
An active set method for
bound-constrained optimization

Arnold Neumaier
Fakultät für Mathematik, Universität Wien

Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
email: Arnold.Neumaier@univie.ac.at

WWW: http://www.mat.univie.ac.at/~neum

Behzad Azmi
Department of Mathematics and Statistics, University of Konstanz

Universitätsstraße 10, D-78457 Konstanz, Germany
email: behzad.azmi@uni-konstanz.de

Morteza Kimiaei
Fakultät für Mathematik, Universität Wien

Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
email: kimiaeim83@univie.ac.at

WWW: http://www.mat.univie.ac.at/~kimiaei

Abstract. In this paper, a class of algorithms is developed for bound-constrained optimiza-
tion. The new scheme uses the gradient-free line search along bent search paths. Unlike
traditional algorithms for bound-constrained optimization, our algorithm ensures that the
reduced gradient becomes arbitrarily small. It is also proved that all strongly active vari-
ables are found and fixed after finitely many iterations. A Matlab implementation of a
bound-constrained solver LMBOPT based on the new theory was discussed by the present
authors in a companion paper (Math. Program. Comput. 14 (2022), 271–318).

Keywords. Bound constrained optimization, active set strategy, line search method, global
convergence.

2000 AMS Subject Classification: primary 90C06, 90C26, 90C30.

Acknowledgment The third author acknowledges financial support of the Austrian Sci-
ence Foundation under Project No. P 34317.

April 14, 2023

1

1 An overview of our method

This paper addresses the theoretical properties of a generic solver BOPT for bound-constrained
optimization problems. BOPT typically proceeds through three phases with distinct charac-
teristics:

(i) In the initial phase, the BOPT iterations move down into a valley; most optimal active
variables will be properly adjusted if appropriately bent search paths (defined in Section
3.2) are used. We must be careful not to use poor search directions, such as the steepest
descent direction that leads to zigzagging.

(ii) In the second phase, the BOPT iterations move along the valley toward the minimizer.
This phase can be long if the valley is long, steep and curved, or short and even absent if the
valley is completely round. To be sure of approaching the minimizer, the search directions
must satisfy the conditions that allow the method to be convergent.

(iii) In the third phase, the BOPT iterations are near the minimizer, but must find it with
the desired accuracy. Here, a good choice of search direction is crucial. Since the function
near a minimizer is usually nearly quadratic, a good method at this stage must choose the
search direction and step sizes to ensure a good behavior for quadratic functions.

1.1 Search direction

Three conditions on search directions must be applied to prove convergence in Section 6
and the identification of the active set at the solution after a limit number of iterations:

(i) Directions in the subspace of active variables must be zero.

(ii) The bounded angle condition (defined by (21) below) must be satisfied.

(iii) The componentwise product of direction and gradient for all active components, which
are not optimally active, must be nonpositive (discussed in Section 3.1).

1.2 A gradient-free bent line search

We use the line search CLS of Neumaier & Kimiaei [34]. Similarly to the Goldstein
(Goldstein [23]) and the Armijo (Armijo [1]) line search frameworks, CLS is a gradient-free,
i.e., it does not require gradient computation at each trial iterate. Furthermore, compared
to the Goldstein and the Armijo frameworks, it appears numerically more efficient for
severely nonconvex problems, see [32]. Because of the bound constraints, the search path
must be bent (Bertsekas [3]) to produce only feasible points. We therefore discuss in
detail (Section 3.2) the properties of bent search paths that are relevant to an analysis of
descent properties.

2

1.3 A new active set strategy and its global convergence

We propose a new active set strategy (Algorithm 1) against zigzagging for bound-constrained
optimization problems using a gradient-free bent line search. We update the working set
based on the two appropriate choices I− (minimal set) and I+ (maximal set) defined in
Section 2.4. These updates are performed relying on a condition imposed within the al-
gorithm. This condition is expressed in terms of the norms of the reduced gradient and
the gradient reduced to components of the working set I and ensures that a reduction in
the latter implies a reduction of the former. As long as this condition holds, the algorithm
continues exploring the manifold prescribed by I by fixing variables to their bounds or
reducing the cardinality of the working set I as far as possible. Otherwise, the algorithm
changes the underlying manifold, or equivalently the working set I, by freeing some active
variables for which the complementarity condition is not satisfied. Due to this property, the
zigzagging of the examples discussed in Section 2.4 is vanished (see Section 4) and it will be
shown (Theorem 6.1) that zigzagging is theoretically vanished at finitely many iterations,
like Bertsekas [3] and Conn et al. [13] and unlike active set methods proposed by Byrd
et al. [10], Cristofari et al. [15], and Hager & Zhang [30]. On the other hand, active
set strategies [3, 10, 13, 15, 30] use the projected gradient, which is not useful in finite
precision arithmetic (discussed in Section 2.3) and therefore may lead to incorrect active
variables.

1.4 Implementation

An implementation based on the new theory must take care of many other questions not
covered by the theory, in particular regarding finite precision effects. A discussion of such
implementation questions, details for a particular implementation in Matlab, and a thor-
ough comparison with other state-of-the-art solvers was given by Kimiaei et al. [32]. The
results (cf. the conclusion section below) shows that in most cases considered LMBOPT is the
best solver in terms of the number of gradient and function evaluations compared to the
state-of-the-art solvers.

Based on the theory given here, LMBOPT [32] discusses a limited memory method for solv-
ing the bound-constrained optimization problems whose objective function is continuously
differentiable with a Lipschitz continuous gradient. LMBOPT finds the active variables and
solves unconstrained optimization problems in the subspace of non-active variables.

2 Background

Convergence results for both the unconstrained and bound-constrained optimization meth-
ods have a long history. For complete references, we refer the reader to the book of No-
cedal & Wright [39]; here we focus on pursuing only the references relevant to the
present work, which aim at an improved convergence theory for line search methods that
hold under much weaker assumptions than before.

3

2.1 Basic notation

Inequalities between vectors or matrices are interpreted component-wise. Under assuming
that generalized Cauchy–Schwarz inequality

|yT s| ≤ ‖y‖∗‖s‖

holds, for an arbitrary norm ‖ · ‖ we define the dual norm

‖y‖∗ := sup
x 6=0

yT s

‖s‖
.

A scaled 1-norm with
‖s‖ :=

∑
k

∣∣∣ sk
wk

∣∣∣
and its dual norm, a scaled maximum norm with

‖y‖∗ := max
k

wk|yk|,

are useful pairs of norms, where wk > 0 stands for a weight of the kth component of a trial
point. This norm will be numerically reasonable and provides a reasonable measure of the
distance between the points at which we evaluate functions.

The ellipsoidal norms

‖p‖ =
√
pTBp, ‖g‖∗ =

√
gTB−1g (1)

are another useful pair of norms that require the matrix B ∈ Rn×n must be symmetric
and positive definite. For the identity matrix B = I, (1) becomes the standard Euclidean
norm ‖s‖2 :=

√
sT s, which is its own dual (for more details see [38]).

In a line search, starting from the current point x = x(0), points x(α) on a curve of
feasible points parameterized by a step size α > 0 are searched. The goal is to find a value
for the step size such that f(x(α)) is sufficiently smaller than f(x), although the notion
of being sufficient remains to be specified. If the gradient g = g(x) is nonzero, then the
existence of such α > 0 is guaranteed if the tangent vector

p := x′(0) (2)
exists and the following condition

gTp < 0 (3)
is satisfied. We say that p is a descent direction if it does not violate (3). In the
unconstrained case, the curve is often considered as a ray of x in a descent direction p,
giving x(α) = x + αp. In this case, the line search is called straight. If the curve is a
piecewise linear path, it is called bent; otherwise it is called curved.

The optimization methods improve an initial feasible point x0 by constructing a sequence
x0, x1, x2, . . . of feasible points with decreasing function values. To ensure this, we search in
each iteration along an appropriate search path x(α) starting at the current point x(0) = x`,
and take x`+1 = x(α`) where α` is determined by a line search based on function values
only. If the iteration index ` is fixed, we simply write x for the current point x`.

4

2.2 Bound-constrained optimization problem

We consider the bound-constrained optimization problem

min f(x)
s.t. x ∈ x, (4)

where the objective function f : C ⊆ Rn → R is a continuously differentiable function,
and

x := [x, x] := {x ∈ Rn | x ≤ x ≤ x}
is a bounded or unbounded box in Rn describing the bounds on the variables. One-sided or
missing bounds are also accounted by allowing components of the vector x of lower bounds
to take the value −∞ and components of the vector x of upper bounds to take the value∞.
A point x is called feasible if it belongs to the box x. To have a well-defined optimization
problem, the box x must be part of the domain C of definition1 of f . We assume that the
gradient

g(x) := ∂f(x)/∂x = f ′(x)T ∈ Rn.

is Lipschitz continuous in the feasible domain, i.e.,

‖g(x′)− g(x)‖∗ ≤ γ‖x′ − x‖ for x, x′ ∈ x. (5)

The Lipschitz constant γ depends on the norm used, but not the notion of Lipschitz
continuity, since all norms in Rn are equivalent.

2.3 Optimality conditions for bound constraints

Given a feasible point x and an index i, we call the bound xi or xi active if xi = xi or
xi = xi, respectively. In both cases, we also call the index i and the component xi active.
Otherwise, i.e., if xi ∈]xi, xi[, the index i, the component xi, and the bounds xi and xi are
called nonactive or free. A corner of the box x is a point all of whose components are
active. If the gradient g = g(x) has a nonzero component gi at a nonactive index i, we may
change xi slightly without leaving the feasible region. The value of the objective function
is reduced by moving slightly to smaller or larger values depending on whether gi > 0 or
gi < 0, respectively. However, if xi is active, only changes of xi in one direction are possible
without losing feasibility. The value of the objective function can then possibly be reduced
by moving slightly in the feasible direction only when{

gi ≤ 0 if xi = xi,
gi ≥ 0 if xi = xi.

(6)

But a decrease is guaranteed only if the slightly stronger condition{
gi < 0 if xi = xi,
gi > 0 if xi = xi

(7)

1In practice, one may allow a smaller domain of definition if f satisfies the coercivity condition that,
as x approaches the boundary of the domain of definition, f(x) exceeds the function value f(x0) at a known
starting point x0. Also, Lipschitz continuity may be relaxed to local Lipschitz continuity if all evaluation
points remain in a bounded region.

5

holds. We say that the active index i and the corresponding variable xi are strongly active
if {

gi > 0 if xi = xi,
gi < 0 if xi = xi;

(8)

they are called degenerate otherwise. Thus slightly changing a single strongly active
variable only cannot lead to a better feasible point.

2.1 Theorem. (Optimality conditions for bound-constrained optimization)
(i) First order necessary conditions. At any local minimizer x of (4), the reduced
gradient gred(x) at x, with components

gred(x)i :=

0 if xi = xi = xi,
min(0, gi(x)) if xi = xi < xi,
max(0, gi(x)) if xi = xi > xi,
gi(x) otherwise,

(9)

vanishes.

(ii) First order sufficient conditions. Every corner x of x such that all variables are
strongly active is a local minimizer of (4).

Proof. (i) Combining the various cases discussed above, we see that if the reduced gradient
has a nonzero component, a decrease is always possible with a small feasible change. Thus
the reduced gradient must vanish at a local optimizer.

(ii) In this case, any feasible point x + αp 6= x (α > 0) must have pi ≥ 0 if xi is active,
pi ≤ 0 if xi is active, and at least one pi is nonzero. Therefore

g(x)Tp =
∑
i

gipi > 0.

This implies that f(x + αp) − f(x) = αg(x)Tp + o(α) > 0 for small α > 0, hence f(x) is
locally minimal. ut

If no bound is active, gred(x) = g(x) and (i) reduces to the condition that x is a stationary
point of the function f . In generalization of this, we call a feasible point x with gred(x) = 0
a stationary point of the optimization problem (4). By the above, a local minimizer x of
(4) must be a stationary point of this problem. This statement is a concise expression of
the first order optimality conditions.

Note that the reduced gradient need not be continuous – it may change abruptly when a
bound becomes active: In the simple 1-dimensional example

f(x) = x, x = [0,∞], (10)

we have gred(x) = 1 for x > 0 but gred(0) = 0. It is therefore important that a weaker
continuity statement still holds, expressed in the first part of the following theorem.

6

2.2 Theorem. If the sequence x` converges to x̂ and lim
`→∞

gred(x`) = 0 then gred(x̂) = 0.
Moreover, for every index i = 1, . . . , n,

gi(x̂) > 0 ⇒ x`i = x̂i = xi for sufficiently large `, (11)

gi(x̂) < 0 ⇒ x`i = x̂i = xi for sufficiently large `. (12)

Proof. Every free index i of x̂ is also free for x` with sufficiently large `. Since f is
continuously differentiable, we conclude that gi(x̂) = lim

`→∞
gi(x`) = 0 for all free i. If x̂i = xi

then the x`i converge to xi, hence satisfy x`i < xi; thus gi(x̂) = lim
`→∞

gi(x`) ≥ 0 for these i.
Similarly, one sees that gi(x̂) ≤ 0 if x̂i = xi. Together, this implies gred(x̂) = 0.

Now let i be an index i for which gi(x̂) > 0. We conclude from gred(x̂) = 0 that x̂i = xi < xi.
The definition (9) of the reduced gradient implies that for sufficiently large `,

gred(x`)i =
{

0 if x`i = xi,
gi(x`) otherwise.

Now gred(x`) converges to zero, but by continuity of the gradient, lim
`→∞

gi(x`) = gi(x̂) > 0.

Hence the second case is impossible for large `. Therefore x`i = xi for all large `, and (11)
holds for sufficiently large k.

Similarly, if i is an index for which gi(x̂) < 0 then (12) holds for sufficiently large `. ut

A stationary point is called degenerate if gi(x) = 0 for some active index i, and non-
degenerate otherwise, i.e., if all its active bounds are strongly active. This allows us to
rephrase Theorem 2.2 as saying that all strongly active variables are ultimately fixed when
the sequence x` converges and lim

`→∞
gred(x`) = 0. For degenerate activities no condition like

(11) or (12) can be proved; cf. the second example in Subsection 2.4.

In particular, in the most typical case of convergence to a nondegenerate stationary point,
zigzagging through changes of the active set (as in the examples of Section 2.4) cannot
occur infinitely often provided we can prove that lim

`→∞
gred(x`) = 0. There is no known way

how to avoid zigzagging in the degenerate case.

2.3 Corollary. If the x` ∈ x form a bounded sequence such that inf ‖gred(x`)‖∗ = 0 then
either some x̂ = x` or some limit point x̂ ∈ x of a subsequence satisfies gred(x̂) = 0.

Proof. If gred(x`) = 0 for some ` then x̂ = x` works. Otherwise there is a subsequence of the
gred(x`) converging to zero. Boundedness implies that this subsequence has a convergent
subsequence, and by Theorem 2.2, its limit x̂ satisfies the claim. ut

The corollary justifies to accept a numerical approximation x to a stationary point x̂ as
soon as a stopping test of the form

‖gred(x)‖∗ ≤ ε (13)

7

holds for some fixed ε. In this stopping test, one traditionally uses for ‖ · ‖∗ the maximum
norm, with ε = 10−5 or ε = 10−6. In a conceptual analysis of algorithms, however, one has
no stopping test and investigates the behavior of an infinite number of approximations x`,
with the goal of showing that the gred(x`), or at least a subsequence of them, converge to
zero. This implies (at least in exact arithmetic) finite termination if the stopping test (13)
is added to the algorithm.

We define the projection proj(z, z) of a point z ∈ Rn to a box z to be the vector

proj(z, z) := sup(zi, inf(zi, zi)) (14)

with components

proj(z, z)i = max(zi,min(zi, zi)) =

zi if zi ≤ zi,
zi if zi ≥ zi,
zi otherwise.

It is easy to see that
proj(z, z) = z ⇐⇒ z ∈ z.

The shorthand notation
π[x] := proj(x,x) (15)

is used for the special case where the box is the feasible set. Thus π[x] ∈ x, and π[x] = x
iff x ∈ x. With this notation, the first order optimality conditions may be written (for any
α > 0) in the equivalent form

g(α)(x) := π[x− αg(x)]− x = 0.

g(1)(x) is called the projected gradient at x. g(α)(x) is continuous in x for any α. However,
Example (ii) of Section 2.4 shows that convergence to a stationary point x̂ is possible even
when inf

`
gred(x`) > 0, reflecting the lack of continuity of the reduced gradient. Such a

counterintuitive situation means that infinitely many x` have activities different from the
limiting x̂.

Traditional bound-constrained solvers aim at ensuring that the projected gradient has a
subsequence converging to zero. This is a slightly weaker convergence statement but the
resulting convergence analysis [3, 12, 22] is simpler. This is probably the reason why usually,
e.g., in Byrd et al. [10] and in Hager & Zhang [30], a different stopping criterion of the
form ‖g(1)(x)‖∞ ≤ δ is used in place of (13) for a given threshold 0 < δ < 1. For example,
for (10), x = δ satisfies this criterion although gred(x) = 1. However, in finite precision
arithmetic, this stopping criterion may accept very poor points as sufficiently stationary.
For example, for (10), x = 1017 also satisfies this criterion although x is extremely far
from a stationary point! In this particular case, the reason is that, in double precision
arithmetic, g(1)(x) numerically becomes identically zero due to severe cancellation of digits
in the subtraction.

8

2.4 Well-known active set strategies

To find optimal points of bound-constrained optimization problems, active set methods
repeatedly perform two main phases. In the first phase, a good approximation to the set
of optimal active constraints is determined by defining a face that is likely to contain a
stationary point of the problem. In a second phase, this area of feasible domain is explored
by solving an unconstrained subproblem approximately.

The projected conjugate gradient method of Polyak [40] is a classical reference for active
set methods for bound-constrained problems with a convex quadratic objective function,
for further references see [19, 20, 21, 36, 37, 45], and the gradient projection method of
Bertsekas [3] is a classical reference for active set methods for bound-constrained problems
with a general nonlinear objective function, for future references see [3, 12, 22].

Many researchers [10, 14, 13] have been interested in using gradient projections to identify
optimal active constraints. To achieve fast convergence, they have applied Newton-type
methods combined with the gradient projection method. Byrd et al. [10] determined the
active variables by calculating the Cauchy point using the gradient projection method and
then explored the subspace of nonactive variables by performing line search along limited
memory BFGS directions [11]. Instead of limited memory BFGS directions, which cannot
be used in a variety of applications, many researchers [4, 5, 6, 7, 8, 16, 17, 23, 35, 42] have
used the Barzilai–Borwein step size [2] with simple structure and low computational cost
to construct scaled steepest descent directions. Conn et al. [14, 13], Birgin & Mart́ınez
[5], and Rahpeymaii et al [41] combined active set strategies with trust region type meth-
ods. Another developed active set method was proposed by Hager & Zhang [30]. In this
approach, a combination of the cyclic Barzilai–Borwein method [18] and a gradient projec-
tion method was used to determine the active variables, and then a Wolfe line search along
the conjugate gradient directions [27, 28, 29, 31] was employed for solving an unconstrained
subproblem. A two-stage approximate active set method was developed by Cristofari et
al. [15]. In this method, unlike the other active set methods, an active set estimate was
found such that the function value is reduced. Then, a truncated-Newton method in the
subspace of nonactive variables was used to solve an unconstrained subproblem.

Bertsekas [3] and Conn et al. [13] showed that all strongly active variables were found
and fixed after finitely many iterations. Although Hager & Zhang [30] used a restart
procedure in the first and second phases of their active set method when the activity
change or the reduction of the gradient in the components indexed by the working set
is at least asymptotic over the reduction of the projected gradient g(1), they failed to
show that active constraints are identified in a finite number of iterations. Instead, they
showed that convergence can be achieved with a finite number of iterations when strict
complementarity holds and all constraints are active at a stationary point. On the other
hand, as described in Section 2.3, this projected gradient suffers from some drawbacks in
finite precision arithmetic. Therefore, the activities may be incorrect.

Examples. We consider two examples for zigzagging in poor active set methods, cf. Figure
1:

9

(i) For the bound-constrained optimization problem

min 1
2(x1 − x2)2 + εx1x2

s.t. x1 ≥ 0, x2 ≥ 0

with small ε > 0, we have

g(x) =
(
x1 − (1− ε)x2
x2 − (1− ε)x1

)
.

Started with x0 =
(1

0

)
, the search directions

p2` = (1− ε)2`
(−1

1− ε

)
, p2`+1 = (1− ε)2`+1

(1− ε
−1

)

are scaled steepest descent directions, and produce step size α = 1 the sequence

x2` =
((1− ε)2`

0

)
, x2`+1 =

(0
(1− ε)2`+1

)
, (16)

with arbitrarily slow linear convergence to the solution at zero.
(ii) For the optimization of the bound-constrained problem

min x1 + x2
s.t. x1 ≥ 0, x2 ≥ 0,

started with the initial point and the descent directions p2` and p2`+1 defined in the previous
example, and the fixed step size α = 1, we obtain the same descent sequence (16) with
arbitrarily slow linear convergence to the zero solution. Moreover,

gred(x2`) =
(1

0

)
, gred(x2`+1) =

(0
1

)
,

so that gred(x`) does not converge to zero.

We now discuss how an active set method updates the working set for bound-constrained
optimization. Each iteration changes only a subset of the variables. To account for this we
use a working set I ⊆ {1, . . . , n} satisfying

qi = 0 for i 6∈ I, (17)

and denote by qI the subvector of q indexed by I. We write

g = g(x), gred = gred(x).

Sensible choices for the working set I include the minimal set

I−(x) := {i | xi < xi < xi}, (18)

10

containing only the free indices of x and the maximal set

I+(x) := I−(x) ∪ {i | (gred)i 6= 0}
= {i | xi < xi < xi or xi = xi < xi, gi < 0 or xi < xi = xi, gi > 0}, (19)

containing all free and freeable indices. Here we call the index i freeable and say that
the variable xi can be freed from its bound if i ∈ I+(x) \ I−(x). This is the case iff i
is active and (7) holds. Indeed, for any active index i, (7) says that the ith components
of the reduced gradient is nonzero, so that the function value decreases when moving the
corresponding components xi into the interior. By definition of the reduced gradient,

‖gI(x)‖∗ = ‖gred(x)‖∗ if I = I+(x). (20)

Using always I = I+(x) may at first seem to be the most natural choice since it most quickly
corrects a poor active set. However, this choice is prone to severe zigzagging, a major cause
of inefficiency. To see this we consider the first example, where I` = I+(x`) = {1, 2} and
(28) holds. Thus the choice I = I+(x) permits slow zigzagging.

We therefore need to control the conditions under which variables enter the working set I,
to avoid that the same subset of variables is alternately freed and fixed in a large number
of successive iterations. In the example, the choice I = I−(x) eliminates the zigzagging
directions since I−(x`) has size one. In the second zigzagging example, gred(x`) does not
even converge to zero since

gred(x2`) =
(1

0

)
, gred(x2`+1) =

(0
1

)
.

This is related to the fact that here I` = {1, 2}, while I−(x`) = I+(x`) has size one. Choosing
I = I−(x) (in this example identical with I = I+(x)) eliminates the zigzagging behavior.
Thus I = I−(x) seems to be a good choice. However, we cannot always choose I = I−(x)
since this might even be the empty set! But our examples indicate that an appropriate
alternation between the choices I = I+(x) and I = I−(x) could eliminate zigzagging. This
is indeed the case with a proper criterion for deciding between the two choices.

Zigzagging is thus a possible source of inefficiency. Good optimization methods should
therefore be designed to eliminate zigzagging (caused by a bad active set method) as much
as possible.

3 Our active set strategy

3.1 Search direction

As discussed in the introduction and Section 1, our search directions must satisfy three
condition that allow BOPT to be convergent (Section 6). The first condition is (17) defined
in Section 2.4. Here we discuss two other conditions.

11

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 1: Inefficient zigzagging for convergence to a constrained minimizer in a corner: the
example (i) (left) and the example (ii) (right).

In order to ensure local linear convergence of our new active set method when the working
set I stays constant we require the bounded angle condition

gTI qI
‖gI‖∗‖qI‖

≤ −δ < 0 (21)

as the second necessary condition. In the following, B ∈ Rn×n is a fixed but arbitrary
symmetric, positive definite matrix, called the preconditioner. In practice, B is the
identity matrix, a multiple of it, diagonal scaling matrix, or a matrix with the property
that linear systems with coefficient matrix B are easy to compute. B is considered as a
(more or less good) constant approximation of the Hessian matrix for the objective function.
We may then apply the preceding with the ellipsoidal norms defined by (1). The simplified
Newton direction

pI := −B−1
II gI

satisfies the angle condition in the norms (1) with δ = 1, hence leads to global convergence
if used together with an efficient line search.

More generally, we may modify an arbitrary direction q by adding a multiple of the simplified
Newton direction to get a direction

pI := qI − λB−1
II gI (22)

that satisfies the angle condition for a proper choice of the factor λ. Clearly it is enough to
discuss the case qI 6= 0. If

c := gTI qI√
gTI B

−1
II gI · qTI BIIqI

satisfies c ≤ −δ we can take λ = 0 and pI := qI satisfies the bounded angle condition. If
this is not the case, we may use the following result.

3.1 Proposition. Suppose that gI 6= 0 and let qI ∈ Rn \ {0}, 0 < δ < 1. Put

π1 := gTI B
−1
II gI > 0, π2 := qTI BIIqI > 0, π := gTI qI . (23)

12

Then
c = π
√
π1π2

∈ [−1, 1], w := π1π2(1− c2)
1− δ2 ≥ 0, (24)

and (22) satisfies the angle condition

gTI pI√
(gTI B−1

II gI)(pTI BIIpI)
= −δ < 0 (25)

when λ is chosen as
λ := π + δ

√
w

π1
. (26)

Proof. (24) follows directly from the generalized Cauchy–Schwarz inequality. In terms of
πi with i = 1, 2, the angle condition (25) reads

π − λπ1√
π1(π2 − 2λπ + λ2π1)

= −δ. (27)

Squaring, multiplying with the denominator, and subtracting δ2(π − λπ1)2 gives

(1− δ2)(π − λπ1)2 = δ2π1(π2 − 2λπ + λ2π1)− δ2(π − λπ1)2

= δ2(π1π2 − π2) = δ2π1π2(1− c2).

Since π − λπ1 is negative by (27), we need π − λπ1 = −δ
√
w, hence (26). By construction,

this choice indeed satisfies (27) and hence (25). ut

In finite precision arithmetic, rounding errors occasionally result in a value of c2 > 1.
Therefore one should compute w from

w := π1π2 max{ε, 1− c2}
1− δ2 ,

where ε is the machine precision.

We need at one critical place the condition

gi(x)qi ≤ 0 for all i if I = I+(x) 6= I−(x) (28)

when some variable is freed as the third necessary condition. The conditions (17), (21),
and (28) are satisfied with arbitrary I by directions of the form

qi =
{
−gi/di if i ∈ I,
0 otherwise

(29)

with positive elements di in a fixed interval [d, d], where 0 < d < d <∞.

13

3.2 The bent search path

For solving the bound-constrained optimization problem (4), a line search along a ray may
lead to infeasible points. The most natural remedy, first suggested by Bertsekas [3], is
to project the ray into the box. Thus we do each line search along a bent search path

x(α) := π[x+ αq], (30)

obtained by taking the ray x+ αq (α ≥ 0) from the current point x into a direction q 6= 0
satisfying (17), (21), and (28) and projecting it into the feasible set using the projection
(14).

0 1 2 3 4 5

0

1

2

3

Figure 2: A bent search path x(α).

The bent search path is piecewise linear, with breakpoints at the elements of the set

S :=
{xi − xi

qi
| qi > 0, xi < xi <∞

}
∪
{xi − xi

qi
| qi < 0, xi > xi > −∞

}
.

If the breakpoints α1, . . . , αm are ordered such that

0 = α0 < α1 < . . . < αm < αm+1 =∞,

the bent search path is linear on each interval [αi−1, αi] (i = 1, ...,m+ 1). Note that when
for some α > 0, x(α) is a corner of the box then this corner is x(αm) and x(α) stays constant
for all α ≥ αm.

We use the curved line search CLS of Neumaier & Kimiaei [34] with the bent search
path (30). CLS performs a simple bisection, process that finds a step size satisfying the
sufficient descent condition

µ(α)|µ(α)− 1| ≥ β with fixed β > 0. (31)

Here the Goldstein quotient

µ(α) := f(x(α))− f(x)
αg(x)Tp for α > 0, (32)

14

first defined by Goldstein [25]. By [38, Theorem 1], the satisfaction of the condition (31)
implies that there is a number δ′ > 0 such that

(f(x)− f(x(α)))‖p‖2

(g(x)Tp)2 ;≥ δ′ (33)

this result is essential for our convergence proof.

Since the bent path is piecewise linear, the line search can be improved a little by replacing
each trial point α which is larger than α1 by the nearest breakpoint interior to the bracket,
as long as there is such a breakpoint.

4 The BOPT algorithm

In this section, we discuss our new active set algorithm which is against zigzagging arisen
through poor search direction and poor active set strategy. Our algorithm updates the
working set by one of two choices I− and I+ so that the size of reduced gradient is reduced.

We call any iteration where
I = I+(x) 6= I−(x)

a freeing iteration, since this is the condition that at least one bound is freed. In a
freeing iteration one typically uses a search direction of the form (29), which guarantees the
conditions required in the algorithm. In a non-freeing iteration, (28) is not a restriction,
and one typically uses a search direction appropriate for an unconstrained method in the
subspace defined by I, which, once the optimal activities are identified, leads to faster local
convergence.

Since the goal is to decrease the size of the reduced gradient we need to ensure that shrink-
ing the gradient in the components indexed by I shrinks the reduced gradient at least
asymptotically. We therefore require (in an arbitrary monotone norm) the condition

‖gred‖2
∗ ≤ ρ‖gI‖2

∗ (34)

for some ρ > 0. This condition implies that the components of the reduced gradients missed
by restricting to I are bounded by a multiple of ‖gI‖∗. By (20), (34) holds for I = I+(x)
whenever ρ > 1; but a larger value of ρ is required that allows the choice I = I−(x) in
examples where I = I+(x) leads to severe zigzagging. To find an appropriate condition on
ρ we reconsider the first zigzagging example of Section 2.4, where this choice is necessary
to eliminate zigzagging. When the 2-norm is used, (34) holds for this choice if

ρ > n. (35)

The lower bound n (the number of variables) is needed in order to account for related
n-dimensional examples of zigzagging with n− 1 freeable bounds. For the maximum norm
‖ · ‖∗, corresponding to the 1-norm ‖ · ‖, any positive ρ < 1 would suffice in these examples
to allow I = I−(x), which eliminates zigzagging.

15

The algorithm guarantees that before every freeing iteration an efficient line search is done
that does not result in a new activity. By (20) and the stopping test, we have

‖gI(x)‖∗ = ‖gred(x)‖∗ > 0 if I = I+(x). (36)

In particular if (34) fails for I = I−(x), the resetting of I ensures that (34) holds for the
working set I used in the next iteration. Therefore (34) holds at every iteration except
possibly the first.

Taking into account these insights we propose the following algorithmic scheme, for which
convergence and strong limitations on the possible forms of zigzagging will be proved.

Algorithm 1 BOPT, bound-constrained optimization

1: Purpose: BOPT minimizes a smooth f(x) subject to x ∈ x = [x, x].

2: Input: x0 ∈ Rn (starting point).

3: Tuning parameters: β ∈]0, 1
4 [, q > 1 (line search parameters), 0 < δ < 1 (reduced

angle parameters), 0 < ρ < 1/n (factor safeguarding (34)), and parameters specifying
a pair of monotone dual norms.

4: Set x = x0, f = f(x), g = g(x), I = I+(x), and freeing = 0;
5: while gred(x) 6= 0 do
6: update x and f by running CLS with (30) along q satisfying (17), (21), and (28);
7: choose I = I−(x); . minimal set was chosen
8: evaluate freeing=((34) fails);
9: if freeing then, choose I = I+(x); end; . maximal set was chosen

10: compute g = g(x);
11: end while
12: return x and f ;

A suitable starting point is x0 := π[0], the point in x with smallest norm. If the solution x̂
of a previously solved related problem is available, x0 := π[x̂] may be used, which usually
reduces the number of iterations needed.

5 Some auxiliary results

We now prove a few technical results that are needed for our convergence proof in the next
section.

5.1 Proposition. For every x ∈ x, nonzero q, and α > 0,

pq(α) := π[x+ αq]− x
α

satisfies (in any monotone norm)

|pq(α)| ≤ |q|, ‖pq(α)‖ ≤ ‖q‖, (37)

16

and with p ∈ Rn defined by

pi :=

0 if xi = xi = xi,
max(0, qi) if xi = xi < xi,
min(qi, 0) if xi < xi = xi,
qi if xi < xi < xi,

(38)

we have
p(α) = p for 0 < α ≤ α1. (39)

Proof. We have

αpq(α) = π[x+ αq]− x = sup
(
x, inf(x+ αq, x)

)
− x = sup

(
x− x, inf(αq, x− x)

)
,

hence
pq(α) = sup

(x− x
α

, inf
(
q,
x− x
α

))
= proj(q,x(α)),

where
x(α) :=

[x− x
α

,
x− x
α

]
= (x− x)/α.

Since (x− x)/α ≤ 0, |pq(α)| = | proj(q,x(α))| ≤ |q| holds. Further, (37) follows due to the
fact that the norm is monotone.

For 0 < α ≤ α1, the bent search path is linear, hence

pq(α) = x+ αp

for some vector p. This gives (39). For α → 0, the boxes x(α) have a well-defined limit
x(0) whose components have the bounds

x(0)i = lim
α→0

xi − xi
α

=
{ 0 if xi = xi,
−∞ otherwise,

x(0)i = lim
α→0

xi − xi
α

=
{ 0 if xi = xi,

+∞ otherwise.
Therefore

p = lim
α→0

pq(α) = lim
α→0

proj(q,x(α)) = proj(q,x(0)).

Expressed in components we find (38). ut

5.2 Proposition. If the index set I ⊆ I+(x) satisfies (17) and (21) then

gT q = gTI qI < 0, ‖q‖ = ‖qI‖. (40)

If, in addition,
gi(x)qi ≤ 0 for all i (41)

then
p = q, (42)

and we have f(x(α)) < f(x) for sufficiently small α > 0.

17

Proof. By (17) and (21),

gT q =
∑
i

giqi =
∑
i∈I

giqi = gTI qI < 0,

giving (40). Since I ⊆ I+(x), any active i satisfies one of the conditions in (41). Thus if
(41) holds then (38) gives (42). The piecewise linear structure of the search path now gives
x(α) = x+ αpq(α) = x+ αq for all sufficiently small α > 0, and therefore

f(x(α)) = f(x+ αq) = f(x) + αgT q + o(α) = f(x) + α(gT q + o(1)) < f(x)

for sufficiently small α > 0. ut

5.3 Proposition. Suppose that

gi(x`)q`i ≤ 0 for i ∈ I+(x`), (43)

q`i = 0 for i 6∈ I+(x`).

If
lim
`→∞

x` = x, lim
`→∞

α` = 0, lim
`→∞

q` = q

then

r` := π[x` + α`q
`]− x`

α`‖q`‖

satisfies lim
`→∞

r` = q.

Proof. We first simplify the assumptions by replacing q` with q`/‖q`‖ and α` with α`‖q`‖.
Then the assumptions on the q` and α` take the form

‖q`‖ = 1, r` = π[x` + α`q
`]− x`

α`
, α` > 0 for all `,

lim
`→∞

q` = q, lim
`→∞

α` = 0,

By Proposition 5.1, |r`| ≤ |q`|, and by assumption, r`i = q`i = 0 for i 6∈ I+(x`). Since the q`
are bounded and α` → 0, Proposition 5.1 also implies that for sufficiently large `,

r`i :=

0 if xi = x`i = xi,
max(0, q`i) if xi = x`i < xi,
min(q`i , 0) if xi < x`i = xi,
q`i if xi < x`i < xi.

In view of (43), this implies r`i = q`i for i ∈ I+(x`) and sufficiently large `. Taking the limit,
we find r` → q, as claimed. ut

18

6 Convergence

6.1 Theorem. Let f be continuously differentiable in the box x, with Lipschitz continuous
gradient g. Let x` denote the value of x in Algorithm 1 after its `th update. Then one of
the following three cases holds:

(i) gred(x`) = 0 for some `.

(ii) We have
lim
`→∞

f(x`) = f̂ ∈ R, inf
`≥0
‖gred(x`)‖∗ = 0.

Some limit point x̂ of the x` satisfies f(x̂) = f̂ ≤ f(x0) and gred(x̂) = 0.

(iii) sup
`≥0
‖x`‖ =∞.

Proof. We may assume that infinitely many iterations occur and the x` are bounded, since
otherwise (i) or (iii) hold by the stopping test. Suppose that

inf ‖gred(x`)‖∗ = 0. (44)

Since the x` are bounded there is a convergent subsequence x`k with ‖gred(x`k)‖∗ → 0. Then
due to Corollary 2.3, the limit x̂ ∈ x satisfies gred(x̂) = 0. Hence (ii) holds. Thus it remains
to show that (44) holds.

For the point x, the working set I, the direction q, and the tangent direction p given by
(38) at iteration ` before updating I, we write x`, I`, q`, and p`, respectively. Since function
values decrease monotonically by construction, the infimum f̂ of the f(x`) is finite, and we
have

lim
`→∞

f(x`) = f̂ . (45)

For any index set I, we consider the set LI of indices ` satisfying

I = I` = I+(x`) 6= I−(x`)

and distinguish several cases, depending on the amount of zigzagging.

Case 1 (limited zigzagging): All LI are finite. Since every ` for which the `th iteration is
freeing belongs to some LI and there are only finitely many possibilities for I, the number
of freeing iterations is finite. Thus there is a number Nf such that no iteration with index
` > Nf is freeing. Algorithm 1 and (34) imply that I` = I−(x`) for ` > Nf . Therefore a line
search in iteration ` > Nf never frees an already active bound; hence bounds can only be
fixed. This can happen only finitely many times; so there is an N such that I−(x`) remains
fixed for all ` > N ,

I` = I−(x`) = I for ` > N, (46)

19

and no bound is fixed for ` > N . Therefore the line search accepts a step size α < α1, so
that p(α) = p has components (38). Inserting (39) into (33) results in

(f(x`)− f(x`+1))‖p`‖2

(g(x`)Tp`)2 ≥ δ′ > 0 for all ` > N.

(17) and (21) hold by the specification of Algorithm 1, and (40) follows by Proposition 5.2.
Using (21), (40), and (34) (the latter holds by the remark after Algorithm 1), we find that
for all ` > N ,

f(x`)− f(x`+1) ≥ δ′
(g(x`)Tp`I`

‖p`I`
‖

)2
= δ′

(gI`
(x`)Tp`I`

‖p`I`
‖

)2

≥ δ′
(
δ‖gI`

(x`)‖∗
)2
≥ δ′

(
δρ−1‖gred(x`)‖∗

)2
≥ ∆ := δ′(δρ−1γ∗)2,

where
γ∗ := inf

`≥0
‖gred(x`)‖∗. (47)

For ` → ∞, (45) implies that the left hand side tends to zero, hence ∆ = 0 and therefore
γ∗ = 0. Hence (44) holds and we are done.

Case 2 (unlimited zigzagging): Some LI is an infinite set. Handling this case requires a
detailed look at what happens at the bounds. Since all conditions used in Algorithm 1 and
CLS are invariant under appropriate scaling we may assume w.l.o.g. that all directions q`
are scaled such that

‖q`‖ = 1. (48)
According to Algorithm 1, (21) and (28) hold. (28) and Proposition 5.2 imply (40) and

p` = q` for ` ∈ LI . (49)

If the x` are unbounded, (iii) holds.

Otherwise the set of tuples [x`, q`] is bounded. Thus there is an infinite sequence `k ∈ LI
(k = 1, 2, . . .) such that, for k →∞,

x`k → x̂, q`k → q, g`k → ĝ := g(x̂).

Using (45), we find f(x̂) = f̂ , and we have

‖q‖ = 1, qi = 0 for i 6∈ I. (50)

We first handle the special case gI = 0 and afterwards the nontrivial case gI 6= 0.

Case 2a: ĝI = 0. By (20),

gI(x`) = gI`
(x`) = gred(x`) for ` ∈ LI .

Since LI is infinite, ĝI = 0 implies that (44) holds and we are done.

20

Case 2b: ĝI 6= 0. Taking limits in (17), (40), and (21) gives ‖qI‖ = ‖q‖ = 1 and

ĝT q = ĝTI qI ≤ −δ‖ĝI‖∗ < 0. (51)

We write α`, and µ` for the step size α chosen by the line search and the Goldstein quotient
µ at iteration `,

µ` := µ(α`) = f(x`+1)− f(x`)
α`g(x`)Tp` . (52)

Since the accepted step size satisfies the descent condition (31),

µ`|µ` − 1| ≥ β > 0. (53)

Hence µ` is bounded away from 0 and 1. Since g(x`k)Tp`k → gT q 6= 0 by (51), we find from
(45) that

α`k = f(x`k+1)− f(x`k)
µ`kg(x`k)T q`k → 0 for k →∞. (54)

Now Proposition 5.3 applies since by (17), q`i = 0 for i 6∈ I. Using (48), we therefore find
that, by definition of r`,

x`k+1 = π[x`k + α`kq
`k] = x`k + α`kr

`k , r`k → q.

Taylor expansion gives

f(x`k+1) = f(x`k + α`kr
`k) = f(x`k) + α`kg(x`k)T r`k + o(α`k) for `k ∈ LI .

Comparing with (52), we find

µ`k = f(x`k+1)− f(x`k)
α`kg(x`k)T q`k = g(x`k)T r`k + o(1)

g(x`k)T q`k → 1.

Since this contradicts (53), and thus ĝI = 0. ut

6.2 Remark. If for a given initial iterate x0, the set {x ∈ x : f(x) ≤ f(x0)} is bounded,
and in particular if x is bounded, the sequence x` is bounded, so that (i) or (ii) holds. We
conjecture that when neither (i) or (ii) holds then f` → −∞.

The typical situation is that there is only one limit point x̂, so that x` → x̂. In exact
arithmetic, the stationary points found are usually local minimizers as convergence of a
subsequence to a nonminimizing stationary point is unstable under arbitrarily small generic
perturbations. Thus one usually converges to a single local minimizer. In finite precision,
one typically ends up anywhere in a region where the reduced gradient is dominated by noise
due to rounding errors, so that the theory (which assumes exact arithmetic) no longer gives a
reliable description of the finite precision behavior. This may in particular happen in very
flat regions of the feasible domain where there is no nearby stationary point; numerical
misconvergence is then possible. However, all optimization methods using only function
values and gradients necessarily face this kind of difficulties.

21

Theorem 2.2 says that in case of convergence to a nondegenerate stationary point, all
strongly active variables are ultimately fixed. Thus zigzagging through changes of the
active set (as in the examples of Section 2.4) cannot occur infinitely often. For degenerate
variables, our results assert nothing. However, (35) – though not used in the proof of
Theorem 6.1 – excludes zigzagging in the degenerate the example of Neumaier et al. [38,
Section 3.3]. Thus it might be possible to prove more in the degenerate case.

7 Discussion and conclusion

In this paper, we described the theoretical properties of BOPT for bound-constrained opti-
mization problems whose objective function is continuously differentiable with a Lipschitz
continuous gradient. BOPT uses a new active set strategy against zigzagging. Unlike other
active set strategies, BOPT uses the reduced gradient in our active set strategy instead of the
projected gradient, which does not always work in finite precision arithmetic, and ensures
that the size of the reduced gradient becomes asymptotically small.

When the search directions q satisfy the conditions (17), (21), and (28), we prove global
convergence. We also show that after finitely many iterations, BOPT finds and fixes all
strongly active variables, similarly to Bertsekas [3] and Conn et al. [13].

BOPT was implemented by Kimiaei et al. [32] in LMBOPT for particular choices of the
search directions. For all freeing iterations, LMBOPT performs CLS with the bent search
path (30) along the directions q computed by (29), while for all non-freeing iterations, it
uses CLS with (30) along limited memory quasi-Newton types directions and the nonlinear
conjugate gradient directions proposed by Neumaier et al. [38] for exploring the subspace
of nonactive variables. All directions used in LMBOPT satisfy conditions (17), (21), and (28),
and as a consequence, the theory discussed in this paper is valid for LMBOPT.

To illustrate the numerical efficiency of the BOPT framework, we report here from [32] numer-
ical results that compare LMBOPT to other unconstrained and bound-constrained state-of-
the-art solvers2 applied to the bound-constrained test problems from the CUTEst collection
[26]. These results are gathered in Table 1. We denote by sec the time in seconds, by nf
the number of function evaluations, by ng the number of gradient evaluations, and write
nf2g := nf + 2ng. Each algorithm was terminated once one of the termination criteria
given in the first row of Table 1 was satisfied. These impose upper bounds on ‖gred‖∞, sec,
and nf2g. For a given list S of solvers and each given cost measure cs, the efficiency

es :=
{ (min

s∈S
cs)/cs if the solver s solves the problem,

0 otherwise

of the solver s measures the strength of the solver s relative to an ideal solver corresponding
to the best solver for each problem in percent, rounded to integers. The other columns of

2In fact, the solvers LMBFG-EIG-MS, LMBFG-DDOGL, LMBFG-BWX-MS, LMBFG-EIG-curve-inf,
LMBFG-EIG-MS-2-2, CGdescent, LMBFG-EIG-inf-2, LMBFGS-TR, LMBFG-MTBT, LMBFG-MT are uncon-
strained optimization solvers. In order to provide a comprehensive numerical report, we turned them into
bound-constrained solvers. For each solver, this modification was done by combining the bent search path
(30) with the corresponding line search strategy.

22

Table 1: The summary results for all problems

stopping test: ‖gred‖∞ ≤ 10−6, sec ≤ 300, nf2g ≤ 20n + 103

433 of 473 problems solved mean efficiency in %
dim∈[1,100001] for cost measure
solver solved nf2g ng nf sec
LMBOPT [32] 417 53 65 38 13
ASACG [30] 402 53 54 48 60
LMBFG-EIG-MS [9] 402 57 57 55 34
LMBFG-DDOGL [9] 399 59 58 57 34
ASABCP [15] 395 41 38 43 50
LMBFG-BWX-MS [9] 395 47 43 55 32
LMBFG-EIG-curve-inf [9] 394 57 57 55 34
LMBFG-EIG-MS-2-2 [9] 381 44 41 51 32
SPG [8] 377 38 38 36 12
CGdescent [29] 365 44 47 40 50
LBFGSB [10] 354 64 60 67 43
LMBFG-EIG-inf-2 [9] 239 36 36 35 23
LMBFGS-TR [9] 208 32 31 31 23
LMBFG-MTBT [9] 185 30 29 30 18
LMBFG-MT [9] 180 28 25 30 21

the table contain the number of solved problems by the solvers, the nf2g efficiency, the ng
efficiency, the nf efficiency, and the sec efficiency.

Since LMBOPT was able to solve 417 out of 473 bound-constrained test problems, it appears
to be more robust than the other solvers. That CLS with the bent search path (30) is a
gradient-free line search, explains that LMBOPT has the highest gradient efficiency. Thus,
LMBOPT is highly recommended for problems with expensive gradient evaluations.

References

[1] L. Armijo. Minimization of functions having Lipschitz continuous first partial deriva-
tives. Pac. J. Math. 16 (1966), 1–3.

[2] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA J. Numer.
Anal. 8 (198), 141–148.

[3] D. P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM J. Control Opim. 20 (1982), 221–246.

[4] E. G. Birgin, I. Chambouleyron, and J. M. Mart́ınez. Estimation of the optical con-
stants and thickness of thin films using unconstrained optimization. J. Comput. Phys.
151 (1999), 862–880.

23

[5] E. G. Birgin and J. M. Mart́ınez. A box-constrained optimization algorithm with
negative curvature directions and spectral projected gradients. In Topics in Numerical
Analysis (G. Alefeld and X. Chen, eds.), Vol. 15 of Computing Supplementa, pp. 49–60.
Springer Vienna (2001).

[6] E. G. Birgin and J. M. Mart́ınez. Large-scale active-set box-constrained optimization
method with spectral projected gradients. Comput. Optim. Appl. 23 (2002), 101–125.

[7] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gra-
dient methods on convex sets. SIAM J. Optim. 10 (1999), 1196–1211.

[8] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Algorithm 813: Spg-software for convex-
constrained optimization. ACM Trans. Math. Softw. 27 (2001), 340–349.

[9] O. Burdakov, L. Gong, S. Zikrin, and Y. Yuan. On efficiently combining limited-
memory and trust-region techniques. Math. Program. Comput. 9 (2017), 101–134.

[10] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound-
constrained optimization. SIAM J. Sci. Comput. 16 (1995), 1190.

[11] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-newton matrices
and their use in limited memory methods. Math. Program. 63 (1994), 129–156.

[12] P. Calamai and J. Moré. Projected gradient methods for linearly constrained problems.
Math. Program. 39 (1987), 93–116.

[13] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust
region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25
(1988), 433.

[14] A. R. Conn, N. I. M. Gould, and Ph. L Toint. Testing a class of methods for solving
minimization problems with simple bounds on the variables. Mathematics of Compu-
tation 50 (1988), 399–430.

[15] A. Cristofari, M. De Santis, S. Lucidi, and F. Rinaldi. A two-stage active-set algorithm
for bound-constrained optimization. J. Optim. Theory Appl. 172 (2017), 369–401.

[16] Y. H. Dai and R. Fletcher. Projected Barzilai-Borwein methods for large-scale box-
constrained quadratic programming. Numer. Math. 100 (2005), 21–47.

[17] Y. H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Math. Program. 106 (2006), 403–421.

[18] Y. H. Dai, W. W. Hager, K. Schittkowski, and H. Zhang. The cyclic Barzilai–Borwein
method for unconstrained optimization. IMA J. Numer. Anal. 26 (2006), 604–627.

[19] R. S. Dembo and U. Tulowitzki. On the minimization of quadratic functions subject
to box constraints. Technical report, School of Organization and Management, Yale
University, New Haven, CT (1983).

[20] Z. Dostál. Box constrained quadratic programming with proportioning and projections.
SIAM J. Optim 7 (1997), 871–887.

24

[21] Z. Dostál. A proportioning based algorithm with rate of convergence for bound con-
strained quadratic programming. Numer. Algorithms 34 (2003), 293–302.

[22] J. C. Dunn. On the convergence of projected gradient processes to singular critical
points. J. Optim. Theory Appl. 55 (1987), 203–216.

[23] W. Glunt, T. L. Hayden, and M. Raydan. Molecular conformations from distance
matrices. J. Comput. Chem. 14 (1993), 114–120.

[24] A. Goldstein and J. Price. An effective algorithm for minimization. Numer. Math. 10
(1967), 184–189.

[25] A. A. Goldstein. On steepest descent. J. SIAM, Ser. A: Control 3 (1965), 147–151.

[26] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization. Comput. Optim.
Appl. 60 (2015), 545–557.

[27] W. W. Hager and H. Zhang. CG DESCENT user’s guide. Technical report, Depart-
ment of Mathematics, University of Florida, Gainesville, FL (2004).

[28] W. W. Hagerand H. Zhang. A new conjugate gradient method with guaranteed descent
and an efficient line search. SIAM J. Optim. 16 (2005), 170–192.

[29] W. W. Hager and H. Zhang. Algorithm 851: CG DESCENT, a conjugate gradient
method with guaranteed descent. ACM Trans. Math. Softw. 32 (2006), 113–137.

[30] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimiza-
tion. SIAM J. Optim. 17 (2006), 526–557.

[31] W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pac.
J. Optim. 2 (2006), 35–58.

[32] M. Kimiaei, A. Neumaier, and B. Azmi. LMBOPT – A limited memory method for
bound-constrained optimization. Math. Program. Comput. 14 (2022), 271–318.

[33] A. Neumaier and B. Azmi. Line search and convergence in bound-constrained op-
timization. Unpublished manuscript, University of Vienna (2019). http://www.
optimization-online.org/DB_HTML/2019/03/7138.html.

[34] A. Neumaier and M. Kimiaei. An efficient gradient-free line search. Preprint, University
of Vienna (2022). https://optimization-online.org/?p=21115

[35] W. Liu and Y. H. Dai. Minimization algorithms based on supervisor and searcher
cooperation. J. Optim. Theory Appl. 111 (2001), 359–379.

[36] J. J. Moré and G. Toraldo. Algorithms for bound-constrained quadratic programming
problems. Numer. Math. 55 (1989), 377–400.

[37] J. J. Moré and G. Toraldo. On the solution of large quadratic programming problems
with bound constraints. SIAM J. Optim. 1 (1991), 93–113.

25

[38] A. Neumaier, M. Kimiaei, and B. Azmi. Nonlinear conjugate gradients without wolfe
line search. Preprint, Vienna University, Fakultät für Mathematik, Universität Wien,
Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria (2022).

[39] J. Nocedal and S. J. Wright, eds. Numerical Optimization. Springer-Verlag (1999).

[40] B. T. Polyak. The conjugate gradient method in extremal problems. USSR Comput.
Math. Math. Phys. 9 (1969), 94–112.

[41] F. Rahpeymaii, M. Kimiaei, and A. Bagheri. A limited memory quasi-newton trust-
region method for box constrained optimization. J. Comput. Appl. Math. 303 (Septem-
ber 2016), 105–118.

[42] T. Serafini, G. Zanghirati, and L. Zanni. Gradient projection methods for quadratic
programs and applications in training support vector machines. Optim. Methods Softw.
20 (2005), 353–378.

[43] W. Warth and J. Werner. Effiziente Schrittweitenfunktionen bei unrestringierten Op-
timierungsaufgaben. Computing 19 (1977), 59–72.

[44] P. Wolfe. Convergence conditions for ascent methods. SIAM Rev. 11 (1969), 226–235.

[45] E. K. Yang and J. W. Tolle. A class of methods for solving large, convex quadratic
programs subject to box constraints. Math. Program. 51 (1991), 223–228.

26

