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Abstract We consider stochastic programs in which the probability distribution of uncertain parameters

is unknown and partial information about it can only be captured from limited data. We use distributionally

robust optimization (DRO) to model such problems. As opposed to the commonly used approach for DRO

problems that suggests creating an ambiguity set by following a specific procedure, we propose to build

it by adopting multiple procedures. Specifically, we design the ambiguity set by intersecting sets that

are constructed by different discrepancy-based measures. The new ambiguity set excludes the probability

distributions that reside in only one set, while preserving the common ones, which prevents the DRO problem

from producing overly conservative solutions. We derive single-level convex programming reformulations

for the resulting two-level DRO problems with various supports, namely, discrete known, univariate, and

multivariate supports. We additionally design a three-level cutting-plane algorithm and a relaxation-based

technique to tackle computationally challenging DRO problems with multivariate supports. To evaluate

the quality of the solutions that our reformulations yield and the performance of these techniques, we

conduct experiments on newsvendor and mean-risk portfolio allocation problems. Our results suggest that

using multiple measures to build the ambiguity set decreases robustness and provides high-quality solutions,

especially for small-size samples. Moreover, the outcomes illustrate that our proposed algorithm and the

upper-bounding technique are indeed effective.

1 Introduction

Many decision problems in practice are solved under uncertainty when the exact values of the parameters are

not available or difficult to obtain. Stochastic programming (SP) is a powerful modeling approach which

enables the incorporation of uncertainty into a mathematical model [Ghasemi et al., 2020, Hong et al., 2015].

Given an underlying probability distribution of uncertain parameters, i.e. true data-generating distribution,

SP often aims to optimize the expected value of the objective function. In such settings, the goal is to find a

solution that minimizes/maximizes the expected value of a function, which is a function of decision variables

and a random vector of parameters following the given distribution [Prékopa, 2013]. Computing the expected

value requires the calculation of multiple integrals which can be computationally intractable and requires
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approximation methods. One of the well-known techniques for approximating the SP problem is the sample

average approximation (SAA), which uses a sample of random vectors drawn from the underlying probability

distribution [Birge and Louveaux, 2011].

Given a sample of observations for a set of independent and identically distributed (IID) random variables,

SAA approximates the empirical distribution by assigning equal probabilities to each data point in the

sample. It has been shown in the literature that under mild conditions SAA is computationally tractable and

provides asymptotic convergence, meaning that as the sample size tends to infinity, the optimal objective

value and the optimal solution of the SAA problem converge to those of the SP problem [Kleywegt et al.,

2002]. In such a setting, the true data-generating distribution is assumed to be known and sampling from it

is possible. However, there are applications where only a small sample of data is available or there is limited

information on the true distribution [Kapteyn et al., 2019]. Additionally, there are many applications such as

healthcare related problems and emergency resource allocation problems where the events are rare and data

is scarce. In such cases, SAA might be used in which case one approximates the underlying distribution by an

empirical distribution which assigns equal probability for each observation. However, the optimal objective

values provided by SAA have been shown to be highly optimistic and sample dependent, especially for small

sample sizes. Moreover, considering a minimization problem, SAA provides only a valid lower bound, and its

optimal solution has poor out-of-sample performance. Besides, the optimal objective value and the optimal

solution have large variations [Bertsimas et al., 2018]. For the problems with scarce data, efficient data-driven

techniques are required in order to use the available data effectively.

Distributionally robust optimization (DRO) is a data-driven modeling approach that assumes the avail-

ability of partial information on the underlying probability distribution, while SP assumes the full availability

of the distribution. DRO aims at finding a solution that minimizes the worst-case expected cost with respect

to a set of distributions which is called ambiguity set. This set contains a family of probability distributions

that share properties similar to the true data-generating distribution. The set can be constructed based on

the information that the available data implies about the underlying true distribution. In the DRO literature,

various procedures are proposed for constructing ambiguity sets where these methods are designed based

on different measures such as discrepancy metrics and moments of the probability distributions. Following

a particular procedure, the ambiguity set contains all distributions satisfying measure-specific properties.

By choosing the measure carefully, the resulting ambiguity set provides beneficial properties for the DRO

problem, namely asymptotic convergence, performance guarantee, and tractability [Bertsimas et al., 2018].

To elaborate, under mild assumptions the optimal objective value and the optimal solution of the DRO

problem converge to those of the SP problem as the sample sizes increase. Moreover, the optimal objective

value of the DRO problem can provide a probabilistically guaranteed upper bound over its out-of-sample

performance. In other words, considering a minimization problem, solving the DRO problem given a sample,

yields an optimal objective value and a solution such that evaluation of the solution on another sample is

bounded above by the optimal objective value with high probability. Additionally, for many problems of

practical interest, such as two-stage stochastic programming problems and risk-averse problems, DRO is

equivalent to a tractable single-level convex optimization problem that can be tackled by off-the-shelf solvers.

However, the ambiguity set might contain distributions which lead to extremely conservative solution and

objective value for the DRO problem especially for small sample sizes.

In order to prevent this robustness, we propose to build the ambiguity set as an intersection of multiple

ambiguity sets. The intersection yields a joint set that may exclude the extreme distributions that belong to

individual sets and result in robust outcomes to the DRO problem. The idea is to exclude any distributions
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that reside in only individual sets and preserve the common ones. In this case, the joint set can be constructed

by incorporating multiple measures and the DRO problem with the joint ambiguity set can inherit certain

useful measure-specific properties of the DRO problems with individual sets. In this work, we examine the

conditions under which the DRO problem with joint set can preserve those properties while still maintains

tractability. We illustrate that under mild assumptions, this DRO problem provides at least as good in-sample

performance as each of the individual problems.

More specifically, we construct a joint ambiguity set for the DRO problem using Wasserstein metric and

Goodness-of-Fit (GoF) tests. For problems with discrete-known and univariate supports, we intersect the sets

generated with various GoF tests. For problems with multivariate support, we intersect the Wasserstein ball

and the confidence region of the linear-convex ordering test. We discuss the assumptions under which the DRO

problems with individual and joint ambiguity sets possess performance guarantee and convergence. Moreover,

for the resulting problems, we derive tractable single-level convex reformulations which are solvable by the

state-of-the-art solvers. For computationally challenging problems in the multivariate setting, we also propose

a three-level cutting-plane algorithm and a relaxation-based procedure to find lower and upper bounds on

the optimal value of the DRO problem. We conduct computational experiments to compare the quality of

the bounds provided by the DRO problem with joint ambiguity set and those from the DRO problems with

individual ambiguity set. We illustrate the performance of our approach on newsvendor problem with random

demand and mean-risk portfolio allocation problem with uncertain returns. Our experiments indicate that

the DRO problems with joint ambiguity set in most of the cases can yield better solutions than the DRO

problems with single-measure based ambiguity sets in terms of in-sample and out-of-sample performance,

especially for small sample sizes.

Our contributions can be listed as follows:

• In modeling SP problems using a DRO framework, we propose to construct the ambiguity set as an

intersection of multiple single-measure based ambiguity sets.

• We study the conditions under which the proposed DRO problem possesses useful properties.

• We derive single-level convex reformulations for two-level DRO problems with joint ambiguity sets for

problems with discrete known, univariate, and multivariate supports.

• We propose lower and upper bounding techniques for computationally demanding problems in the

multivariate setting and show the efficacy and efficiency of the techniques.

• We evaluate the quality of the solutions provided by the DRO problem with a joint ambiguity set in

terms of their in-sample and out-of-sample performances using the two well-known problems from the

literature, namely, newsvendor problem with random demand and mean-risk portfolio optimization

problem with random returns.

The rest of the paper is organized as follows. In Section 2, we review the literature and discuss the

proposed techniques therein for constructing ambiguity sets. In Section 3, we provide a brief background and

mathematical formulation of the problems as well as the measures that we use later in this work. In Section

4, we elaborate on our idea of constructing a joint ambiguity set and provide the conditions under which the

DRO problem can achieve beneficial properties. In Sections 5, 6, and 7, we propose tractable reformulations

for DRO problems with joint ambiguity sets under discrete known, univariate, and multivariate supports,

respectively. In Section 7, we propose bounding techniques for problems with multivariate support. In Section
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8, we illustrate the quality of the bounds provided by the DRO problems over newsvendor problem and

mean-risk portfolio optimization problem. In Section 9, we explain the advantages of using our approach

over existing approaches in the literature. Additionally, we provide a summary table on the various problem

settings that we study and discuss the tractability of the reformulations we derive. Next, in Section 10, we

conclude the paper with a summary of our findings and discuss future work.

2 Literature Review

In this section, we review the relevant literature regarding constructing an ambiguity set for DRO problems.

In the literature, ambiguity sets can be categorized into two main groups, namely, moment-based and

discrepancy-based ambiguity sets. While the moment-based ambiguity sets contain all distributions whose

moments satisfy specific properties, discrepancy-based ambiguity sets contain all distributions in a certain

distance with respect to a specific discrepancy measure from a reference distribution which can be obtained

from available data.

Moment-based ambiguity sets are usually constructed based on the first and second moment information

of a reference distribution. Scarf [1957] presents one of the first studies in the DRO context and studies a

distributionally robust newsvendor problem with random demand where the ambiguity set is constructed

based on the known mean and variance of the demand. Extending the work, Gallego and Moon [1993] assume

that mean and covariance matrix are unknown and reside in a polytopic and interval uncertainty sets, while

Lotfi and Zenios [2018] consider them to reside in an ellipsoidal set. Rujeerapaiboon et al. [2018] study a

DRO problem where they assume that the mean is known, but the covariance matrix is unknown or bounded

above. Delage and Ye [2010] assume that the moments of a random variable are unknown and construct

an ambiguity set using a data-driven procedure to build a confidence region for them. They consider a

minimization problem and prove that the optimal objective value of the DRO problem with the proposed

ambiguity set provides a probabilistic upper bound on the out-of-sample performance of the optimal solution

of the DRO problem.

Shapiro and Ahmed [2004] propose a framework based on generalized inequalities which can be used for

modeling the support of a random vector, defining bounds on the probability measure, and defining bounds

on the function of the random variable. Particular cases of the framework appears in some other works such

as [Mehrotra and Papp, 2014, Perakis and Roels, 2008]. Using the same idea, Royset and Wets [2017] propose

a decision-dependent ambiguity set which is constructed by imposing bounds on the decision-dependent

cumulative distribution of a random vector and analyze the convergence results of the corresponding DRO

problem. While the studies mentioned so far construct an ambiguity set based on the available information

on the joint distribution of a random vector, there are studies that assume the availability of additional

information on marginal probability distributions as well [Chen et al., 2022a, Dhara et al., 2021, Doan et al.,

2015].

Moment-based ambiguity sets are studied in the context of risk-averse decision making. Liu et al. [2017]

study reward-risk ratio model where the ambiguity set is constructed by restricting mean and covariance

matrix entries to an interval. Natarajan et al. [2014] consider CVaR minimization problem with ambiguity set

created based on the information on marginal distributions. Beside risk-averse decision making, moment-based

ambiguity sets are incorporated into problems with individual and joint chance-constraints. Hanasusanto

et al. [2017], Xie et al. [2022], and Xie and Ahmed [2018] study chance-constrained problems where the

ambiguity set is constructed by imposing generalized inequalities on the first/second moment of a random
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vector. For information on various moment-based ambiguity sets and their mathematical foundations, we

refer the interested reader to Rahimian and Mehrotra [2019].

Alternatively, using a discrepancy measure the ambiguity set can be restricted to the probability distri-

butions with small dissimilarity to the nominal distribution. Optimal transport discrepancy measures such

as Wasserstein metric are very well-known ones in this category which have gained significant popularity in

recent years. The metrics compute the minimum cost associated with transporting a mass from a probability

distribution to another one with respect to a discrepancy measure such as p-Wasserstein metric. Modeling a

DRO problem with optimal transport metrics can be seen in many operations research and machine learning

studies such as [Gao and Kleywegt, 2022, Chen et al., 2022b, Blanchet et al., 2022, Luo and Mehrotra, 2019,

Lee and Raginsky, 2018, Esfahani and Kuhn, 2018, Mehrotra and Zhang, 2014].

It has been illustrated by Esfahani and Kuhn [2018] that the ambiguity set can be constructed using

the Wasserstein distance measure. In this case, the modern measure concentration result guarantees the

existence of the true data-generating probability distribution in the Wasserstein ball with high confidence

[Bolley et al., 2007]. While the authors use 1-Wasserstein metric, they show that under mild assumptions

the optimal objective value of the DRO problem with the Wasserstein ambiguity set provides a probabilistic

guarantee on the out-of-sample performance of its optimal solution, also enjoys asymptotic convergence and

tractability for numerous cost functions. In a similar work, Gao and Kleywegt [2022] study a DRO problem

with an ambiguity set constructed by p-Wasserstein metric where p-norm is utilized as a distance measure.

The authors identify necessary and sufficient conditions for the existence of a worst-case distribution and

show that the distribution has a certain structure. Based on the structure of the distribution they argue that

any data-driven DRO can be approximated by an appropriate robust optimization problem.

In an alternative way, GoF tests can be considered as discrepancy measures and used to construct

the ambiguity sets. Bertsimas et al. [2018] propose constructing ambiguity sets as a confidence region of

GoF tests which contain all probability distributions that pass the corresponding hypothesis test. The

framework is called Robust SAA and aims at leveraging useful properties provided by SAA while possessing

a guarantee on the quality of its performance. The authors show that under mild assumptions the DRO

problem with GoF test-based ambiguity set can be reformulated as a tractable convex optimization problem,

also provides asymptotic convergence and performance guarantees. Postek et al. [2016] study DRO problems

with risk constraints where GoF tests are used for constructing ambiguity sets. The authors propose tractable

reformulations for these problems.

There are other studies in the literature that consider different discrepancy measures such as ϕ-divergence

[Blanchet et al., 2022, Lam, 2019, Jiang and Guan, 2016, Wang et al., 2016, Bayraksan and Love, 2015,

Ben-Tal et al., 2013, Yanıkoğlu and den Hertog, 2013], total variation distance [Rahimian et al., 2019a,b,

Shapiro, 2017], Prohorov metric [Gibbs and Su, 2002, Erdoğan and Iyengar, 2006], and lp-norm [Jiang and

Guan, 2018, Huang et al., 2017].

In the reviewed articles, the authors consider a single measure for constructing the ambiguity set whereas

in this work we propose to use multiple of them. We note that similar idea is used in Bertsimas et al. [2018]

where the authors construct the ambiguity set using a moment-based measure and GoF tests in order to

ensure a finite optimal solution to the DRO problem. However, their goal of using the intersection idea is

different from our work, where we propose the construction of a joint ambiguity set to improve the quality of

the solution by removing highly conservative distributions from the set. Moreover, the authors present the

idea for a special problem setting, namely for problems with univariate and unbounded support, whereas we

propose the idea for the general case and illustrate its use in detail for various problem settings. In the next
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section, we provide a background and mathematical basis for the measures that we consider in this study.

3 Preliminaries

In this paper, we consider the stochastic programming problem

zSP = min
x∈X

EF[c(x, ξ)] (1)

where the goal is to find x ∈ X ⊆ Rn that minimizes the expected value of a cost function, c(x, ξ), which is a

function of the decision variables x and the random vector ξ following the joint probability distribution F

that is defined on a support Ξ.

In the cases where F is known and sampling from it is possible, SAA approximates problem (1) by

zSAA = min
x∈X

1

N

N∑
j=1

c(x, ξj) (2)

where ξ1, . . . , ξN is an IID sample of random vectors drawn from F. On the other hand, DRO is a modeling

approach aiming at finding a solution that minimizes the worst-case expected cost

zDRO = min
x∈X

max
F∈F

EF [c(x, ξ)] (3)

where F is an ambiguity set that contains probability distributions of interest. The set F plays a crucial role

in this context as the DRO problem can possess desirable properties based on the measure used to build the

set. Useful properties for the DRO problem, namely performance guarantee, convergence, and tractability

are introduced in Bertsimas et al. [2018], which we overview in what follows for the sake of completeness.

Performance guarantee: Let xDRO denote an optimal solution of problem (3). The out-of-sample

performance of xDRO is represented by EF[c(x
DRO, ξ)] which is the expected cost of xDRO under the true data-

generating distribution F. Since xDRO is a feasible solution to the SP problem (1), its out-of-sample performance

is an upper bound on the optimal objective value of the SP problem, zSP. In settings where F is not available,

obtaining zSP and EF[c(x
DRO, ξ)] is impossible. However, zDRO can provide a probabilistic upper bound on

them under certain conditions.

An ambiguity set is called at significance level α for a given α ∈ [0, 1], if it contains the true data-generating

distribution F with probability 1− α. Let F(α) denote an ambiguity set at significance level α. The optimal

objective value of the DRO problem (3) with ambiguity set F(α) provides a probabilistic upper bound on the

out-of-sample performance of its optimal solution. The performance guarantee of the DRO problem can be

formalized as

P(EF[c(x
DRO, ξ)] ≤ zDRO) ≥ 1− α, (4)

meaning that the probability that zDRO is an upper bound on EF[c(x
DRO, ξ)] is at least 1− α. This probability

is called reliability in some references [Esfahani and Kuhn, 2018].

Asymptotic convergence: Let FN (α) denote an ambiguity set at significance level α which is constructed

based on an available sample of observations ξ1, . . . , ξN . Let xDRO and xSP denote an optimal solution of the

DRO problem and the SP problem, respectively. Under the following condition on FN (α) along with measure

specific assumptions on the cost function c(x, ξ), feasible region X, and support Ξ, the DRO problem achieves
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the convergence of zDRO → zSP and xDRO → xSP as N →∞:

P(FN ↛ F =⇒ FN /∈ FN ) = 1. (5)

This condition means that every sequence FN that does not converge weakly to the true distribution

should not be included in the ambiguity set FN almost surely, as N tends to infinity (see Definition 3 of

[Bertsimas et al., 2018]).

Tractability: Structure of the cost function and ambiguity set can provide theoretical and practical

tractability to the DRO problem. By theoretical tractability, we mean that there exists a polynomial-time

algorithm for solving problem (3), while by practical tractability we mean that the problem can be reformulated

as a single-level convex optimization problem and in turn can be solved by state-of-the-art solvers. Consider

the problem of finding a worst-case expected value over an ambiguity set F for a given solution x

C(x,F) = max
F∈F

E[c(x, ξ)]. (6)

For many ambiguity sets, it has been shown in the literature that the problem can be reformulated as

a single-level convex optimization problem for various cost functions of practical interest. By taking the

dual of C(x,F) and transforming it into a minimization problem, it can be merged with minx∈X(·) so that

the two-level DRO problem (3) can be written as a single-level problem. For instance, problem (3) with

a Wasserstein-based ambiguity set reduces to a linear optimization problem if the 1-norm is used in the

definition of the Wasserstein metric and the cost function is the maximum or minimum of affine functions.

Additionally, the DRO problem with a certain GoF test based ambiguity set can be reformulated as a

single-level convex optimization problem which can be solved by polynomial-time algorithms.

In this study, we mainly focus on building an ambiguity set using discrepancy-based measures, specifically,

GoF tests and the Wasserstein metric. In what follows we briefly provide mathematical bases for creating

individual sets using these measures. In all upcoming sections, we use the notation [m] to denote the

set {1, . . . ,m}.

3.1 GoF test-based ambiguity sets

The ambiguity set of a DRO problem can be the set of all probability distributions that pass a particular GoF

test. A GoF test evaluates whether or not a given sample of observations follows a hypothetical distribution.

The null hypothesis is that the provided sample is drawn from the hypothetical distribution. A test is said

to be at significance level α ∈ [0, 1], if the probability of incorrectly rejecting the null hypothesis is at most

α. In GoF tests, a test-specific statistic is calculated based on the given sample and a given hypothetical

distribution. If the value of the test statistic is strictly larger than the threshold implied by the significance

level α, then the null hypothesis is rejected. The set of all probability distributions that pass the test is called

the confidence region of a test. Therefore, the ambiguity set of a DRO problem can be constructed as the

confidence region of a GoF test.

Let ξ1, . . . , ξN be an IID sample and F be a hypothetical distribution. Let T specify a GoF test and

SN
T (F, ξ1, . . . , ξN ) denote a test-specific statistic that is calculated based on the given sample and the

hypothetical distribution. An ambiguity set that is equivalent to the confidence region of a GoF test at
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significance level α can be constructed as

F GoF
T (α) := {F ∈ P(Ξ) : SN

T (F, ξ1, . . . , ξN ) ≤ QT(α)} (7)

where Ξ ⊆ Rm denotes the support of the random vector, P(Ξ) is the set of probability distributions over Ξ,

and QT(α) is a test-specific threshold at significance level of α. By construction, the ambiguity set F GoF
T (α)

contains the true data-generating distribution with probability of at least 1− α which provides a guarantee

on the performance of the DRO problem with F GoF
T (α) as its ambiguity set. If c(x, ξ) is continuous in x over

all ξ ∈ Ξ, feasible set X is close and bounded, and support Ξ is bounded, then problem (3) with ambiguity

set F GoF
T (α) enjoys asymptotic convergence and performance guarantee while it can be reformulated as a

single-level convex optimization problem. For more detailed information regarding the assumptions, interested

readers are referred to [Bertsimas et al., 2018].

3.2 Wasserstein metric-based ambiguity sets

One of the most widely used probability metrics on the space of probability distributions is the Wasserstein

metric. It is utilized for measuring the distance between two probability distributions and interpreted as

the optimal mass transportation plan from one distribution to another one. Let P′(Ξ) denote the set of all

probability distributions F on the support Ξ where EF

[
||ξ||

]
=
∫
Ξ
||ξ|| F (ξ) ≤ ∞. Wasserstein distance

dWass : P′(Ξ)× P′(Ξ)→ R+ between two probability distributions is defined as

dWass(F1, F2) := inf
Π

∫
Ξ×Ξ

||ξ1 − ξ2||p Π(ξ1, ξ2) (8)

where the decision variable Π is a joint probability distribution of ξ1 and ξ2 with marginal distributions F1

and F2, respectively. Additionally, || · ||p for p ≥ 1 represents the p-norm on Rm resulting in a generalized

p-Wasserstein metric. For simplicity, in this paper, we consider the 1-Wasserstein metric (p = 1) which is a

commonly use metric in the literature.

Esfahani and Kuhn [2018] propose to construct the ambiguity set of a DRO problem using the Wasserstein

metric. Given an IID sample ξ1, . . . , ξN and the corresponding empirical distribution F̂N , the idea is to

construct a Wasserstein ball of radius ϵαN centered at the empirical distribution such that

F Wass(ϵαN ) := {F ∈ P′(Ξ) : dWass(F, F̂N ) ≤ ϵαN} (9)

This ambiguity set F Wass(ϵαN ) contains all probability distributions that are within a certain distance from the

empirical distribution. Under a light tail assumption on the true data-generating distribution, the ambiguity

set provides a performance guarantee for the DRO problem with F Wass(ϵαN ) ambiguity set. This assumption

means that the tail of the true distribution F should decay at an exponential rate, and the modern measure

concentration theorem [Fournier and Guillin, 2015] suggests that F Wass(ϵαN ) contains F with probability of

at least 1− α if ϵαN is a sublinearly growing function of log(1/α)/N . Based on the measure concentration

theorem, the performance guarantee of DRO problem with F Wass(ϵαN ) ambiguity set follows. If c(x, ξ) is upper

semicontinuous in ξ and there exists a constant L ≥ 0 where |c(x, ξ)| ≤ L(1 + ||ξ||) for all x ∈ X, the optimal

objective value of the DRO problem converges to that of the SP problem almost surely as the sample size

tends to infinity. Moreover, if the assumptions hold and c(x, ξ) is lower semicontinuous in x for all ξ ∈ Ξ,

the optimal solution of the DRO problem converges to that of SP problem almost surely as the sample size
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tends to infinity. Furthermore, assuming c(x, ξ) := maxk∈[K] ck(x, ξ) where −ck(x, ξ) are proper, convex, and

lower semicontinuous in ξ for all x ∈ X and k ∈ [K], also Ξ is closed and convex, the worst-case expected

value problem maxF∈F Wass(ϵαN ) EF [c(x, ξ)] can be reduced to a finite convex problem and, consequently, the

DRO problem can be reformulated as a single-level convex problem and can be solved by off-the-shelf solvers.

For more detailed information regarding the assumptions, an interested reading is referred to [Esfahani and

Kuhn, 2018].

4 Joint ambiguity set

While a common approach suggested in the literature for DRO problems is to build an ambiguity set using a

single measure, in this work we propose to construct the ambiguity set based on a combination of various

measures. In this case, the ambiguity set can be regarded as a joint region of multiple ambiguity sets and can

potentially inherit the desirable properties of the individual sets while cut off overly conservative distributions

of each set and provide better results for the DRO problem in terms of optimal solution and objective value.

Specifically, we use intersection as an operator to construct a joint ambiguity set which combines multiple

sets, of which is each created by a single measure that guarantees the existence of the true distribution in the

set at a certain confidence level. Let Fi(αi) denote an ambiguity set at significance level αi for i ∈ [m] where∑m
i=1 αi < 1. We define

F(α) = F1(α1) ∩ F2(α2) ∩ . . . ∩ Fm−1(αm−1) ∩ Fm(αm) (10)

as the joint ambiguity set at significance level α ∈ [0, 1] where α = α1+ . . .+αm and by construction the joint

ambiguity set F(α) contains the true distribution F with a probability of at least 1−α. A DRO problem with

each of the ambiguity sets Fi(αi) should satisfy measure specific assumptions in order to possess desirable

properties that are discussed in Section 3. Based on the measure, each property requires a particular set

of assumptions to hold. In what follows, we discuss assumptions required for a DRO problem with a joint

ambiguity set to enjoy each of the properties.

In terms of performance guarantee, a DRO problem with ambiguity set Fi(αi) can provide a performance

guarantee of type (4) under a set of assumptions which we denote as AValid
i . The assumptions are on the

cost function c(x, ξ), feasible region X, structure of the ambiguity set Fi(αi), and support Ξ, that ensure

the existence of the finite optimal objective value and optimal solution for the DRO problem. The list of

assumptions required for the DRO problem with ambiguity set Fi(αi) can be found in related references. If

the joint ambiguity set is constructed as in (10), set of assumptions AValid
J , under which the DRO problem

(3) with F(α) provides a performance guarantee can be constructed as the union of AValid
i sets for i ∈ [m].

Under assumptions AValid
J , the optimal objective value of the DRO problem with the joint ambiguity set is

a lower bound on the optimal value of the DRO problems with individual sets Fi(αi), under the assumptions

AValid
i for i ∈ [m]. The reason is that the joint ambiguity set is a subset of individual sets which creates

a smaller feasible region for problem (6). In this case, problem (3) with F(α) ambiguity set can provide a

tighter bound on the out-of-sample performance of its optimal solution compared to the bounds provided by

DRO problems with individual ambiguity sets on the out-of-sample performance of their optimal solutions.

In terms of asymptotic convergence, a DRO problem with Fi(αi) ambiguity set which satisfies condition (5)

possesses convergence under a set of measure-specific assumptions that is denoted by AConv
i . The set may

contain assumptions on the cost function c(x, ξ), feasible set X, and support Ξ. Let AConv
J denote the set
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of assumptions that should hold so that the DRO problem with the joint ambiguity set has asymptotic

convergence. The joint ambiguity set (10), by construction, satisfies the condition (5) and in order to

guarantee the convergence for the DRO problem with the joint ambiguity set, it is sufficient for AConv
J to

contain all assumptions included in a single set AConv
i as long as all Fj(αj) for j ∈ [m] and j ̸= i contain the

empirical distribution. However, in order to get the most benefit out of the joint ambiguity set in terms of

convergence, the set AConv
J can be defined as the union of AConv

i sets for i ∈ [m]. Therefore, the convergence

property of the DRO problem with joint ambiguity set can be interpreted based on the convergence of the

DRO problem with individual ambiguity sets.

In terms of tractability, let ATrac
i denote the set of all assumptions under which a DRO problem with an

ambiguity set Fi(αi) can be reformulated as a single-level convex optimization problem. A DRO problem

with joint ambiguity set (10) possesses tractable reformulation under assumptions ATrac
J which is the union

of ATrac
i for i ∈ [m]. It is important to note that although the set of assumptions for the DRO problem with

joint ambiguity set can be created based on the assumptions of the individual problems, the derivation of

a single-level formulation for the DRO problem with joint ambiguity set is not straightforward. In fact, a

single-level reformulation of problem (3) with joint ambiguity set is not achievable by directly combining

the reformulations of the DRO problems with individual ambiguity sets. In order to obtain the single-level

reformulation, the feasible set of problem (6) should be replaced by the joint ambiguity set and the dual

of the problem should be taken so that the resulting minimization problem can be merged with min
x∈X

(·) and
yield a single-level optimization problem.

Various measures have been proposed in the literature for constructing an ambiguity set and all of them

can be utilized to construct the joint ambiguity set as long as their underlying assumptions to obtain the

desirable properties do not contradict with each other. In this paper, we study the intersection of multiple

ambiguity sets in problems with various support structures, namely, problems with discrete known support,

univariate support, and multivariate support. Choosing appropriate measures is crucial as the measures

should be compatible with the problem setting. Therefore, we consider the intersection of multiple sets each

created by an individual GoF test for problems with discrete and univariate supports, and the intersection of

Wasserstein ball with a set created by a particular GoF test for the problems with multivariate support.

5 Problems with discrete known support

Consider ξ as a random variable with known discrete support Ξ = {ξ̂1, . . . , ξ̂n}. In this case, two well-known

statistical tests, namely Pearson’s χ2 test and G-test can be utilized for constructing the ambiguity set of a

DRO problem. The test statistics for the tests are

XN =

 n∑
j=1

(F (ξ̂j)− F̂N (ξ̂j))2

F (ξ̂j)

1/2

GN =

2

n∑
j=1

F̂N (ξ̂j) log

(
F̂N (ξ̂j)

F (ξ̂j)

)1/2

where F (ξ̂j) and F̂N (ξ̂j) denote the hypothetical and empirical probabilities of observing ξ̂j for j ∈ [n],

respectively. Let Qχ2(α1) and QG(α2) denote the thresholds of the χ2-test and the G-test at significance
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levels of α1 and α2, respectively. Also, let Fχ2(α1) and FG(α2) represent the individual confidence regions

created by χ2-test and G-test, respectively. A joint ambiguity set for a DRO problem using the tests can be

constructed as

F(α) = Fχ2(α1) ∩ FG(α2) = {F ∈ P(Ξ) : XN ≤ Qχ2(α1), GN ≤ QG(α2)} (11)

where α = α1+α2 is the significance level of the joint ambiguity set and α, α1, α2 ∈ [0, 1]. Using the properties

of two sets, the joint ambiguity set provides a performance guarantee with a probability of at least 1− α.
The DRO problem with joint ambiguity set can possess asymptotic convergence, which can be built upon the

convergence property of the individual DRO problems with Fχ2(α1) and FG(α2) ambiguity sets.

For the χ2-test and the G-test, there exist sets of assumptions, denoted by ATrac
χ2 and ATrac

G , respectively,

under which the DRO problems with ambiguity sets as a confidence region of the tests have tractability. Under

these assumptions, problem (3) with Fχ2(α1) and FG(α2) ambiguity sets can be reformulated as a single-level

convex optimization problem that can be solved by off-the-shelf solvers. In this setting, the assumptions

contained in both sets are the same [Bertsimas et al., 2018]. Under the same set of assumptions, the DRO

problem with the joint ambiguity set have tractability meaning that we have ATrac
J = ATrac

χ2 = ATrac
G . In the

following theorem, we provide an equivalent reformulation for the worst-case expected value problem.

Theorem 1. Let F(α) represent a joint ambiguity set defined as in (11). Under assumptions of ATrac
J ,

problem (6) can be reformulated as

C(x,F(α)) = min
r,s,s′,t,t′,ℓ,y,γ

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ −
n∑

j=1

F̂N (ξ̂j)(tj + t′j) (12a)

s.t. ℓj − γj ≤ s j ∈ [n] (12b)

2s+ tj ≤ yj j ∈ [n] (12c)

γj − r ≤ s′ j ∈ [n] (12d)

ℓj ≥ c(x, ξ̂j) j ∈ [n] (12e)

(yj , ℓj − γj , 2s− ℓj + γj) ∈ CSOC j ∈ [n] (12f)

(t′j , s
′, s′ − γj + r) ∈ CXC j ∈ [n] (12g)

r ∈ R, s, s′ ∈ R+, γ, t, t
′, ℓ, y ∈ Rn (12h)

where

CSOC = {(a, b, c) ∈ R3 :
√
a2 + b2 ≤ c}

is a second-order cone, and

CXC = cl
(
{(a, b, c) : bea/b ≤ c, b > 0}

)
is an exponential cone, and cl(·) denotes the closure operator.

Proof. To transform the two-level min-max DRO problem to a single-level convex optimization problem, we

need to take the dual of the inner maximization problem and obtain a minimization problem. To begin with,

we add all of the constraints contained in the definition of the joint ambiguity set (11) to the maximization

problem (6). Specifically, we add the constraints which make the decision variable F a probability distribution
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and to reside in the sets created by χ2-test and G-test. We use definition of ϕ-divergence of the tests in order

to formulate the related constraints.

In order to obtain a minimization problem we take the following steps. First, we use Fenchel duality

in order to get the dual of the maximization problem. Next, we omit the maximization operator using the

definitions of convex conjugates of the ϕ-divergences. Finally, we further simplify the resulted formulation

with replacing the convex conjugates with their alternative definitions and add the required constraints to the

model. For mathematical formulations and more details on the steps of the proof please see Appendix A.1.

6 Problems with univariate distributions

Let ξ be a continuous univariate random variable that belongs to a bounded support Ξ. There are well-known

GoF tests that can be used for constructing ambiguity sets, namely Kolmogorov–Smirnov test, Kuiper

test, Cramér-von Mises test, Watson test, and Anderson-Darling test [D’Agostino, 2017, Wang et al., 2016,

Nwaigwe et al., 2022]. Considering test T be one of the mentioned GoF tests with a test statistic SN
T and a

threshold QT(α) at significance level α, the individual ambiguity set of test T, FT(α) can be constructed as in

(7) [Bertsimas et al., 2018].

Given a sorted (ascending according to their values) sample of observations {ξ1, . . . , ξN}, let ζ denote the

hypothetical cumulative distribution that the sample can be drawn from. It has been shown in the literature

that the inequality SN
T (ζ, ξ1, . . . , ξN ) ≤ QT(α) has a conic representation in the form of ASN

T
ζ−bSN

T ,α ∈ KSN
T

where cone KSN
T
, matrix ASN

T
, and the vector bSN

T ,α are defined based on the test statistic of the test T. The

cones associated with the mentioned tests are canonical cones meaning that they can be written as a Cartesian

product of Rk, {0}, Rk
+, CSOC, and semidefinite cone where k denotes an appropriate dimension. Therefore, a

DRO problem with the ambiguity set as a confidence region of a single GoF test is an optimization problem

over a cone which is tractable and can be solved using state-of-the-art solvers (see Theorem 10 of [Bertsimas

et al., 2018]).

In this setting, we construct a joint ambiguity set as an intersection of multiple GoF tests. Let T1, . . . , Tm

be m tests at significance levels of α1, . . . , αm, respectively, also, let FT1(α1), . . . ,FTm(αm) be their individual

confidence regions. The joint ambiguity set is

F(α) = FT1(α1) ∩ . . . ∩ FTm(αm) = {ζ ∈ D(Ξ) : ASN
Tj
ζ − bSN

Tj
,αj
∈ KSN

Tj
, j ∈ [m]} (13)

where D(Ξ) denotes the set of cumulative distributions over the support Ξ and α =
∑m

j=1 αj is the significance

level of the joint ambiguity set. Using the properties of multiple sets, the joint ambiguity set provides a

performance guarantee with a probability of at least 1− α. The DRO problem with the joint ambiguity set

can possess asymptotic convergence, which can be built upon the convergence property of the DRO problems

with the FTj (αj) ambiguity sets for j ∈ [m].

For the tests Tj , there exist sets of assumptions denoted by ATrac
Tj

for j ∈ [m] under which the DRO

problem with ambiguity sets as a confidence region of the tests have tractability. In this problem setting,

considering the mentioned tests, the assumptions contained in all sets are the same [Bertsimas et al., 2018].

Under the assumptions, problem (3) with FTj (αj) ambiguity sets for j ∈ [m] can be reformulated as a

single-level convex cone programming problem. The DRO problem with the joint ambiguity set (13) has

tractability under the same set of assumptions, meaning that ATrac
J = ATrac

T1
= . . . = ATrac

Tm
. In the following

theorem, we provide an equivalent reformulation for worst-case expected value problem.
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Let bTj = bSN
Tj
,αj

, ATj = ASN
Tj
, and KTj = KSN

Tj
be the information associated with the test Tj for j ∈ [m],

and let (·)i represent the i-th row of a given matrix. For cone K ⊆ Rk of suitable dimension k, let K∗ denote

its dual cone, i.e., K∗ = {y ∈ Rk : y⊤z ≥ 0, ∀z ∈ K}.

Theorem 2. Given a sorted sample of {ξ1, . . . , ξN} and an ambiguity set defined as in (13), under assumptions

of ATrac
J , problem (6) can be reformulated as

C(x,F(α)) = min
r,ℓ

m∑
j=1

b⊤Tjrj + ℓN+1 (14a)

s.t. ℓ ∈ RN+1, −rj ∈ K∗
Tj
, j ∈ [m] (14b) m∑

j=1

A⊤
Tj
rj


i

= ℓi − ℓi+1 i ∈ [N ] (14c)

ℓi ≥ sup
ξ∈(ξi−1,ξi]

c(x, ξ) i ∈ [N + 1] (14d)

where ξ0 and ξN+1 are lower bound and upper bound on the support, respectively.

Proof. Similar to the problems with discrete known support, in this setting we need to take the dual of the

inner maximization problem in the two-level min-max DRO problem to convert it to a minimization problem

and merge the resulting problem with the outer minimization problem. As opposed to the discrete known

support problems where we build the ambiguity set for the probability distributions, in univariate setting, we

construct the ambiguity set for cumulative probability distributions. Therefore, the maximization problem

has constraints which assure that the decision variable F is a cumulative probability distribution and reside

in the regions defined by the considered GoF tests. As we discussed earlier, the regions are canonical cones,

so, the resulted maximization problem is a conic programming problem and conic duality results can be used

in the reformulations.

In order to obtain a single-level convex programming problem, we use the final model proposed in

Theorem 11 of [Bertsimas et al., 2018] and the conic duality theorem proposed in Section 1.4.5.1 of [Ben-Tal

and Nemirovski, 2019] (see Appendix A.2 for more details). In this setting, we use multiple tests to build

the ambiguity set; therefore, we have multiple conic constraints as opposed to a single constraint which is

considered in [Bertsimas et al., 2018]. Our final reformulation (14) follows from the duality theorem mentioned

in [Ben-Tal and Nemirovski, 2019] for m > 2 which allows us to incorporate the information of the multiple

conic constraint in the forms of summations in the objective function (14a) and constraints (14c).

For the case of univariate distributions with unbounded support, a novel test has been proposed in

[Bertsimas et al., 2018] where the ambiguity set is constructed by restricting the confidence region of an

individual GoF test to contain only the distributions that have particular moment-based conditions. The

same idea can be applied for constructing joint ambiguity set for the problems with unbounded support. In

this case, multiple GoF tests can be intersected similar to the bounded case and restrict the joint region by

the same moment based conditions that is proposed by the authors.
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7 Problems with multivariate distributions

In this section, we discuss the performance guarantee and tractability of the DRO problem with joint

ambiguity set for problems with multivariate distributions. We derive a tractable reformulation for the

problem and propose bounding techniques for these computationally challenging problems.

7.1 Performance Guarantee and Tractability

Let ξ denote a random vector of dimension d that follows a multivariate distribution with support Ξ. In this

setting, we consider an intersection of the ambiguity sets constructed by Wasserstein distance measure and a

GoF test based on linear-convex ordering (LCX) of random vectors.

LCX-based GoF test constitutes of two test statistics namely RN and CN . Given a sample of random

vector observations {ξ1, . . . , ξN} and their corresponding empirical distribution F̂N , the test statistics are as

follows:

RN = EF̂N
[||ξ||22]− EF [||ξ||22] (15)

CN = sup
|a1|+...,+|ad|+|b|≤1

(
EF [max{a⊤ξ − b, 0}]− EF̂N

[max{a⊤ξ − b, 0}]
)

(16)

where F is a hypothetical distribution and ||ξ||22 =
∑d

j=1 ξ
2
j . Let QRN (α1) and QCN (α2) denote two thresholds

at significance levels of α1 and α2, respectively. An ambiguity set can be constructed based on the LCX

ordering as follows:

FLCX(α) := {F ∈ P(Ξ) : RN ≤ QRN (α1), CN ≤ QCN (α2)} (17)

where α = α1 + α2. The joint ambiguity set in the multivariate case can be considered as an intersection

of the confidence region of LCX-based GoF test and Wasserstein ball centered at empirical distribution.

Intersecting the ambiguity set (17) with Wasserstein ball (9) yields the following joint ambiguity set:

F(α, β) = FLCX(α) ∩ F Wass(ϵβN ) = {F ∈ P(Ξ) : RN ≤ QRN (α1), CN ≤ QCN (α2), d
Wass(F, F̂N ) ≤ ϵβN} (18)

where α = α1 + α2. The joint ambiguity set is at significance level of α + β and provides a performance

guarantee on the out-of-sample performance of the optimal solution of the corresponding DRO problem (18).

The DRO problem can possess asymptotic convergence which can be built upon the convergence property of

the DRO problems with ambiguity sets of FLCX(α) and Wasserstein ball. Under the assumptions of at least

one of the measures, the DRO problem with the joint ambiguity set enjoys asymptotic convergence. However,

satisfying all the assumptions of both measures might improve the convergence rate.

Under the sets of assumptions ATrac
L and ATrac

w , the DRO problems with ambiguity sets as a confidence

region of the LCX-based test and the Wasserstein ball have tractability [Bertsimas et al., 2018, Esfahani and

Kuhn, 2018]. Under the union of the set of assumptions, ATrac
J = ATrac

L ∪ ATrac
w , the DRO problem with

the joint ambiguity set have tractability. In the following theorem, we propose a tractable reformulation

for problem (6) with ambiguity set (18) for the problems with cost functions which can be written as the

maximum of concave functions in ξ.

Theorem 3. Given a sample of random vector observations {ξ1, . . . , ξN}, let c(x, ξ) = maxk∈[K] ck(x, ξ)

denote the cost function and F(α, β) represent a joint ambiguity set defined as in (18). Under the assumptions
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of ATrac
J , problem (6) can be reformulated as follows:

C(x,F) = inf
z,r,f,w,w′,
y,y′,e,η,g

ηϵβN +
1

N

N∑
i=1

ri +
∑
γ∈G

fγ QCN (α1) +
∑
γ∈G

N∑
i=1

eγi (19a)

s.t.

d∑
j=1

yγj + y′γ ≤ fγ γ ∈ G (19b)

1

N
(

d∑
j=1

wγj ξ
i
j − w′

γ) ≤ eγi γ ∈ G, i ∈ [N ] (19c)

wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (19d)

− wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (19e)

w′
γ − y′γ ≤ 0 γ ∈ G (19f)

− w′
γ − y′γ ≤ 0 γ ∈ G (19g)

⟨zik, ξi⟩ − ri +
∑
γ∈G

γik w
′
γ − gk ≤ 0 k ∈ [K], i ∈ [N ] (19h)

gk ≤ ck∗(x,
∑
γ∈G

γik wγ + zik) k ∈ [K], i ∈ [N ] (19i)

∥zik∥∗ ≤ η k ∈ [K], i ∈ [N ] (19j)

η ∈ R+, f ∈ R|G|
+ , e ∈ R|G|×N

+ , (19k)

y ∈ R|G|×d
+ , y′ ∈ R|G|

+ , z ∈ RN×K×d, (19l)

r ∈ RN , w ∈ R|G|×d, w′ ∈ R|G|, g ∈ RK . (19m)

where ck∗(x,Γ) := infξ∈Ξ Γ⊤ξ − ck(x, ξ) is the concave conjugate of ck, ⟨·, ·⟩ is the inner product operator,

∥zik∥∗ :=
∑

∥ξ∥≤1⟨z, ξ⟩ denotes the dual norm of ∥ · ∥, and G := {0, 1}N×K \ {(0, . . . , 0)}.

Proof. Here, we provide the main steps which are required in order to obtain a tractable reformulation. For

a more detailed proof, see Appendix A.3. For the problems with multivariate distributions, problem (6) given

the joint ambiguity set (18) can be written as

C(x,F) = sup
F,Π

∫
Ξ

c(x, ξ)F (dξ) (20a)

s.t.

∫
Ξ

max{a⊤ξ − b, 0}F (dξ) ≤
∫
Ξ

max{a⊤ξ′ − b, 0}F̂N (dξ′) + QCN (α2) ∀(a, b) ∈ S (20b)∫
Ξ

||ξ||22F (dξ) ≥ QRN (α1) (20c)∫
Ξ2

||ξ − ξ′||Π(dξ, dξ′) ≤ ϵβN (20d)

where Π is a joint distribution of ξ and ξ′ with marginal distributions F and F̂N , respectively, and S = {(a, b) ∈
Rd × R | ∥a∥1 + |b| ≤ 1}. Based on the law of total probability, F and Π can be replaced by their equivalent

formulations in terms of marginal and conditional distributions. More specifically, Π = 1
N

∑N
i=1 δi × Fi where

δi represents the Dirac distribution that dedicates the unit mass to ξi. Let S′ denote the set of non-negative
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measures over S, and let λ, θ, and η represent the dual variables associated with constraints (20b), (20c),

and (20d), respectively. Using notions of Fenchel duality, the dual of problem (20) is

inf
λ∈S′,θ,η∈R+

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
− θQRN (α1) + ηϵβN+

1

N

N∑
i=1

sup
ξ∈Ξ

(
c(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
+ θ||ξ||22 − η||ξ − ξi||

)
. (21)

where ⟨· , ·⟩S is the inner product operator defined over space S. By defining a new decision variable s,

problem (21) is equivalent to

inf
λ∈S′,θ,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
− θQRN (α1) + ηϵβN +

1

N

N∑
i=1

si (22a)

s.t. si ≥ sup
ξ∈Ξ

(
c(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
+ θ||ξ||22 − η||ξ − ξi||

)
i ∈ [N ]. (22b)

Looking closely at constraints (22b), based on the assumptions in ATrac
L and by the same reasoning mentioned

in [Bertsimas et al., 2018], the only feasible value for θ is zero. Therefore, the above formulation can be

simplified by replacing θ by zero. Next, using the definition of the cost function and the dual norm, the

constraints (22b) can be reformulated as follows.

si ≥ sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− max

||zik||∗≤η
⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ]. (23a)

Therefore, problem (22) is equivalent to

inf
λ∈S′,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (24a)

s.t. si ≥ min
||zik||∗≤η

sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− ⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ]. (24b)

where the minimization in constraint (24b) can be eliminated and a constraint ||zik||∗ ≤ η can be added to

obtain the following model:

inf
λ∈S′,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (25a)

s.t. si ≥ sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− ⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ] (25b)

||zik||∗ ≤ η k ∈ [K], i ∈ [N ]. (25c)

Next, we take the dual of the supremum problem on the right-hand side of the constraints (25b) and

convert it to an infimum problem so that the infimum can be dropped and the generated constraints can be

added to the problem (25). For a given i and k, we take the dual of the supremum problem in the constraint.
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To simplify the dual problem, we use the definition of convex conjugate of the cost function along with

defining a new decision variables rik. By eliminating the infimum and adding the constraints of the dual

problem to the problem (25) we obtain

inf
λ,η,s,H,r,z

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (26a)

s.t. λ ∈ S′, η ∈ R+, s ∈ RN , Hik ∈ S′, r, z ∈ RN×K (26b)

− si ≤
(
ck∗(x, rik)− ⟨zik, ξi⟩ − ⟨Hik, b⟩S

)
k ∈ [K], i ∈ [N ] (26c)

λ−Hik ∈ S′ k ∈ [K], i ∈ [N ] (26d)

rik = zik + ⟨Hik, a⟩S k ∈ [K], i ∈ [N ] (26e)

||zik||∗ ≤ η k ∈ [K], i ∈ [N ] (26f)

Now, one can write the above problem as inf
η,z

inf
λ,s,H,r

(·) and take the dual of inner infimum problem using the

dual variables pik, ψik(a, b), and qik associated with constraints (26c),(26d), and (26e), respectively. Notice

that the decision variables in [Bertsimas et al., 2018] have index k only, but, in our reformulations since

we also incorporate the decision variables associated with the Wasserstein ball, the decision variables have

indices i and k, which means that the size of the problem is multiplied by the sample size N . After taking

the dual, the inner infimum problem is equivalent to

sup
q∈RK×N×d,p∈RK×N

+

ηϵβN +

N∑
i=1

K∑
k=1

pik⟨zik, ξi⟩ − ⟨zik, qik⟩+ pikc

(
x,
qik
pik

)
(27a)

s.t.

K∑
k=1

pik = 1 i ∈ [N ] (27b)

inf
(a,b)∈S

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)−
N∑
i=1

K∑
k=1

max{a⊤qik − pikb, 0} ≥ 0. (27c)

To simplify constraint (27c), we define the parameter γ ∈ G where G = {0, 1}K×N\{(0, . . . , 0)}. This parameter

enumerates all possibilities of max{a⊤qik − pikb, 0}. Therefore, constraint (27c) can be reformulated as

QCN (α2) ≥ sup
a∈Rd,b∈R

N∑
i=1

K∑
k=1

γik(a
⊤qik − pikb)−

1

N

N∑
i=1

max{a⊤ξi − b, 0} γ ∈ G (28a)

s.t.

d∑
j=1

|aj |+ |b| ≤ 1. (28b)

Problem (28) can be linearized and the linear dual of the problem can be taken, which results in an infimum

problem. Constraint (27c) can be replaced by the infimum problem along with its constraints, and the

infimum operator can be removed from the constraint. A dual can be taken from the modified version of the

supremum problem (27), which results in an infimum problem that can be merged with inf
η,z

(·) and yield a

single-level convex optimization problem (19). This reformulation can be further simplified, and the variable

z can be omitted from the reformulation. For more details on the formulations, interested reader is referred
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to Appendix A.3.

In the next section, we propose techniques for lower and upper bounding the reformulation (19) when it

is computationally challenging.

7.2 Bounds for problems with multivariate distributions

The size of problem (19) is highly dependent on the size of the set G which grows exponentially in K and N .

For many problems of practical interest, K may be 1 or 2. Therefore, dependence on K may not cause a lot

of computational burden when solving the problem. However, growing the size of the set at an exponential

rate in N makes the problem computationally expensive. In the next sections, we propose procedures to

obtain upper and lower bounds for the problem (19) with larger samples.

7.2.1 A cutting-plane algorithm

We propose a three-level cutting-plane algorithm that can be applied for solving problem (19). This algorithm

is indeed an exact approach but we will propose to use it to derive a lower bound in practice. We use an

intermediate step in the proof of Theorem 3 to decompose the problem. Consider problem (27) merged with

inf
x,z,η

(·) which yields

inf
x,z,η

sup
q,p

ηϵN +

N∑
i=1

K∑
k=1

pik⟨zik, ξi⟩ − ⟨zik, qik⟩+ pikc

(
x,
qik
pik

)
(29a)

s.t. q ∈ RK×N×d, p ∈ RK×N
+ , x ∈ X, z ∈ RK×N , η ∈ R+ (29b)

K∑
k=1

pik = 1 i ∈ [N ] (29c)

QCN
(α2) ≥ sup

a∈Rd,b∈R

N∑
i=1

K∑
k=1

γik(a
⊤qik − pikb)−

1

N

N∑
i=1

max{a⊤ξi − b, 0} γ ∈ G (29d)

s.t.

d∑
j=1

|aj |+ |b| ≤ 1. (29e)

Note that problem (19) is equivalent to problem (29) which can be decomposed into three problems: the

grand master problem (GMP), the master problem (MP), and the subproblem (SP). Let S denote pairs of

(p∗, q∗) obtained from MP. Given the set S, the formulation of GMP is

GMP(S) = inf
x,z,τ

ηϵN + τ (30a)

s.t. x ∈ X, τ ∈ R, z ∈ RK×N , η ∈ R+ (30b)

τ ≥
N∑
i=1

K∑
k=1

p∗ik⟨zik, ξi⟩ − ⟨zik, q∗ik⟩+ p∗ikc

(
x,
q∗ik
p∗ik

)
(p∗, q∗) ∈ S (30c)

GMP yields an optimal solution (x̂, ẑ, τ̂) that is passed on to MP. Let R and G′ denote pairs of (â, b̂) and γ
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yielded by SP. Then, MP can be formulated as

MP(G′,R, x̂, ẑ) = sup
q,p

N∑
i=1

K∑
k=1

pik⟨ẑik, ξi⟩ − ⟨ẑik, qik⟩+ pikc

(
x̂,
qik
pik

)
(31a)

s.t. q ∈ RK×N×d, p ∈ RK×N
+ (31b)

K∑
k=1

pik = 1 i ∈ [N ] (31c)

N∑
i=1

K∑
k=1

γ̂ik(â
⊤qik − pik b̂) ≤ QCN

(α2) +
1

N

N∑
i=1

max{â⊤ξi − b̂, 0} γ̂ ∈ G′, (â, b̂) ∈ R.

(31d)

For the cost functions c(x, ξ) which are affine in ξ, MP is a linear program. Given a candidate solution of

MP, (p̂, q̂), SP can be formulated as

SP(p̂, q̂) = sup
a∈Rd,b∈R

N∑
i=1

K∑
k=1

γik(a
⊤q̂ik − p̂ikb)−

1

N

N∑
i=1

max{a⊤ξi − b, 0} (32a)

s.t.

d∑
j=1

|aj |+ |b| ≤ 1 (32b)

SP(p̂, q̂) can be linearized and solved by off-the-shelf solvers. In an intermediate iteration of the algorithm,

GMP provides a candidate solution (x̂, ẑ, τ̂). Given the solution, MP is solved, and its candidate solution

(p̂, q̂) is passed to SP to find the optimal solution of SP, (γ̂, â, b̂). By plugging the candidate solutions of MP

and SP into the constraint (31d), we check whether there is a violated cut

N∑
i=1

K∑
k=1

γ̂ik(â
⊤q̂ik − p̂ik b̂) > QCN (α2) +

1

N

N∑
i=1

max{â⊤ξi − b̂, 0}.

If there is such a cut, γ̂ and (â, b̂) are added to G′ and R, respectively, also a constraint of the form (31d) is

added to MP. The loop between MP and SP continues until there is no violated cut for MP. At this stage,

the optimal solution of MP is denoted by (p∗, q∗), which along with (x̂, ẑ, τ̂) are used to detect the existence

of a violated cut for GMP. By plugging in the solution into constraint (30c), we are looking for a violated cut

of the form

τ̂ <

N∑
i=1

K∑
k=1

p∗ik⟨ẑik, ξi⟩ − ⟨ẑik, q∗ik⟩+ p∗ikc

(
x̂,
q∗ik
p∗ik

)
.

If there is such a violation, (p∗, q∗) is added to S and a constraint of the form (30c) is added to GMP. The

algorithm continues until there is no violated cut for GMP. We summarize the procedure of the three-level

cutting-plane algorithm for solving problem (3) in multivariate setting in Algorithm 1.

Decomposing the problem into three smaller problems helps us to solve it for larger sample sizes.

Furthermore, early termination of the algorithm yields a valid lower bound on the optimal objective value of

problem (3). However, our computational experiments show that the convergence rate of the algorithm is very

slow and the quality of the lower bound provided by the algorithm is not satisfactory. In the next section,

we introduce a relaxation-based upper bounding technique which is proved to be computationally effective
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Algorithm 1 Three-level Cutting-plane Algorithm for Solving (29)

1: Initialization: S = R = G′ = ∅
2: loop
3: Solve GMP(S) to find (x̂, ẑ, τ̂).
4: loop
5: Solve MP(G′,R, x̂, ẑ) to find (p̂, q̂).

6: Solve SP(p̂, q̂) to find (γ̂, â, b̂).

7: if

N∑
i=1

K∑
k=1

γ̂ik(â
⊤q̂ik − p̂ik b̂) > QCN (α2) +

1

N

N∑
i=1

max{â⊤ξi − b̂, 0} then

8: Add cut (31d) at (γ̂, â, b̂).
9: else

10: Stop.
11: end if
12: end loop
13: Set p∗ ← p̂ and q∗ ← q̂

14: if τ̂ <

N∑
i=1

K∑
k=1

p∗ik⟨ẑik, ξi⟩ − ⟨ẑik, q∗ik⟩+ p∗ikc

(
x̂,
q∗ik
p∗ik

)
then

15: Add cut (30c) at (p∗, q∗)
16: else
17: Stop.
18: end if
19: end loop

and can provide high-quality upper bounds. We design a procedure which runs the three-level cutting-plane

algorithm to provide inputs for the relaxation-based techniques, and our experiments show that the procedure

is indeed effective. We discuss the details of the procedure and illustrate its performance in Section 8.3.

7.2.2 Upper bounding: Relaxation of the supremum problem

In order to obtain an upper bound on the problem (3) in a multivariate setting, we consider a relaxation of

an intermediate step of the proof of Theorem 3. The relaxation can be obtained by replacing set G by set G′

where G′ ⊆ G in constraints (28a). The following proposition, highlights the fact that problem (19) with G′

set provides a valid upper bound on problem (19) with G set.

Proposition 1. Let C′(x,F) denote the optimal objective value of problem (19) given G′ ⊆ G. Under

assumptions of AValid
J , C′(x,F) is a valid upper bound for C(x,F).

Proof. Problem (27) is equivalent to the following problem after replacing constraint (27c) by the reformulation

of problem (28).

sup
q∈RK×N×d,

p∈RK×N
+

ηϵβN +

N∑
i=1

K∑
k=1

pik⟨zik, ξi⟩ − ⟨zik, qik⟩+ pikc

(
x,
qik
pik

)
(33a)

s.t.

K∑
k=1

pik = 1 i ∈ [N ] (33b)
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N∑
i=1

K∑
k=1

γik(a
⊤qik − pikb)−

1

N

N∑
i=1

max{a⊤ξi − b, 0} ≤ QCN (α2)

γ ∈ G, (a, b) ∈ S (33c)

Replacing set G in constraints (33c) with G′ yields a relaxation of the supremum problem which consequently

provides an upper bound on problem (19).

The set G′ can be a random subset of G or can be created based on the information obtained from solving

problem (19) with G for small sample sizes. Our computational studies revealed that even small sized G′ sets

can provide good results while requiring less computational effort.

8 Numerical Results

We conduct numerical experiments on a newsvendor problem and a mean-risk portfolio allocation problem

similar to Bertsimas et al. [2018] and Esfahani and Kuhn [2018]. The experiments validate the theoretical

results on the convergence and performance guarantee of DRO problems with proposed joint ambiguity sets.

All experiments are conducted on Niagara GNU-parallel [Tange, 2018], and all the models are implemented

in Python 2.7.16 and solved via GUROBI 9.0.0 [Gurobi Optimization, LLC, 2022]. Moreover, we evaluate

the effectiveness of our proposed bounding techniques by experimenting on a mean-risk portfolio allocation

problem where these set of experiments are conducted on a Mac computer with 3 GHz Intel Core i5 CPU

and 16 GB memory.

8.1 Single-item newsvendor problem

Consider a newsvendor problem where the goal is to decide on the ordering quantity, x ≥ 0, to minimize

a cost function while considering the uncertainty in demand. Let ξ denote the uncertain future demand

following distribution F. Let g > 0 and h > 0 represent the lost sale for unmet demand and the holding

cost of excess inventory, respectively. In this problem, we assume a continuous demand with ξ ∈ [ξ, ξ̄] where

ξ̄ < ∞. The cost function associated with this problem is c(x, ξ) = max{g(ξ − x), h(x − ξ)}. The DRO

problem for newsvendor problem can be written as

z̄ = min
x≥0

max
F∈F

EF [max{g(ξ − x), h(x− ξ)}]. (34)

To construct the uncertainty set F, we use the Kolmogorov-Smirnov (KS), Kuiper, and Cramér-von Mises

(CvM) tests. We consider pairwise intersection of the confidence regions and intersection of all three regions.

Given a sorted sample of {ξ1, . . . , ξN}, we solve problem (14) where the constraint (14d) is replaced by

ℓi ≥ g(ξi − x) i ∈ [N + 1] (35a)

ℓi ≥ h(x− ξi−1) i ∈ [N + 1] (35b)

where ξ0 = ξ and ξN+1 = ξ̄. The definition of dual cones K∗, matrices A, and vector b(α), mentioned in

Section 6, are provided in [Bertsimas et al., 2018] for various GoF tests. For the sake of self-containment,
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we mention the information regarding KS, CvM, and Kuiper tests here. Let QKS(α), QCvM(α), and QKuiper(α)

denote the critical values of the KS, CvM, and Kuiper tests at the significance level of α, respectively, then

bKS,α =



1
N − QKS(α)

...
N
N − QKS(α)

− 0
N − QKS(α)

...

−N−1
N − QKS(α)


, AKS =

[
[IN ]

[−IN ]

]
,K∗

KS = R2N
+ ,

bCvM,α =



√
N(QCvM(α))2 − 1

12N
1

2N
3

2N
...

2N−1
2N


, ACvM =

[
0 . . . 0

[IN ]

]
,K∗

CvM = CN+1
SOC ,

bKuiper,α =



1
N −

QKuiper(α)
2

...
N
N −

QKuiper(α)
2

− 0
N −

QKuiper(α)
2

...

−N−1
N − QKuiper(α)

2


, AKuiper =

[
[IN ]

[−IN ]

]
,K∗

Kuiper = {(r, r′) ∈ R2N
+ :

N∑
i=1

ri =

N∑
i=1

r′i}.

Problem (14) is a linear optimization problem when we use the information corresponding to KS and

Kuiper tests, and it is a second order cone programming problem with the information of CvM test. In our

experiments, we consider g = 19, h = 1, and Normal distribution with µ = 200 and σ2 = 70 as the underlying

unknown distribution with support Ξ = [50, 400]. We run our experiments using samples of 15 different sizes

ranging from 5 to 104 and we run 100 independent for each sample size. Also, we calculate the out-of-sample

performances of the obtained solutions by running SAA using a sample of size 105. In the experiments, all

tests are at the α = 20% significance level. The critical value associated with KS test is calculated using

Python built-in function (ksone) and critical values of CvM and Kuiper are computed by bootstrap algorithm

(see the details in Appendix B). In these experiments, all models are solved to optimality.

Figure 1 illustrates the performances associated with the pairwise intersections of the tests and the

combination of all of them. The figures on the left present the in-sample performances of the different tests

and their intersection with respect to the sample size, which are represented on a logarithmic base 10 scale.

The figures on the right show the out-of-sample performances of the tests and their intersections with respect

to the sample size, which are again represented in the same logarithmic scale. The solid lines in the figures are

the average of the outcomes over 100 independent runs whereas the shaded areas around the lines are their

corresponding variations. The dashed lines in the figures show the optimal objective value of the problem (34).
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(a) In-sample results using Kuiper and KS
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(b) Out-of-sample results using Kuiper and KS
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(c) In-sample results using Kuiper and CvM
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(d) Out-of-sample results using Kuiper and CvM
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(e) In-sample results using CvM and KS
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(f) Out-of-sample results using CvM and KS
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(g) In-sample results using and Kuiper, CvM, and KS
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(h) Out-of-sample results using Kuiper, CvM, and KS

Figure 1 Comparison of in-sample and out-of-sample performances of DRO problem with ambiguity sets
created by Kuiper, KS, CvM tests, and their intersections.
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In terms of in-sample performances, the figures illustrate that the results of the DRO problem with joint

ambiguity sets is at least as good as the performance of the problems with individual ambiguity sets. In

Figures 1(a), 1(e), and 1(g) the performance of the problems with joint ambiguity sets is equal to the best

performance among the individual tests when the sample size is small, and the performance improves as the

sample size grows larger. Additionally, Figure 1(c) shows that, for each sample size, the performance of the

problem with the joint ambiguity set is equal to the performance of the test that produces the best results.

In terms of out-of-sample performances, Figure 1(b) illustrates that the performance of the DRO problem

with joint ambiguity set is the same as the performance of the problem with individual ambiguity set, which

produces the best outcome for each sample sizes. Figures 1(d), 1(f), and 1(h) show that the DRO problem

with the joint ambiguity set is not the best performing problem in small sample sizes but as the sample size

increases, its performance is as good as the performance of the problem with individual sets.

Additionally, in these experiments, we observe that the in-sample performances are always upper bounds

on the out-of-sample performances of the optimal solutions of the DRO problems with joint and individual

ambiguity sets, meaning that we achieve a reliability of 1.

8.2 Mean-risk portfolio optimization

Consider a portfolio optimization problem with multiple assets and random returns where the goal is to find the

best portfolio allocation weights by optimizing over a weighted sum of the expectation and conditional value-

at-risk (CVaR) of a loss function. Consider a portfolio problem with d assets where ξ = (ξ1, . . . , ξd) denotes

the random return vector associated with the assets following an unknown distribution F with support Rd.

The optimization problem will decide on x = (x1, . . . , xd), portfolio allocation vector representing the fraction

of total budget that will be allocated to each asset which belongs to the set X = {x ∈ Rd
+ | ⟨x, 1⟩ = 1}.

Using the mentioned notations, the mean-risk portfolio optimization problem can be formulated as

zSP = inf
x∈X

{
EF[−⟨x, ξ⟩] + ρ CVaRβ

F[−⟨x, ξ⟩]
}

(36)

where ρ ≥ 0 illustrates the decision maker’s risk aversion and β ∈ (0, 1] is the confidence level of CVaR. The

corresponding DRO problem is equivalent to

zDRO = inf
x∈X,τ∈R

sup
F∈F

EF

[
max
k∈[K]

ak⟨x, ξ⟩ + bk τ

]
(37)

where K = 2, a = [−1, −1− ρ
β ], b = [ρ, ρ(1− 1

β )] [Esfahani and Kuhn, 2018]. To construct the ambiguity

set, F, we consider the region created by the LCX test intersected with the Wasserstein ball. Therefore, we

solve the following optimization model:

inf
r,f,w,w′,

y,y′,e,η,x,τ

ηϵ+
1

N

N∑
i=1

ri +
∑
γ∈G

fγ QCN (α1) +
∑
γ∈G

N∑
i=1

eγi (38a)

s.t.

d∑
j=1

yγj + y′γ ≤ fγ γ ∈ G (38b)

1

N
(

d∑
j=1

wγj ξ
i
j − w′

γ) ≤ eγi γ ∈ G, i ∈ [N ] (38c)
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wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (38d)

− wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (38e)

w′
γ − y′γ ≤ 0 γ ∈ G (38f)

− w′
γ − y′γ ≤ 0 γ ∈ G (38g)

⟨akx−
∑
γ∈G

γik wγ , ξ
i⟩ − ri +

∑
γ∈G

γik w
′
γ + bkτ ≤ 0 k ∈ [K], i ∈ [N ] (38h)

∥akx−
∑
γ∈G

γik wγ∥∗ ≤ η k ∈ [K], i ∈ [N ] (38i)

d∑
j=1

xj = 1 (38j)

η ∈ R+, f ∈ R|G|
+ , e ∈ R|G|×N

+ , (38k)

y ∈ R|G|×d
+ , y′ ∈ R|G|

+ ,

r ∈ RN , w ∈ R|G|×d, w′ ∈ R|G|

x ∈ Rd
+, τ ∈ R.

We consider one-norm in Wasserstein formulation, so, the associated dual norm will be norm-infinity. As a

result, constraint (38i) can be written as follows:

∥akx−
∑
γ∈G

γik wγ∥∗ = max
j≤d
| akxj −

∑
γ∈G

γik wγj | ≤ η k ∈ [K], i ∈ [N ]

−η ≤ akxj −
∑
γ∈G

γik wγj ≤ η j ∈ [d], k ∈ [K], i ∈ [N ].

In our experiments, we consider a portfolio problem with d = 10 with the distributions similar to the

ones mentioned by Esfahani and Kuhn [2018]. We assume ξi = ψ + ςi where ψ ∼ N(0, 2%) and ςi ∼
N(i × 3%, i × 2.5%) for each asset i ∈ {1, . . . , d}. We also consider ρ = 10 and CVaR at confidence level

β = 20%. We focus on the quality of the upper bounds provided by the individual measures and their

intersection. For this purpose, we implemented the relaxation-based technique described in Section 7.2.2.

The method is computationally efficient and provides a valid upper bound on the in-sample performance of

the DRO problem with a joint ambiguity set. In this procedure, the set G′ can be chosen as any subset of G.

In our experiments, we set G′ = G when solving the portfolio problem (38) with small sample sizes. We

analyze the obtained optimal solutions and observe that most of the variables with the γ subscript take

zero values in the solutions. The γ’s associated with the non-zero variables can be used to create G′ for the

problems with larger sample sizes. For these problems, we construct the set using 20 randomly generated γ’s

along with the ones associated with those non-zero decision variables with γ subscript. Our experiments

reveal that this procedure of creating G′ is effective as it results in high-quality upper bounds.

In these experiments, tuning the radius of the Wasserstein ball and critical value of LCX test is of foremost

importance. If the radius is chosen to be significantly larger than the critical value of the LCX test, the ball

would contain the confidence region of the test. In such a case, the joint ambiguity set would be the same

as the confidence region of the LCX test, which would result in the same outcomes for the corresponding

DRO problems. On the other hand, if the radius is chosen significantly smaller than the critical value of
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the test, the ball would be the subset of the confidence region. In this case, the joint ambiguity set would

be the same as the Wasserstein ball, and the outcomes of the corresponding DRO problems would be the

same. Therefore, in these experiments we followed the same steps as proposed by Esfahani and Kuhn [2018]

and Bertsimas et al. [2018] for choosing the radius of the Wasserstein ball and the critical value of the LCX

test, respectively. The radius of the Wasserstein ball is selected from a discrete set proposed by Esfahani

and Kuhn [2018], namely, from E =
{
ϵ = b · 10c : b ∈ {0, . . . , 9}, c ∈ {−3,−2,−1}

}
. In our experiments, for

each run, we choose the best radius from the set in terms of its out-of-sample performance. Additionally, the

threshold of the LCX test is calculated using the bootstrap procedure which is explained in Section 9.3 of

Bertsimas et al. [2018] (see the details in Appendix B).

Figures 2 illustrate the results associated with the Wasserstein ball, the LCX test, and their intersection.

While Figure 2(a) presents the in-sample performances of the individual measures and their intersection with

respect to the sample size, Figure 2(b) shows their out-of-sample performances with respect to the sample

size. The solid lines in the figures are the average of the outcomes over 200 independent runs whereas the

shaded areas around the lines show are their corresponding variations. The dashed lines in the figures show

the optimal objective value of the problem (37).

In terms of in-sample performances, Figure 2(a) illustrates that the results of the DRO problem with

the joint ambiguity set are slightly better than those with Wasserstein and LCX for small sample sizes.

As samples get larger, performance of the joint ambiguity set and Wasserstein ball become the same and

both of them outperform LCX test. In terms of out-of-sample performances, Figure 2(b) illustrates that

the performance of the DRO problem with joint ambiguity set is better than the Wasserstein ball and the

LCX test for small sample sizes. However, as the sample size increases similar to in-sample results, the

performances of the joint ambiguity set and Wasserstein ball become the same.
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(a) In-sample performance analysis
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(b) Out-of-sample performance analysis

Figure 2 Comparison of in-sample and out-of-sample performances of DRO problem with ambiguity sets
created by LCX test, Wasserstein metric, and their intersection.

In terms of reliability, Figure 3 illustrates that the DRO problem with Wasserstein metric-based ambiguity

set provides an optimal objective value which is always a valid upper bound on the out-of-sample performance

of its optimal solution. On the other hand, it shows that the DRO problem with joint ambiguity set provides

the same reliability as the problem with LCX test-based set. We, also, observe that for small sample sizes,

the DRO problem provides a valid upper bound with probability of at least 0.7 and the reliability approaches
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to 1 as the sample sizes increase. While in these experiments we expect the DRO problem with the joint

ambiguity set to provide lower reliability than the DRO problem with individual sets, we observe that the

reliability level is the same as the least reliable problem.
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Figure 3 Comparison of the reliability of DRO problems with ambiguity sets created by LCX test, Wasserstein
metric, and their intersection.

8.3 Evaluation of bounding techniques

In this section, we assess the performance of the proposed three-level cutting-plane algorithm and relaxation-

based upper bounding technique and evaluate the quality of the provided bounds. We conduct experiments

on the mean-risk portfolio optimization problem discussed in Section 8.2 where the joint ambiguity set of

the DRO problem was constructed as an intersection of the sets created by Wasserstein metric and LCX

test. In these experiments, we combine two bounding techniques where we run the three-level cutting-plane

algorithm and at the end of each GMP iteration, we construct the G′ set discussed in the relaxation-based

technique using the γ’s generated through MP-SP iterations. Using this procedure, at the end of each GMP

iteration of the algorithm we obtain a lower bound and an upper bound on the optimal objective value of the

DRO problem with joint ambiguity set.

In order to obtain valid bounds while keeping the computational burden manageable, we fix the radius of

Wasserstein ball and the critical value of the LCX test to 0.7 and 0.05, respectively. Additionally, a lower

bound of −10 is set on the optimal objective value provided by the three-level cutting-plane algorithm while

initializing the algorithm. We run our experiments with GUROBI 9.0.3, on a Mac computer with 3 GHz

Intel Core i5 CPU and 16 GB memory, also we set a time limit of 4 hours. For the experiments that cannot

complete one GMP iteration within the time limit, we stop the procedure after one GMP iteration is done.

Results of our experiments are presented in Table 1 where the numbers are average values that are taken

over 8 random samples of the same size. Note that the numbers in the parenthesis report the standard

deviations. In what follows we explain the column labels used in the table.

• “N” is the sample size,

• “CuttingPlane LB” is the lower bound provided by the three-level cutting-plane algorithm,
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• “Relaxation UB” is the upper bound provided by the relaxation-based technique,

• “First UB” is the upper bound provided by the relaxation-based technique at the end of the first

iteration,

• “Wass Obj” is the optimal objective value of the DRO problems with Wasserstein metric-based ambiguity

set,

• “% Improv in UB” is the percentage of the improvement on the upper bound yielded by the relaxation-

based technique with respect to the DRO problem with Wasserstain metric-based ambiguity set,

• “Num γ in First Iter” is the number of γ’s generated in the first iteration of the three-level cutting-plane

algorithm,

• “Total Num γ” is the total number of γ’s generated within the time limit,

• “Wass Time” is the time taken by the DRO problem with Wasserstein metric-based ambiguity set to be

solved,

• “% First Iter Time” is the percentage of the total time that the first iteration of the three-level

cutting-plane algorithm takes to be completed,

• “% MP Time” is the percentage of the total time that MP problem takes to be solved,

• “% SP Time” is the percentage of the total time that SP problem takes to be solved.

Table 1 Performance summary of our three-level cutting-plane algorithm and relaxation-based technique

N
CuttingPlane

LB
Relaxation

UB
First
UB

Wass
Obj

% Improv
in UB

Num γ in
First Iter

Total
Num γ

Wass
Time

% First
Iter Time

% MP
Time

% SP
Time

10 -1.50 (0.37) 0.85 (0.24) 0.85 (0.24) 2.37 (0.14) 64.1 126.4 220 0.01 1.1 35.2 64.0

15 -7.55 (0.36) 0.95 (0.21) 0.95 (0.21) 2.36 (0.15) 59.7 251.9 230 0.01 18.7 5.5 94.2

20 -10.00 (0.00) 1.06 (0.24) 1.06 (0.24) 2.40 (0.14) 55.8 375.1 240 0.05 100.0 9.7 90.1

30 -10.00 (0.00) 2.33 (0.22) 2.33 (0.22) 2.46 (0.16) 5.3 279.5 260 0.02 100.0 5.5 94.3

50 -10.00 (0.00) 2.48 (0.05) 2.48 (0.05) 2.48 (0.05) 0.0 361.1 2100 0.01 100.0 15.9 83.8

The results show that the quality of the lower bound provided by the three-level cutting-plane algorithm

is not satisfactory, and as the sample size gets larger, there is no improvement on the lower bound. On

the other hand, the relaxation-based technique provides high-quality upper bounds for all sample sizes. By

comparing the upper bounds obtained at the end of the first and the last iterations, it can be inferred that

the improvements in the quality of the upper bounds are negligible. In our experiments, we observed that

the Wasserstein metric-based DRO problem outperforms the one with the LCX test-based set in terms of

the quality of the bound and computational time. Therefore, herein we compare the quality of the upper

bound obtained from relaxation-based technique at the end of the first iteration with the one provided by

the DRO problem with Wasserstein metric-based ambiguity set. Note that the bounds provided by the

relaxation-based technique are upper bound on the optimal objective value of the DRO problem with joint

ambiguity set, which is a valid upper bound on the optimal objective value of the underlying stochastic

programming problem. Looking into the percentage improvements, for small samples the bounds provided by
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our technique are better than the ones yielded by the Wasserstein metric-based DRO problem up to 64%,

and as the sample size increases the latter upper bounds converge to the former ones. The results suggest

that with a small subset of γ’s we can obtain high-quality upper bounds using the proposed relaxation-based

technique. While using randomly generated γ’s might not be beneficial, running one iteration of the three-level

cutting-plane algorithm generates valuable ones. These outcomes indicate that only one iteration of the

three-level cutting-plane algorithm suffices to produce high-quality upper bounds, which also highlights the

quality of the γ’s generated in the first iteration of the algorithm.

In term of computational time, the table illustrates that the DRO problem with Wasserstein metric-

based ambiguity set can quickly reach to optimality, while the three-level cutting-plane algorithm is not

computationally efficient. In our experiments, we look into different steps of the algorithm and analyze their

time efficiency. While the time that is spent for solving GMP is negligible with respect to those of MP and

SP, the most computationally challenging step of the algorithm is to solve SP. In terms of the number of

iterations, for N = 10 (N = 15) GMP completes 7.8 (3) iterations on average which executes MP-SP loop

1472.9 (635.9) times on average to reach optimality. For N ∈ [20, 30, 50], we terminate the algorithm after

one full GMP iteration since the runs exceed the given time limit. Within the iteration, for N = 20 (N = 30,

N = 50) the total number of MP-SP loop execution on average is 375.1 (279.5,361.1).

Our results reveal that early termination of the algorithm is beneficial in terms of upper bound as it is a

valid bound for the optimal objective value of the underlying stochastic programming problem. However, this

may not apply for the lower bound as it is not a valid bound on that optimal objective value. Based on our

experiments, it is reasonable to run one iteration of the three-level cutting-plane algorithm and construct G′

set based on generated γ’s, which results in a high-quality upper bound.

9 Discussion

In this section, we summarize and discuss our findings on the DRO problems with joint ambiguity sets. In

terms of performance guarantee, our proposed approach provides a valid lower bound on the optimal objective

value of the DRO problems with a single-measure-based ambiguity set while producing a valid upper bound

on the underlying SP problem. This means that the optimal objective value of the DRO problem with the

joint ambiguity set is more representative of the SP problem and it is less robust than other approaches.

Additionally, the optimal solution of the DRO problem with the joint ambiguity set is robust in the sense

that it is obtained with respect to a worst-case distribution which belongs to a smaller ambiguity set and it is

protected against small perturbations of the underlying probability distribution. Our experiments also show

that while the joint ambiguity set improves the quality of the bound and the solution, the reliability of the

joint set does not decline and indeed it is the same as the least reliable individual set that is incorporated in

the construction of the joint set.

In terms of tractability, while we assume that the cost function can be written as the maximum of

affine functions, we observe that the final reformulations of the DRO problem with the joint set include

the same constraint structure as the formulations of the DRO problems with individual sets. The final

reformulations have additional dual variables which couples the constraints coming from the formulations

of the individual problems. In the case of problems with discrete known support, the formulation of the

DRO problem with χ2-test and G-test based ambiguity set include second-order cone (SOC) and exponential

(Expo) cone, respectively, in addition to the linear (Linear) constraints. The final reformulation of the DRO

problem with a joint set created by those tests includes constraints of the same type with additional dual
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variables. In the case of problems with univariate support, the individual problems have conic and linear

constraint and the same constraint structure appears in the final reformulation of the DRO problem with

the joint set. Lastly, in the case of problems with multivariate supports, the DRO problems with individual

sets only have linear constraints, and we note that the final reformulation of the DRO problem with the

joint set includes only linear constraints. Table 2 illustrates the summary of our observations which suggests

that intersecting several ambiguity set does not increase the complexity of the final reformulation by adding

intractable constraints to the model. However, our numerical experiments highlight that the computational

complexity of the DRO problems with the joint ambiguity sets is greater than the ones with individual sets

due to the additional decision variables and constraints that are included in the final reformulations.

Table 2 Comparison of the constraint structure of the DRO problems

Measures Individual problems Joint problems

χ2 test SOC + Linear

G test Expo + Linear

KS, Kuiper, CvM tests Conic + Linear

LCX test, Wasserstein metric Linear

Problems with discrete known support SOC + Expo +Linear

Problems with univariate support Conic + Linear

Problems with multivariate support Linear

10 Conclusions

In this study, we consider stochastic programs where the distribution of the uncertain parameters is unknown

and partial information about it can only be captured from limited available data. We use the distributionally

robust optimization framework for modeling such problems. We propose to construct the ambiguity set of

DRO problems as a joint region that is an intersection of multiple regions each created by an individual

measure from the literature. More specifically, we consider the joint region of the ambiguity sets created

by discrepancy-based measures, namely, Wasserstein metric and Goodness-of-Fit tests. We look into the

conditions under which the joint region can preserve useful properties of individual sets; in particular,

performance guarantee, convergence, and tractability.

We derive tractable single-level convex reformulations for DRO problems with joint ambiguity set for

three different problem settings. For computationally challenging problems, we additionally propose lower

and upper bounding techniques, and illustrate the quality of the provided bounds. We conduct numerical

experiments on two well-known problems from the literature, namely, the newsvendor and mean-risk portfolio

allocation problems. Our results indicate that, for small sample sizes, the DRO problem with the joint

ambiguity set has better in-sample and out-of-sample performances compared to the problems with individual

ambiguity sets, which is in alignment with our theoretical results. The results also show that, as the samples

get larger, the outcomes of the best performing DRO problem with individual ambiguity set converge to

those of the DRO problem with joint ambiguity set.

We observe that the LCX test brings exponentially many decision variables and constraints to the resulting

DRO problems. Therefore, as a future research direction, one can consider creating sets with other measures

such as ϕ-divergences to intersect with the Wasserstein ball. Also, our experiments indicate that the three-level

cutting-plane algorithm does not provide good-quality lower bounds and its convergence rate is low. Thus,

more efficient lower bounding or general solution methods can be developed and their performances can be

evaluated. Lastly, our proposed approach can be applied to various applications of practical interest where

only limited data is available.
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A Proof of Theorems

A.1 Proof of Theorem 1

Let ϕχ2(t) = (t− 1)2/t and ϕG(t) = − log(t)+ t− 1 be ϕ-divergence of χ2-test and G-test, and t denote F (ξ̂j)

F̂N (ξ̂j)
.

We illustrate the equivalence of the test-related constraints to the ones defined based on ϕ-divergences as

follows.

χ2-test based constraint:

n∑
j=1

F̂N (ξ̂j) ϕχ2

(
F (ξ̂j)

F̂N (ξ̂j)

)
≤ Q2

χ2(α1) ⇐⇒
n∑

j=1

F̂N (ξ̂j)

(
F (ξ̂j)

F̂N (ξ̂j)
− 1
)2

F (ξ̂j)

F̂N (ξ̂j)

≤ Q2
χ2(α1) ⇐⇒

n∑
j=1

F̂N (ξ̂j)

(
F (ξ̂j)− F̂N (ξ̂j)

)2
F (ξ̂j) · F̂N (ξ̂j)

≤ Q2
χ2(α1) ⇐⇒

 n∑
j=1

(F (ξ̂j)− F̂N (ξ̂j))2

F (ξ̂j)

1/2

≤ Qχ2(α1) ⇐⇒ XN ≤ Qχ2(α1).

G-test based constraint:

n∑
j=1

F̂N (ξ̂j) ϕG

(
F (ξ̂j)

F̂N (ξ̂j)

)
≤ 1

2
Q2
G(α2) ⇐⇒

n∑
j=1

F̂N (ξ̂j)

(
− log

(
F (ξ̂j)

F̂N (ξ̂j)

)
+

F (ξ̂j)

F̂N (ξ̂j)
− 1

)
≤ 1

2
Q2
G(α2) ⇐⇒

n∑
j=1

F̂N (ξ̂j) log

(
F̂N (ξ̂j)

F (ξ̂j)

)
+ F (ξ̂j)− F̂N (ξ̂j) ≤ 1

2
Q2
G(α2) ⇐⇒

n∑
j=1

F̂N (ξ̂j) log

(
F̂N (ξ̂j)

F (ξ̂j)

)
+

n∑
j=1

F (ξ̂j)−
n∑

j=1

F̂N (ξ̂j) ≤ 1

2
Q2
G(α2) ⇐⇒

n∑
j=1

F̂N (ξ̂j) log

(
F̂N (ξ̂j)

F (ξ̂j)

)
+ 1− 1 ≤ 1

2
Q2
G(α2) ⇐⇒

2

n∑
j=1

F̂N (ξ̂j) log

(
F̂N (ξ̂j)

F (ξ̂j)

)1/2

≤ QG(α2) ⇐⇒ GN ≤ QG(α2).
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As a result, the intersection of two test can be reformulated as follows:

C(x,F) = max
F∈F

n∑
j=1

F (ξ̂j) c(x, ξ̂j) (39a)

s.t.

n∑
j=1

F (ξ̂j) = 1 (39b)

n∑
j=1

F̂N (ξ̂j) ϕχ2

(
F (ξ̂j)

F̂N (ξ̂j)

)
≤ Q2

χ2(α1) (39c)

n∑
j=1

F̂N (ξ̂j) ϕG

(
F (ξ̂j)

F̂N (ξ̂j)

)
≤ 1

2
Q2
G(α2) (39d)

F (ξ̂j) ∈ R+ j ∈ [n] (39e)

Using Fenchel duality C(x,F) is equal to:

min
r∈R,

s,s′∈R+

max
F∈R+

n∑
j=1

F (ξ̂j) c(x, ξ̂j) + r

1−
n∑

j=1

F (ξ̂j)

+ s

Q2
χ2(α1)−

n∑
j=1

F̂N (ξ̂j) ϕχ2

(
F (ξ̂j)

F̂N (ξ̂j)

) (40a)

+ s′

1

2
Q2
G(α2)−

n∑
j=1

F̂N (ξ̂j) ϕG

(
F (ξ̂j)

F̂N (ξ̂j)

) (40b)

Let ρj = ρ′j =
F (ξ̂j)

F̂N (ξ̂j)
, we get:

min
r∈R,s,s′∈R+

max
ρ,ρ′∈Rn

+

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ +

n∑
j=1

F̂N (ξ̂j) c(x, ξ̂j)ρj − r(
n∑

j=1

F̂N (ξ̂j) ρ′j)

− s(
n∑

j=1

F̂N (ξ̂j) ϕχ2(ρj))− s′(
n∑

j=1

F̂N (ξ̂j) ϕG(ρ
′
j)) (41a)

s.t. ρ = ρ′ (41b)

In order to make the reformulations easier, we multiple both sides of constraint (41b) with the empirical

distribution, F̂N , then, we take the dual of the constraint by defining a new dual variable γ.

= min
r∈R,s,s′∈R+

min
γ∈Rn

max
ρ,ρ′∈Rn

+

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ +

n∑
j=1

F̂N (ξ̂j) c(x, ξ̂j)ρj − r(
n∑

j=1

F̂N (ξ̂j) ρ′j)

− s(
n∑

j=1

F̂N (ξ̂j) ϕχ2(ρj))− s′(
n∑

j=1

F̂N (ξ̂j) ϕG(ρ
′
j)) +

n∑
j=1

F̂N (ξ̂j)γj(ρ
′
j − ρj) (42a)
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= min
r∈R,s,s′∈R+,γ∈Rn

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ +

n∑
j=1

F̂N (ξ̂j)s max
ρ∈Rn

+

(
c(x, ξ̂j)− γj

s
ρj − ϕχ2(ρj)

)

+

n∑
j=1

F̂N (ξ̂j)s′ max
ρ′∈Rn

+

(
γj − r
s′

ρ′j − ϕG(ρ
′
j)

)
(43a)

= min
r∈R,s,s′∈R+,γ∈Rn

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ +

n∑
j=1

F̂N (ξ̂j)s ϕ∗χ2

(
c(x, ξ̂j)− γj

s

)

+

n∑
j=1

F̂N (ξ̂j)s′ ϕ∗G

(
γj − r
s′

)
(44a)

We can define decision variables, ℓj , to represent the value of c(x, ξ̂j) and add constraints of the form

ℓj ≥ c(x, ξ̂j) to the problem due to the sense of the problem which is minimization.

= min
r,s,s′,t,t′,ℓ,γ

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ −
n∑

j=1

F̂N (ξ̂j)(tj + t′j) (45a)

s.t. tj ≤ −s ϕ∗χ2

(
ℓj − γj
s

)
j ∈ [n] (45b)

t′j ≤ −s′ϕ∗G
(
γj − r
s′

)
j ∈ [n] (45c)

ℓj ≥ c(x, ξ̂j) j ∈ [n] (45d)

r ∈ R, s, s′ ∈ R+, γ, t, t
′, ℓ ∈ Rn (45e)

Using the formulation of convex conjugates, one can further simplify the model as follows:

ϕ∗χ2(τ) =

2− 2
√
1− τ τ ≤ 1

∞ otherwise
, and ϕ∗G(τ) =

− log(1− τ) τ ≤ 1

∞ otherwise

= min
r,s,s′,t,t′,ℓ,γ

r + Q2
χ2(α1) s+

1

2
Q2
G(α2) s

′ −
n∑

j=1

F̂N (ξ̂j)(tj + t′j) (46a)

s.t. ℓj − γj ≤ s j ∈ [n] (46b)

2s+ tj ≤ yj j ∈ [n] (46c)

y2j + (γj − ℓj)2 ≤ (2s− ℓj + γj)
2 j ∈ [n] (46d)

γj − r ≤ s′ (46e)

s′(et
′
j/s

′
) ≤ s′ − γj + r j ∈ [n] (46f)

ℓj ≥ c(x, ξ̂j) j ∈ [n] (46g)

r ∈ R, s, s′ ∈ R+, γ, t, t
′, ℓ, y ∈ Rn (46h)
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A.2 Proof of Theorem 2

In this section, for the sake of completeness, we provide the related theorems from the literature that we use

in the reformulation of the problems with univariate support.

Theorem 11 of [Bertsimas et al., 2018]:

Under the assumptions of Theorem 1 in [Bertsimas et al., 2018], problem (6) is equivalent to the following

problem:

C(x,F(α)) = min
r,c

b⊤T r + cN+1 (47a)

s.t. c ∈ RN+1, −r ∈ K∗
T (47b)(

A⊤
T r
)
i
= ci − ci+1 i ∈ [N ] (47c)

ci ≥ sup
ξ∈(ξi−1,ξi]

c(x, ξ) i ∈ [N + 1] (47d)

where AT, bT, and K
∗
T are respectively matrix, vector, and dual cone associated with a specific test T.

Section 1.4.5.1 of [Ben-Tal and Nemirovski, 2019]:

Given a primal problem (P ):

(P ) := min
x

c⊤x (48a)

s.t. A1x− b1 ≥ 0 (48b)

Aix− bi ∈ Ki 2 ≤ i ≤ m (48c)

Rx = r (48d)

where Ai, bi for i ∈ [m], R, r, and c are matrices and vectors of appropriate dimension, and Ki for 2 ≤ i ≤ m
are regular cones in Euclidean spaces. As a result of conic duality, the dual of problem (P ) is as follows:

D := max
z,y

r⊤z + b⊤1 y1 +

m∑
i=2

⟨bi, yi⟩ (49a)

s.t. y1 ≥ 0, yi ∈ K∗
i , 2 ≤ i ≤ m (49b)

R⊤z +

m∑
i=1

A⊤
i yi = c (49c)

where K∗
i for 2 ≤ i ≤ m are the dual cones.

A.3 Proof of Theorem 3

Given a sample of size N , {ξ1, . . . , ξN}, let denote d the dimension of the random vector ξ, and S = {(a, b) ∈
Rd × R | |a1|+ . . . , |ad|+ |b| ≤ 1}. The supremum problem for problems with multivariate support can be
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modeled as follows [Bertsimas et al., 2018]:

C(x,F) = sup
F,Π

∫
Ξ

c(x, ξ)F (dξ) (50a)

s.t.

∫
Ξ

max{a⊤ξ − b, 0}F (dξ) ≤
∫
Ξ

max{a⊤ξ′ − b, 0}F̂N (dξ′) + QCN (α2) ∀(a, b) ∈ S (50b)∫
Ξ

||ξ||22F (dξ) ≥ QRN (α1) (50c)∫
Ξ2

||ξ − ξ′||Π(dξ, dξ′) ≤ ϵβN (50d)

where Π is a joint distribution of ξ and ξ′ with marginal distributions F and F̂N , respectively. Let ⊗ represent

an operator which multiplies two probability distributions. Based on the law of total probability we have

Π = F̂N ⊗ F where Fi are the conditional distributions of ξ when ξ′ = ξi for i ∈ [N ]. Since we create

the empirical distribution using a uniform distribution, we have Π = 1
N

∑N
i=1 δξi ⊗ Fi where δ is the Dirac

distribution and δξi = 1 if ξ′ = ξi and 0 otherwise [Esfahani and Kuhn, 2018].

C(x,F) = sup
Fi∈P′(Ξ)

1

N

N∑
i=1

∫
Ξ

c(x, ξ)Fi(dξ) (51a)

s.t.
1

N

N∑
i=1

∫
Ξ

max{a⊤ξ − b, 0}Fi(dξ) ≤
1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2) ∀(a, b) ∈ S

(51b)

1

N

N∑
i=1

∫
Ξ

||ξ||22Fi(dξ) ≥ QRN (α1) (51c)

1

N

N∑
i=1

∫
Ξ

||ξ − ξi||Fi(dξ) ≤ ϵβN (51d)

Let S′ be the set of non-negative measures on S. Using Fenchel duality, taking the dual of the above model

results in the following model:

inf
λ∈S′,θ,η∈R+

sup
Fi∈P′(Ξ)

1

N

N∑
i=1

∫
Ξ

c(x, ξ)Fi(dξ)

+
〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)−
1

N

N∑
i=1

∫
Ξ

max{a⊤ξ − b, 0}Fi(dξ)
〉
S

+ θ
( 1

N

N∑
i=1

∫
Ξ

||ξ||22Fi(dξ)− QRN (α1)
)
+ η
(
ϵβN −

1

N

N∑
i=1

∫
Ξ

||ξ − ξi||Fi(dξ)
)

(52a)
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≤ inf
λ∈S′,θ,η∈R+

sup
Fi∈P′(Ξ)

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
− θQRN (α1) + ηϵβN+

1

N

N∑
i=1

∫
Ξ

(
c(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
+ θ||ξ||22 − η||ξ − ξi||

)
Fi(dξ) (53a)

since P′(Ξ) contains all the Dirac distributions supported on Ξ, the above problem is equivalent to the

following one [Esfahani and Kuhn, 2018]:

inf
λ∈S′,θ,η∈R+

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
− θQRN (α1) + ηϵβN+

1

N

N∑
i=1

sup
ξ∈Ξ

(
c(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
+ θ||ξ||22 − η||ξ − ξi||

)
(54a)

We define epigraphical auxiliary variables si for i ∈ [N ] and reformulate the above problem as

= inf
λ∈S′,θ,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
− θQRN (α1) + ηϵβN +

1

N

N∑
i=1

si (55a)

s.t. si ≥ sup
ξ∈Ξ

(
c(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
+ θ||ξ||22 − η||ξ − ξi||

)
i ∈ [N ] (55b)

Having a closer look on constraints (55b), one can obtain the following relation between the elements of the

model:

θ ≤ inf
ξ∈Ξ

si +
〈
λ,max{a⊤ξ − b, 0}

〉
S
− c(x, ξ) + η||ξ − ξi||

||ξ||22
With the same reasoning and assumptions provided in [Bertsimas et al., 2018], the only feasible solution for θ

is zero. Using this information, the definition of cost function, and dual norm (||x|| = max||z||∗≤1 z
⊤x), we

can reformulate constraints (55b) as follows:

si ≥ sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− max

||zik||∗≤η
⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ] (56a)

We convert the maximization over z variable to a minimization using −max
z
⟨zik, ξ − ξi⟩ = min

z
−⟨zik, ξ − ξi⟩.

As a result, the minimization along with the supremum over ξ restricts the area for problem (56) and yields

an upper bound on it.

C(x,F) ≤ inf
λ∈S′,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (57a)

s.t. si ≥ min
||zik||∗≤η

sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− ⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ] (57b)

Eliminating minimum operator from constraint (57b) and adding its constraint results in the following model:
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inf
λ∈S′,η∈R+,s∈RN

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (58a)

s.t. si ≥ sup
ξ∈Ξ

(
ck(x, ξ)−

〈
λ,max{a⊤ξ − b, 0}

〉
S
− ⟨zik, ξ − ξi⟩

)
k ∈ [K], i ∈ [N ] (58b)

||zik||∗ ≤ η k ∈ [K], i ∈ [N ] (58c)

For a given i and k, we can reformulate constraints (58b) by defining a new non-negative decision variable g.

−si ≤ inf
ξ∈Ξ,g∈R+

(
− ck(x, ξ) + ⟨λ, g⟩S + ⟨zik, ξ − ξi⟩

)
(59a)

g ≥ a⊤ξ − b (a, b) ∈ S (59b)

Taking the dual of the above constraints results in the following constraint:

−si ≤ inf
ξ∈Ξ,g∈R+

sup
Hik∈S′

(
− ck(x, ξ) + ⟨λ, g⟩S + ⟨zik, ξ − ξi⟩+

〈
Hik, a

⊤ξ − b− g
〉
S

)
(60a)

By rearranging the terms and using the definition of convex conjugate we have:

−si ≤ sup
Hik∈S′

(
ck∗(x, zik + ⟨Hik, a⟩S)− ⟨zik, ξi⟩ − ⟨Hik, b⟩S

)
(61a)

s.t. λ−Hik ∈ S′ (61b)

Following the same steps in [Bertsimas et al., 2018], we define a new variable rik.

−si ≤ sup
Hik∈S′,rik∈R

(
ck∗(x, rik)− ⟨zik, ξi⟩ − ⟨Hik, b⟩S

)
(62a)

s.t. λ−Hik ∈ S′ (62b)

rik = zik + ⟨Hik, a⟩S (62c)

We can now eliminate the supremum operator and add the corresponding constraints:

− si ≤
(
ck∗(x, rik)− ⟨zik, ξi⟩ − ⟨Hik, b⟩S

)
(63a)

λ−Hik ∈ S′ (63b)

rik = zik + ⟨Hik, a⟩S (63c)

Recall the reformulation (58), after following the above-mentioned steps, it is equivalent to the following

problem:

inf
λ,η,s,H,r,z

〈
λ,

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)
〉
S
+ ηϵβN +

1

N

N∑
i=1

si (64a)

s.t. λ ∈ S′, η ∈ R+, s ∈ RN , Hik ∈ S′, r, z ∈ RN×K (64b)

− si ≤
(
ck∗(x, rik)− ⟨zik, ξi⟩ − ⟨Hik, b⟩S

)
k ∈ [K], i ∈ [N ] (64c)
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λ−Hik ∈ S′ k ∈ [K], i ∈ [N ] (64d)

rik = zik + ⟨Hik, a⟩S k ∈ [K], i ∈ [N ] (64e)

||zik||∗ ≤ η k ∈ [K], i ∈ [N ] (64f)

We write the above problem as infη,z infλ,s,H,r(·) and take the dual of inner infimum problem using the dual

variables pik, ψik(a, b), and qik associated with constraints (64c),(64d), and (64e), respectively. Notice that

in [Bertsimas et al., 2018] variables had only index k but now they have i and k, which means that the size

of the problem is multiplied by sample size N . Following the same ideas provided in [Bertsimas et al., 2018],

taking the dual of the above infimum problem results in the following supremum problem:

sup
q∈RK×N×d,

p∈RK×N
+

ηϵβN +

N∑
i=1

K∑
k=1

pik⟨zik, ξi⟩ − ⟨zik, qik⟩+ pikc

(
x,
qik
pik

)
(65a)

s.t.

K∑
k=1

pik = 1 i ∈ [N ] (65b)

inf
(a,b)∈S

1

N

N∑
i=1

max{a⊤ξi − b, 0}+ QCN (α2)−
N∑
i=1

K∑
k=1

max{a⊤qik − pikb, 0} ≥ 0 (65c)

We define parameter γ ∈ G where G = {0, 1}K×N\{(0, . . . , 0)} in order to consider all possibilities of

max{a⊤qik − pikb, 0}. The constraint (65c) can be reformulated as follows:

QCN
(α2) ≥ sup

a∈Rd,b∈R

N∑
i=1

K∑
k=1

γik(a
⊤qik − pikb)−

1

N

N∑
i=1

max{a⊤ξi − b, 0} γ ∈ G (66a)

s.t.

d∑
j=1

|aj |+ |b| ≤ 1 (66b)

We linearize the supremum problem in the constraint and take its linear dual. As a result, the constraint is

equivalent to the following set of constraints:

QCN (α2) ≥ ργ γ ∈ G (67a)

1

N

N∑
i=1

µγ,iξ
i + uγ − vγ =

N∑
i=1

K∑
k=1

γikqik γ ∈ G (67b)

− 1

N

N∑
i=1

µγ,i + u′γ − v′γ = −
N∑
i=1

K∑
k=1

γikpik γ ∈ G (67c)

µγ,i ≤ 1 γ ∈ G, i ∈ [N ] (67d)

− uγ − vγ + ργ ≥ 0 γ ∈ G (67e)

− u′γ − v′γ + ργ ≥ 0 γ ∈ G (67f)

µ ∈ R|G|×N
+ , ρ, u′, v′ ∈ R|G|

+ , u, v ∈ R|G|×d
+ (67g)

We can then replace constrain (65c) in (65) with constraints (67). After obtaining the supremum problem,

we take its (LP) dual and obtain an infimum problem. This infimum can be merged with infη,z(·) which we
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mentioned after problem (64). The resulting infimum problem below can be solved by the state-of-the-art

solvers.

inf
r,f,w,w′,y,y′,e,η,τ

ηϵβN +
1

N

N∑
i=1

ri +
∑
γ∈G

fγ QCN (α2) +
∑
γ∈G

N∑
i=1

eγi (68a)

s.t.

d∑
j=1

yγj + y′γ ≤ fγ γ ∈ G (68b)

1

N
(

d∑
j=1

wγj ξ
i
j − w′

γ) ≤ eγi γ ∈ G, i ∈ [N ] (68c)

wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (68d)

− wγj − yγj ≤ 0 γ ∈ G, j ∈ [d] (68e)

w′
γ − y′γ ≤ 0 γ ∈ G (68f)

− w′
γ − y′γ ≤ 0 γ ∈ G (68g)

⟨zik, ξi⟩ − ri +
∑
γ∈G

γik w
′
γ − gk ≤ 0 k ∈ [K], i ∈ [N ] (68h)

gk ≤ ck∗(x,
∑
γ∈G

γikwγ + zik) k ∈ [K], i ∈ [N ] (68i)

∥zik∥∗ ≤ η k ∈ [K], i ∈ [N ] (68j)

η ∈ R+, f ∈ R|G|
+ , e ∈ R|G|×N

+ , (68k)

y ∈ R|G|×d
+ , y′ ∈ R|G|

+ , z ∈ RK×N×d,

r ∈ RN , w ∈ R|G|×d, w′ ∈ R|G|

This infimum problem can be merged with infx∈X(·) and yield a single-level problem. This reformulation can

be further simplified, and z variables can be omitted from the reformulation. The reformulation steps and

final model are similar to the ones proposed by Bertsimas et al. [2018]1, however, our model has additional

decision variables in order to incorporate information of the Wasserstein ball.

B Bootstrap Algorithm

In this section, we explain a bootstrap procedure that we follow in order to calculate the critical value of

various GoF tests. This procedure is proposed by Bertsimas et al. [2018] and for the sake of completeness, we

restate it here.

The procedure for the LCX test is as follows. Given an IID sample {ξ1, . . . , ξN}, significance level α,

and iteration count B, we first obtain the empirical distribution F̂N from the given sample. Next, we start

iterations t ∈ [B], and in each of them we draw a sample {ξt,1, . . . , ξt,N} from the empirical distribution.

1We note that in Theorem 14 of Bertsimas et al. [2018], we encountered typos where w and w′ are defined as non-negative
variables; however, they should be free decision variables.

43



Using the sample in iteration t, we calculate

Qt
CN

= sup
|a1|+...,|ad|+|b|≤1

(
1

N

N∑
i=1

max
{
a⊤ξi − b, 0

}
− 1

N

N∑
i=1

max
{
a⊤ξt,i − b, 0

})
.

After calculating Qt
CN

for all iterations, we sort them in ascending order and record the 1− α percentile of

them. The recorded value is used as QCN (α) in our experiments.

In order to calculate the thresholds for the KS, Kuiper, and CvM tests, we follow a similar procedure. Let

F̂ i
N represent the empirical cumulative distribution of the random vector i. In this case, instead of having an

IID sample and drawing samples from the empirical distribution, in each iteration t, we obtain a sample of

F̂ i
N ’s from a uniform distribution on the support [0, 1]. Next, we use the formulations

Qt
KSN

= max
i∈[N ]

{
max

{
i

N
− F̂ i

N , F̂
i
N −

i− 1

N

}}
,

Qt
KuiperN

= max
i∈[N ]

(
F̂ i
N −

i− 1

N

)
+ max

i∈[N ]

(
i

N
− F̂ i

N

)
,

Qt
CvMN

=

(
1

12N2
+

1

N

N∑
i=1

(
2i− 1

2N
− F̂ i

N

)2
)1/2

,

to calculate the values of Qt
TN

for test T. After obtaining all values for all iterations t ∈ [B], similar to the

previous case, we sort them in ascending order and utilize the 1− α percentiles of the calculated values as

the thresholds of the corresponding tests.
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