
Per-RMAP: Feasibility-Seeking and Superiorization Methods
for Floorplanning with I/O Assignment

Shan Yu1, Yair Censor2, Ming Jiang1 and Guojie Luo3,4
1Department of Information and Computational Sciences, School of Mathematical Sciences, Peking University, Beijing, China

2Department of Mathematics, University of Haifa, Haifa, Israel
3National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China

4Center for Energy-efficient Computing and Applications, Peking University, Beijing, China
yu-shan@pku.edu.cn, yair@math.haifa.ac.il, {ming-jiang, gluo}@pku.edu.cn

March 31, 2023

Abstract—The feasibility-seeking approach provides a systematic
scheme to manage and solve complex constraints for continuous
problems, and we explore it for the floorplanning problems with
increasingly heterogeneous constraints. The classic legality con-
straints can be formulated as the union of convex sets. However,
the convergence of conventional projection-based algorithms is not
guaranteed when the constraints sets are non-convex, which is the
case with unions of convex sets. In this work, we propose a resetting
strategy to greatly eliminate the divergence issue of the projection-
based algorithm for the feasibility-seeking formulation. Furthermore,
the superiorization methodology (SM), which lies between feasibility-
seeking and constrained optimization, is firstly applied to floor-
planning. The SM uses perturbations to steer the iterates of a
feasibility-seeking algorithm to a feasible solution with shorter total
wirelength. The proposed algorithmic flow is extendable to tackle
various constraints and variants of floorplanning problems, e.g.,
floorplanning with I/O assignment problems. We have evaluated the
proposed algorithm on the MCNC benchmarks. We can obtain legal
floorplans only two times slower than the branch-and-bound method
in its current prototype using MATLAB, with only 3% wirelength
inferior to the optimal results. We evaluate the effectiveness of the
algorithmic flow by considering the constraints of I/O assignment,
and our algorithm achieves 8% improvement on wirelength.

Index Terms—feasibility-seeking, superiorization method, projec-
tion algorithms, floorplanning, I/O assignment.

I. Introduction

Floorplanning is a critical stage of the VLSI physical design
flow, because it influences the quality of down-stream stages. It
can be described as the task of placing a given set of rectangular
modules1 into a rectangular region such that there are no over-
laps among modules, while minimizing wirelength, congestion,
temperature, etc. It is a hard problem [1], and numerous and
diverse conditions could be taken into consideration to yield
more effective integrated circuits, such as boundary condi-
tions, non-overlap conditions and I/O assignment conditions.
The feasibility-seeking problem (FSP) is to find constraint-
compatible points for a family (usually finite) of constraints
sets. At the same time, as further explained below, FSP
enables to use superiorization which adopts the philosophy of
“satisficing” rather than optimizing when modeling and solving
a problem that includes both constraints and an objective
function.

1The floorplanning considers two kinds of modules, hard modules
and soft modules. Soft modules have a fixed area while allowing
variable heights and widths whereas hard modules have fixed heights
and widths. In this paper, we consider only hard modules. The
approach can be extended to tackle soft modules in future work.

State-of-the-art floorplanning methods can be roughly di-
vided into four categories: meta-heuristic methods, exact
methods (e.g., branch-and-bound (B&B) methods), analytical
methods, and learning-based methods. Heuristic methods and
branch-and-bound methods first adopt a representation, such
as a sequence pair [2] and a B∗-tree [3], and then search for
the optimal or a sub-optimal solution in the representation
space. Heuristic methods like [4] search heuristically and stop
if certain criteria are achieved whereas exact methods search
in the whole search space to find the optimal solution. B&B
methods are most important methods in the class of exact
methods, which build a rooted decision tree to enumerate
the search space and reduce it by pruning useless branches,
see, e.g., [5]. Analytical methods model the floorplanning as
an optimization problem with quadratic [6] or nonlinear [7]
objective functions. Generally, they employ a global floor-
planning step to get the rough position of all modules, and
use the legalization step to eliminate the overlaps and get
the exact positions of all modules. Recently learning-based
algorithms, especially reinforcement learning, became popular.
The GoodFloorplan [8] combines graph convolutional network
and reinforcement learning to explore the design space. Liu
et al [9] use graph attention to learn an optimized mapping
between circuit connectivity and physical wirelength, and
produce a chip floorplan using efficient model inference.

Compared with the above methods, the FSP formulation,
explored in this paper, employes some powerful tools to tackle
problems with numerous and diverse constraints. Heuristic
and AI methods need delicate design which may adversely
affect diverse constraints. Exact methods may have a huge
search space. Analytic methods will find it challenging to
keep a trade-off between constraints and objectives. Compared
with those, FSP focuses on the feasibility and simplifies the
problem. Additionally, iterative projection methods, frequently
used tools in FSP, are fast, easy to implement and to tackle
complex constraints sets in floorplanning. The algorithmic flow
makes it easy to handle extended constraints, for example, in
our paper I/O assignment is taken into consideration beyond
basic floorplanning, and it achieves 8% improvement on the
total wirelength within bearable time cost.

Furthermore, the superiorization methodology (SM) could
be utilized to find superior solutions. It uses perturbations
to steer a feasibility-seeking algorithm to an output that is
feasible and of which a certain target function is improved. A
recent tutorial [10] on the SM contains pointers to a variety of



recent works and sources on this subject. Blake Schultze et al.
[11] applies the total variation (TV) superiorization to image
reconstruction in proton computed tomography to improve the
result. Inspired by their approach, we propose a wirelength-
superiorized FSP algorithm for floorplanning.

In short, our contributions are:
1) We formulate floorplanning as a feasibility-seeking prob-

lem, which focus on the feasibility and simplifies the
problem.

2) We propose a generalized projection method using a
resetting strategy to tackle complex constraints sets in
floorplanning. This resetting strategy improves the initial
convergence behavior of the projection method.

3) We apply a wirelength superiorization method to find a
superior feasible solution with shorter total wirelength.

4) Our algorithmic flow shows potential to tackle diverse
constraints. With considering I/O assignment for floor-
planning, our flow achieves 8% improvement compared
with B&B method2 on the total wirelength within bear-
able time.

The remainder of the paper is organized as follows: Section II
presents the feasibility-seeking formulation in the context of
the floorplanning problem. Section III describes our proposed
method, called perturbed resettable method of alternating
projection (Per-RMAP). Section IV-C provides experimental
results, followed by some concluding comments in Section V.

II. Floorplanning as a Feasibility Problem
In this section, the floorplanning problem is formulated as a

feasibility-seeking problem of finding a point in the intersection
of a finite number of sets and a projection method is introduced
to find solutions.

A. Design Criteria for the Floorplanning Problem
The problem of floorplanning with I/O assignment is to

find the positions of modules in a retangular floorplanning
region and the positions of I/O pins on the boundary of the
floorplanning region while reducing the total wirelength of
connections among them.

A solution of the the floorplanning problem should satisfy
the following conditions.

I Boundary: Every module is within the given floorplanning
region;

II Non-overlap: Every pair of modules has no overlap.
Pins are the locations for wire connections on the boundaries

of modules and on the boundary of the floorplanning region,
while nets denote sets of pins that require electrical connec-
tions.

The solution for the floorplanning problem posed as a
feasibility-seeking problem is in general not unique. We seek
to find a solution satisfying the following additional condition.

III Wirelength: The total wirelength of nets in terms of the
half-perimeter wirelength (HPWL) is as short as possible.

Let P be the set of the pins. The p-th pin Pp ∈ P is the
point located at (xpin

p , ypin
p ). Let E denote the nets of wire

2The B&B method for comparison does not consider I/O as-
signment. The search space and pruning strategies will have to be
completely re-defined and re-implemented when considering extra
variables or constraints in the B&B method. By contrast, the FSP
method easily adapts to a new formulation.

connections among connected pins from P. Then the HPWL
of a floorplanning is

HPWL(x, y) :=∑
e∈E

(max
p,q∈e

|xpin
p − xpin

q |+ max
p,q∈e

|ypin
p − ypin

q |). (1)

The above conditions I, II and III are our design criteria for
the floorplanning problem in this work. Of course, there are
other design criteria such as power distribution and module
density, etc., which should be considered in practice. We believe
that those extra criteria can also be formulated as feasibility
constraints but they are left for future study.

B. Feasibility-Seeking Formulation for Floorplanning Problem
To reach our feasibility-seeking formulation for the floor-

planning problem, we need more notations. The floorplanning
region is a 2D rectangle with the left bottom corner at the
origin (0, 0) and the upper right corner at (W,H) where
W andH are some given positive real numbers. Let M be
the set of modules to be placed into the given floorplanning
region. For the i-th module mi ∈ M, its width and height
are wi and hi, respectively, its “coordinate” is the location
of its bottom left corner, denoted by (xi, yi) which is to be
determined. Assume pin Pp ∈ P belongs to module mi, its
location (xpin

p , ypin
p ) = (xi + xoffset

p , yi + yoffset
p ) is determined

by (xi, yi) with constant pin offset xoffset
p and yoffset

p for hard
modules. Let Pio ⊂ P be the set of the I/O pins that are on the
boundary of the floorplanning region. The coordinates of the
I/O pins Pp ∈ Pio at (xpin

p , ypin
p ) are to be determined when

considering I/O assignment. Let the total number of modules
in M be Nm and let the total number of I/O pins in Pio be
Nio. Let N = Nm +Nio be the total number of modules and
I/O pins to be placed.

Let z = (x, y) ∈ R2N with

x = (x1, · · · , xN ) , (2)
y = (y1, · · · , yN ) , (3)

by stacking the x-coordinates and then the y-coordinates
of modules from M and I/O pins from Pio. This stacking
operation establishes an injective linear mapping from the
coordinates of modules and I/O pins to R2N . Thus, we have
two representations for the the coordinates of modules from
M and pins from P. Both representations are used in this
work by the stacking convention. The representation in R2N

is used for establishing the feasibility-seeking formulation and
for introducing the feasibility-seeking algorithm, while the 2-
dimensional representation in the form (xi, yi) is used for
implementation.

For the Boundary condition I, for 1 ≤ i ≤ Nm, let

Bx
i (z) := {z ∈ R2N | 0 ≤ xi ≤ W − wi}, (4)

By
i (z) := {z ∈ R2N | 0 ≤ yi ≤ H − hi}. (5)

If both module mi and module mj fall in the floorplanning
region, the following must hold,

z ∈ Bi,j := Bx
i ∩By

i ∩Bx
j ∩By

j . (6)

for 1 ≤ i, j ≤ Nm and i ̸= j.



The Non-overlap condition that the module mi and the
module mj have no overlap, for 1 ≤ i, j ≤ Nm and i ̸= j
is equivalent to one of the following four constraints

z ∈ Ox
i,j ⇐⇒ mi is to the left of mj , (7)

z ∈ Ox
j,i ⇐⇒ mi is to the right of mj , (8)

z ∈ Oy
i,j ⇐⇒ mi is below mj , (9)

z ∈ Oy
j,i ⇐⇒ mi is above mj , (10)

where

Ox
i,j(z) := {z ∈ R2N |xi + wi ≤ xj}, (11)

Oy
i,j(z) := {z ∈ R2N | yi + hi ≤ yj}. (12)

Then the Non-overlap condition is equivalent to the following
constraint

z ∈ Oi,j := Ox
i,j ∪Ox

j,i ∪Oy
i,j ∪Oy

j,i, (13)

for 1 ≤ i, j ≤ Nm and i ̸= j.
Let

Ci,j := Oi,j ∩Bi,j (14)
:=

(
Ox

i,j ∩Bi,j

)
∪
(
Ox

j,i ∩Bi,j

)
(15)

∪
(
Oy

i,j ∩Bi,j

)
∪
(
Oy

j,i ∩Bi,j

)
(16)

:= Ci,j,L ∪ Ci,j,R ∪ Ci,j,B ∪ Ci,j,A, (17)

where L,R,B andA stand for the relative relationship of the
two modules, i.e., left, right, below, and above, respectively.
Combining the constraints in (6) and (13), of both the Bound-
ary and the Non-overlap conditions, the floorplanning becomes
the feasibility-seeking problem: Find a point z such that

z ∈
∩

1≤i<j≤Nm

Ci,j . (18)

This is a typical feasibility-seeking problem of finding a point
in the intersection of a number of sets, see, e.g., [12]. The floor-
planning problem formulated as a feasibility-seeking problem
does not handle the Wirelength condition. In Section III-B2,
below, we employ the superiorization method for handling the
Wirelength condition.

Furthermore, if the positions of I/O pins allow changes along
the boundary then extra constraints must be imposed.

IV I/O assignment: Assign I/O pins to the corresponding
boundaries of the floorplanning region.

If the I/O pin Ppi is at the left boundary of floorplanning
region, then

DL
pi(z) :=

{
z ∈ R2N |xpin

pi = 0 and 0 ≤ ypin
pi ≤ H

}
. (19)

Similar constraints can be constructed for I/Os at the right, top
and bottom boundaries of the floorplanning region. Pio ⊂ P is
the set, of size Nio, of I/O pins, as mentioned above. The FSP
model of floorplanning with I/O assignment is:

Find z ∈ (
∩

1≤i<j≤Nm

Ci,j) ∩ (
∩

Pp∈Pio

Dp). (20)

C. Projection Methods for Feasibility-Seeking Problems
One method for solving feasibility-seeking problems is by

using sequential projections iteratively onto the individual sets
of the family of constraints in a predetermined order. The

projection of a point z ∈ R2N onto a set C ⊂ R2N is the
set-valued mapping PC

PC(z) = argmin
c∈C

∥z − c∥, (21)

where ∥·∥ is the Euclidean norm. When C is convex, PC(z) is a
singleton. When C is non-convex, PC(z) may contain multiple
points, which is the situation in our case, as described below.
This is the method of alternating projection (MAP), see, e.g.,
[13].

Although each set Ci,j in (18) is not convex, the MAP
method can still be applied to (18) by selecting appropriate
initial guess to guarantee the algorithmic convergence. We
do this although we are not yet able to verify that the
conditions imposed in [14] hold here. Nevertheless, we need
to determine which point in PCi,j (z) to choose to enter the
next iteration in the implementation. Moreover, the order
for choosing which set Ci,j to project onto also affect the
convergence and performance of the MAP. The algorithmic
details are presented and discussed in Section III.

III. Proposal of a Perturbed Resettable Method of
Alternating Projection (Per-RMAP)

In this section, the algorithmic flow is presented. As shown in
Fig. 1, it consists of three phases: initialization (Section III-A),
global floorplanning (i.e., Per-RMAP in Section III-B3), and
post-processing (Section III-C).

Post-Processing

Initialization Per-RMAP
Input

Output

Hybrid Net Model
+ PCG

Module Shifting

Superiorization

Projection

Resetting

Perturbation

Get Position Orders

Pair-wise Projections

Reset Relative Orders

N times ?

N

Y

Stop ?

N

Y
Rerun Per-RMAP

Fig. 1. Algorithmic Flow

A. Initialization
The initialization can influence the final result. There are

two steps in the process for initialization of module positions.
The first step assigns modules to the positions with minimized
HPWL. The second step adjusts positions of some modules as
they are easily influenced by other modules.

In the first step, one totally ignores the cell overlaps and
solves a quadratic programming by the preconditioned con-
jugate gradients method (PCG) to get a total wirelength
minimization, which is similar to other force-directed placers
such as SimPL [15] and FastPlace [16]. The hybrid net model
[16] is used for net decomposition. It is a combination of
a classical clique model and a star model, which not only
gets a trade-off between speed and accuracy but also better
captures the relative orders after net decomposition. However,
the modules tend to cluster together if there is little connection



between modules and I/O pins that lie on the boundary of the
floorplanning region.

In the second step, modules shifting is used to improve the
initialization. That is, detect key modules that may impact
the final result and initialize them to the boundary of the
floorplanning region.

B. Global Floorplanning: Per-RMAP
In global floorplanning we design a Per-RMAP algorithm

based on projections, where a resetting strategy and the
superiorization methodology are utilized.

1) Resettable Method of Alternating Projection (RMAP):
While MAP (introduced in Section II-C) solves an FSP with
convex constraints sets, resetting strategy is designed to tackle
the situation when the constraints sets are unions of convex
sets. To avoid getting stuck at an infeasible solution or
oscillating among infeasible solutions, our idea is to generalize
MAP into a “strategy-enabled MAP”. The insight is that MAP
always chooses the subset in the union closest to the current
iteration, and some choices prevent a feasible solution. We
enable a customizable choice strategy via the “preference ratio”
among the subsets in the union. The details are shown in
Algorithm 1. The iterative process scans modules in a certain

Algorithm 1 Generalized Projection with Preferences (it be-
comes RMAP when preference_ratio adopts the resetting
strategy)
Require:

The initial positions: z = (x, y) ∈ R2N

The processing order of constraints: order
Ensure:

The updated positions: z = (x, y)

1: for Ci,j in order do
2: (ηL, ηR, ηB , ηA) = preference_ratio(i, j)
3: wt = exp(ηt/ϵ)/

∑
k exp(ηk/ϵ), for t ∈ {L,R,B,A}

4: z =
∑

t∈{L,R,B,A} wt · PCi,j,t(z)
5: end for
6: return z

order and applies pair-wise projections which are the weighted
average of 4 projections onto convex sets. A key issue is the
correct choice of the convex set to project onto, i.e., the
distribution of the preference ratios. The preference ratio gives
the preference of the choice of the four convex sets and is
amplified by an exponential function. The MAP uses the closest
point strategy for the preference ratio, which is calculated by
ηt = −∥z−Pi,j,t(z)∥. A resetting strategy based on the closest
point strategy is designed, which considers previous behaviors
of projection for the preference ratio calculation, as shown in
(22),

ηk =

{
−∞, ck > T (and reset ck = 0),
−∥z − Pk(z)∥, otherwise (and set ck = ck + 1),

(22)
where T is a predefined positive integer. The ck is the count
of each convex set Ci,j,k, for k ∈ {L,R,B,A} that has been
projected onto since the last reset.

That is, when a pair of modules repeatedly (for more than T
times) projects in a certain direction but fails to remove overlap,
a “reset” action is activated, and this direction is given a lowest

preference ratio in this iteration to escape from the oscillation
or the stuck situation.

The processing order can be the position order, such that
modules with smaller x coordinates and y coordinates are
processed earlier. It could preserve the relative order of most
modules.

2) The Superiorization Methodology (SM): The SM lies be-
tween feasibility-seeking and constrained optimization. While
seeking compatibility with constraints, SM reduces the value of
an objective function but not necessarily to a minimum. It takes
proactive measures to perturb its iterates in a manner that
guides them towards a feasible point and reduces the value of
the objective function. In our work, we report an improvement
in the total wirelength when applying novel modifications of
superiorization. Inspired by a modern version of superioriza-
tion [11], our superiorization for HPWL improvement is shown
in Algorithm 2. At iteration k, perturbations are applied Num

Algorithm 2 Superiorization Methodology (SM)
Require:

The intermediate positions: z = (x, y) ∈ R2N

Number of perturbations in one iteration: Num
Current iteration number: k
Perturbation decay index: ℓk−1

Minimum perturbation length: λmin

Initial perturbation length: λinit

Perturbation decay factor: Λ ∈ (0, 1)
Ensure:

The updated positions: z
The new perturbation decay index: ℓk

1: for n = 1 : Num do
2: if k < lk−1 then
3: ℓk = a random integer in [k, ℓk−1]
4: else
5: ℓk = k
6: end if
7: vk,n = ∇HPWL(x, y)
8: for cnt = 1 : 10 do
9: λk,n

pert = max(λmin, λinit · Λlk )

10: (x′, y′) = z′ = z − λk,n
pert · vk,n/∥vk,n∥

11: if HPWL(x′, y′) < HPWL(x, y) then
12: z = z′

13: break // and continue at line 2
14: end if
15: ℓk = ℓk + 1
16: end for
17: end for
18: return (z, ℓk)

times to move the modules and I/O pins along the negative
gradient of the HPWL function. The step-size parameter of
perturbation λk,n

pert (line 9) decreases with iterations. We design
the step-size parameter λk,n

pert by considering the following
properties:

1) Step sizes of the perturbations λk,n
pert must be summable,

i.e.,
∑∞

k=0

∑Num−1
n=0 λk,n

pert < +∞. In our algorithm, the
step sizes are generated via a subsequence of {Λℓ}∞ℓ=0

with ℓ powers of the user-chosen kernel 0 < Λ < 1.
2) A lower bound λmin is given to ensure the performance

of the perturbation. In our setting, λmin = 0.1.



3) Controlling the decrease of the step sizes of objective
function reduction perturbations in the superiorization.
If the step sizes λk,n

pert decrease too fast (i.e., ℓk−1 > k

in Λℓk−1 from the previous SM iteration), then too little
leverage is allocated to the total wirelength reduction. So
the perturbation decay index ℓk is a number between the
current iteration index k and the value of ℓk−1 from the
last iteration sweep, as shown in line 2. This modification
was suggested and investigated in [17] [18].

If the perturbation (line 9-10) shortens the total wirelength,
then the algorithm accepts the perturbation; otherwise, we
repeatedly decrease the step size for at most 10 times until
a shorter wirelength is reached.

3) Perturbed Resettable Method of Alternating Projection
(Per-RMAP): Combining RMAP and SM, Per-RMAP is de-
signed, as shown in Algorithm 3.

Algorithm 3 Perturbed Resettable Method of Alternating
Projection (Per-RMAP)
Require:

The initial positions: z = (x, y) ∈ R2N

Number of perturbations in one iteration: Num
Minimum perturbation length: λmin

Initial perturbation length: λinit

Perturbation decay factor: Λ ∈ (0, 1)
Initial projection length: γinit ∈ (0, 1)
Projection progress factor: Γ > 1

Ensure:
The updated positions z = (x, y)

1: ℓ−1 = 0
2: for k = 0 : ∞ do
3: (z, ℓk) = SM(z,Num, k, ℓk−1, λmin, λinit,Λ)
4: order = [generated by position order]
5: γproj = min(1, γinit · Γk)
6: z = z + γproj · (RMAP(z, order)− z)
7: isStop = RelativeOverlappingAreaCheck(z)
8: if isStop == true then
9: break
10: end if
11: end for
12: return z

In Per-RMAP, superiorization with Num perturbations is
firstly applied, projections with the resetting strategy in po-
sition order are followed. The relaxation parameter of the
projections (line 5) increases with iterations and has an upper
bound. As a result, the projection steps become a dominant
part as iterations proceed and does not move the cells too far
in any one iteration.

C. Post Processing

After global floorplanning, we obtain a result with relative
overlapping area less than 0.1%. The superiorization, which
may drag modules closer, has less and less impact on the
position changing at iterations. As a consequence, there may
still exist some gaps between modules. Hence RMAP is rerun
to improve the result. At this phase, perturbation decay index
is reset to k × ϵ, where k is the total iteration number and
ϵ ∈ (0, 1).

IV. Experiment
A. Benchmark

The Microelectronics Center of North Carolina (MCNC)
benchmark [19] is a commonly used benchmark, which consist
of five instances. The details are shown in Table I, including
the number of modules, I/O pins, pins, nets as well as the size
of the floorplanning region (die size).

TABLE I
Characteristics of the MCNC block instances.

Instance Number of Die Size
Modules I/O pins Pins Nets

apte 9 73 214 97 10,500×10,500
xerox 10 2 696 203 5831×6412
hp 11 45 264 83 4928×4200

ami33 33 42 480 123 2058×1463
ami49 49 22 931 408 7672×7840

B. Performance of The Resetting Strategy
Table II shows the performance of the reset strategy in our

experiment on the MCNC benchmarks. The procedure stops
when the relative overlapping area (Relative O. A.) oscillates
among some values, stays constant at a value or is less than
0.1%. Results on MCNC benchmarks show that without the
resetting strategy, the MAP may get stuck at infeasible points,
where the overlaps are not totally removed. However, with the
resetting strategy, this phenomenon is removed.

TABLE II
MAP versus RMAP on the MCNC benchmarks. Results show that

RMAP can relieve oscillations.

Instance Reset? Runtime Iterations Relative O. A.

apte N 0.41 158 11.5%
Y 0.35 41 < 0.1%

xerox N 0.27 131 10.5%
Y 0.13 36 < 0.1%

hp N 0.47 286 0.6%
Y 0.06 22 < 0.1%

ami33 N 1.11 279 2.4%
Y 0.71 80 < 0.1%

ami49 N 8.13 931 3.4%
Y 3.25 215 < 0.1%

C. Floorplanning Results
We compare our result with some state-of-the-art results [5]

obtained by a branch-and-bound (B&B) method. This method
achieves the optimal floorplans on the first three instances
(apte, xerox, and hp). However, it only obtains sub-optimal
floorplans on the last two larger instances (ami33 and ami49)
due to time limit. At the initialization step, key modules of
smaller size compared with other modules in the same instance
are initialized to the boundary of the floorplanning region3.
For original floorplanning without I/O assignment, results are
shown in Table III. The hyper-parameters are λmin = 0.1,Λ =
0.99, λinit = 321, γinit = 0.7804,Γ = 1.1, ϵ = 0.35. The HPWL

3For the instance xerox, it is the module named BLKP. For the
instance hp, it is modules named cc_22 and new1.



of our method is only 3% longer than the optimal results in
B&B [5] within 1.95× execution time4.

TABLE III
Experimental Results for Floorplanning without I/O assignment.

Instance B&B [5] Per-RMAP Ratio
w.o. I/O Assignment Per-RMAP/B&B

HPWL Time (sec) HPWL Time (sec) HPWL Time
apte 513061 13 528618 8.84 1.03 0.68
xerox 370993 48 382596 172.09 1.03 3.59
hp 153328 102 159979 5.06 1.04 0.05
ami33 58627 13 61444 23.83 1.05 1.83
ami49 640509 73 637098 261.76 1.00 3.59
Average - - - - 1.03 1.95

For original floorplanning with I/O assignment, results are
shown in Table IV. The hyper-parameters are λmin = 0.1,Λ =
0.99, λinit = 488, γinit = 0.7761, Γ = 1.0001, and ϵ = 0.35.
Compared with B&B, our method achieves 8% improvement
on total wirelength and takes 4.99× time over B&B [5].

TABLE IV
Experimental Results for Floorplanning with I/O Assignment.

Instance B&B [5] Per-RMAP Ratio
with I/O Assignment Per-RMAP/B&B

HPWL Time (sec) HPWL Time (sec) HPWL Time
apte 513061 13 362587 122 0.71 9.39
xerox 370993 48 382587 188 1.03 3.92
hp 153328 102 149545 139 0.98 1.36
ami33 58627 13 54489 79 0.93 6.08
ami49 640509 73 618898 306 0.97 4.19
Average - - - - 0.92 4.99

V. Conclusion and Future Work
We model the fixed-outline floorplanning as a feasibility-

seeking problem (FSP). However, the conventional method of
alternating projection (MAP) for FSP cannot obtain legal floor-
plans. This is because the constraints sets of the floorplanning
problem are not convex. We analyze the union convex property
of the constraints sets and propose the resettable method of
alternating projection (RMAP) to improve its convergence
to a feasible solution. Furthermore, a superiorized version,
Per-RMAP, is designed to decrease the total wirelength. The
experiments show that our method achieves nearly optimal
results for some floorplanning problems and 8% improvement
compared with branch-and-bound (B&B) method on half-
perimeter wirelength (HPWL) after considering I/O assign-
ment. Our future work is to investigate the scalability of our
method by adding more experiments on larger instances and
also investigate the capability of handling complex practical
constraints, like the ones for 2.5D floorplanning.

Acknowledgment
We thank our colleagues Tie Zhou and Jiansheng Yang at

the Peking University for their helpful comments during our
joint Zoom meetings on this project.

4Our prototype is in MATLAB and is expected to be fast if using
C++.

This research is supported by National Natural Science
Foundation of China (NSFC) under Grant No. 11961141007
and by the Israeli Science Foundation (ISF) under Grant No.
2874/19 within the NSFC-ISF joint research program. The
work of Y.C. is also supported by the U.S. National Institutes
of Health Grant No. R01CA266467. Additionally, the work of
G.L. is supported by National Key R&D Program of China
under Grant No. 2022YFB4500500.

References

[1] S. N. Adya and I. L. Markov, “Fixed-Outline Floorplanning:
Enabling Hierarchical Design,” IEEE Trans. VLSI Syst., vol. 11,
pp. 1120–1135, 2003.

[2] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
“VLSI Module Placement Based on Rectangle-Packing by the
Sequence-Pair,” IEEE Trans. Comput. Aided Des. Integr. Cir-
cuits Syst., vol. 15, pp. 1518–1524, 1996.

[3] Y. Chang, Y. Chang, G. Wu, and S. Wu, “B*-Trees: A New Rep-
resentation for Non-Slicing Floorplans,” in Proc. ACM/IEEE
Design Autom. Conf. (DAC), Los Angeles, CA, USA, 2000, pp.
458–463.

[4] J. Cong, J. Wei, and Y. Zhang, “A Thermal-Driven Floorplan-
ning Algorithm for 3D ICs,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des. (ICCAD), San Jose, CA, USA, 2004, pp.
306–313.

[5] J. Funke, S. Hougardy, and J. Schneider, “An Exact Algorithm
for Wirelength Optimal Placements in VLSI Design,” Integra-
tion, vol. 52, pp. 355–366, 2016.

[6] Y. Zhan, Y. Feng, and S. S. Sapatnekar, “A Fixed-Die Floor-
planning Algorithm Using an Analytical Approach,” in Proc.
Asia South Pac. Des. Autom. Conf (ASP-DAC), Yokohama,
Japan, 2006, pp. 771–776.

[7] J. Lin and J. Wu, “F-FM: Fixed-Outline Floorplanning Method-
ology for Mixed-Size Modules Considering Voltage-Island Con-
straint,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., vol. 33, pp. 1681–1692, 2014.

[8] Q. Xu, H. Geng, S. Chen, B. Yuan, C. Zhuo, Y. Kang, and
X. Wen, “GoodFloorplan: Graph Convolutional Network and
Reinforcement Learning-Based Floorplanning,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 41, pp. 3492–
3502, 2022.

[9] Y. Liu, Z. Ju, Z. Li, M. Dong, H. Zhou, J. Wang, F. Yang,
X. Zeng, and L. Shang, “Floorplanning with Graph Attention,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), San Fran-
cisco, CA, USA, 2022, pp. 1303–1308.

[10] Y. Censor, “Superiorization: The Asymmetric Roles of
Feasibility-Seeking and Objective Function Reduction,” Applied
Set-Valued Analysis and Optimization, accepted for publication,
2022.

[11] B. Schultze, Y. Censor, P. Karbasi, K. E. Schubert, and
R. W. Schulte, “An Improved Method of Total Variation
Superiorization Applied to Reconstruction in Proton Computed
Tomography,” IEEE Trans. Med. Imaging, vol. 39, pp. 294–307,
2020.

[12] H. H. Bauschke and J. M. Borwein, “On Projection Algorithms
for Solving Convex Feasibility Problems,” SIAM review, vol. 38,
no. 3, pp. 367–426, 1996.

[13] R. Escalante and M. Raydan, Alternating Projection Methods,
Fundamentals of Algorithms. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics (SIAM), 2011, vol. 8.

[14] S. Chrétien and P. Bondon, “Cyclic Projection Methods on a
Class of Nonconvex Sets,” Numer. Funct. Anal. Optim., vol. 17,
no. 1-2, pp. 37–56, 1996.

[15] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An Effec-
tive Placement Algorithm,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., vol. 31, pp. 50–60, 2012.

[16] N. Viswanathan and C. C. . Chu, “FastPlace: Efficient Ana-
lytical Placement using Cell Shifting, Iterative Local Refine-
ment,and a Hybrid Net Model,” IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., vol. 24, pp. 722–733, 2005.



[17] O. Langthaler, “Incorporation of the superiorization method-
ology into biomedical imaging software,” Marshall Plan Schol-
arship Report, Salzburg University of Applied Sciences, Tech.
Rep., September 2014.

[18] B. Prommegger, “Verification and evaluation of superiorized
algorithms used in biomedical imaging: Comparison of iterative
algorithms with and without superiorization for image recon-

struction from projections,” Marshall Plan Scholarship Report,
Salzburg University of Applied Sciences, Tech. Rep., October
2014.

[19] K. Kozminski, “Benchmarks for Layout Synthesis - Evolution
and Current Status,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), San Francisco, CA, USA, 1991, pp. 265–270.


