk+1 − b)

+L0(yk+1 − yk)− dk+1

〉
≥ 0

and

g(yk+1)−g(yk)+
〈
yk+1−yk,−B>λk− 1

2 +βB>(Axk+Byk−b)+L0(yk−yk−1)−dk
〉
≥ 0

respectively. Adding these two inequality and using the following relation

λk−
1
2 − λk+ 1

2 = τβ(Axk+1 +Byk+1 − b) + sβ(Axk +Byk − b) + τβB(yk − yk+1),

we have (since 1 + τ > 0)〈
Axk+1 +Byk+1 − b, B(yk − yk+1)

〉
≥ 1− s

1 + τ

〈
Axk +Byk − b, B(yk − yk+1)

〉
− τ

1 + τ

∥∥B(yk − yk+1)
∥∥2

+
1

β(1 + τ)

〈
yk − yk+1, (L− (1− γ)βB>B)

[
(yk − yk+1)− (yk−1 − yk)

]〉
+

1

β(1 + τ)

〈
yk − yk+1, dk+1 − dk

〉
=

1− s
1 + τ

〈
Axk +Byk − b, B(yk − yk+1)

〉
− τ

1 + τ

∥∥B(yk − yk+1)
∥∥2

+
1

β(1 + τ)

[
‖yk − yk+1‖2L −

〈
yk − yk+1, L(yk−1 − yk)

〉
− (1− γ)β‖B(yk − yk+1)‖2

+ (1− γ)β
〈
yk − yk+1, B>B(yk−1 − yk)

〉]
+

1

β(1 + τ)

〈
yk − yk+1, dk+1 − dk

〉
≥ 1− s

1 + τ

〈
Axk +Byk − b, B(yk − yk+1)

〉
− 2(1− γ) + τ

1 + τ

∥∥B(yk − yk+1)
∥∥2

+
1

2β(1 + τ)

(∥∥yk − yk+1
∥∥2
L
−
∥∥yk−1 − yk∥∥2

L
+ (1− γ)β

(∥∥B(yk − yk+1)
∥∥2

−
∥∥B(yk−1 − yk)

∥∥2))+
1

β(1 + τ)

〈
yk − yk+1, dk+1 − dk

〉
,

(3.24)
where the last inequality uses the Cauchy-Schwarz inequality. Combining (3.23) and
(3.24), we immediately get∥∥wk − w̃k∥∥2

Gk

≥
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+ (2− τ − s)β
∥∥Axk+1 +Byk+1 − b

∥∥2
+ (γ − τ)β

∥∥B(yk − yk+1)
∥∥2 +

2β(1− τ)(1− s)
1 + τ

〈
Axk +Byk − b, B(yk − yk+1)

〉
− 2(2− 2γ + τ)(1− τ)

1 + τ
β
∥∥B(yk − yk+1)

∥∥2 +
2(1− τ)

1 + τ

〈
yk − yk+1, dk+1 − dk

〉
+

1− τ
1 + τ

[∥∥yk − yk+1
∥∥2
L
−
∥∥yk−1 − yk∥∥2

L
+ (1− γ)β

( ∥∥B(yk − yk+1)
∥∥2

−
∥∥B(yk−1 − yk)

∥∥2
)]
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≥
∥∥yk − yk+1

∥∥2
L

+

(
2− τ − s− (2− η − γ)(1− s)2

(1− η)(1 + τ)

)
β
∥∥Axk+1 +Byk+1 − b

∥∥2
+
∥∥xk − xk+1

∥∥2
D̃k

+
(2− γ − η)(1− s)2

(1− η)(1 + τ)
β

( ∥∥Axk+1 +Byk+1 − b
∥∥2

−
∥∥Axk +Byk − b

∥∥2
)

+
1− τ
1 + τ

[∥∥yk − yk+1
∥∥2
L
−
∥∥yk−1 − yk∥∥2

L
+ (1− γ)β

( ∥∥B(yk − yk+1)
∥∥2

−
∥∥B(yk−1 − yk)

∥∥2
)]

+

(
γ − τ − 2(2− 2γ + τ)(1− τ)

1 + τ
− (1 + γ − 2η)(1− τ)2

2(1− η)(1 + τ)

)
β
∥∥B(yk − yk+1)

∥∥2
+

2(1− τ)

1 + τ

〈
yk − yk+1, dk+1 − dk

〉
=
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+

(
2− τ − s− (2− η − γ)(1− s)2

(1− η)(1 + τ)

)
β
∥∥Axk+1 +Byk+1 − b

∥∥2
+

(2− η − γ)(1− s)2

(1− η)(1 + τ)
β
(∥∥Axk+1 +Byk+1 − b

∥∥2 − ∥∥Axk +Byk − b
∥∥2)

+
1− τ
1 + τ

[∥∥yk − yk+1
∥∥2
L
−
∥∥yk−1 − yk∥∥2

L
+ (1− γ)β

( ∥∥B(yk − yk+1)
∥∥2

−
∥∥B(yk−1 − yk)

∥∥2
)]

+

(
τ2 + (1− 3γ)τ + 5γ − 4

1 + τ
− (γ + 1− 2η)(1− τ)2

2(1− η)(1 + τ)

)
β
∥∥B(yk − yk+1)

∥∥2
+

2(1− τ)

1 + τ

〈
yk − yk+1, dk+1 − dk

〉
,

where the second inequality follows from (3.20) with specifications n1 := 1− τ, n2 :=
1− s. As a result, (3.22) holds with ωi(i = 0, 1, 2, 3) given in (3.21).

Lemma 3.7. Suppose ϑk ∈ (0, 1/v) and D̃k � D̃k+1 � 0. Then, the iterates
generated by IPS-ADMM satisfy

2
[
F (w)− F (w̃k) +

〈
w − w̃k,J (w)

〉]
≥ Φk+1(w)− Φk(w) + Ψk+1 + 2ζk, (3.25)

where

Φk(w) =
∥∥w − wk∥∥2

Hk
+
∥∥y − vk∥∥2 + ω1

∥∥Axk +Byk − b
∥∥2

+ (ω2 + σ2)
∥∥yk−1 − yk∥∥2

L
+ ω2(1− γ)β

∥∥B(yk − yk+1)
∥∥2 (3.26)

and

Ψk =
∥∥xk − xk+1

∥∥2
D̃k

+ (1− σ1 − σ2)
∥∥yk − yk+1

∥∥2
L

+ ω0

∥∥Axk+1 +Byk+1 − b
∥∥2 + ω3

∥∥B(yk−1 − yk)
∥∥2 (3.27)

with ω0 =
[
(2− τ − s)(1− σ3)− (2−η−γ)(1−s)2

(1−η)(1+τ)

]
β.
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Proof. Rearrange (3.15) with ỹk = yk+1 to get

2
[
F (w)− F (w̃k) +

〈
w − w̃k,J (w)

〉]
−
∥∥wk − w̃k∥∥2

Gk
− 2
〈
vk − yk+1, dk+1

〉
+
∥∥dk+1

∥∥2 − 2ζk

≥
(∥∥w − wk+1

∥∥2
Hk
−
∥∥w − wk∥∥2

Hk

)
− 2
〈
vk − y, dk+1

〉
+
∥∥dk+1

∥∥2
=
(∥∥w − wk+1

∥∥2
Hk
−
∥∥w − wk∥∥2

Hk

)
+ 2
〈
y − vk, vk − vk+1

〉
+
∥∥vk − vk+1

∥∥2
=
(∥∥w − wk+1

∥∥2
Hk
−
∥∥w − wk∥∥2

Hk

)
+
∥∥y − vk+1

∥∥2 − ∥∥y − vk∥∥2,
(3.28)

where the first equality follows from the seventh step of IPS-ADMM and the last
equality uses the aforementioned identity in (3.19).

Based on the previous inequalities (2.6) and (3.22) as well as the assumption that

D̃k � D̃k+1 � 0, it holds by (3.28) that

2
[
F (w)− F (w̃k) +

〈
w − w̃k,J (w)

〉]
≥
(∥∥w − wk+1

∥∥2
Hk+1

+
∥∥y − vk+1

∥∥2)− (∥∥w − wk∥∥2
Hk

+
∥∥y − vk∥∥2)

+
∥∥wk − w̃k∥∥2

Gk
+ 2
〈
vk − yk+1, dk+1

〉
−
∥∥dk+1

∥∥2 + 2ζk

≥2ζk +
2(1− τ)

1 + τ

〈
yk − yk+1, dk+1 − dk

〉
+ 2
〈
vk − yk+1, dk+1

〉
−
∥∥dk+1

∥∥2
+
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+ ω0

∥∥Axk+1 +Byk+1 − b
∥∥2 + ω3

∥∥B(yk−1 − yk)
∥∥2

+ Φk+1(w)− Φk(w) + σ2

(∥∥yk − yk−1∥∥2
L
−
∥∥yk+1 − yk

∥∥2
L

)
≥2ζk + Φk+1(w)− Φk(w) + σ2

(∥∥yk − yk−1∥∥2
L
−
∥∥yk+1 − yk

∥∥2
L

)
+
∥∥xk − xk+1

∥∥2
D̃k

+
∥∥yk − yk+1

∥∥2
L

+ ω0

∥∥Axk+1 +Byk+1 − b
∥∥2 + ω3

∥∥B(yk−1 − yk)
∥∥2

− σ1
∥∥yk+1 − yk

∥∥2
L
− σ2

∥∥yk − yk−1∥∥2
L
− (2− τ − s)σ3β

∥∥Axk+1 +Byk+1 − b
∥∥2

=2ζk + Φk+1(w)− Φk(w) + Ψk+1.
(3.29)

This completes the proof.
Remark 3.1. We explain why the region of the dual stepsize is the previous ∆

in (2.9).
• The first inequality in ∆ comes from the proof of Lemma 3.4.
• The third inequality in (2.9) comes from the requirement that ω0 ≥ 0, i.e.,

γ ≥ 2− η − (1− η)(2− τ − s)(1− σ3)(1 + τ)

(1− s)2
.

Combine the last inequality and the constraints γ ≤ 1 and η < 1 to obtain

(1− s)2 ≤ (1− σ3)(2− τ − s)(1 + τ).

When σ3 = 0, it gives

−τ2 − s2 − τs+ τ + s+ 1 ≥ 0 (3.30)

which reduces one of the constraints in the region of the dual stepsize [6].

Moreover, when τ = 0 we will have s ∈ (0, 1+
√
5

2 ] which is relatively larger
than that in the classical ADMM. Besides, ω0 ≥ 0 implies ω0 ≥ 0.
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• The requirement on ω1 ≥ 0 has been ensured by γ ∈ (η, 1] and η ∈ (0.75, 1).
And we will explain the lower bound of η in the next item.

• The second inequality in (2.9) is obtained by requiring ω3 ≥ 0, i.e.,

0 ≥ 2(1− η)
[
4− 5γ + (3γ − 1)τ − τ2

]
+ (1 + γ − 2η)(1− τ)2

⇐⇒ 0 ≥ (γ − 1)
[
τ2 + (4− 6η)τ + 10η − 9

]
,

which together with γ < 1 shows

τ ≤ 3η − 2−
√

(1− η)(13− 9η).

Here, the identity (1 − η)(13 − 9η) > 0 has been ensured by η < 1. Finally,
combine this inequality and the constraint 1 ≥ τ > −1 to obtain η > 0.75.

Fig. 3.1: Two instances of the stepsize region ∆1

Remark 3.2. According to the analysis of Lemma 3.7, especially the inequality
(3.29), the following relative error criteria

2(1− τ)

1 + τ

∣∣〈yk − yk+1, dk+1 − dk
〉∣∣+ 2

∣∣〈vk − yk+1, dk+1
〉∣∣+

∥∥dk+1
∥∥2

≤σ1
∥∥yk+1 − yk

∥∥2
L

+ σ3β
∥∥Axk+1 +Byk+1 − b

∥∥2, σ1, σ3 ∈ [0, 1),

(3.31)

can be also exploited for the y-iterate. In this case, the parameter σ2 in (3.26)-(3.27)

will be removed and ω0 =
[
(2− τ − s)− (2−η−γ)(1−s)2

(1−η)(1+τ) −σ3
]
β. As a result, the stepsize

parameters (τ, s) shall satisfy

(τ, s) ∈ ∆1 =

{
(τ, s)

∣∣∣∣ τ + s > 0, τ ≤ 3η − 2−
√

(1− η)(13− 9η),
(2− γ − η)(1− s)2 − (1− η)(1 + τ)(2− τ − s− σ3) ≤ 0

}
.

(3.32)
Figure 3.1 shows two instances of the region ∆1, which are similar to the first two
subfigures of Figure 2.1. It follows from the last inequality in (3.32) with γ = 1 that

0 ≥ (1− η)[s2 − (1− τ)s+ τ2 − (1− σ3)τ − (1− σ3)]

η<1
=⇒s ≤ 1

2

(
1− τ +

√
−3τ2 + (4z − 2)τ + 4z + 1

)
:= f(τ) where z = 1− σ3

∇f(τ)=0
=⇒ 0 =

[
3τ + (2− z)

]
(τ − z) =⇒ τ =

z − 2

3
= −1 + σ3

3
=⇒ s ≤ 5− σ3

3
.
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That is, the stepsize s could be 5−σ3

3 if we choose τ = − 1+σ3

3 and γ = 1. One may
choose σ1 = 0 or σ3 = 0 to derive a similar result to Lemma 3.7, and the difference
lies in the region of the parameters (τ, s) and the terms in the right-hand-side of the
relative error criteria for the y-iterate (i.e., users can exploit the y-residual and/or
the equality error to control the solution quality), which suggests that more flexible
relative error criteria could be employed for the y-subproblem.

3.3. Iteration complexity. Now, we present the following key convergence re-
sult based on the previous Lemma 3.7.

Theorem 3.8. Let L � (τ − γ)βB>B and (τ, s) ∈ ∆. If for some integers
κ,N > 0, the following conditions hold for all k ∈ [κ, κ+N ]:

(i) ϑk ∈ (0, 1/2ν) and the sequence
{
ϑkmk(mk + 1)

}
is nondecreasing;

(ii) D̃k � D̃k+1 � 0, E(‖δt‖2H−1) ≤ σ2 for some σ > 0, where δt and D̃k are
defined in Lemma 3.1.

Then, we have

E
[
F (wN )−F (w)+

〈
w̃N−w,J (w)

〉]
≤ 1

2(1 +N)

{
σ2

κ+N∑
k=κ

ϑkmk+
4
∥∥x− x̆κ∥∥2H

mκ(mκ + 1)ϑκ
+Φκ(w)

}
(3.33)

for any w ∈ Ω, where wN = 1
1+N

∑κ+N
k=κ w̃k and Φk(w) is defined by (3.26).

Proof. By the assumptions together with Ψk ≥ 0, it follows from Lemma 3.7 that

F (w̃k)− F (w) +
〈
w̃k − w,J (w)

〉
≤ −ζk +

1

2

(
Φk(w)− Φk+1(w)

)
.

Summing the inequality over k between κ and κ+N , we have by Lemma 4.4 that

κ+N∑
k=κ

F (wN )− (1 +N)
[
F (w)−

〈
w̃N − w,J (w)

〉]
≤ −

κ+N∑
k=κ

ζk +
1

2
Φκ(w). (3.34)

The convexity of the composite function F shows F (wN ) ≤ 1
1+N

∑κ+N
k=κ F (w̃k). Then,

divide (3.34) by 1 +N to obtain

F (wN )− F (w) +
〈
w̃N − w,J (w)

〉
≤ 1

2(1 +N)

(
− 2

κ+N∑
k=κ

ζk + Φκ

)
. (3.35)

In what follows, we try to estimate the expectation about terms involving ζk.
Since the sequence {mk(mk + 1)ϑk} is nondecreasing for any k ∈ [κ, κ + N ] and
H � 0, it holds that

κ+N∑
k=κ

2

mk(mk + 1)ϑk

(∥∥x− x̆k∥∥2H − ∥∥x− x̆k+1
∥∥2
H

)
≤

2 ‖x− x̆κ‖2H
mκ(mκ + 1)ϑκ

.

Because δt = ∇f(x̂t) − dt = ∇f(x̂t) − ∇fξt(x̂t) − et relies on the index ξt, we have
E[δt] = 0 since the random variable ξt ∈ {1, 2, . . . ,K} is selected with uniform prob-
ability and E[et] = 0. Besides, we have

E
[
〈δt, x̆t − x〉

]
= 0 (3.36)
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because x̆t relies on ξt−1, ξt−2, . . .. The assumption E(‖δt‖2H−1) ≤ σ2 together with
mk ≥ 1 implies

E
[ mk∑
t=1

t2 ‖δt‖2H−1

]
≤ σ2mk(mk + 1)(2mk + 1)

6
≤ σ2

2
m2
k(mk + 1). (3.37)

Based on the above discussions and the condition ϑk ≤ 1/(2ν), we have

−E
[ κ+N∑
k=κ

ζk
]
≤

2
∥∥x− x̆κ∥∥2H

mκ(mκ + 1)ϑκ
+
σ2

2

κ+N∑
k=κ

ϑkmk.

Substitute the last inequality into (3.35) to confirm the result (3.33).
Remark 3.3. Suppose the conditions in Theorem 3.8. Let

ϑk = min
{ c1
mk(mk + 1)

, c2

}
and mk = max

{
dc3k%e ,m

}
, (3.38)

where c1, c2, c3 > 0, % ≥ 1 are constants and m > 0 is a given integer. Then, set
w = w∗ in (3.25) together with the property in (3.1) and Ψk ≥ 0 to obtain

0 ≤2
[
F (w̃k)− F (w∗) +

〈
w̃k − w∗,J (w∗)

〉]
≤Φk(w∗)− Φk+1(w∗)− 4

mk(mk + 1)ϑk

(∥∥x∗ − x̆k+1
∥∥2
H −

∥∥x∗ − x̆k∥∥2H)
+

1

mk(mk + 1)

{
4

mk∑
t=1

t
〈
δt, x̆t − x∗

〉
+

ϑk
(1− ϑkv)

mk∑
t=1

t2
∥∥δt∥∥2H−1

}
,

which, by the choice in (3.38), gives

Φk+1(w∗) +
4

c1

∥∥x∗ − x̆k+1
∥∥2
H

≤Φk(w∗) +
4

c1

∥∥x∗ − x̆k∥∥2H
+

1

mk(mk + 1)

{
4

mk∑
t=1

t
〈
δt, x̆t − x∗

〉
+

ϑk
(1− ϑkv)

mk∑
t=1

t2
∥∥δt∥∥2H−1

}
≤ · · · · · ·

≤Φ1(w∗) +
4

c1

∥∥x∗ − x̆1∥∥2H
+

k∑
i=1

1

mi(mi + 1)

{
4

mi∑
t=1

t
〈
δt, x̆t − x∗

〉
+

ϑi
(1− ϑiv)

mi∑
t=1

t2
∥∥δt∥∥2H−1

}
.

Taking expectation on both sides of the last inequality together with the previous results
in (3.36)-(3.37), we have

E
[
Φk+1(w∗) +

4

c1

∥∥x∗ − x̆k+1
∥∥2
H

]
≤ Φ1(w∗) +

4

c1

∥∥x∗ − x̆1∥∥2H + c1σ
2

k∑
i=1

1

1 + c3i%

due to ϑimi ≤ c1
1+c3i%

by the choice in (3.38). And the last term in the above inequality

is O(1) if % > 1, while it is O(log k) if % = 1. Hence, the sequence {wk} is bounded
in expectation.
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The following theorem shows that by a proper choice for the algorithm parameters,
we can establish the convergence rate of IPS-ADMM in the expectation of both the
objective function value gap and the constraint violation.

Theorem 3.9. Suppose the conditions in Theorem 3.8 and (3.38) hold. Then,
we have ∣∣E[F (wN )− F (w∗)

]∣∣∣ = E%(N) = E
[∥∥AxN +ByN − b

∥∥],
where E%(N) = O(1/N) for % > 1 and E%(N) = O(N−1 logN) for % = 1.

Proof. The proof is omitted since it is same as that of [5, Theorem 4.2].

4. Numerical Experiments. In this section, we evaluate the performance of
the proposed IPS-ADMM for solving the 3D CT reconstruction problem in medi-
cal imaging and we also compare it with a variety of state-of-the-art methods. All
experiments are run in MATLAB R2019a on a heterogeneous high-performance com-
putational cluster equipped with Tesla V100 GPU with 24 cores and 192GB memory.

Recall the so-called 3D CT reconstruction problem

min
x,y

F (x, y) :=
1

N

N∑
j=1

(Rjx− bj)2 + µ‖y‖1

s.t. ∇x = y,

(4.1)

where R is the Radon transform generated by the cone beam scanning geometry [14]
and ∇ is the discrete gradient operator. The size of 3D image to be constructed is
256 × 256 × 64, the detector plane is 512 × 384 and the number of viewers is 668.
Clearly, the size of the observed data b (that is N) is 131334144 and is a big data.
Problem (4.1) is a a special case of (1.1) with (A,B, b) = (∇,−I,0) and applying
IPS-ADMM to the problem (4.1) results in{

x̆t+1 = [γtH+Mk]−1[γtHx̆t +Mkx
k − dt − hk],

yk+1 = Shrink( µ
ι+γβ , y

k − λk+
1
2−β(∇xk+1−yk)

ι+γβ ),

where Shrink(·, ·) is the soft shrinkage operator and can be computed by the built-in
MATLAB function ”wthresh”. Here, we compute yk+1 exactly (that is dk+1 = 0)
since the corresponding subproblem has a closed-form solution and we do not need to
solve it inexactly. The regularization parameter of the problem is set as µ = 10−1 and
the penalty parameter β = 10−8. For computational efficiency, we let the number of
inner iterations mk = 10, and we use the tuned parameters (H,Mk) = (10−5I, 10−2I),
ι = 10−9, and (τ, s, γ, η) = (0.75, 1.09, 0.8, 0.99). By these choices, the proximal
matrix L0 given by (2.5) is positive indefinite and parameters satisfy (2.9).

In order to quantitatively evaluate the performance of IPS-ADMM, we consider
four state-of-the-art baselines: stochastic ADMM (sto-ADMM, [20]) with mini-batch
stochastic gradients; Generalized ADMM (G-ADMM, [10]); SARAH-ADMM with the
SARAH gradient estimator and SAGA-ADMM with the SAGA gradient estimator, see
[2]. We terminate these algorithms when the maximal iterations 104 or the allowable
running time 2000 seconds is satisfied. The quality of the reconstructed image is
evaluated by the following Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log10

(
dx × dy × dz

MSE

)
with MSE = ‖x− x̃‖2,
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where x and x̃ are the original and reconstructed images, respectively. We also calcu-
late the Relative Error = ‖x− x̃‖/‖x‖. For each algorithm, we calculate the average
and standard deviation of these two metrics over 5 independent runs.

Fig. 4.1: PSNR results of five comparative algorithms

Fig. 4.2: The average PSNR and relative error of each algorithm

We report some experimental results in Figures 4.1-4.4. Figure 4.1 shows how
the PSNR of reconstructed images changes by different algorithms, and we can see
the performance of all methods improves as the running time increases. Although the
left zoom-in view in Figure 4.1 indicates that SARAH-ADMM can achieve a specific
PSNR value in a relatively short time, the running time of our IPS-ADMM is similar
to SARAH-ADMM and significantly faster than the other three algorithms. Moreover,
the right zoom-in view in Figure 4.1 shows that IPS-ADMM achieves obviously the
best restoration result. Figure 4.2 describes the obtained average PSNR and relative
error of each algorithm, which indicates that IPS-ADMM consistently has the best
quality of reconstructed images in terms of the obtained PSNR and relative error.
Figures 4.3 and 4.4 visuralize the 7th and 57th slices of the reconstructed 3D CT
image, respectively. It can be seen that IPS-ADMM produces visually superior results
than SAGA-ADMM, G-ADMM and sto-ADMM, and also slightly better results than
SARAH-ADMM employing the biased SARAH gradient estimator.
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Fig. 4.3: Final reconstruction images of different methods for the 7th slice

Fig. 4.4: Final reconstruction images of different methods for the 57th slice


