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Abstract

Constrained optimization problems where both the objective and constraints may be non-
smooth and nonconvex arise across many learning and data science settings. In this paper,
we show a simple first-order method finds a feasible, ϵ-stationary point at a convergence rate
of O(ϵ−4) without relying on compactness or Constraint Qualification (CQ). When CQ holds,
this convergence is measured by approximately satisfying the Karush–Kuhn–Tucker conditions.
When CQ fails, we guarantee the attainment of weaker Fritz-John conditions. As an illustrative
example, our method stably converges on piecewise quadratic SCAD regularized problems despite
frequent violations of constraint qualification. The considered algorithm is similar to those of [1,2]
(whose guarantees further assume compactness and CQ), iteratively taking inexact proximal
steps, computed via an inner loop applying a switching subgradient method to a strongly convex
constrained subproblem. Our non-Lipschitz analysis of the switching subgradient method appears
to be new and may be of independent interest.

1 Introduction
In this paper, we considered the difficult family of constrained optimization problems where both
the objective and constraints may be nonconvex and nonsmooth. Specifically, we consider problems
of the following form: {

minx∈X f(x)
s.t. gi(x) ≤ 0, i = 1, ..., m.

(1.1)

for some closed convex domain X ⊆ Rd. The objective f : X → R and constraints gi : X → R, i =
1, ..., m are assumed to be continuous on X, but need not be convex nor differentiable.

Constrained optimization problems with nonsmooth and nonconvex objective loss functions
and constraints are common in modern data science and machine learning. For instance, phase
retrieval, blind deconvolution, and covariance matrix estimation all fall within nonconvex and
nonsmooth minimization [3–7]. If sparsity of solutions is expected or desired, often a regularizing
constraint is introduced (e.g., convex choices like ℓ1-norms or ℓ2-norms, nonconvex choices like
SCAD functions [8, 9] or ℓq-norms for q ∈ (0, 1)). SCAD functions will serve as a running example
throughout this work as they are simple piecewise quadratic functions exhibiting nonsmoothness
and nonconvexity, with widespread usage [10–14]. Other problems like multi-class Neyman-Pearson
classification [1, 15, 16], minimizing the loss on one class while controlling the losses on other classes
under some values, provide another typical setting of constrained optimization inheriting any
nonsmoothness and nonconvexities from the loss functions.

∗Johns Hopkins University, Department of Applied Mathematics and Statistics, zjia12@jhu.edu
†Johns Hopkins University, Department of Applied Mathematics and Statistics, grimmer@jhu.edu

1

zjia12@jhu.edu
grimmer@jhu.edu


Our approach to solving nonsmooth, nonconvex, constrained problems relies on two main
ingredients outlined below: (in)exact proximal point methods and Fritz-John/Karush-Kuhn-Tucker
stationarity conditions.

(In)exact Proximal Point Methods Several recent works [7, 17–21] have concerned solving
nonconvex problems via inexact evaluation of a proximal operator. For settings without functional
constraints (i.e., m = 0), these methods seek a stationary point of minx∈X f(x) by iterating

xk+1 ≈ proxα,f (xk) := argmin
x∈X

{
f(x) + 1

2α
∥x − xk∥2

}
(1.2)

with stepsize α > 0. By restricting to the family of weakly convex functions (defined in (2.4)), this
proximal subproblem is guaranteed to be convex with a unique solution for small enough α. When
the proximal map can be evaluated exactly, an ϵ > 0-stationary point (defined in Definitions 2.1
and 2.2) is found within O(1/ϵ2) iterations. The inexact methods of [7, 21] show that using cheaper
subgradient oracle calls such a point is found within O(1/ϵ4) iterations.

We follow the extension of these ideas to nonconvex inequality constraints proposed by Ma
et al [1] and Boob et al [2]. Their ideas and comparisons with our contributions are discussed in
Section 1.3. To this end, we consider the following proximal subproblem, penalizing the constraints
in addition to the objective

xk+1 ≈ argmin
x∈X

{
f(x) + 1

2α
∥x − xk∥2 | gi(x) + 1

2α
∥x − xk∥2 ≤ τ

}
(1.3)

with stepsize α > 0 and feasibility tolerance τ ≥ 0. Importantly, any feasible solution to this
proximal subproblem xk+1 has its infeasibility bounded by gi(xk+1) ≤ τ − 1

2α∥xk − xk+1∥2
2. Hence

a sequence of xk generated by inexactly evaluating this mapping remains feasible for the original
problem (1.1) until it reaches approximate stationarity (that is, ∥xk − xk+1∥2 ≥

√
2ατ implies

gi(xk+1) ≤ 0 for each constraint i).

Fritz-John/Karush-Kuhn-Tucker Stationarity Let ∂f(x) denote a generalized subdifferential
of a function f and NX(x) denote the normal cone of X at x, formally defined in Section 2. Here
we consider two classic measurements of stationarity: Fritz-John (FJ) conditions giving a weaker
optimality condition and Karush-Kuhn-Tucker (KKT) conditions giving a stronger condition.

We say that a feasible solution x∗ is a FJ point of (1.1) if there exists nonnegative multipliers
γ∗

0 ∈ R and γ∗ = (γ∗
1 , ..., γ∗

m)T ∈ Rm, and subgradients ζf ∈ ∂f(x∗) and ζgi ∈ ∂gi(x∗) such that
(γ∗

0 , γ∗
1 , ..., γ∗

m) is a non-zero vector with

γ∗
i gi(x∗) = 0, ∀i = 1, ..., m,

γ∗
0ζf +

m∑
i=1

γ∗
i ζgi ∈ −NX(x∗).

(1.4)

Note requiring (γ∗
0 , γ∗

i , ..., γ∗
m) to be a nonzero vector could be equivalently expressed as requiring

γ∗
0 +

∑m
i=1 γ∗

i = 1. This condition is necessary for x∗ to be a global (or local) minimizer [22].
However, this condition can only give limited insights into the quality of x∗ as a solution when
γ∗

0 = 0 since (1.4) becomes independent of f [23]. This weakness is remedied by the stronger
notion of KKT points, which implicitly require γ∗

0 ≠ 0. We say a feasible x∗ is a KKT point
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for the problem (1.1) if there exists nonnegative Lagrange multipliers λ∗ ∈ Rm, ζf ∈ ∂f(x∗) and
ζgi ∈ ∂gi(x∗) such that

λ∗
i gi(x∗) = 0, ∀i = 1, ..., m,

ζf +
m∑

i=1
λ∗

i ζgi ∈ −NX(x∗).
(1.5)

The KKT conditions strengthen FJ, requiring γ∗
0 ̸= 0, in particular γ∗

0 = 1. The requirement
that γ∗

0 ̸= 0 is equivalent to having the Mangasarian-Fromovitz Constraint Qualification (MFCQ)
condition hold: Let A(x) = {i | gi(x) = 0, i = 1, ..., m}. We say MFCQ holds at x∗ if

∃v ∈ −N∗
X(x∗) s.t. ζT

giv < 0 ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x∗). (1.6)

Approximate FJ and KKT stationarity measurements can differ greatly when constraint qualifi-
cation does not hold. When a strengthened (σ-strong) MFCQ condition (defined later as (2.9)) is
satisfied, we can uniformly bound the size of any associated Lagrange multipliers. Without this,
these multipliers may be arbitrarily large, even failing to exist when MFCQ fails. Consequently,
approximate KKT stationarity may never be attained despite the iterates xk of (1.3) converging.
In contrast, we show that the FJ conditions are approximately satisfied whenever xk converges.

1.1 Contribution

We show that an inexact proximal method can solve a wide range of nonsmooth, nonconvex
constrained optimization problems, producing an approximate stationary point using at most
O(1/ϵ4) subgradient evaluations, matching its rate for unconstrained optimization. In particular,
our proposed method uses a switching subgradient method approximately solving (1.3) to produce
each subsequent xk+1, see Algorithm 1. Our analysis shows the following three generally desirable
properties missing from prior works [1, 2]:

Always Feasible Iterates By appropriately selecting the algorithmic parameters, we can ensure
feasibility gi(xk+1) ≤ 0 at each iteration. Maintaining not just approximately but actually feasible
iterates is critical, for example, in settings of planning or control where feasibility corresponds to
physical limitations or safety concerns [24,25].

Stationarity with or without Constraint Qualification Ensuring constraint qualification
over nonconvex constraints is nontrivial, despite being continually assumed by prior works. This
is illustrated for a common sparse regularizer in Section 1.2 and numerical explored in Section 5.
In Theorems 3.2 and 3.3, we show that at most O(1/ϵ4) subgradient evaluations are required to
produce an approximate KKT or FJ point, with or without constraint qualification, respectively.

Convergence Rates without Compactness Our guarantees apply without needing to assume
compactness of the domain X, which prior works relied on. Hence our theory applies more widely
and, even in compact settings, may offer improvements as quantities like the diameter of X are
replaced by often smaller quantities dependent on the initialization. This is done by extending
the analysis of the switching subgradient method to handle non-Lipschitz objective and constraint
functions like those occurring in (1.3). This analysis and resulting subproblem convergence guarantee
appear to be new and may be of independent interest.
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(a) 1D SCAD function
(b) Seven SCAD level sets with p ∈ {2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5}. Note the
set changes suddenly at p ∈ {3, 6, 9}, where MFCQ fails.

Figure 1: The SCAD function s and feasible regions in 3D given by
∑

i s(xi) ≤ p.

1.2 Vignette: Failure of MFCQ Assumptions for Sparse Regularized Problems

Nonconvex regularization has recently gained popularity due to its ability to facilitate stronger
statistical guarantees on minimizers [26–29]. One of the simplest regularizers is the Smoothly
Clipped Absolute Deviation (SCAD) function [8, 9], which sums up piecewise quadratic clipped
absolute deviations in each coordinate

s(xi) =


2|xi| 0 ≤ |xi| ≤ 1,

−x2
i + 4|xi| − 1 1 < |xi| ≤ 2,

3 |xi| > 2.

(1.7)

Near the origin, this behaves like a one-norm. As larger points are considered, it smoothly flattens
out to overly penalizing large entries. Figure 1a shows the one-dimensional SCAD function. Note the
constraint g(x) :=

∑
i s(xi) − p ≤ 0 ensures that at most ⌊p/3⌋ entries of x have a magnitude larger

than two. Figure 1b shows the feasible regions given by the three-dimensional SCAD constraints in
[−5, 5]3.

Optimization over these level sets will often yield sparse solutions, guaranteed to have no more
than ⌊p/3⌋ entries greater than 2. Since SCAD constraints are piecewise quadratic, we can often
approximately solve the convex subproblem (1.3). Despite this, two problems (one mild and one
severe) prevent applying the convergence theory of prior works.

First, prior works do not apply as the set {x | g(x) ≤ 0} is not compact for any p ≥ 3. If a
bound on the size of a solution is known, then one could add a ball constraint X = {x | ∥x∥ ≤ D}
to ensure compactness. Our theory applies without such a modification.

More subtly, prior works do not apply here as SCAD constraints often fail to have constraint
qualification hold as p varies. As a result, none of the prior works’ theories provide any form of
convergence guarantee. To illustrate this, we numerically consider the problem of Sparse Phase
Retrieval problems (SPR), see (5.1), which minimizes a piecewise quadratic objective over the
piecewise quadratic constraint set for SCAD constraints. Figure 2 shows the estimated Lagrange
multipliers at limit points converged to by an inexact proximal point method. When p is near a
multiple of three, the limit point reached by iteratively applying (1.3) may fail to satisfy MFCQ,
seen as its associated Lagrange multiplier blowing up, preventing KKT attainment. For large values
of p, we see the multipliers tending to zero, corresponding to unconstrained stationarity.

Despite these failures of MFCQ, our theory still guarantees that the iteration will find an
approximate FJ point. Note that Figure 2 is based on averaging 30 independent replicates. We only
observe approximately 5% ∼ 10% of replicates when p is a multiple of three have their Lagrange
multipliers diverge. So MFCQ is often violated but not everywhere. These sporadic failures in

4



(a) Small values of p (b) Large values of p

Figure 2: Lagrange multipliers computed at approximate stationary points reached by iterating (1.3)
on 30 randomly generated SPR problems (see Section 5 for the exact construction). As p varies
from 60 to 120, the black line shows the average approximate multipliers reached and the gray
region shows the range between maximum and minimum values seen. Black dots are placed at each
multiple of three, where MFCQ fails to hold.

relatively simple nonsmooth nonconvex settings are one of this work’s original motivations, leading
us to develop theory capable of describing convergence when MFCQ fails while retaining (and
improving) the convergence theory when MFCQ holds.

1.3 Related Work

Inexact Proximal Methods Using inexact proximal-point methods to solve nonsmooth non-
convex problems is not new to this work. Double-loop algorithms that use several inner steps
to inexactly solve a convex proximal subproblem in each outer iteration have been designed and
analyzed widely. For example, the algorithm proposed in [17] approximating nonconvex proximal
points contributed to such an idea, and [18] presented a proximal variant of bundle methods solving
nonconvex problems based on the work of [17]. More recently, [21] developed this idea to give a
O(1/ϵ4) convergence rate for unconstrained stochastic nonsmooth nonconvex problems.

Special Case of (Strongly) Convex Constraints A range of methods from the literature
can be applied to inexactly solve the nonsmooth but strongly convex constrained subproblems
constructed, which here arise as the subproblems (2.12). A level-set method for structured convex
constrained problems was introduced in [30], which was generalized and improved by [31] to maintain
feasibility. Alternative (augmented) Lagrangian approaches could be applied if near feasibility is
sufficient. Here we take the approach of solving such problems via switching subgradient methods,
which have been analyzed in [32] and extended in [1], [33] and [34].

Comparison with Ma, Lin, and Yang [1] We consider a very similar inexact proximal point
method with switching subgradient method being the oracle for the subproblems as Ma et al. [1], in
which they also find nearly optimal and nearly feasible solutions for the subproblems. Their work
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also analyzed the convergence of a stochastic subgradient algorithm. However, in the deterministic
setting, they only guarantee nearly feasible and approximate stationary solutions for the original
optimization problem, while our method ensures actual feasibility. To attain KKT stationarity, they
introduced a uniform Slater’s condition as their stronger type of constraint qualification, which
is stronger than our considered σ-strong MFCQ condition. Moreover, their upper bound on the
optimal dual variables and convergence rates depend on the diameter of X, while we do not need
such a requirement. Up to these constants, Ma et al. proved a O(ϵ−4) rate of convergence towards
KKT guarantees under MFCQ, which we match (in addition to our new FJ guarantees).

Comparison with Boob, Deng, and Lan [2] As another closely related work, Boob et al. [2]
showed that the inexact proximal point method searching for nearly optimal and strictly feasible
solutions for the subproblems can ensure a feasible approximate stationary solution for the main
problem is found (assuming X is compact). This framework maintains strict feasibility automatically
during the iterations. Our proposed method, although it also ensures feasibility, does not neatly
fit within their framework of guaranteeing strict feasibility. Boob et al. consider problem settings
ranging from nonconvex to strongly convex constrained problems and consider various MFCQ,
strong MFCQ, and strong feasibility conditions as constraint qualifications. Their strong feasibility
condition is stronger than our considered σ-strong MFCQ condition. Under their MFCQ and
strong MFCQ conditions, an additional assumption is needed to ensure the existence of a stationary
solution that the iterated points converge to and ensure boundedness of the optimal dual variables.
They did not prove a constant limit on this upper bound, while we attain a closed form for this
upper bound directly from strong MFCQ.

Prior Nonconvex Fritz John and KKT-type Guarantees Birgin et al. [35] gave a general
method that attains approximate stationarity using first, second, or higher-order information. They
adopted both scaled KKT points and unscaled KKT points to describe the stationarity, where the
former means the accuracy of KKT conditions satisfied at such points is proportional to the size
of the Lagrange multipliers. Scaled KKT points with a linear combination of the gradients of the
constraints being near zero are similar to FJ points. Hinder and Ye [36] showed that a (slightly
modified) Fritz-John stationarity can be reached by an interior point method despite nonconvex
constraints. They also introduced their new definitions of unscaled KKT points and termination
criteria as comparisons with [35]. The ideas of adopting scaled KKT stationarity and discussions on
its dependence on the size of Lagrange multipliers also occur in [37–40].

Alternative Approaches to Nonconvex Constraints Finally, we note three alternatives to
the use of (inexact) proximal methods for nonconvex constrained problems considered here: Classic
second-order approaches like sequential quadratic programming techniques [41] can be applied.
Cubic regularization approaches [42] and penalized methods [43, 44] can also provide provably
convergence guarantees. If the constraints are star convex with respect to a known point (for
example, the SCAD constraints previously considered with respect to the origin), the radial methods
of [45,46] could apply with convergence guarantees while maintaining fully feasible iterates.

2 Preliminaries

Throughout the paper, we use the following notations. Let ∥ · ∥ denote the l2-norm. We denote the
normal cone of X at x as NX(x), and its dual cone as N∗

X(x). The distance from a point x to a set
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S is denoted as dist(x, S) = mins∈S ∥x − s∥, and the convex hull of any set S is denoted as co{S}.
For any convex function h : X → R ∪ {+∞}, its set of subgradients at x ∈ X is defined as:

∂h(x) = {ζ ∈ Rd|h(x′) ≥ h(x) + ζT (x′ − x), ∀x′ ∈ X}. (2.1)

More generally, for any potentially nonconvex function h : X → R ∪ {+∞}, its set of Clarke
subgradients at x is defined as:

∂h(x) = co{ lim
i→∞

∇h(xi)|xi → x and h(x) is differentiable at any xi ∈ X}. (2.2)

A function h(x) is µ-strongly convex on X if h − µ
2 ∥ · ∥2 is convex. This is equivalent to having:

h(x′) ≥ h(x) + ζT (x′ − x) + µ

2 ∥x′ − x∥2, ∀x, x′ ∈ X, ∀ζ ∈ ∂h(x). (2.3)

A function h(x) is ρ-weakly convex on X if h + ρ
2∥ · ∥2 is convex. This is equivalent to having:

h(x′) ≥ h(x) + ζT (x′ − x) − ρ

2∥x′ − x∥2, ∀x, x′ ∈ X, ∀ζ ∈ ∂h(x). (2.4)

We consider two different notions describing approximate stationarity for our nonsmooth
nonconvex constrained problem of interest (1.1), weakening the FJ conditions and KKT conditions
shown in (1.4) and (1.5) respectively.

Definition 2.1. A point x is an ϵ-FJ point for problem (1.1) if gi(x) ≤ 0 ∀i = 1, ..., m, and there
exists ζf ∈ ∂f(x), ζgi ∈ ∂gi(x) and γ0 ≥ 0, γ = (γ1, ..., γm)T ≥ 0, γ0 +

∑m
i=1 γi = 1 such that:

dist(γ0ζf +
m∑

i=1
γiζg, −NX(x)) ≤ ϵ, (2.5)

|γigi(x)| ≤ ϵ2 ∀i = 1, ..., m. (2.6)

Definition 2.2. A point x is an ϵ-KKT point for problem (1.1) if gi(x) ≤ 0 ∀i = 1, ..., m, and there
exists ζf ∈ ∂f(x), ζgi ∈ ∂gi(x) and λ = (λ1, ..., λm)T ≥ 0 such that:

dist(ζf +
m∑

i=1
λiζgi, −NX(x)) ≤ ϵ, (2.7)

|λigi(x)| ≤ ϵ2 ∀i = 1, ..., m. (2.8)

Let x̂k+1 denote the optimal solution for the subproblem (1.3). The considered inexact proximal
point approach will produce iterates xk+1 near each x̂k+1. As we will see, the sequence x̂k converges
towards an approximate stationary point for the main problem (1.1). So we can only ensure our
iterates xk are near an approximately stationary point. The following definitions describe points in
the proximity of an approximately stationary point.

Definition 2.3. A point x is an (ϵ, η)-FJ point for problem (1.1) if there exists an ϵ-FJ point x′ for
problem (1.1) with ∥x − x′∥ ≤ η.
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Definition 2.4. A point x is an (ϵ, η)-KKT point for problem (1.1) if there exists an ϵ-KKT point
x′ for problem (1.1) with ∥x − x′∥ ≤ η.

The accuracy of KKT stationarity guarantees we derive will depend on the sizes of the associated
Lagrange multipliers. To give a constant upper bound on these optimal Lagrange multipliers in (1.5)
for our subproblems (see problem (2.12) below), we assume a stronger type of constraint qualification
defined below. Let A(x) = {i | gi(x) = 0, i = 1, ..., m}. We say σ-strong MFCQ condition holds at x
if there exists a constant σ > 0, such that:

∃v ∈ −N∗
X(x) and ∥v∥ = 1 s.t. ζT

giv ≤ −σ ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x). (2.9)

Specifically, when NX(x) = {0}, we could equivalently state the condition as:

∥ζgi∥ ≥ σ ∀i ∈ A(x), ∀ζgi ∈ ∂gi(x). (2.10)

We say the σ-strong MFCQ condition holds for problem (1.1) when σ-strong MFCQ condition is
satisfied at any x ∈ X. When the σ-strong MFCQ condition is satisfied for all the subproblems (2.12),
our Lemma 3.4 shows boundedness of Lagrange multipliers in (1.5) for our subproblems. This
boundness is critical to improve our FJ convergence guarantees to convergence towards KKT
stationarity.

Without loss of generality, we simplify the m nonsmooth, nonconvex constraints of (1.1) into a
single constraint as follows:{

minx∈X f(x)
s.t. g(x) := maxi=1,...,m gi(x) ≤ 0.

(2.11)

Note if each gi is ρ-weakly convex, then g is ρ-weakly convex. Note that in this reformulation, there
is only a single constraint and hence only a single Lagrange multiplier. Since subgradients of a finite
maximum of m elements are convex combinations of subgradients of the component functions, the
original vector of multipliers can always be recovered.

We follow the same construction as (1.3) to build our proximal subproblems for (2.11), given by{
minx∈X Fk(x) := f(x) + ρ̂

2∥x − xk∥2

s.t. Gk(x) := g(x) + ρ̂
2∥x − xk∥2 ≤ 0.

(2.12)

By selecting ρ̂ > ρ, both the objective function Fk(x) and the constraint Gk(x) are (ρ̂ − ρ)-strongly
convex. Throughout, we require ρ̂ > max{ρ, 1}. In its outer loop, our inexact proximal point
method will set xk+1 as a nearly optimal and feasible solution of (2.12).

We make the following four assumptions about (2.11) throughout this paper.

Assumption A. f(x) and g(x) are continuous and ρ-weakly convex functions on X.

Assumption B. flb = infx∈X f(x) > −∞, glb = infx∈X g(x) > −∞.

Assumption C. For any x ∈ X, we can compute ζf ∈ ∂f(x), ζg ∈ ∂g(x) with ∥ζf ∥, ∥ζg∥ ≤ M .

Assumption D. We have access to an initial feasible point x0 to problem (2.11) (i.e. x0 ∈ X and
g(x0) ≤ 0).

These assumptions suffice for our convergence theory to FJ points. Under the following additional
assumption, our convergence results improve to ensure approximate KKT stationarity.
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Assumption E. σ-strong MFCQ condition is satisfied for any subproblem (2.12).

Let x̂k+1 denote the optimal solution for the subproblem (2.12). In the following lemma, we will
show that when ∥x̂k+1 − xk∥ is small enough, the first conditions for either FJ or KKT stationarity
(2.5)/(2.7) hold for the original nonsmooth nonconvex problem (2.11). Further utilizing the selection
ρ̂ > max{ρ, 1}, we conclude the second conditions (2.6)/(2.8) must be satisfied when (2.5)/(2.7) are.
Hence our convergence theory follows along the following reasoning: once x̂k+1 is an approximate
stationary point for the main problem (2.11), xk must lie in a neighborhood of x̂k+1. Then depending
on whether Assumption E holds, this gives an approximate FJ or KKT stationary solution near xk.

Lemma 2.5. When Assumptions A-D hold and ρ̂ > max{ρ, 1}, if ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂ then xk is an

(ϵ, ϵ)-FJ point. If additionally, Assumptions E holds, then a dual optimal λk for (2.12) exists and if
∥x̂k+1 − xk∥ ≤ ϵ

ρ̂(1+λk) , then xk is an (ϵ, ϵ)-KKT point.

Note in the second case (under Assumption E), the size of the Lagrange multiplier plays a role.
As λk grows larger, the stationarity ∥x̂k+1 − xk∥ needs to be smaller to ensure the same level of
KKT attainment. For notational ease, let D =

√
−8glb
ρ̂−ρ denote the upper bound on the diameter

of every subproblem constraint set {x | Gk(x) ≤ 0} due to the (ρ̂ − ρ)-strong convexity of Gk(x).
In particular, this upper bounds the distance from the current iterate xk to x̂k+1. Using this, in
Lemma 3.4, we show that σ-strong MFCQ (Assumption E) ensures a uniform upper bound for the
optimal subproblem dual variables of B = M+ρ̂D

σ .

3 Algorithms
This section first describes the switching subgradient method and, second, our use of it as an oracle
for solving the main problem (2.11) in our inexact proximal point method. All proofs are deferred
to Section 4.

3.1 The Classic Switching Subgradient Method (without Lipschitz Continuity)

We introduce the classic switching subgradient method (see [32]) for solving problems of the form{
minz∈Z F (z)
s.t. G(z) ≤ 0.

(3.1)

Here we assume the domain Z is a convex set, and F (z) and G(z) are µ-strongly convex functions
on Z. Let z∗ be the unique optimal solution to this problem. We define nearly optimal and nearly
feasible solutions for this problem as follows.

Definition 3.1. A point z is a (δ, τ)-optimal solution for problem (3.1) if F (z) − F (z∗) ≤ δ and
and G(z) ≤ τ , where z∗ is the optimal solution.

Here we analyze the switching subgradient method (Algorithm 1) to solve problem (3.1), finding
a (τ, τ)-optimal solution for it. When the current iterate is not nearly feasible with tolerance
τ , we compute the subgradient based on the constraint function and make an update seeking
feasibility; otherwise, we compute the subgradient of the objective function to make an update
seeking optimality.

We give the convergence result for this method, generalizing [1,33,34]. These previous convergence
analyses have assumed uniform Lipschitz continuity for both F (z) and G(z). However, such results
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Algorithm 1 The Switching Subgradient Method SSM(τ, T, z0, {αt})

Input: τ > 0, T > 0, z0 ∈ Z, {αt}T −1
t=0

Set I = ∅, J = ∅
for t = 0, 1, ..., T − 1 do

if G(zt) ≤ τ then
zt+1 = projZ(zt − αtζF t), ζF t ∈ ∂F (zt), I = I ∪ {t}

else
zt+1 = projZ(zt − αtζGt), ζGt ∈ ∂G(zt), J = J ∪ {t}

end if
end for

Output: z̄T =
∑

t∈I
(t+1)F (zt)∑

t∈I
(t+1)

are insufficient for analyzing its application to (2.12) since the added quadratic terms rule out
global Lipschitz continuity. Instead, for our analysis here, we only need the following weaker,
non-Lipschitz condition, previously considered for projected subgradient methods [47]: For any given
target level of feasibility τ , suppose there exist constants L0, L1 ≥ 0 such that all nearly feasible
z1 ∈ {z | G(z) ≤ τ} and infeasible z2 ∈ {z | G(z) > τ} have subgradients ζF ∈ ∂F (z1), ζG ∈ ∂G(z2)
bounded affinely by their current suboptimality/infeasibility

∥ζF ∥2 ≤ L2
0 + L1(F (z1) − F (z∗)),

∥ζG∥2 ≤ L2
0 + L1(G(z2) − G(z∗)).

(3.2)

When L1 = 0, this captures the standard case of L0-Lipschitz F (z) and G(z). However, no function
can possess Lipschitz continuity and strong convexity on an unbounded domain. When L1 > 0, the
non-Lipschitz condition (3.2) allows F (z) and G(z) to grow quadratically (hence this assumption is
not at odds with strong convexity on unbounded domains).

Theorem 3.1. Given αt = 2

µ(t+2)+
L2

1
µ(t+1)

, τ > 0, and z0 with G(z0) ≤ τ , Algorithm 1’s output z̄T is

a (τ, τ)-optimal solution for problem (3.1) for all

T ≥ max

8L2
0

µτ
,

√
2L2

1∥z0 − z∗∥2

µτ

 .

Minor modifications of our analysis would show that the switching subgradient method can
attain a (τ, 0)-optimal solution at the rate of O(τ−1) for problem (3.1), provided a strictly feasible
Slater point exists (i.e., G(z0) < 0).

In the proximal subproblem (2.12), Fk and Gk are both (ρ̂ − ρ)-strongly convex functions.
Consequently, they are not Lipschitz if the domain X is unbounded. In the following lemma,
however, we bound its subgradients via the non-Lipschitz condition (3.2). Guarantees for the
switching subgradient method applied to these proximal subproblems directly follow.

Lemma 3.2. For any xk ∈ X with g(xk) ≤ 0, the non-Lipschitz condition (3.2) is satisfied by the
proximal subproblem (2.12) with L2

0 = 9M2 − 6ρ̂glb L1 = 6ρ̂.
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Corollary 3.3. With z0 = xk, µ = ρ̂ − ρ, αt = 2
(ρ̂−ρ)(t+2)+ 36ρ̂2

(ρ̂−ρ)(t+1)

and τ > 0 in Algorithm 1, z̄T is

a (τ, τ)-optimal solution for problem (2.12) for all

T ≥ max

24(3M2 − 2ρ̂glb)
µτ

,

√
72ρ̂2D2

µτ

 .

In previous convergence analysis of the switching subgradient method shown in other literature,
the Lipschitz continuity assumption is necessary for both the objective function Fk(x) and the
constraint function Gk(x). Since these functions are strongly convex (and so grow quadratically),
previous works required compactness of the domain X to yield a uniform Lipschitz constant. In
contrast, our Corollary 3.3 avoids assuming any compactness.

Several stochastic variants of Algorithm 1 have been considered for solving stochastic generaliza-
tions of (3.1). An adaptive stochastic mirror descent method was introduced in [33], which assumes
exact functional values are computable for each constraint, but only stochastic approximations of
the subgradients of the objective and constraints are available. With unbiased estimators of the
subgradients, Algorithm 1 can be applied to this kind of stochastic problem with convergence results
in expectation without requiring the compactness of the domain or the stochastic subgradients to
be bounded almost surely. A stochastic version of the non-Lipschitz condition (3.2) was considered
by [48] as a combination of the expected smoothness and finite gradient noise conditions around
the optimal solution, which is needed to show convergence of the stochastic switching subgradient
method. In [34], they proposed a cooperative stochastic approximation method under stochastic
estimations of the functional values of both the objective function and the constraint. Under this
setting, they showed guarantees of finding nearly optimal solutions in expectation (although still
requiring the compactness of the domain).

3.2 Proximally Guided Switching Subgradient Method

Our primary method of interest iteratively uses the switching subgradient method to inexactly
produce proximal point steps, following the idea of (1.3). This process of repeatedly approximately
solving (2.12) is formalized in Algorithm 2.

Algorithm 2 The Proximally Guided Switching Subgradient Method
Input: ρ̂ > max{ρ, 1}, τ > 0, Tinner, x0 ∈ X with g(x0) ≤ 0.

Set µ = ρ̂ − ρ and αt = 2
(ρ̂−ρ)(t+2)+ 36ρ̂2

(ρ̂−ρ)(t+1)
for k = 0, 1, ..., do

Set xk+1 as the output of SSM(τ, Tinner, xk, {αt}) applied to (2.12)
end for

Our primary result is that this simple scheme will produce Fritz-John points whenever the
Assumptions A–D hold (amounting to standard bounds on continuity, nonconvexities, objective
values, and the initialization). When constraint qualification (via Assumption E) is additionally
assumed, our theory improves to ensure a KKT point is found. To derive this improved approximate
KKT guarantees, we show that this additional assumption yields a uniform upper bound for
the optimal dual variables (Lagrange multipliers) of the KKT conditions (1.5) for each of the
subproblems (2.12). This is formalized in the following lemma.

Lemma 3.4. Under Assumptions A–E, the optimal dual variables for problems (2.12) are uniformly
upper bounded by B = M+ρ̂D

σ .
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To guarantee the identification of an (ϵ, ϵ)-FJ point or (ϵ, ϵ)-KKT point, our theory requires
slightly different selections for the feasibility tolerance τ and how many iterations Tinner of the inner
switching subgradient method to utilize. Namely, in these two different settings respectively, we
select 

τF J = (ρ̂−ρ)ϵ2

4ρ̂(2ρ̂−ρ)

TF J = max
{

96ρ̂(2ρ̂−ρ)(3M2−2ρ̂glb)
(ρ̂−ρ)2ϵ2 ,

√
288ρ̂3(2ρ̂−ρ)D2

(ρ̂−ρ)2ϵ2

}
,

(3.3)


τKKT = (ρ̂−ρ)ϵ2

4(1+B)2ρ̂(2ρ̂−ρ)

TKKT = max
{

96(1+B)2ρ̂(2ρ̂−ρ)(3M2−2ρ̂glb)
(ρ̂−ρ)2ϵ2 ,

√
288(1+B)2ρ̂3(2ρ̂−ρ)D2

(ρ̂−ρ)2ϵ2

}
.

(3.4)

These feasibility tolerances are chosen as they guarantee the feasibility of the iterates xk of Algorithm
2 until an appropriate FJ or KKT point is found. This is formalized in the following lemma.

Lemma 3.5. Under Assumptions A–D with τ and Tinner as in (3.3) (or under Assumptions A–E
with τ and Tinner as in (3.4)) Algorithm 2 has g(xk) ≤ 0 at every iteration k before x̂k+1 is an ϵ-FJ
point (or an ϵ-KKT point).

As a result, one need not worry about the proposed method becoming infeasible and converging
to a stationary point outside the feasible region. The following pair of theorems then guarantee
that at most O(1/ϵ−4) subgradient evaluations are needed for this feasible sequence of iterates to
reach an approximate FJ or KKT point.

Theorem 3.2. Under Assumptions A–D and any ρ̂ > max{ρ, 1}, Algorithm 2 with τ = τF J and
Tinner = TF J =: max

{
∆1
ϵ2 , ∆2

ϵ

}
has xK be an (ϵ, ϵ)-FJ point for problem (2.11) for some

K ≤ 4ρ̂2(f(x0) − flb)
(ρ̂ − ρ)ϵ2 =: ∆3

ϵ2 .

Such an xK is found using at most ∆3 max{∆1,∆2ϵ}
ϵ4 total subgradient evaluations.

Theorem 3.3. Under Assumptions A–E and any ρ̂ > max{ρ, 1}, Algorithm 2 with τ = τKKT and
Tinner = TKKT =: max

{
Λ1
ϵ2 , Λ2

ϵ

}
has xK be an (ϵ, ϵ)-KKT point for problem (2.11) for some

K ≤ 4(1 + B)ρ̂2(f(x0) − flb)
(ρ̂ − ρ)ϵ2 =: Λ3

ϵ2 .

Such an xK is found using at most Λ3 max{Λ1,Λ2ϵ}
ϵ4 total subgradient evaluations.

4 Convergence Analysis

4.1 Proof of Theorem 3.1

Our convergence proof for the switching subgradient method presented here follows closely in the
styles of [1, 47,49]. Let z∗ be the optimal solution for (3.1), whose existence and uniqueness follow
from strong convexity. When t ∈ I, we have

∥zt+1 − z∗∥2 ≤ ∥zt − αtζF t − z∗∥2

12



= ∥zt − z∗∥2 − 2αtζ
T
F t(zt − z∗) + α2

t ∥ζF t∥2

≤ ∥zt − z∗∥2 − 2αtζ
T
F t(zt − z∗) + L2

0α2
t + L1α2

t (F (zt) − F (z∗))
≤ (1 − µαt)∥zt − z∗∥2 − (2αt − L1α2

t )(F (zt) − F (z∗)) + L2
0α2

t .

where the first inequality uses the nonexpansiveness of projections, the second uses the non-Lipschitz
subgradient bound, and the third uses strong convexity. Hence

(2 − L1αt)(F (zt) − F (z∗)) ≤ ( 1
αt

− µ)∥zt − z∗∥2 − 1
αt

∥zt+1 − z∗∥2 + L2
0αt .

Since αt = 2

µ(t+2)+
L2

1
µ(t+1)

, the above coefficient on F (zt) − F (z∗) is at least one, i.e.,

L1αt = 2L1

µ(t + 2) + L2
1

µ(t+1)

≤ 2L1

2
√

µ(t + 2) L2
1

µ(t+1)

≤ 1 .

Then the previous inequality becomes

F (zt) − F (z∗) ≤
µt + L2

1
µ(t+1)
2 ∥zt − z∗∥2 −

µ(t + 2) + L2
1

µ(t+1)
2 ∥zt+1 − z∗∥2 + 2L2

0
µ(t + 2) .

Multiplying through by (t + 1) ensures (t + 1)(F (zt) − F (z∗)) is at most

µt(t + 1) + L2
1

µ

2 ∥zt − z∗∥2 −
µ(t + 1)(t + 2) + L2

1
µ

2 ∥zt+1 − z∗∥2 + 2L2
0

µ
.

Similarly, from the µ-strongly convex constraint G(z), when t ∈ J , (t + 1)(G(zt) − G(z∗)) is at most

µt(t + 1) + L2
1

µ

2 ∥zt − z∗∥2 −
µ(t + 1)(t + 2) + L2

1
µ

2 ∥zt+1 − z∗∥2 + 2L2
0

µ
.

Summing the two inequalities above up for t = 0, 1, 2, ..., T − 1 yields

∑
t∈I

(t + 1)(F (zt) − F (z∗)) +
∑
t∈J

(t + 1)(G(zt) − G(z∗)) ≤ 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ
.

For t ∈ J , by definition, we have G(zt) > τ . Since G(z∗) ≤ 0, the gap G(zt) − G(z∗) > τ is bounded.
Then the above inequality becomes

∑
t∈I

(t + 1)(F (zt) − F (z∗)) +
∑
t∈J

(t + 1)τ ≤ 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ
.

Therefore, with T ≥ max{8L2
0

µτ ,

√
2L2

1∥z0−z∗∥2

µτ }, we have

∑
t∈I

(t + 1)(F (zt) − F (z∗))

≤
∑
t∈I

(t + 1)τ −
T −1∑
t=0

(t + 1)τ + 2L2
0T

µ
+ L2

1∥z0 − z∗∥2

2µ
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=
∑
t∈I

(t + 1)τ − T (T + 1)
2 τ + 2L2

0T

µ
+ L2

1∥z0 − z∗∥2

2µ

=
∑
t∈I

(t + 1)τ − Tτ

4

(
T − 8L2

0
µτ

)
− τ

4

(
T 2 − 2L2

1∥z0 − z∗∥2

µτ

)
<
∑
t∈I

(t + 1)τ .

The convexity of F (z) gives us the claimed objective gap bound

F (z̄T ) − F (z∗) = F

(∑
t∈I(t + 1)zt∑
t∈I(t + 1)

)
− F (z∗) ≤

∑
t∈I(t + 1)F (zt)∑

t∈I(t + 1) − F (z∗) < τ .

The convexity of G(z) gives us the claimed infeasibility bound

G(z̄T ) = G

(∑
t∈I(t + 1)zt∑
t∈I(t + 1)

)
≤
∑

t∈I(t + 1)G(zt)∑
t∈I(t + 1) < τ .

4.2 Proof of Theorem 3.2

According to Lemma 3.5, our iterates xk are always feasible, that is g(xk) ≤ 0, for the main problem
(2.11) provided x̂k+1 is not an ϵ-FJ point. Note that if x̂k+1 is an ϵ-FJ point, xk must be an (ϵ, ϵ)-FJ
point. For each xk, let γk0 and γk be the necessary multipliers (1.4) certifying the optimality of
x̂k+1 for the proximal subproblem (2.12). Denote the weighted average of objective and constraint
functions for each subproblem as

Lk(x) = γk0Fk(x) + γkGk(x) = γk0(f(x) + ρ̂

2∥x − xk∥2) + γk(g(x) + ρ̂

2∥x − xk∥2) . (4.1)

Without loss of generality, suppose γk0 ≥ 0, γk ≥ 0, and γk0 + γk = 1. According to FJ condi-
tions (1.4), there exists ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies

γk0ζ̂F k + γkζ̂Gk ∈ −NX(x̂k+1) . (4.2)

Since Lk(x) is (ρ̂ − ρ)-strongly convex, we have

γk0Fk(xk) + γkGk(xk) ≥γk0Fk(x̂k+1) + γkGk(x̂k+1)

+ (γk0ζ̂F k + γkζ̂Gk)T (xk − x̂k+1) + ρ̂ − ρ

2 ∥xk − x̂k+1∥2 .

According to FJ conditions, we also have γkGk(x̂k+1) = 0. By (4.2) and since xk ∈ X, we know
(γk0ζ̂F k +γkζ̂Gk)T (xk − x̂k+1) ≥ 0. Since g(xk) ≤ 0 from Lemma 3.5, the previous inequality becomes

γk0f(xk) ≥ γk0Fk(x̂k+1) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 .

Since xk+1 is a (τ, τ)-solution for the subproblem (2.12), Fk(xk+1) − Fk(x̂k+1) ≤ τ . Then the
previous inequality becomes

γk0f(xk) ≥ γk0(f(xk+1) + ρ̂

2∥xk+1 − xk∥2 − τ) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2

≥ γk0(f(xk+1) − τ) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 .
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Thus we attain a lower bound for the descent of each step as

γk0(f(xk) − f(xk+1)) ≥ ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 − γk0τ .

When γk0 = 0, then ∥x̂k+1−xk∥ = 0 and so xk is an exact stationary point of (2.11). Now we consider
the case that γk0 > 0 here. Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈
∂g(x̂k+1). According to (4.2) and Lemma 2.5, before x̂k+1 is an ϵ-FJ point, there exists ν ∈ NX(x̂k+1)
which satisfies:

γk0(ζ̂fk + ρ̂(x̂k+1 − xk)) + γk(ζ̂gk + ρ̂(x̂k+1 − xk)) + ν = 0,

∥γk0ζ̂fk + γkζ̂gk + ν∥ > ϵ .

Then ∥x̂k+1 − xk∥ > ϵ
ρ̂ . Thus, before an ϵ-FJ point is found, our choice of τ = (ρ̂−ρ)ϵ2

4ρ̂(2ρ̂−ρ) as in (3.3)
ensures that

f(xk) − f(xk+1) ≥ ρ̂ − ρ

2γk0
∥x̂k+1 − xk∥2 − τ

≥ ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 − (ρ̂ − ρ)ϵ2

4ρ̂(2ρ̂ − ρ)

>
ρ̂ − ρ

2
ϵ2

ρ̂2 − (ρ̂ − ρ)ϵ2

4ρ̂(2ρ̂ − ρ)

>
(ρ̂ − ρ)ϵ2

2ρ̂2 − (ρ̂ − ρ)ϵ2

4ρ̂2

= (ρ̂ − ρ)ϵ2

4ρ̂2 .

Hence by Assumption B, the number of total iterations K of Algorithm 2 before an (ϵ, ϵ)-FJ point
is found is upper bounded by

K <
4ρ̂2(f(x0) − flb)

(ρ̂ − ρ)ϵ2 .

Consequently, Algorithm 2 (which uses Algorithm 1 for T steps as an oracle each iteration) will
identify an (ϵ, ϵ)-FJ point using at most the following total number of subgradient evaluations of
either the objective or constraints

KT <
4ρ̂2(f(x0) − flb)

(ρ̂ − ρ)ϵ2 max
{

96ρ̂(2ρ̂ − ρ)(3M2 − 2ρ̂glb)
(ρ̂ − ρ)2ϵ2 ,

√
288ρ̂3(2ρ̂ − ρ)D2

(ρ̂ − ρ)2ϵ2

}
.

4.3 Proof of Theorem 3.3

Nearly identical reasoning to that of Theorem 3.2’s proof under the constraint qualification As-
sumption E yields our claimed result of approximate KKT stationarity convergence rate. The exact
details for this symmetric case are provided in the appendix for completeness.

4.4 Proof of Lemmas

4.4.1 Proof of Lemma 2.5 First, we consider the claimed result of approximate Fritz-John
stationarity on the original nonsmooth nonconvex problem (2.11). Necessarily the FJ conditions (1.4)
are satisfied for proximally subproblem (2.12) at x̂k+1 for some γk0, γk ≥ 0, γk0 + γk = 1, ζ̂F k ∈
∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1). By the sum rule of subgradient calculus, let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 −
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xk) ∈ ∂f(x̂k+1) and ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). The FJ conditions for the proximal
subproblem guarantee there exists some ν ∈ NX(x̂k+1) such that

γk0(ζ̂fk + ρ̂(x̂k+1 − xk)) + γk(ζ̂gk + ρ̂(x̂k+1 − xk)) = −ν .

Hence when ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂ , the first approximate FJ condition (2.5) holds at x̂k+1 for the original

nonsmooth nonconvex problem as ∥γk0ζ̂fk + γkζ̂gk + ν∥ = ρ̂∥x̂k+1 − xk∥ ≤ ϵ.
Moreover, we can verify the second approximate FJ condition (2.6) at x̂k+1 in the following two

cases: When γk = 0, this trivially holds as |γkg(x̂k+1)| = 0. When γk > 0, we have Gk(x̂k+1) = 0
according to FJ conditions. Hence 0 ≥ g(x̂k+1) = − ρ̂

2∥x̂k+1 − xk∥2 ≥ − ϵ2

2ρ̂ . As a result,

|γkg(x̂k+1)| ≤ |g(x̂k+1)| ≤ ϵ2

2ρ̂
< ϵ2 .

Nearly identical reasoning under the constraint qualification Assumption E yields our claimed
result of approximate KKT stationarity on the original nonsmooth nonconvex problem (2.11). The
exact details for this symmetric case are provided in the appendix for completeness.

4.4.2 Proof of Lemma 3.2 Let z0 = xk and z∗ = x̂k+1 be the optimal solution for problem
(2.12), which is µ = ρ̂ − ρ-strongly convex. Consider any ζF k ∈ ∂Fk(z), ζGk ∈ ∂Gk(z), which the
sum rule ensures have ζf = ζF k − ρ̂(z − z0) ∈ ∂f(z), and ζg = ζGk − ρ̂(z − z0) ∈ ∂g(z).

First, we verify the non-Lipschitz subgradient bound for Fk with L2
0 ≥ 9M2 and L1 ≥ 6ρ̂.

Namely, consider any z with Gk(z) ≤ τ . Then

L2
0 + L1(Fk(z) − Fk(z∗))

= L2
0 + L1(Fk(z) − Fk(z∗)) − ∥ζF k∥2 + ∥ζF k∥2

≥ L2
0 + L1(f(z) + ρ̂

2∥z − z0∥2 − Fk(z0)) − ∥ζf + ρ̂(z − z0)∥2 + ∥ζF k∥2

= L2
0 + L1(f(z) − f(z0)) + L1ρ̂

2 ∥z − z0∥2 − ∥ζf ∥2 − 2ρ̂ζT
f (z − z0) − ρ̂2∥z − z0∥2 + ∥ζF k∥2

≥ L2
0 − L1M∥z − z0∥ + L1ρ̂

2 ∥z − z0∥2 − M2 − 2ρ̂M∥z − z0∥ − ρ̂2∥z − z0∥2 + ∥ζF k∥2

= (L2
0 − M2) − (L1 + 2ρ̂)M∥z − z0∥ + (L1

2 − ρ̂)ρ̂∥z − z0∥2 + ∥ζF k∥2

≥
(

L2
0 − M2 − (L1 + 2ρ̂)2M2

2(L1 − 2ρ̂)ρ̂

)
+ ∥ζF k∥2

≥ ∥ζF k∥2

where the first inequality uses that Fk(z0) ≥ Fk(z∗), the second uses the M -Lipschitz continuity
of f , the third minimizes over all ∥z − z0∥ (noting that L1 > 2ρ̂), and the last inequality uses the
assumed bounds on L2

0 and L1.
Similarly, we verify the non-Lipschitz subgradient bound for the proximally penalized constraints

Gk with L2
0 ≥ 9M2 − 6ρ̂g(z0), L1 ≥ 6ρ̂. Namely, for any z with Gk(z) > τ , we have

L2
0 + L1(Gk(z) − Gk(z∗))

= L2
0 + L1(Gk(z) − Gk(z∗)) − ∥ζGk∥2 + ∥ζGk∥2

= L2
0 + L1(g(z) + ρ̂

2∥z − z0∥2) − ∥ζg + ρ̂(z − z0)∥2 + ∥ζGk∥2
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= L2
0 + L1g(z0) + L1(g(z) − g(z0)) + L1ρ̂

2 ∥z − z0∥2 − ∥ζg∥2 − 2ρ̂ζT
g (z − z0) − ρ̂2∥z − z0∥2 + ∥ζGk∥2

≥ L2
0 + L1g(z0) − L1M∥z − z0∥ + L1ρ̂

2 ∥z − z0∥2 − M2 − 2ρ̂M∥z − z0∥ − ρ̂2∥z − z0∥2 + ∥ζGk∥2

= (L2
0 − M2 + L1g(z0)) − (L1 + 2ρ̂)M∥z − z0∥ + (L1

2 − ρ̂)ρ̂∥z − z0∥2 + ∥ζGk∥2

≥
(

L2
0 − M2 + L1g(z0) − (L1 + 2ρ̂)2M2

2(L1 − 2ρ̂)ρ̂

)
+ ∥ζGk∥2

≥ ∥ζGk∥2.

Since g(z0) ≥ glb, setting L2
0 = 9M2 − 6ρ̂glb and L1 = 6ρ̂ satisfies both cases above.

4.4.3 Proof of Lemma 3.4 Let x̂k+1 be the exact solution for problem (2.12) with optimal
dual variable λk. The (ρ̂ − ρ)-strong convexity of Gk(x) implies that the set {x|Gk(x) ≤ 0} has
diameter D =

√
−8glb
ρ̂−ρ . Since xk and x̂k+1 both lying in this set, ∥x̂k+1 − xk∥ ≤ D. According

to KKT conditions (1.5), there exists ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies
ζ̂F k + λkζ̂Gk ∈ −NX(x̂k+1). Trivially if λk is zero, it is bounded, so we consider λk is positive (and
so Gk(x̂k+1) = 0). Then there exists ν ∈ NX(x̂k+1) such that ζ̂F k + λkζ̂Gk = −ν. Hence

λk = ∥ζ̂F k∥
∥ζ̂Gk + ν

λk
∥

. (4.3)

We can directly upper bound the numerator above as ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂fk(x̂k+1).
So Assumption C and the bound ∥x̂k+1 − xk∥ ≤ D, ensure ∥ζ̂F k∥ ≤ M + ρ̂D. Assumption E
facilitates lower bounding the denominator above. Namely, there must exist v ∈ −N∗

X(x̂k+1) with
∥v∥ = 1, such that ζ̂T

Gkv ≤ −σ. Since ν ∈ NX(x̂k+1) and v ∈ −N∗
X(x̂k+1), we know νT v ≤ 0. Then

∥ζ̂Gk + ν
λk

∥ = ∥ζ̂Gk + ν
λk

∥ · ∥v∥ ≥ −(ζ̂Gk + ν
λk

)T v ≥ σ. Combining these upper and lower bounds
gives the claimed uniform Lagrange multiplier bound.

4.4.4 Proof of Lemma 3.5 First, we inductively show the feasibility of the iterates xk before
x̂k+1 is an ϵ-FJ point. Assume Gk(xk) = g(xk) ≤ 0. Necessarily the FJ conditions (1.4) are satisfied
for proximally subproblem (2.12) at x̂k+1 for some γk0, γk ≥ 0, γk0 + γk = 1, ζ̂F k ∈ ∂Fk(x̂k+1) and
ζ̂Gk ∈ ∂Gk(x̂k+1). Consider the function Lk(x) = γk0Fk(x) + γkGk(x), which is minimized over X
at x̂k+1. The (ρ̂ − ρ)-strong convexity of Fk and Gk ensures

γk0Fk(xk+1) + γkGk(xk+1) ≥γk0Fk(x̂k+1) + γkGk(x̂k+1) + (γk0ζ̂F k

+ γkζ̂Gk)T (xk+1 − x̂k+1) + ρ̂ − ρ

2 ∥xk+1 − x̂k+1∥2.

The Fritz-John conditions ensure that γkGk(x̂k+1) = 0 and that λk0ζ̂F k + λkζ̂Gk ∈ −NX(x̂k+1),
which guarantees xk+1 ∈ X has (γk0ζF k + γkζGk)T (xk+1 − x̂k+1) ≥ 0. These two observations
simplify the above inequality to

γk0(Fk(xk+1) − Fk(x̂k+1)) + γkGk(xk+1) ≥ ρ̂ − ρ

2 ∥xk+1 − x̂k+1∥2 .

By Corollary 3.3, the proposed selection of Tinner ensures xk+1 is a (τ, τ)-optimal solution for the
subproblem (2.12). Hence Fk(xk+1) − Fk(x̂k+1) ≤ τ and Gk(xk+1) ≤ τ . Noting γk0 + γk = 1, the
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above inequality further simplifies to

∥x̂k+1 − xk+1∥ ≤
√

2τ

ρ̂ − ρ
.

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). There must exists
ν ∈ NX(x̂k+1) such that γk0(ζ̂fk + ρ̂(x̂k+1 −xk))+γk(ζ̂gk + ρ̂(x̂k+1 −xk))+ν = 0. However, assuming
x̂k+1 is not an ϵ-FJ point, ∥γk0ζ̂fk + γkζ̂gk + ν∥ > ϵ, which implies ∥x̂k+1 − xk∥ > ϵ

ρ̂ . Thus

∥xk+1 − xk∥2 ≥ 1
2∥x̂k+1 − xk∥2 − ∥x̂k+1 − xk+1∥2 >

ϵ2

2ρ̂2 − 2τ

ρ̂ − ρ
.

By our selection of τ = (ρ̂−ρ)ϵ2

4ρ̂(2ρ̂−ρ) as in (3.3), every iteration prior to finding an ϵ-FJ point must have

∥xk+1 − xk∥2 >
(ρ̂ − ρ)ϵ2

2ρ̂2(2ρ̂ − ρ) . (4.4)

Therefore g(xk+1) ≤ 0 is inductively ensured if g(xk) ≤ 0 and x̂k+1 is not an ϵ-FJ point as

g(xk+1) = G(xk+1) − ρ̂

2∥xk+1 − xk∥2 ≤ τ − ρ̂

2
(ρ̂ − ρ)ϵ2

2ρ̂2(2ρ̂ − ρ) = 0 .

By nearly identical reasoning, we find that under the KKT parameter selections (3.4), the
feasibility of xk ensures xk+1 is feasible so long as x̂k+1 is not an ϵ-KKT point. The details of this
are deferred to the appendix for completeness.

5 Numerics with Sparsity Inducing SCAD Constraints
Lastly, we illustrate the diversity of approximate stationarity reached by actually reached by the
inexact proximal point method. The frequent occurrences of FJ points (numerically failing to have
MFCQ) seen here support our work and motivate future works developing methods capable of
handling such limit points.

We consider the sparse phase retrieval (SPR) problem previously described in Section 1.2. Phase
retrieval is a common problem in various applications, such as imaging, X-ray crystallography, and
transmission electron microscopy. The phase is recovered by solving linear equations Ax = b up to
sign changes, (Ax)2 = b2. We construct our sparse phase retrieval problem as{

minx∈X f(x) = 1
m

∑m
i=1 |(aT

i x)2 − b2
i |

s.t. g(x) =
∑n

i=1 s(xi) − p ≤ 0 .
(5.1)

Here s : R → R is the Smoothly Clipped Absolute Deviation (SCAD) function below, commonly
used as a nonconvex regularizer

s(u) =


2|u| 0 ≤ |u| ≤ 1,

−u2 + 4|u| − 1 1 < |u| ≤ 2,

3 |u| > 2.

(5.2)

Despite the simple piecewise quadratic definition of these SCAD constraints, whenever p is a multiple
of three, proximal subproblems exist where MFCQ fails (that is, no Slater points exist). Consider
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xk = [5, 5, · · · , 5, 0, 0, · · · , 0] which consists of p/3 fives and (n − p/3) zeroes. Then the σ-strong
MFCQ condition fails as Gk(xk) = 0 with 0 ∈ ∂Gk(xk).

In Section 5.1, we first discuss our synthetic SPR problem instances and propose a simple
stopping criterion, which we find is numerically effective. Then Section 5.2 presents numerical
results from applying our Proximally Guided Switching Subgradient Method to SPR problems,
identifying varied convergence to FJ points, KKT points with active constraints, and KKT points
with inactive constraints.

5.1 SPR Problem Generation and Stopping Criteria

SPR problems (5.1) have f : Rn → R and g : Rn → R being weakly convex and nonsmooth
continuous functions, X = [−10, 10]n, m = 120, n = 120, A ∈ Rm×n, aT

i is the i-th row of A and
b ∈ Rm. The value of p ∈ [0, 3n) varies to control the sparsity of our problem. We generate each
element of A as aij ∼ N(0, 1). For the elements x∗

i of x∗, we generate 30 of them uniformly in
±[5, 10], and set the other 90 entries as 0. We also generate the noise vector η ∼ N(0, Im) and
compute b2 = (Ax∗)2 + η. Our numerics use a random feasible initialization x0 with entries sampled
from N(0, 0.01) independently.

According to Lemma B.1 in [21], f(x) is expected to be 2-weakly convex. To leave some gap, we
set ρ = 3, and ρ̂ = 6. As other inputs to the Proximally Guided Switching Subgradient Method,
we set ϵ = 0.01 and run the method for K = 103 outer iterations, each using T = 104 inner steps.
Consequently, we use a total of 107 subgradient evaluations.

5.1.1 Stopping Criteria Our convergence theory supporting Theorems 3.2 and 3.3 showed
that the iterates xk of the Proximally Guided Switching Subgradient Method stay feasible and are
guaranteed to decrease the objective value until an (ϵ, ϵ)-FJ or KKT point is found. This motivates
the following simple stopping criterion: continue taking inexact proximal steps until either

g(xk) > 0 or f(xk) ≥ f(xk−1) .

In the following numerics, we denote the first time this condition is reached via a vertical dotted
line. We find numerically that this criterion aligns well with when the associated Fritz-John and
Lagrange multipliers and the iterate’s feasibility level out.

This stopping criterion is never satisfied prior to reaching an approximate stationary point (see
Lemma 3.5), and so Algorithm 2 continues. The first time the stopping criterion is met, we must
have reached our targeted approximate stationary point and stopped our algorithm. Generally,
however, the stopping criterion may fail to be satisfied despite the iterates being an (ϵ, ϵ)-FJ or
KKT point, so these conditions are heuristic in nature.

5.2 Three Distinct Families of Limit Points in Sparse Phase Retrieval

For our randomly generated SPR problem instances, we consider three different selections of p,
namely 90, 91, 320. Although our iterates always converge to an approximate FJ or KKT point, we
can see three distinct behaviors under different levels of sparsity controlled by the SCAD constraint.
When p is small, our method is more likely to yield a sparse solution. Numerically, when p = 90, 91,
we see a range of FJ and KKT limit points on the boundary of the constraint set. When p is large,
our method has a higher probability of yielding a solution in the interior of the feasible region (with
the constraint being inactive). Consequently, we numerically see the Lagrange multiplier tend to zero,
so approximate FJ and KKT stationarities are equivalent. The MATLAB source code implementing
these experiments is available at https://github.com/Zhichao-Jia/arXiv_proximal2022.
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For each setting of p, a sample trajectory of the Proximally Guided Switching Subgradient
Method is shown in Figures 3, 4, and 5. Statistics on the typical FJ and KKT stationarity levels
reached over 50 trials are provided in Tables 1 and 2. Median and variance statistics are included as
several experiments (especially those with the potential for MFCQ to fail) had very varied results.

FJ Stationarity In the first numeric, we set p = 90. The example trajectory shown in Figure 3
converges to an approximate FJ stationary point of (5.1), which is not an approximate KKT
stationary point. Once the stopping criterion is reached, the Lagrangian multiplier estimates diverge
rapidly in Figures 3e and 3f. Consequently, Figure 3c shows the FJ stationarity is attained around
10−3 finally, but Figure 3d indicates that KKT stationarity is only around 0.5. Out of the 50 such
trajectories aggregated in Table 1, the shown trajectory is one of three with Lagrange multipliers
diverging. This contributes to the larger variance and gap between the mean and median KKT
stationarity shown in Table 2.

KKT Stationarity with Active Constraints In the second numeric, we set p = 91. Under
this setting, every proximal subproblem satisfies constraint qualification regardless of xk’s location.
This is because the subgradient set of g(x) at any x ∈ {x|g(x) = 0} contains the zero vector only
when every entries of x lies in (−∞, 2] ∪ {0} ∪ [2, ∞), which implies

∑
i s(xi) is divisible by 3. As

a result, for p = 91, any ζg ∈ g(x) taken at the boundary of the constraint set must have size
bounded away from zero (ensuring σ-strong MFCQ). Therefore our inexact proximal point method
will always yield an approximate KKT point. We observe this numerically as approximate FJ and
KKT stationarity are both reached in Figures 4c and 4d and the associated Lagrange multipliers
converge to a constant around 10 in Figures 4e and 4f.

KKT Stationarity with Inactive Constraints In the third numeric, we set p = 320. Given
this larger value of p, we do not expect the constraint to be active or the limit points to be sparse.
Complementary slackness at strictly feasible stationary points forces the Lagrange multipliers to
equal zero, making FJ and KKT stationarity equivalent. Indeed, Figures 5a and 5b show our
sample trajectory converges to a strictly feasible local minimum. Figures 5c and 5d show that
the FJ stationarity and KKT stationarity are equal and converging. As expected, the Lagrange
multipliers converge to zero, as shown in Figures 5e and 5f.

KT
p = 90 p = 91 p = 320

T = 103 T = 104 T = 103 T = 104 T = 103 T = 104

105
median 1.174 7.692 1.036 8.327 0.8860 16.11
mean 1.239 7.992 1.060 8.272 0.9948 16.34
var. 0.4265 1.329 0.1791 1.108 0.2032 11.49

106
median 0.03230 1.212 0.03370 1.032 0.06256 0.8309
mean 0.04563 1.212 0.07497 1.181 0.07423 0.8853
var. 2.587e−3 0.1937 0.03230 0.3225 1.487e−3 0.1453

107
median 0.03110 2.200e−3 0.03140 2.110e−3 0.06146 0.01910
mean 0.03173 0.04273 0.03130 0.01644 0.06460 0.02941
var. 2.545e−5 0.01340 2.062e−5 3.109e−3 2.926e−4 1.406e−3

Table 1: FJ stationarity averaged over 50 trails.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Finding FJ Stationarity: K = 103, T = 104, p = 90. Dotted lines show where the stopping
criteria applied. xlo is the stationary point near the final iterate.

(a) (b) (c)

(d) (e) (f)

Figure 4: Finding Active KKT Stationarity: K = 103, T = 104, p = 91. Dotted lines show where
the stopping criteria applied. xlo is the stationary point near the final iterate.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Finding Inactive KKT Stationarity: K = 103, T = 104, p = 320. Dotted lines show where
the stopping criteria applied. xlo is the stationary point near the final iterate.

KT
p = 90 p = 91 p = 320

T = 103 T = 104 T = 103 T = 104 T = 103 T = 104

105
median 6.904 22.94 6.515 24.44 0.9485 16.39
mean 7.810 24.49 6.819 24.94 1.087 16.69
var. 20.41 25.92 7.586 23.35 0.2966 15.54

106
median 0.2812 7.273 0.2987 6.599 0.07857 0.8309
mean 0.3855 7.366 0.6012 7.364 0.08914 0.9364
var. 0.1502 7.148 1.405 14.31 2.255e−3 0.1911

107
median 0.2740 0.01970 0.2900 0.01752 0.07256 0.0203
mean 0.2829 0.5566 0.3146 0.1277 0.07728 0.03169
var. 9.349e−3 1.777 0.01947 0.1580 4.596e−4 1.538e−3

Table 2: KKT stationarity averaged over 50 trails.
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6 Conclusion and Future Directions
In this paper, we analyzed an inexact proximal point method using the switching subgradient
method as an oracle for nonconvex nonsmooth functional constrained optimization. We derived
new convergence rates towards FJ and KKT stationarity while guaranteeing feasibility for our
solutions without any reliance on compactness or constraint qualification. The performance of our
method for solving sparse phase retrieval problems is consistent with our theoretical expectations.
The frequency of constraint qualification failures seen numerically here motivates further works
analyzing the performance of nonconvex constrained optimization algorithms both in terms of KKT
and FJ convergence. As additional future directions, stochastic versions of our method could likely
be designed and analyzed, like those of [7, 21] from the unconstrained setting or those discussed
at the end of Section 3.1. Further, convergence speedups in the presence of structures like local
sharpness (see [50]), strong convexity, or smoothness at the stationary points may be possible.
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A Deferred Proofs

A.1 Symmetric KKT Proof of Theorem 3.3
According to Lemma 3.5, our iterates are always feasible, that is g(xk) ≤ 0, for the main problem (2.11)
before x̂k+1 is an ϵ-KKT point (which will imply xk is an (ϵ, ϵ)-KKT point). For each iteration k, let λk

denote the optimal Lagrange multiplier in (1.5) for the proximal subproblem (2.12). We denote the Lagrange
function for each subproblem (2.12) as

Lk(x) = Fk(x) + λkGk(x) = f(x) + ρ̂

2∥x − xk∥2 + λk(g(x) + ρ̂

2∥x − xk∥2) . (A.1)

Without loss of generality, suppose λk ≥ 0. According to KKT conditions (1.5), there exists ζ̂F k ∈ ∂Fk(x̂k+1)
and ζ̂Gk ∈ ∂Gk(x̂k+1) which satisfies

ζ̂F k + λk ζ̂Gk ∈ −NX(x̂k+1) . (A.2)

Since Lk(x) is (1 + λk)(ρ̂ − ρ)-strongly convex, we have

Fk(xk) + λkGk(xk) ≥Fk(x̂k+1) + λkGk(x̂k+1) + (ζ̂F k + λk ζ̂Gk)T (xk − x̂k+1)

+ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 .

According to KKT conditions (1.5), we also have λkGk(x̂k+1) = 0. By (A.2) and since xk ∈ X, we know
(ζ̂F k + λk ζ̂Gk)T (xk − x̂k+1) ≥ 0. Since g(xk) ≤ 0 from Lemma 3.5, the previous inequality becomes

f(xk) ≥ Fk(x̂k+1) + ρ̂ − ρ

2 ∥x̂k+1 − xk∥2 .

Since xk+1 is a (τ, τ)-solution for problem (2.12), Fk(xk+1) − Fk(x̂k+1) ≤ τ , then

f(xk) ≥ (f(xk+1) + ρ̂

2∥xk+1 − xk∥2 − τ) + (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2

≥ f(xk+1) − τ + (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 .

Thus we attain a lower bound for the descent of each step as

f(xk) − f(xk+1) ≥ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 − τ . (A.3)

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). According to (A.2) and
Lemma 2.5, before x̂k+1 is an ϵ-KKT point, there exists ν ∈ NX(x̂k+1) which satisfies:

(ζ̂fk + ρ̂(x̂k+1 − xk)) + λk(ζ̂gk + ρ̂(x̂k+1 − xk)) + ν = 0 ,

∥ζ̂fk + λk ζ̂gk + ν∥ > ϵ .

As a result, ∥x̂k+1 − xk∥ > ϵ
(1+λk)ρ̂ . Thus, before x̂k+1 is an ϵ-KKT point, our choice of τ ensures

f(xk) − f(xk+1) ≥ (1 + λk)(ρ̂ − ρ)
2 ∥x̂k+1 − xk∥2 − τ

>
(1 + λk)(ρ̂ − ρ)

2
ϵ2

(1 + λk)2ρ̂2 − (ρ̂ − ρ)ϵ2

4(1 + B)2ρ̂(2ρ̂ − ρ)

>
(ρ̂ − ρ)ϵ2

2(1 + λk)ρ̂2 − (ρ̂ − ρ)ϵ2

4(1 + B)ρ̂(2ρ̂ − ρ)

≥ (ρ̂ − ρ)ϵ2

2(1 + B)ρ̂2 − (ρ̂ − ρ)ϵ2

4(1 + B)ρ̂2
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= (ρ̂ − ρ)ϵ2

4(1 + B)ρ̂2 .

By Assumption B, we could give an upper bound for the number of total iterations K as

K <
4(1 + B)ρ̂2(f(x0) − flb)

(ρ̂ − ρ)ϵ2 .

Consequently, Algorithm 2 (which uses Algorithm 1 for T steps as an oracle each iteration) will identify
an (ϵ, ϵ)-KKT point using at most KT = O(1/ϵ4) total subgradient evaluations of either the objective or
constraints.

A.2 Symmetric KKT Case of Lemma 2.5’s Proof
Given constraint qualification, necessarily, the KKT conditions are satisfied for the proximal subproblem (2.12)
by some λk ≥ 0, ζ̂F k ∈ ∂Fk(x̂k+1) and ζ̂Gk ∈ ∂Gk(x̂k+1). By the sum rule, let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈
∂f(x̂k+1) and ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). The KKT conditions for the proximal subproblem
ensure some ν ∈ NX(x̂k+1) has

ζ̂fk + ρ̂(x̂k+1 − xk) + λk(ζ̂gk + ρ̂(x̂k+1 − xk)) = −ν .

When ∥x̂k+1 − xk∥ ≤ ϵ
ρ̂(1+λk) , it follows that ∥ζ̂fk + λk ζ̂gk + ν∥ = ρ̂(1 + λk)∥x̂k+1 − xk∥ ≤ ϵ, establishing the

first approximate KKT condition (2.7).
We verify the second approximate KKT condition (2.8) in two cases: When λk = 0, trivially |λkg(x̂k+1)| =

0. When λk is positive, the KKT conditions for the proximal subproblem require Gk(x̂k+1) = 0. Hence
0 ≥ g(x̂k+1) = − ρ̂

2 ∥x̂k+1 − xk∥2 ≥ − ϵ2

2ρ̂(1+λk)2 . Therefore

|λkg(x̂k+1)| ≤ ϵ2λk

2ρ̂(1 + λk)2 ≤ ϵ2

2ρ̂
< ϵ2 .

A.3 Symmetric KKT Case of Lemma 3.5’s Proof
Assume Gk(xk) = g(xk) ≤ 0. Necessarily, there exists an optimal dual variable for the subproblem λk. For
the Lagrange function Lk(x) = Fk(x) + λkGk(x), which x̂k+1 minimizes, its (1 + λk)(ρ̂ − ρ)-strong convexity
ensures

Fk(xk+1) + λkGk(xk+1) ≥Fk(x̂k+1) + λkGk(x̂k+1) + (ζ̂F k + λk ζ̂Gk)T (xk+1 − x̂k+1)

+ (1 + λk)(ρ̂ − ρ)
2 ∥xk+1 − x̂k+1∥2 .

Note the KKT conditions ensure that λkGk(x̂k+1) = 0 and that ζ̂F k + λk ζ̂Gk ∈ −NX(x̂k+1), from which one
can conclude xk+1 ∈ X must have (ζF k + λkζGk)T (xk+1 − x̂k+1) ≥ 0. Then the above inequality simplifies to

Fk(xk+1) − Fk(x̂k+1) + λkGk(xk+1) ≥ (1 + λk)(ρ̂ − ρ)
2 ∥xk+1 − x̂k+1∥2 .

The proposed value of T ensures xk+1 is a (τ, τ)-optimal solution for the subproblem (2.12), i.e., Fk(xk+1) −
Fk(x̂k+1) ≤ τ and Gk(xk+1) ≤ τ . Hence

∥x̂k+1 − xk+1∥ ≤
√

2τ

ρ̂ − ρ
.

Let ζ̂fk = ζ̂F k − ρ̂(x̂k+1 − xk) ∈ ∂f(x̂k+1), ζ̂gk = ζ̂Gk − ρ̂(x̂k+1 − xk) ∈ ∂g(x̂k+1). There must exists
ν ∈ NX(x̂k+1) such that ζ̂fk + ρ̂(x̂k+1 − xk) + λk(ζ̂gk + ρ̂(x̂k+1 − xk)) + ν = 0. However, assuming x̂k+1 is
not an ϵ-KKT point, ∥γk0ζ̂fk + γk ζ̂gk + ν∥ > ϵ, which implies ∥x̂k+1 − xk∥ > ϵ

(1+B)ρ̂ . Thus

∥xk+1 − xk∥2 ≥ 1
2∥x̂k+1 − xk∥2 − ∥x̂k+1 − xk+1∥2 >

ϵ2

2(1 + B)2ρ̂2 − 2τ

ρ̂ − ρ
.
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By our selection of τ = (ρ̂−ρ)ϵ2

4(1+B)2ρ̂(2ρ̂−ρ) as in (3.4), every iteration prior to finding an ϵ-KKT point must have

∥xk+1 − xk∥2 >
(ρ̂ − ρ)ϵ2

2(1 + B)2ρ̂2(2ρ̂ − ρ) . (A.4)

Therefore g(xk+1) ≤ 0 is inductively ensured if g(xk) ≤ 0 and x̂k+1 is not an ϵ-KKT point as

g(xk+1) = G(xk+1) − ρ̂

2∥xk+1 − xk∥2 ≤ τ − ρ̂

2
(ρ̂ − ρ)ϵ2

2(1 + B)2ρ̂2(2ρ̂ − ρ) = 0 .
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