
Springer Nature 2021 LATEX template

Heuristic methods for noisy derivative-free
bound-constrained mixed-integer optimization

Morteza Kimiaei1* and Arnold Neumaier1

1,2Fakultät für Mathematik, Universität Wien,
Oskar-Morgenstern-Platz 1, A-1090, Wien, Austria.

*Corresponding author(s). E-mail(s): kimiaeim83@univie.ac.at;

Contributing authors: Arnold.Neumaier@univie.ac.at;

Abstract

This paper discusses MATRS, a new matrix adaptation trust region strat-
egy for solving noisy derivative-free mixed-integer optimization problems
with simple bounds. MATRS repeatedly cycles through five phases, muta-
tion, selection, recombination, trust-region, and mixed-integer in this
order. But if in the mutation phase a new best point (point with low-
est inexact function value among all evaluated points so far) is found,
the selection, recombination, and trust region phases are skipped. Sim-
ilarly, if the recombination phase finds a new best point, the trust
region phase is skipped. The mixed-integer phase is always performed.
To search for new best points, the mutation and recombination phases
use extrapolation whereas the mixed-integer phase performs a mixed-
integer line search along directions going into a valley. Numerical results
on several collections of test problems show that MATRS is competitive
with state-of-the-art derivative-free mixed-integer optimization solvers.

Keywords: Mixed-integer; derivative-free noisy optimization; heuristic
optimization; randomized optimization; evolution strategy; trust region; line
search

2020 AMS Subject Classification: 90C1; 90C30; 90C56; 90C15.

1

Springer Nature 2021 LATEX template

2 1. INTRODUCTION

1 Introduction

The design and development of derivative-free optimization (DFO) algorithms
have numerous applications in science, engineering, industry, and chemistry.
The books of Audet & Hare [2] and Conn et al. [7] and the survey paper of
Larson et al. [21] discussed DFO algorithms and their applications. In this
paper, we introduce MATRS, a new mixed-integer matrix adaptation trust region
strategy. The pure-integer search of MATRS is a development of the bound-
constrained derivative-free integer optimization solver IMATRS discussed in the
unpublished manuscript by Kimiaei & Neumaier [18]. MATRS finds solu-
tions of noisy derivative-free mixed-integer bound-constrained optimization
problems

min f(x)
s.t. x ∈ x, xi ∈ siZ, i ∈ I.

(1)

Here
x := {x ∈ Rn | x ≤ x ≤ x} with x, x ∈ Rn (x < x) (2)

is a box, I is a subset of {1, · · · , n}, si > 0 is a resolution factor, and the
real-valued function f : x→ R is defined on the feasible set

C := {x ∈ x | xi ∈ siZ, for i ∈ I}. (3)

Standard mixed-integer problems are covered for si = 1; other scaling factors
define granular variables xi (named so in Audet et al. [3]) whose values
are fixed integral multiples of si. Granular variables were first handled in
the SNOBFIT algorithm (Huyer & Neumaier [15]). They are needed, e.g.,
if variables are required to be represented in a fixed point format. Standard
mixed-integer solvers can handle granular variables by a change of variables
xi ← xi/si.

We assume that the function f is available only by a noisy oracle, return-
ing an approximate function value f̃(x) of f(x). The noise f̃(x) − f(x) is
deterministic if calling the oracle repeatedly at the same point returns
the same approximate function value, and stochastic otherwise. Sources of
deterministic noise may be modelling, truncation, and/or discretization errors
or rounding errors, and the sources of stochastic noise may be inaccurate
measurements or stochastic simulation.

The point with smallest function value among all function values of the points
evaluated by MATRS so far is called the best point.

1.1 Related work

DFO techniques for mixed-integer problems are almost always extensions
of techniques for continuous solvers that add features for handling integer
variables.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 3

The survey of Ploskas & Sahinidis [28] investigated the behavior of integer
and mixed-integer DFO solvers. DFLINT [23] is an integer DFO solvers, while
BFO [29], DFLBOX [22], DFNDFL [12], NOMAD [1], MISO [26], and SNOBFIT [15] are
mixed-integer DFO solvers.

The papers of Moré & Wild [25], Rios & Sahinidis [30], Kimiaei [17],
and Kimiaei & Neumaier [20] survey the behavior of DFO algorithms with
continuous variables.

Direct search methods evaluate f at trial points obtained from the best
point by adding coordinate directions, directions from a fixed poll set, or
random directions to find a reasonable reduction of the inexact function value.
If such a reduction is found, the trial point is accepted as the new best point
and the corresponding step size is expanded or remains unchanged. Otherwise,
the trial point is discarded and the search is repeated with a reduce step size.
NOMAD and BFO are the two well-known direct search solvers.

Line search methods use extrapolation to quickly leave a saddle point or
maximizer in cases where the slope of the function at the current point is
small, but no local minimizer is nearby. Extrapolation expands step sizes as
long as reductions of inexact function values are found along a fixed random
or coordinate direction. As in the direct search methods, the corresponding
step size is reduced if no reduction of the inexact function value is found at
the trial point. DFLINIT uses an integer line search and DFLBOX uses integer
and continuous line searches. DFLINIT is an extended version of the integer
line search of DFLBOX. DFNDFL uses DFLINIT for integer searches and DFN [10]
for continuous searches.

Space-filling methods use sequences with good space filling properties for
various purposes, such as

• the selection of initial points by global solvers (cf. Huyer & Neumaier
[14]) with the goal of finding regions close to an approximate stationary point,

• the generation of well-distributed points on a unit simplex for evolutionary
multi-objective optimization (cf. Blank et al. [5]),

• the selection of initial sampled points for the construction of quadratic
models (cf. Huyer & Neumaier [15]),

• the generation of integer directions for line searches. DFLINT (cf. Table 2,
below) calls generate dirs to generate integer directions using the Halton
sequences, a family of low-discrepancy sequences (cf. Dick & Pillichsham-
mer [8] and Niederreiter [27]).

Model-based methods approximate the objective function values by qua-
dratic model functions whose approximate gradient and Hessian matrix are
obtained by interpolation or fitting. To avoid large steps, these models are

Springer Nature 2021 LATEX template

4 1. INTRODUCTION

constrained by trust regions. The constrained solutions of these models are
chosen as the directions. The trial point is accepted as the new best point if
the agreement between the objective function and the model function is good.
In this case, the trust region is extended or remains unchanged. Otherwise,
the trial point is discarded and the trust region is reduced to find small steps
in the hope of finding a reduction of the inexact function value in the next
attempt. NOMAD provides model-based direct search methods and SNOBFIT is
a model-based solver. MISO is another model-based solver that uses various
types of radial basis functions, sampling techniques, and initial experimental
design options.

Matrix adaptation evolution strategies (MAES) use a covarince matrix
or an affine scaling matrix to define the newly sampled points (e.g., see for
the continuous search the recent paper by Kimiaei & Neumaier [19]). They
alternate three different phases:

Mutation phase. In this phase, some mutation points are generated, each of
which is the sum of the previous recombination point (defined below, initially
an initial point) and the mutation direction, scaled by a fixed step size (initially
given and then computed in the third phase). Each mutation direction is
the product of the corresponding distribution direction and the affine scaling
matrix, which is adaptively determined in a heuristic manner. The distribution
directions are selected from a normal distribution.

Selection phase. The inexact function values of the mutation points are
sorted in ascending order, and the distribution directions and mutation direc-
tions are sorted accordingly. Then a finite number of the sorted points with low
inexact function values and the sorted corresponding directions are selected
for the next phase.

Recombination phase. The new recombination point is then the sum of
the previous recombination point and the recombination mutation direction,
scaled by the recombination step size. The fixed step size in the mutation
phase is the recombination step size. The recombination mutation direction
is a weighted average of the selected mutation directions. The recombination
distribution direction, which is a weighted average of the selected distribution
directions, is used directly to obtain a new affine scaling matrix and indirectly
to calculate a new recombination step size.

1.2 An overview of our new solver

In this section, we summarize the main features of MATRS, a new solver based
on mixed-integer matrix adaptation trust region strategy. It is designed to
find solutions of noisy derivative-free mixed-integer bound-constrained opti-
mization problems of the form (1). Compared to MAES, MATRS preserves the

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 5

selection phase, improves the mutation and recombination phases, and adds
two new phases, trust region and mixed-integer.

We write xI and xK for the subvectors of x indexed by I and K, where K is
the set of indices not contained in I. Mutation and recombination points in
the space of all xI are called integer mutation points and integer recom-
bination points and in the space of all xK are called continuous mutation
points and continuous recombination points. The same is true for the
distribution, mutation and recombination directions.

1.2.1 Improved mutation phase

Integer and continuous distribution directions are cheaply generated by a new
technique with good space-filling properties, discussed in Section 2.

Our improved continuous mutation phase has the following new features:

• A continuous derivative-free line search strategy produces continuous
mutation points that are hopefully selected as new best points.

• Real initial step sizes of continuous line searches are found heuristically.

Our improved integer mutation phase has the following new features:

• An integer derivative-free line search strategy produces integer mutation
points that are hopefully selected as new best points.

• Integer initial step sizes of integer line searches are heuristically found.

1.2.2 Improved recombination phase

Our improved continuous and integer recombination phases have the following
new features:

• The weights used to compute the continuous and integer recombination
directions are scaled with a randomized scaling vector.

• A new continuous trust region strategy is performed to hopefully find a new
best point.

• A new integer trust region strategy is performed to hopefully find a new best
point. Its subproblem is transformed in a new way into bound-constrained
integer least squares problem.

• The product of the affine scaling matrix and its transpose is used inexpen-
sively as an approximate symmetric Hessian matrix of the model function of
the trust region subproblem.

Springer Nature 2021 LATEX template

6 2. SPACE-FILLING SEQUENCES

• Recombination step size is used as a good replacement for the initial trust
region radius.

1.2.3 New mixed-integer phase

Our new mixed-integer phase has the following new features:

• Two new combination directions are computed with the goal of going into
or moving down a valley.

• A mixed-integer line search in the space of all x is tried along exactly one
of two combination directions.

• If the search in the space of all x is not possible, exactly one of integer line
search in the space of all xI and continuous line search in the space of all xK
along exactly one of combination directions is performed.

2 Space-filling sequences

This section describes a new technique for cheaply generating sequences with
good space-filling properties. Given a vector z with n nonnegative integral
components, the technique generates sequences of well-distributed points, x ∈
Rn with components xi ∈ [−1, 1] ⊆ R (if zi = 0) and xi ∈ [−b; b] ⊆ Z (if
zi = b > 0), that are not too close too each other, no matter which interval
segment of the sequence is considered (cf. Figure 1).

Space-filling methods generate sequences x1, x2, x3, . . . of points or directions
such that for any k the first k points fill the box [−1, 1]n in a well-distributed
way with large minimum distance. Deterministic low-discrepancy sequences
such as the Halton sequences are expensive to generate and suffer from irreg-
ularities when the number of points is not very large. This can be seen in
Figure 2.

Our new randomized procedure usequence is a cheap and improved substitute
for the Halton sequences in the continuous case and the integer case. One
can see from Figure 2 that the distribution of points generated by usequence
is markedly superior to sequences based on either random placement or the
Halton sequences.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 7

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
usequence points

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
usequence points

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
usequence points

Fig. 1: Plots of 10, 100, and 1000 real points belonging [−1, 1]2 generated by
usequence.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
Uniformly distributed points

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
usequence points

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
Halton points

-100 -50 0 50 100

-100

-50

0

50

100
Uniformly distributed points

-100 -50 0 50 100

-100

-50

0

50

100
usequence points

-100 -50 0 50 100

-100

-50

0

50

100
generate_dirs

Fig. 2: Plots of points generated by random generators, by usequence, and
the Halton sequences. First row: The first 100 real points in [−1, 1]2. Second
row: The first 100 integer points in [−100 : 100]2.

Springer Nature 2021 LATEX template

8 2. SPACE-FILLING SEQUENCES

Algorithm 1 usequence

goal: usequence generates a well-distributed sequence of points.

function D = usequence(n,m, z, p)

input: n: dimension of the points
m: number of points
z: determines component types (zi > 0: integer, zi = 0: real)
p: first point of the sequence
output: D: matrix whose columns are well-defined random points

1: for i = 1, . . . , n do . generate random reservoir matrix
2: if zi > 0, Ri: = randi([−zi, zi], 1,m) ∈ Zn×m.
3: else, Ri: = 2 rand(1,m)− 1 ∈ Rn×m.
4: end if
5: end for
6: R:1 = p and j = 1.
7: for k = 1, . . . ,m do
8: D:k = R:j . . next point
9: for i = 1, . . . , n do . generate a new random vector

10: if zi > 0, ri = randi([−zi, zi], 1) ∈ Z.
11: else, ri = 2 rand−1 ∈ R.
12: end if
13: end for
14: R:j = r. . reservoir update
15: on = ones(1, k); R′ = r:,on; D′ = D:,1:k; . forming matrices R′ and D′

16: u =
∑
`=1:k

(R′:` −D′:`)2; uj = min
`=1:n

u . minimum squared distance value

17: on = k + zeros(1, n); D′′ = D:,on; . forming the matrix D′′

18: s =
∑
`=1:m

(R:` −D′′:`)2; . distance between R and D′′

19: if k = 1, u = s;
20: else, u = min(u, s); . minimum squared distance vector u
21: end if
22: Find j = max

t=1:n
ut and choose R:j ∈

{
R:l
}k
l=1.

23: end for

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 9

usequence first generates an initial random matrix of reservoir points from
which a sequence of well-distributed points is constructed. Each but the first
point in the sequence is obtained by picking from the reservoir a point that has
the minimum squared distance from the points already selected. The reservoir
is updated by replacing the point chosen by a new random point.

In the usequence algorithm, j is the index of the reservoir vector with largest
minimum distance from the vectors already chosen, rand(n, 1) is a real random
vector whose n components are independent and uniformly distributed in [0, 1],
randi([ai, bi], n, 1) generates integer random vectors whose n components are
independent and uniformly distributed in [ai, bi], and p is the first point of
the initial reservoir vector. Here ones(1, n) (line 15) is a 1 × n vector whose
components are one and zeros(1, n) (line 17) is a 1×n vector whose components
are zero.

3 MATRS

MATRS is an improved matrix adaptation trust region strategy that includes:
Integer and continuous mutation phases, selection phase, integer and con-
tinuous recombination phases, integer and continuous trust region, and
mixed-integer line search phase. MATRS improves its mutation and recombi-
nation phases using line search strategies to find new best points, as well as
heuristic optimization techniques. When these strategies are unable to find
new best points, the trust region phase is performed to find new best points.
At the end of each iteration of MATRS, the mixed-integer phase is performed
to find new best points, regardless of whether or not the line search and trust
region strategies can find such best points.

MATRS alternately performs cMATRS, a continuous matrix adaptation trust
region strategy, in the space of all xK and iMATRS, an integer matrix adap-
tation trust region strategy, in the space of all xI . Then, the mixed-integer
phase performs a mixed-integer line search strategy, called miLSS, along com-
bination directions to hopefully reduce the inexact function values. The goal
of combination directions is to leave points with large inexact function values,
go into a valley, and move down along that valley.

Figure 3 is a flowchart for the ingredients of MATRS:

Integer searches: iMATRS calls iMutation, an integer mutation phase, to
generate a finite number λ of integer mutation points by performing iLSS, an
integer line search strategy, along λ integer mutation directions. If none of λ
integer mutation points can be a new best point, iMATRS performs the selection
phase to sort inexact function values at λ integer mutation points in ascend-
ing order and select 0 < µ < λ mutation points, distribution directions, and
mutation directions as selected information. Then iRecom, an integer recom-
bination phase, is called to generate a new best point by performing iLSS. If

Springer Nature 2021 LATEX template

10 3. MATRS

iLSS cannot find a new best point, iMATRS calls iTRS, an integer trust region
strategy, to find such a best point.

Continuous searches: cMATRS calls cMutation, a continuous mutation
phase, to generate λ continuous mutation points by performing cLSS, a con-
tinuous line search strategy, along λ continuous mutation directions. If none
of λ continuous mutation points can be a new best point, cMATRS performs
the selection phase to sort inexact function values at λ continuous mutation
points in ascending order and select µ mutation points, distribution directions,
and mutation directions as selected information. Then cRecom, a continuous
recombination phase, is called to generate a new best point by performing
cLSS. If cLSS cannot find a new best point, cMATRS calls cTRS, a continuous
trust region strategy, to find such a best point.

Mixed-integer searches: To find new best points, MATRS calls mInteger to
perform a mixed-integer line search strategy, called miLSS, along a combination
direction or its opposite direction, one of which goes into or move down a
valley, exactly in one of the spaces of all x, xI , and xK in this order. In fact,
miLSS is a mixed-integer version of iLSS and cLSS. miLSS reduces to iLSS in
the space of all xI or cLSS in the space of all xK .

All ingredients of MATRS are described below. Both iRecom and cRecom use
selected points obtained from the selection phase to update step sizes and
affine scaling matrices.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 11

cMATRS

cMutation

selectioncLSS

cRecom

cTRS iMATRS

iMutation

selection iLSS

iRecom

iTRSmInteger

MATRS

one call

one call

λ calls

λ calls

Fig. 3: Flowchart for MATRS. Dash arrows indicate conditional jumps described
in the main text.

Springer Nature 2021 LATEX template

12 3. MATRS

Algorithm 2 MATRS, mixed-integer matrix adaptation trust region strategy

goal: MATRS performs a new matrix adaptation trust region strategy

1: while nf < nfmax do . nf denotes the number of function evaluations
2: • perform cMATRS with cMutation, selection, cRecom, and cTRS
3: on the space of all xK to find a new best point.
4: • perform iMATRS with iMutation, selection, iRecom, and iTRS
5: on the space of all xI to find a new best point.
6: • perform mInteger on exactly one of the spaces of all x, xK , and xI
7: in this order to find a new best point.
8: end while

cMutation and iMutation
9: Compute a finite number λ of the distribution and mutation directions.

10: Generate λ mutation points and their inexact function values by line
searches (cLSS and iLSS).

selection
11: Sort directions, points, and their inexact function values obtained from

the mutation phase.
12: Select some of them with respect to the ascending order of the correspond-

ing function values for the recombination phase.
cRecom and iRecom

13: Compute a new recombination mutation direction.
14: Find a new recombination point and its inexact function value by line

searches (cLSS and iLSS).
15: Compute a new recombination step size and a new affine scaling matrix

using the selected information from the selection phase.
cTRS and iTRS

16: If the recombination point cannot be a new best point, perform trust
region strategies (cTRS and iTRS) to find such a best point.

mInteger
17: Compute a new combination direction with the goal of going into a valley.
18: Perform the mixed-integer line search miLSS along the combination

direction to find a new best point.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 13

3.1 The algorithm

MATRS takes as input the initial point x0, the maximum number nfmax of inex-
act function evaluations, and all tuning parameters (which will be discussed
in Section 5.1). It returns as output the last best point xbest and its inexact
function value f̃best.

Until an approximate stationary point is found, MATRS repeatedly performs
the four phases, continuous mutation, selection, continuous recombination,
and continuous trust region of cMATRS in the space of all xK , the four phases,
integer mutation, selection, integer recombination, and integer trust region
of iMATRS in the space of all xI , and the mixed-integer phase by performing
miLSS along a combination direction or its opposite direction exactly in one
of the spaces of all x, xK , and xI in this order.

The selected information in the selection phase are mutation points, distri-
bution directions, and mutation directions. These information are used in the
recombination phase to update a new recombination step size and a new affine
scaling matrix.

3.2 cMutation

This section explains cMutation and its components such as continuous dis-
tribution and mutation directions, how cLSS computes continuous mutation
points, and the requirements (such as real initial step sizes, largest allowed
real step sizes, and real mutation step sizes) for λ calls to cLSS by cMATRS in
each iteration of MATRS.

The goal of cMutation is to generate continuous mutation points, which can
be best points. This can be achieved by performing cLSS along continuous
mutation directions or their opposite directions, which uses extrapolation to
leave regions near the saddle point or maximizer. As long as at least one of the
mutation points is selected as a new best point, the selection and continuous
recombination phases are skipped. In this case, cMATRS is actually reduced to
cMutation, which is a continuous multi-line search due to the λ calls to cLSS.
Otherwise, if none of the λ continuous mutation points is chosen as a new best
point, selection and continuous recombination phases are performed.

The new features of cMutation are

• the computation of the continuous distribution directions by usequence to
be well-distributed, neither too close to each other;

• determining the initial real step sizes αi`init (i = 1, . . . , λ) for cLSS based on
the largest allowed real step sizes αi` (i = 1, . . . , λ), the real recombination

Springer Nature 2021 LATEX template

14 3. MATRS

step size σ`, and the list a`K of real mutation step sizes that are neither too
small nor too large avoiding line search failure;

• updating a`K in a new way that affects the determination of αi`init;

• finding continuous mutation points (possibly best points) with cLSS to leave
regions near the saddle point or maximizer.

Given the sample size λ > 0, counter i ∈ {1, 2, · · · , λ} for the number of
mutation points, and counter ` ∈ {0, 1, 2, · · · } for the number of iterations, we
define ingredients of cMutation below.

Continuous distribution directions: These directions pi`dd (i = 1, . . . , λ)
in the `th iteration of MATRS are random directions chosen from the normal
distribution N (0, I) with zero mean and variance I. Here I is an identity
matrix.

Continuous mutation directions: In the `th iteration of MATRS, the ith
continuous mutation direction

pi`md = M`p
i`
dd ∈ R|K|

is computed, where M` ∈ R|K|×|K| is the `th affine scaling matrix (updated
in Section 3.5), and pi`dd is the ith continuous distribution direction. Indeed,
pi`md (i = 1, . . . , λ) are chosen from N (0,M`M

T
`).

Denote by A:k the kth column of the matrix A. Then, A:,i:k includes the
columns between the ith and kth columns of A.

Changing continuous distribution directions: If cLSS cannot reduce
the inexact function value along continuous mutation directions pi`md for all
i ∈ {1, 2, · · · , λ}, the set of random directions should be changed in a new
randomized way after the continuous recombination phase is performed. The
goal of usequence is to generate a sequence of finite continuous random vec-
tors in the K-dimensional unit cube plus a new combination direction that for
each leading subsequence, arbitrary vectors are not too close to each other. To
enrich usequence, we replace the first column of the |K|×N random reservoir
matrix R` by our new combination direction

pinit,`
K = xbest,`

K − xrmd,`−1
K , pinit,`

K = sc
pinit,`
K

‖pinit,`
K ‖∞

,

where xrmd,`−1
K is the recombination point evaluated in the (`− 1)th iteration

of MATRS and xbest,`
K is the `th best point found by cMutation, N ≥ λ is a

positive tuning parameter, and sc is a positive tuning parameter. There is

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 15

a good chance to find decreases in the inexact function value by performing
cLSS along pinit,`

K , leaving points with large inexact function values and going
into or moving down a valley.

cMATRS finds a new set

D`+1 = κ ∗ usequence(|K|, N, z, pinit,`
K)

of real distribution directions. Here κ is updated in each iteration of cMATRS.
If no best point is found and κ < κmax, cMATRS increases κ by one to generate
a new set of continuous distribution directions with the goal of finding new
best points in a larger neighborhood of the old best point; otherwise, it sets
κ = 1 (in this case, distribution directions are selected from N (0, I)), where
the tuning parameter κmax > 1 is an upper bound for κ.

Continuous mutation points: At the `th iteration of MATRS, we per-
form cLSS along the ith continuous distribution direction pi`md or its opposite
directions to obtain the ith continuous mutation point

xi`K = xbest
K + αi`pi`md, (4)

where αi` is initially the initial real step size αinit and updated by cLSS. It is
a scaling factor for the mutation phase in the `th iteration of MATRS.

Update of the vector a`K of real step sizes: Let the λ×1 vector a`K be the
list of real step sizes of cMutation used to update the initial real step size αi`init
for i = 1, 2, · · · , λ (see (6), below). The vector ai`K is initially a tuning vector
with real components (ai0K ≥ 1 for i = 1, 2, · · · , n) and updated depending
on whether or not decreases in the inexact function values are found at the
mutation points. We now describe how this vector is updated. After cLSS is
terminated to find the ith continuous mutation point in the `th iteration of
MATRS, the corresponding step size of a point with the lowest inexact function
value among all points evaluated in extrapolation is stored in ai`K if possible.
Otherwise, unlike [23] with ai`K = ai`K/ν (ν > 1 is a given tuning parameter),
ai`K = σ` is stored for use in the next iteration. The reason for this new
choice is that σ` does not become too small, avoiding getting stuck before an
approximate stationary point is found. This is a new property of our algorithm,
which is against line search failures.

Largest allowed real step sizes αi` needed for cLSS: Before cLSS is
executed, it requires αi` ≥ 1 for each i = 1, 2, · · · , λ at the `th iteration of
MATRS, while maintaining feasibility. To find αi`, we denote pj := (pi`md)j and

Springer Nature 2021 LATEX template

16 3. MATRS

compute

K := {j ∈ K | pj > 0, xbest
j < xj}, β := min{(xj − xbest

j)/pj | j ∈ K};

if β is empty, β =∞, and

K := {j ∈ K | pj < 0, xbest
j > xj}, β := min{(xj − xbest

j)/pj | j ∈ K};

if β is empty, β =∞. Then, the largest allowed real step size

αi` = min(β, β) (5)

is computed.

Initial real step sizes αi`init for cLSS. Given the recombination step size
σ` (computed by (16) below), for each i = 1, 2, · · · , λ at the `th iteration of
MATRS, we first compute the initial real step size by the new formula

αi`init := min
(
αi`,

√
σ`ai`K

)
(6)

whose goal is to be neither too small nor too large to avoid line search failures.
In the `th iteration of MATRS, cLSS now takes αi`init, α

i`, and pi`md as given input
and performs continuous extrapolation along pi`md or its opposite direction to
find the ith mutation point, which hopefully can be a new best point. If this
mutation point cannot be selected as a new best point, the selection phase and
the continuous recombination phase are performed to find a new recombination
point in the hope of being a new best point.

Computation of real step sizes and trial points inside cLSS: We
describe how to update the step sizes within the extrapolation phase of cLSS.
At the beginning, α = αi`init is chosen, pi`md ∈ R|K| is given, and the initial
continuous trial point

x0
K = xtrial

K = xbest
K + αpi`md

and its inexact function value f0 = f̃ trial := f̃(xtrial) are calculated. If the
conditions f̃ trial < f̃best and α < αi` hold, given a tuning factor ν > 1, the
new continuous trial point

xtrial
K = xbest

K + min
(
αi`, να

)
pi`md (7)

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 17

and its inexact function value f̃ trial are calculated. As long as the conditions
α < αi` and f̃ trial < f̃best hold, an extrapolation step along pi`md or its opposite
direction is performed by expanding the real step size to

α′ = min
(
αi`, να

)
(8)

and computing the new continuous trial point xtrial
K = xbest

K + α′pi`md and its
inexact function value f̃ trial. Both (7) and (8) are defined as in [23].

After the extrapolation in cLSS is finished, a point with the lowest inexact
function values among all trial points found by extrapolation in the `th iter-
ation of MATRS is chosen as a new best point and, as described above, the
corresponding step size is stored in ai`K .

If extrapolation cannot be performed along pi`md for i = 1, . . . , λ in the `th
iteration of MATRS, λ trial points are chosen as the mutation points and then
the selection and recombination phases are performed.

3.3 iMutation

This section explains iMutation and its components such as integer distri-
bution and integer mutation directions, how iLSS computes integer mutation
points, and the requirements (such as integer initial step sizes, largest allowed
integer step sizes, and integer mutation step sizes) for λ calls to iLSS by iMATRS
in each iteration of MATRS. iMutation has the same structure as cMutation
and the same goal, but with differences in distribution directions and updating
step sizes.

The goal of iMutation is to generate integer mutation points, which can be
new best points. This can be achieved by performing iLSS along integer muta-
tion directions or their opposite directions, which uses extrapolation to leave
regions near the saddle point or maximizer. As long at least one of the inte-
ger mutation points is chosen as a new best point, the selection and integer
recombination phases are skipped. In this case, iMATRS is actually reduced to
iMutation, which is an integer multi-line search due to the λ calls to iLSS.
Otherwise, none of the λ integer mutation points is chosen as a new best
point, the selection and integer recombination phases are performed, which
are discussed in the next sections.

The new features of iMutation are

• the computation of the integer distribution directions by usequence to be
well-distributed, neither too close to each other;

Springer Nature 2021 LATEX template

18 3. MATRS

• determining the initial integer step sizes αi`init (i = 1, . . . , λ) for iLSS based
on the largest allowed integer step sizes αi` (i = 1, . . . , λ), the integer recom-
bination step size σ`, and the list a`I of integer mutation step sizes that are
neither too small nor too large avoiding line search failure;

• updating a`I in a new way that affects the determination of αi`init;

• finding integer mutation points with iLSS to leave regions near the saddle
point or maximizer.

Integer distribution directions: Integer distribution directions pi`dd ∈ R|I|
are chosen from a set of permuted coordinate directions, unlike cMutation,
which selects continuous distribution directions from the normal distribution.

Changing integer distribution directions: If iLSS cannot reduce the
inexact function value along the integer mutation directions pi`md (for i =
1, 2, · · · , λ) in the `th iteration of MATRS, the set of integer random directions
should be changed in a new way after performing the integer recombination
phase. The idea is to generate a sequence of finite integer random vectors plus
a new integer combination direction in the I-dimensional unit cube such that
for each leading subsequence, arbitrary vectors are neither too close to each
other. The new integer combination direction

pinit,`
I = xbest,`

I − xrmd,`−1
I , pinit,`

I = sc
⌈
pinit,`
I /‖pinit,`

I ‖∞
⌉

is defined in a new way, where xrmd,`−1
I is the recombination point evaluated

in the (` − 1)th iteration of MATRS and xbest,`
I is the `th best point found by

iMutation and sc is a positive integer tuning parameter. Many small improved
steps have accumulated in this integer combination direction, starting from
a point with a small inexact function value to a point with an even smaller
inexact function value, and moving into a valley. Thus, further progress of
the inexact function value can be expected as iMATRS continues along this
integer combination direction. The goal of usequence is to generate integer
directions with the largest minimum distance, so iLSS has a good chance of
finding mutation points with small inexact function values by going along these
directions. This differs from Liuzzi et al. [23], which use Halton sequences to
generate integer directions. To enrich usequence, we replace the first column
of the |I| × N random matrix R` by the new combination direction pinit,`

I .
There is a good chance to find decreases in the inexact function value by
performing iLSS along pinit,`

I , leaving points with large inexact function values
and going into or moving down a valley.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 19

iMATRS finds a new set

D`+1 = usequence(|I|, N, κz, pinit,`
I)

of integer distribution directions. Here N ≥ λ is a positive tuning parameter,
κ is updated in each iteration of iMATRS and zi ≥ 1 for i ∈ I are the tuning
parameters to restrict the components of the well-defined distributed direc-
tions. If no new best point is found and κ < κmax, iMATRS increases κ by one
to generate a new set of integer distribution directions with the goal of find-
ing new best points in a larger neighborhood of the old best point; otherwise,
it sets κ = 1 (in which case permuted distribution directions are used), where
κmax > 1 is an upper bound for κ and a tuning parameter.

Update of the vector a`I of integer step sizes in iMutation: Let the
λ × 1 vector a`I be the list of integer step sizes of iMutation used to update
the initial integer step size αi`init for i = 1, 2, · · · , λ (see (9), below). Unlike
[23], we do not reduce the ith component of the vector a`I in the `th iteration
of MATRS by ai`I = bai`I /νe, where ν > 1 is a tuning parameter, if iLSS cannot
find a new best point along the ith integer mutation direction pi`md. In this
case, like cMutation, ai`I = σ` is saved. This choice avoids tiny step sizes and
so null steps in the presence of large noise. Here σ` is the `th integer step size,
which is computed by (27) below. Otherwise, if iLSS finds a new best point
(as a result of extrapolation) along the ith integer mutation direction pi`md, the
corresponding step size is saved in ai`I like [23].

Update of initial integer step sizes αi`init for iLSS: The initial integer
step size αi`init is computed for each i ∈ {1, 2, · · · , λ} in the `th iteration of
MATRS unlike cMutation. In this case, we compute the initial step size by the
new formula

αi`init := min
(⌊√

σ`ai`I
⌉
,max(1, bαi`c)

)
, (9)

where αi` is computed by (5) and σ` is computed by (27) below.

Update of integer step sizes and trial points inside iLSS: Like [23], we
construct the integer version

xtrial
I = xbest

I + α′′pi`md, α′′ = min
(
αi`, να

)
(10)

of the two formulas (7) and (8), respectively.

Springer Nature 2021 LATEX template

20 3. MATRS

3.4 Selection

This section discusses the selection phase whose goal is to sort the points and
directions obtained from the integer and continuous mutation phases such that
points with low inexact functions values and the corresponding directions are
selected for use in the recombination phase.

Let xi` (i = 1, . . . , λ) be the sequence of (integer and continuous) mutation
points found in the `th iteration of MATRS and denote by µ the number of
selected points in the recombination phase. The inexact function values f̃(xi`)
(i = 1, . . . , λ) of mutation points xi` (i = 1, . . . , λ) are sorted in ascending
order

f̃(xπ1,`) ≤ f̃(xπ2,`) ≤ f̃(xπµ,`) ≤ f̃(xπ(µ+1),`) ≤ · · · ≤ f̃(xπλ,`),

where π is a permutation of {1, 2, . . . , λ}. Then, accordingly the distribution
directions pπi,`dd (i = 1, . . . , λ) and the mutation directions pπi,`md (i = 1, . . . , λ)
are obtained. Finally, we select the µ best information

xπi,`, f̃(xπi,`), pπi,`dd , pπi,`md (i = 1, . . . , µ)

for computing new recombination points.

3.5 cRecom

This section discusses cRecom and its main components such as recombination
direction and point and how to calculate them.

The goal of cRecom is to find a new continuous recombination point in the hope
of being a new best point. It computes the continuous recombination muta-
tion direction and the initial real and maximum allowed real step sizes, and
then performs cLSS along the continuous recombination mutation direction
or its opposite direction to compute a new continuous recombination point
motivated by [19].

The new features of cRecom are

• the scale of the weights of the recombination direction in a randomized way
with the goal of reordering a fair sort in the selection phase due to noise;

• the determination of the initial real step size for cLSS that is neither too
small nor too large to perform successful extrapolation;

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 21

Continuous recombination mutation direction: We compute the contin-
uous recombination mutation direction

p`rmd :=
µ∑
i=1

wip
πi,`
md ∈ R|K| (11)

and the continuous recombination distribution direction

p`rdd :=
µ∑
i=1

wip
πi,`
dd ∈ R|K| (12)

with real components. Here w := β �w is the product of the weighted vector
w satisfying

λ∑
i=1

wi = 1 and w1 ≥ w2 ≥ · · · ≥ wµ > 0 = wµ+1 = . . . = wλ (13)

component-wise in the random scaling vector

β ∼ N (0, 2I − 1), β := β/‖β‖.

Indeed, by scaling the weights wi there is a good chance to reorder a fair
sort in the selection phase due to a high noise. This is a new property of our
algorithm. In Section 4, we compute numerically wi for i = 1, . . . , λ satisfying
(13).

Update of affine scaling matrix: As in [4], we update the affine scaling
matrix

M`+1 :=
(

1− c1 + cµ
2

)
M` + c1

2 M`P
σ
` (Pσ`)T + cµ

2

µ∑
i=1

wip
πi,`
md (pπi,`dd)T , (14)

where 0 < cµ ≤ 1 is a learning rate for updating M`+1 and c1 ≤ 1 − cµ is a
learning rate for the rank-one-update of M`+1. Here, the evolution path

Pσ0 := 0, Pσ` := (1− cσ)Pσ`−1 + cσp
`
rdd, for ` ≥ 1 (15)

is defined, where the normalization constant

cσ :=
√
cσ(2− cσ)µw

Springer Nature 2021 LATEX template

22 3. MATRS

using the variance effective selection mass

µw := ‖w‖
2
1

‖w‖2
2

= 1∑µ
i=1 w

2
i

∈ [1, µ]

is defined; see Section 4 for how c1, cµ, and cσ are numerically computed.

In (14), the first term includes the previous information and accumulates the
information, while the second term is the rank-one update whose goal is to
increase the probability of pπi,`dd (i = 1, . . . , µ) for the next iteration, by max-
imizing the log-likelihood of pπi,`dd (i = 1, . . . , µ), and the third term is the
rank-µ update, whose goal is to take the mean of the estimated affine scaling
matrices from all iterations.

The first goal of the evolution path computed by (15) and used in the second
term (14) is to remedy losing the sign of pπi,`dd (i = 1, . . . , µ) in the third term
of (15) because

pπi,`dd (pπi,`dd)T = −pπi,`dd (−pπi,`dd)T

and pπi,`md = M`p
πi,`
dd . Its second goal is to update the recombination step size

(see (16) below). Note that pπi,`md has been computed before in the mutation
phase and here it only reuses, leading to O(n2) operations due to the vector-
matrix products.

As a result, all three terms of (14) have different advantages and cause the
affine scaling matrix behaves well in practice, compared to the rank-one update
and rank-µ update.

Update of real recombination step size: We update the real step size

σ`+1 := σ` exp τ` with τ` := d−1
σ cσ

(
e−1
σ ‖Pσ` ‖ − 1

)
(16)

and project it into [σmin, σmax]. Here, eσ is an approximate value of the
expected value E(‖u‖) of the norm of the vector u ∼ N (0, I), the constant
0 < σmax < ∞ is a maximum value for σt, 0 < σmin < 1 is a minimum value
for σt, cσ ≤ 1 is a learning rate for the cumulation for the step size, dσ ≈ 1 is a
damping parameter (cf. [13, Section 4]). Section 4 discusses how to numerically
compute dσ, cσ, and eσ.

After the computation of the continuous recombination mutation direction
and the updates of the real recombination step size σ` and the affine scaling
matrix M`, cLSS is performed along the continuous recombination mutation
direction prmd,`

dd or possibly its opposite direction. Before this run, we discuss
how to find the `th initial real step size α`init and the `th largest allowed real
step size α` such that it does not violate feasibility.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 23

The initial and largest real step sizes for cLSS: To avoid too small and
too large step sizes, we update the initial real step size

α`init := min
(
σ`, α

`
)
, (17)

where the largest allowed step size α` is computed by (5) with the difference
that, in the computation of β and β in (5), pi`md is replaced by p`rmd. Here σ` is
from (16). Indeed, (17) does not use the mutation step size vector a`K unlike
(6).

A new recombination point: To get this point, using α` = α`init and
α`, cLSS is performed along p`rmd ∈ R|K| or its opposite direction, hopefully
resulting in

xbest,`+1
K = xbest,`

K + α`p`rmd.

Here α` is the corresponding step size of the point xbest,`+1
K with the lowest

inexact function value f̃(xbest,`+1) among all evaluated points by extrapo-
lation. If extrapolation cannot be performed along p`rmd, the new evaluated
recombination point is rejected to be a new best point. Hence, cMATRS calls
cTRS to find a new best point.

3.6 cTRS

This section discusses cTRS to find a new best point when both the continuous
mutation and recombination phases are not able to find such a point.

The goal of cTRS is to avoid large steps, which are one of the causes of the
failure of cLSS, and find new best points in regions close to the old best point
that may not be searched by cLSS in the mutation and recombination phases.

The new features of cTRS are

• the use of recombination step sizes (neither too small nor too large) in the
computation of the initial trust region radius in each call to cTRS by cMATRS
to overcome the sensitivity of choosing this initial radius;

• the use of the product of the affine scaling matrix and its transpose as a
cheap approximation to the Hessian matrix of the model function of the trust
region subproblem.

cTRS works until the trust region radius is not below a given threshold 0 <
∆min < 1. This is against getting stuck before an approximate stationary point
is found when the trust region radius is too small. Indeed, this is one main
difference of cTRS with other trust region methods. In each call to cTRS by

Springer Nature 2021 LATEX template

24 3. MATRS

cMATRS, cTRS chooses the real initial trust region radius ∆ = min(∆max, σ`)
(here σ` is form (16) and 0 < ∆max <∞ is a tuning parameter) and repeatedly
performs the following steps:

(CT1) Trust region subproblem: We define the trust region subproblem

min Q(p) = g̃Tbestp+ 1
2p

T G̃bestp
s.t. ‖p‖ ≤ ∆.

(18)

Here as in Huyer & Neumaier [15] the approximate gradient vector g̃best
is obtained by fitting and the approximate symmetric Hessian matrix

G̃best = MTM

is chosen as a new choice without additional cost.

(CT2) Solving trust region subproblem: We define the continuous Cauchy
step

pca := −t∗g̃best, t∗ := argmin{Q(−tg̃best) | t ≥ 0, ‖tg̃best‖ ≤ ∆} (19)

and solve the trust region subproblem (18) in such a way that the conditions

‖p‖ ≤ ∆ and Q(p) ≤ Q(pca) (20)

are satisfied. Indeed, the continuous approximate Newton direction

pan = −G̃−1
bestg̃best

is calculated. This direction is accepted as the solution p = pan of (18) forc-
ing (20) if it is within the trust region. Otherwise, the continuous scaled
approximate steepest descent step

psd := −
g̃Tbestg̃best

g̃TbestG̃bestg̃best
g̃best (21)

is calculated. If it is outside the trust region, an estimated solution of (18)
is the continuous Cauchy step p = pca computed by (19); otherwise, it is the
continuous dogleg step

p = pdg := pdg(t) = psd + t(pan − psd), (22)

where t is obtained by solving the equation ‖pdg(t)‖ = ∆.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 25

(CT3) Trust region trial point: We compute the continuous trial point

xtrial
K = min

(
xK ,max

(
xK , x

best
K + αp

))
and its inexact function value f̃ trial := f̃(xtrial).

(CT4) Trust region condition: Given the tuning parameter 0 < η < 1
4 , if

the sufficient descent condition

ρtrial|ρtrial − 1| > η with ρtrial = ρ(xtrial) := (f̃ trial − f̃best)/g̃Tbestp (23)

is satisfied, the current iteration of cTRS is called successful and xtrial is
accepted as a new best point. Then, using the tuning parameter c > 1, we
expend the real trust region radius to

∆ := cmax(∆, ‖p‖∞). (24)

Otherwise, the current iteration of cTRS is called unsuccessful. In this case,
the real trust region radius is reduced to

∆ := c−1 min(∆, ‖p‖∞). (25)

As the iterations of cTRS are unsuccessful and ∆ > ∆min, ∆ is reduced to
(25), the trust region subproblem is solved, and a new continuous trial point is
generated. cTRS may find a new best point. The condition (23) was suggested
by Kimiaei [16] for bound-constrained ill-conditioned problems.

3.7 iRecom

This section discusses iRecom and its main components such as recombination
direction and point and how to calculate them.

The goal of iRecom is to find a new best point. It computes the integer recombi-
nation mutation direction and the initial integer and maximum allowed integer
step sizes, and then performs iLSS along the integer recombination mutation
direction or its opposite direction in the hope of finding a new best point.

The new features of iRecom are

• the scale of the weights of the integer recombination direction in a random-
ized way with the goal of reordering a fair sort in the selection phase due to
noise;

• the determination of the initial integer step size for iLSS that is neither too
small nor too large to perform successful extrapolation.

Springer Nature 2021 LATEX template

26 3. MATRS

Integer recombination mutation direction: We round the non-integer
components of the continuous recombination mutation direction computed by
(11) to

p`rmd :=
⌊

µ∑
i=1

wip
πi,`
md

⌉
∈ R|I|, (26)

which is our integer recombination mutation direction. In this phase, p`rdd ∈
R|I| is computed as in the continuous case of (12), since it is used to update
the evolution path, but is not intended to round the entries of the affine scaling
matrix M` ∈ R|I|×|I| before computing the mutation directions pi`md = M`p

i`
dd

in the next mutation phase. When calculating the mutation directions, the
non-integer components (if any) are rounded to integers.

Update of affine scaling matrix: We compute the affine scaling matrix
updated by (14) without rounding its entries to integer. In fact as mentioned
in Section 3.3 in the computation of integer mutation directions non-integer
entries of these directions are rounded to integers.

Update of integer recombination step size: As in the continuous case,
we compute the real step size by (16) and then round it to integer, resulting
in our integer recombination step size

σ`+1 := max
(

1,
⌊
σ` exp τ`

⌉)
, (27)

where τ` is from (16).

A new integer recombination point. To get this point, using the ini-
tial integer α` = αi`init and the integer largest allowed step size αi`, iLSS is
performed along p`rmd ∈ R|I| or its opposite direction, hopefully resulting in

xbest,`+1
I = xbest,`

I + α`p`rmd.

Here α` is the corresponding step size of the point xbest,`+1
I with the lowest

inexact function value f̃(xbest,`+1) among all evaluated points by the integer
extrapolation.

If extrapolation cannot be performed along p`rmd, the new evaluated integer
recombination point is rejected to be a new best point. Hence, iMATRS calls
iTRS to find a new best point.

3.8 iTRS

This section discusses iTRS to find a new best point when both the integer
mutation and recombination phases are not able to find such a point.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 27

The goal of iTRS is to avoid large steps, which are one of the causes of the
failure of iLSS, and find new best points in regions close to the old best point
that may not be searched by iLSS in the integer mutation and recombination
phases.

The new features of iTRS are

• the use of integer recombination step sizes (neither too small nor too large)
as the initial trust region radius in each call to iTRS;

• the use of the product of the affine scaling matrix and its transpose as a
cheap approximation to the Hessian matrix of the model function of the trust
region subproblem;

• the transformation of the trust region subproblems into bound-constrained
integer least squares problems.

If iLSS cannot find a new best point in the integer mutation and recom-
bination phases, iMATRS uses iTRS with the goal of avoiding large steps
and in the hope of finding a new best point. iTRS works until the integer
trust region radius is not below one and iterations are unsuccessful. In each
call to iTRS by iMATRS, iTRS chooses the initial integer trust region radius
∆ = min(∆max,max(∆min, σ`)) (the integer σ` is from (27) and 0 < ∆min <
∆max <∞ are tuning parameters) and then repeatedly performs the following
steps:

(IT1) Trust region subproblem: By defining r := −M−T g̃best and since

g̃Tbestp+ 1
2p

T G̃bestp = 1
2‖Mp− r‖2

2−
1
2‖r‖

2 (the term − 1
2‖r‖

2 is constant),

(28)
the trust region subproblem (18) with the constraint xbest

I +p ∈ x is converted
to the bound-constrained integer least squares problem

min 1
2‖Mp− r‖2

2
s.t. ‖p‖ ≤ ∆, p integral,

xbest
I + p ∈ x.

(29)

In (28), the approximate gradient vector g̃best is obtained by fitting as in
Huyer & Neumaier [15] and the approximate symmetric Hessian matrix
G̃best = MTM is chosen without additional cost.

(IT2) Solving trust region subproblem: We solve the bound-constrained
integer least squares problem (29) by a variant of Schnorr–Euchner search
[6, 11].

Springer Nature 2021 LATEX template

28 3. MATRS

(IT3) Trust region trial point: We compute the integer trial point

xtrial
I = min

(
xI ,max

(
xI , x

best
I + αp

))
and its inexact function value f̃ trial := f̃(xtrial).

(IT4) Trust region condition: Given the tuning parameter 0 < η < 1
4 , if

the sufficient descent condition (23) is satisfied, the current iteration of iTRS
is called successful and xtrial is accepted as a new best point. Then, iTRS
ends. Otherwise, the current iteration of iTRS is called unsuccessful. Given
the integer tuning parameters ∆ > 1 and 1 < c <∞, as the iterations of iTRS
are unsuccessful, if ∆ > ∆, ∆ is reduced to

∆ := c−1bmin(‖p‖∞,∆)c; (30)

otherwise, to take advantage of small steps and increase the accuracy of the
model function, the new formula

∆ = ∆− 1 (31)

is used; because ∆ is reduced faster by (30) than ∆ is reduced by (31), (30)
may ignore some small values for ∆. In both cases, the trust region subproblem
is solved, and a new integer trial point is generated.

3.9 mInteger, the mixed-integer phase

This section discusses mInteger and its two main ingredients miLSS and two
combination directions. The goal of mInteger is find a significant decrease in
the inexact function value by performing miLSS along combination direction
going to or moving along a valley.

After performing cMATRS and iMATRS, regardless of whether or not the func-
tion value is reduced, miLSS is performed along exactly one of the two new
combination directions defined below, or possibly their opposite directions, in
the space of all x, if possible; otherwise, exactly in one of the spaces of all
xK and xI in this order. Our experiments have shown that searching in the
space of all x after searching in the space of all xK and in the space of all xI
improves the efficiency and robustness of our algorithm.

Both cMATRS and iMATRS may generate many small improved steps accumu-
lated by going along a combination direction, starting at a point with a small
inexact function value and reaching a point with even smaller inexact function
values, confirming that the iterations of the algorithm can enter a valley and
move down to make further progress on the inexact function value.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 29

miLSS is performed along one of the following new combination directions:

• We first compute the difference

d =
(
dK
dI

)
6= 0

of the two best points found by cMATRS and iMATRS. In this case, at least one
of cMATRS and iMATRS can update the best point.

• If ‖d′‖ = 0, it means that both cMATRS and iMATRS could not reduce the
inexact function value. In this case, to compute our new direction, we save a
finite number m of evaluated points as the columns of the matrix X and their
inexact function values as the components of the vector F in ascending order,
and update X and F when the new trial point and its inexact function value
are evaluated. Then, we randomly select an evaluated point whose place is
between m/2 and m, remove this selected point and its inexact function value
from X and F , and add the new evaluated point and its inexact function value
to X and F , so that the ascending order of inexact function values at these
points is preserved. The difference

d =
(
dK
dI

)
= X:1 −X:m 6= 0

of the best point saved in X and the worst point saved in X is computed.

As described in Subsections 3.2 and 3.3, we compute the initial step size and
the largest allowed step size in both continues and integer cases by (6) and
(9), respectively, and then we evaluate the new trial point

xtrial =
(
xbest
K + α′dK

xbest
I + α′′dI

)
,

where α′ and α′′ are computed by (8) and (10), respectively.

4 Implementation

We mention some implementation details of MATRS:

• Large steps in the mutation and recombination phases are one of causes
for line search failure. To avoid these, we replace in cMATRS and iMATRS the
affine scaling matrix by an identity matrix if its infinity norm is greater than
a positive tuning parameter mmax.

Springer Nature 2021 LATEX template

30 4. IMPLEMENTATION

• Since iTRS may not find a new integer feasible trial point, we need differ-
ent sample points whenever the gradient of the trust region subproblem is
approximated or the radius of the trust region is differently updated from the
formulas (30) and (31), so that the approximate solution of the trust region
subproblem becomes different and the chance of finding a new integer feasi-
ble point increases. Therefore, we first randomly select points from the list of
stored evaluated points to estimate the gradient of the trust region subprob-
lem. If this change does not help to generate a new integer feasible point, we
randomly use one of the formulas

∆ = |∆ + sign(rand−0.5) randi([1,∆min], 1)|

or
∆ = b∆/ randi([1,∆min], 1)e

at most stuckmax until ∆ ≥ 1. Here stuckmax ≥ 1 is a tuning parameter,
∆min > 1 is an integer tuning parameter, and rand and randi are as in Section
2.

• In iTRS, if the approximate solution of the trust region subproblem is zero,
it is replaced by

p = xbest − x1, p := ∆
⌊
p/‖p‖

⌉
,

where x1 is the first sample point used for the approximation of the gradient
of the trust region subproblem.

• Following [4], both iMATRS and cMATRS compute the following parameters
that are used to compute the integer and real step sizes σ and the affince
scaling matrix M in each iteration of MATRS:

w0
i := ln

(
µ+ 1

2

)
− ln i, wi := w0

i∑µ
j=1 w

0
j

for i = 1, . . . , µ,

µw := 1∑µ
j=1 w

2
j

, cσ := min
(

1.999, µw + 2
n+ µw + 5

)
,

eσ :=
√
n
(

1− 1/(4n)− 1/(21n2)
)
, c1 := 2/

(
(n+ 1.3)2 + µw

)
,

cµ := min
{

1− c1,
2(µw − 2 + 1)/µw

(n+ 2)2 + µw

}
,

dσ := 1 + cσ + 2 max
{

0,
√
µw − 1
n+ 1 − 1

}
.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 31

5 Numerical results

In this section, we compare our solver MATRS with the four mixed-integer
solvers, BFO of Porcelli & Toint [29], NOMAD of Abramson et al. [1], and
MISO of Müller [26], DFLBOX of Liuzzi et al.[22], and the integer solver DFLINT
of Liuzzi et al. [23] on test problems form the BARON collection of Sahinidis
[31] for the dimensions 2 ≤ n ≤ 30.

5.1 Codes compared

The details of codes compared are as follows:

• NOMAD (version 3.9.1), obtained from

https://www.gerad.ca/nomad

is a Mesh Adaptive Direct Search algorithm (MADS) [1].

• BFO, obtained from

https://github.com/m01marpor/BFO

is a trainable stochastic derivative-free solver for mixed integer bound-
constrained optimization by Porcelli & Toint [29].

• MISO is a bound-constrained mixed-integer surrogate optimization solver of
Müller [26]. We selected MISO-CPTV and MISO-CPTV-local of MISO from
[26, Table 1] and renamed them MISO1 and MISO2, respectively.

• DFLBOX, obtained from

http://www.iasi.cnr.it/∼liuzzi/DFL/

is a derivative-free line search solver for mixed-integer bound-constrained
optimization by Liuzzi et al.[22].

• DFLINT, obtained from

http://www.iasi.cnr.it/∼liuzzi/DFL/

is a derivative-free line search solver for integer bound-constrained optimiza-
tion by Liuzzi et al. [23].

• MATRS is available at

https://github.com/GS1400/MATRS

https://www.gerad.ca/nomad
https://github.com/m01marpor/BFO
http://www.iasi.cnr.it/~liuzzi/DFL/
http://www.iasi.cnr.it/~liuzzi/DFL/
https://github.com/GS1400/MATRS

Springer Nature 2021 LATEX template

32 5. NUMERICAL RESULTS

and chooses the following default values for its tuning parameters:
iMATRS:

λ = max(6, |I|), µ = 3 + dlog(|I|)e, σ0 = 1, η = 10−20, c = ν = 2,

∆ = 3, sc = 5, σmax = 100, mmax = 5, stuckmax = 10, ∆min = 10,
∆max = 30, κmax = 30, N = 104.

cMATRS:

λ = max(6, |K|), µ = 3 + dlog(|K|)e, σ0 = 1, η = 10−20, c = ν = 2,
σmin = 10−10, sc = 10, σmax = 1010, ∆min = 10−3, mmax = 5,
∆max = 1, κmax = 20, N = 104.

All compared solvers were used with the default parameters, except for NOMAD
that uses the following option set

opts = nomadset(‘max eval’,nfmax,‘max iterations’,
2*nfmax,‘model search’,‘1’).

and that DFLBOX uses alfa stop = −∞.

Unfortunately, the source code of DFNDFL [12] is Python and we could not run
on in Matlab.

5.2 Test problems

Following [18], to construct mixed-integer test problems, we use three collec-
tions of test problems, namely the collections global (216 problems), bcp (230
problems), and prince (571 problems) from the BARON collection of Sahinidis
[31] for the dimensions 2 ≤ n ≤ 30, available at

https://www.minlp.com/nlp-and-minlp-test-problems.

As in [24, (16)] was done for discrete bound-constrained optimization
problems, we define

xi := x0
i − 10, xi := x0

i + 10, for i = 1, 2, · · · , n,

and generate the continuous bound-constrained optimization problem

min Φ(x)
s.t. xi ≤ xi ≤ xi, for i = 1, 2, · · · , n.

https://www.minlp.com/nlp-and-minlp-test-problems

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 33

Here we denote by x0 ∈ Rn the standard initial points of unconstrained test
problems from all above collections and choose x ∈ Rn. Then, we transform
this problem into the bound-constrained mixed-integer optimization problem

min f(x) := Φ
((

xI + 0.01(xI − xI)xI
xK

))
s.t. 0 ≤ xi ≤ 100, for i ∈ I,

xi ≤ xi ≤ xi, for i ∈ K.

We refer to three resulting mixed-integer problem collections: globalMint (598
problems), bcpMint (458 problems), and princeMint (1361 problems). With
dimensions 2 ≤ n ≤ 30 and the three noise levels ω = 10−3, 10−2, 10−1, this
gives a total of 3 × 3180 = 9540 mixed-integer test problems. We also refer to
three resulting integer problem collections: globalInt (216 problems), bcpInt
(230 problems), and princeInt (571 problems). With dimensions 2 ≤ n ≤ 30
and the three noise levels ω = 10−3, 10−2, 10−1, this gives a total of 3 × 3180
= 1017 integer test problems.

The type of noise is absolute uniform noise, i.e., f̃ = f + (2 ∗ rand−1)ω with
rand ∼ N (0, 1). For all test problems, the initial points are chosen as
• x0

i := 50 for i ∈ I as in [23, Section 4];
• x0

i for i ∈ K as given in [31].

5.3 Tools for efficiency and robustness

We denote by nfmax the maximum number nf of function evaluations and by
secmax the maximum time in seconds (sec). The budget available for each
solver is limited by allowing at most secmax := 360 seconds of run time and at
most nfmax := 1200n function evaluations for a problem with n variables. We
chosen secmax and nfmax so that the best solver can solve at least 60% of the
selected problems. As an example, in Table 1, for ω = 0.001 all solvers solve
98% problems and the first more robust solver MATRS solves 91% problems. In
this result, MATRS terminates in 0.08% of problems because nfmax is reached,
while it never terminates because secmax is reached. However, for integer
problems, since it is difficult to find new integer feasible points, all solvers
terminate due to reaching secmax at least once and increasing secmax does
not change efficiency and robustness.

Let finit denote the function value of the starting point (common to all
solvers), fopt denote the best point known to us, and fs denote the best point
found by the solver s. We say that the solver s solves a problem with dimension

Springer Nature 2021 LATEX template

34 5. NUMERICAL RESULTS

n if the target accuracy

qs := (fs − fopt)/(finit − fopt) ≤ ε = 10−4

is satisfied. Otherwise, it cannot solve such a problem since either nfmax or
secmax were reached. qs identifies the convergence speed of the solver s to
reach a minimum of the smooth true function f .

Denote by S the list of compared solvers and by P the list of problems. We say
that the solver s is most efficient on a collection if it has the lowest relative cost
of function evaluations. A good tool to evaluate the efficiency of the compared
solvers is the performance profile of Dolan & Moré [9]. The performance
profile of the solver s

ρs(τ) := 1
|P|

∣∣∣{p ∈ P ∣∣∣ prp,s ≤ τ}∣∣∣ (32)

counts the fraction of problems solved by the solver s such that the upper
bound of the performance ratio prp,s := cp,s

min(cp,s | s ∈ S) is τ .

We say that the solver s is most robust on a collection if it has the highest
number of solved problems. A good tool to evaluate the robustness of the
compared solvers is the data profiles of Moré & Wild [25]. The data profile
of the solver s

δs(κ) := 1
|P|

∣∣∣{p ∈ P ∣∣∣ crp,s ≤ κ}∣∣∣ (33)

is the fraction of problems solved by the solver s with κ groups of np + 1
function evaluations such that κ is the upper bound of the cost ratio crp,s :=
cp,s
np + 1. Here np is the dimension of the problem p ∈ P and cp,s is the cost

measure of the solver s to solve the problem p.

For a given collection S of solvers, the strength of a solver s ∈ S – relative to
an ideal solver corresponding to the best solver for each problem – is measured
for each given cost measure cs by the number es given by

es :=
{ (

min
s∈S

cs
)/
cs, if the solver s solves the problem,

0, otherwise,

called the efficiency of the solver s with respect to this cost measure, which is
the inverse of the performance ratio of the solver s. In all tables, efficiencies are
given in percent. Larger efficiencies in this table imply a better average behav-
ior, while a zero efficiency indicates failure. All values are rounded (against
zero) to integers. In the table not recording efficiencies, a sign

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 35

• n indicates that nf ≥ nfmax = 1200n was reached.
• t indicates that sec ≥ secmax = 360 seconds was reached.
• f indicates that the solver s failed for other reasons, such as bugs or algo-
rithmic terminations. In particular, MISO2 terminated in some cases with the
message ‘index in position 2 exceeds array bounds’ and MISO1 terminated
because secmax was reached much more often than for the other solvers, even
for problems with dimension 2. So changing secmax does not help MISO1.

nf is used as the cost measure for the data and performance profiles, and both
nf and sec are used as two cost measures for all tables.

5.4 A comparison of mixed-integer bound-constrained
DFO solvers

Springer Nature 2021 LATEX template

36 5. NUMERICAL RESULTS

5.4.1 Results for globalMint

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

Fig. 4: Plots for globalMint for dimensions 2 ≤ n ≤ 30 and noise levels
ω = 0.001 (left), 0.01 (middle), 0.1 (right). Performance profiles ρ(τ) (first
row) are in dependence of a bound τ on the performance ratio (see (32)), while
data profiles δ(κ) (second row) are in dependence of a bound κ on the cost
ratio (see (33)). Problems solved by no solver are ignored.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

591 of 598 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 549 49 0 0 51 50
NOMAD 522 0 0 76 58 41
BFO 513 60 0 25 10 17
DFLBOX 470 128 0 0 37 51
MISO1 466 0 132 0 35 22
MISO2 448 0 55 95 35 25

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

583 of 598 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 543 55 0 0 52 49
NOMAD 512 0 0 86 57 48
BFO 504 65 0 29 10 15
MISO1 457 0 141 0 36 22
MISO2 415 0 44 139 34 22
DFLBOX 332 266 0 0 27 37

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

574 of 598 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 535 63 0 0 50 57
NOMAD 489 0 0 109 57 43
BFO 488 71 0 39 10 16
MISO1 390 0 208 0 33 20
MISO2 380 0 47 171 34 22
DFLBOX 252 346 0 0 21 29

Table 1: Tabulated results for globalMint for dimensions 2 ≤ n ≤ 30.

From Figure 4 and Table 1, we conclude that for all noise levels
(ω = 10−3, 10−2, 10−1) on globalMint:
• MATRS and NOMAD are the two best solvers.
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of NOMAD is almost 7% higher than that of the other solvers.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 37

5.5 Results for bcpMint

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

DFLBOX

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

DFLBOX

Fig. 5: Plots for bcpMint for dimensions 2 ≤ n ≤ 30 and noise levels ω =
0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

413 of 458 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 325 133 0 0 37 40
NOMAD 323 0 4 131 42 29
BFO 314 72 0 72 21 33
DFLBOX 240 218 0 0 30 40
MISO1 214 0 244 0 24 14
MISO2 191 0 57 210 22 13

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

386 of 458 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 303 155 0 0 34 38
NOMAD 302 0 3 153 39 24
BFO 267 67 0 124 17 27
DFLBOX 212 246 0 0 27 36
MISO1 195 0 263 0 22 14
MISO2 169 0 63 226 20 13

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

352 of 458 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 285 173 0 0 33 35
NOMAD 252 0 1 205 33 23
BFO 231 70 0 157 16 23
MISO1 173 0 285 0 20 10
DFLBOX 162 296 0 0 22 27
MISO2 159 0 52 247 19 12

Table 2: Tabulated results for bcpMint for dimensions 2 ≤ n ≤ 30.

From Figure 5 and Table 2, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on bcpMint:
• MATRS and NOMAD are the two best solvers.
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of NOMAD is almost 5% higher than that of the other solvers.

Springer Nature 2021 LATEX template

38 5. NUMERICAL RESULTS

5.5.1 Results on princeMint

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

DFLBOX

MISO1

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

DFLBOX

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

MISO1

MISO2

Fig. 6: Plots for princeMint for dimensions 2 ≤ n ≤ 30 and noise levels
ω = 0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

1271 of 1361 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
NOMAD 1143 0 8 210 57 43
MATRS 1119 241 0 1 51 58
BFO 1079 167 0 115 19 20
DFLBOX 832 529 0 0 30 42
MISO1 829 0 532 0 25 12
MISO2 813 0 157 391 26 12

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

1252 of 1361 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
NOMAD 1093 0 3 265 55 35
MATRS 1093 267 0 1 51 60
BFO 1007 160 0 194 18 23
MISO1 763 0 598 0 24 11
MISO2 690 0 158 513 22 11
DFLBOX 606 755 0 0 24 33

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

1180 of 1361 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 1035 326 0 0 47 53
NOMAD 1000 0 0 361 52 46
BFO 912 173 0 276 16 17
MISO1 629 0 732 0 20 9
MISO2 547 0 139 675 20 10
DFLBOX 474 887 0 0 20 22

Table 3: Tabulated results for princeMint for dimensions 2 ≤ n ≤ 30.

From Figure 6 and Table 3, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on princeMint:
• MATRS and NOMAD are the two best solvers.
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of NOMAD is at most 6% higher than that of the other solvers.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 39

5.6 A comparison of continuous bound-constrained DFO
solvers

5.6.1 Results for global

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

BFO

NOMAD

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

BFO

NOMAD

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

BFO

NOMAD

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

BFO

NOMAD

MISO1

MISO2

Fig. 7: Plots for global for dimensions 2 ≤ n ≤ 30 and noise levels ω =
0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

213 of 216 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 199 17 0 0 56 36
NOMAD 182 0 0 34 57 51
BFO 181 0 0 35 23 55
DFLBOX 145 71 0 0 22 53
MISO2 117 0 34 65 19 12
MISO1 115 0 101 0 19 11

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

210 of 216 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 196 20 0 0 57 38
BFO 178 0 0 38 23 54
NOMAD 176 0 0 40 54 46
MISO1 108 0 108 0 19 11
MISO2 98 0 27 91 18 11
DFLBOX 73 143 0 0 14 27

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

206 of 216 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 190 26 0 0 57 38
BFO 172 0 0 44 24 54
NOMAD 170 0 0 46 54 50
MISO1 75 0 141 0 17 9
MISO2 72 0 26 118 17 12
DFLBOX 57 159 0 0 11 20

Table 4: Tabulated results for global for dimensions 2 ≤ n ≤ 30.

From Figure 7 and Table 4, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on global:
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of MATRS is slightly higher than that of the other solvers.

Springer Nature 2021 LATEX template

40 5. NUMERICAL RESULTS

5.6.2 Results for bcp

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

DFLBOX

BFO

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO1

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

DFLBOX

BFO

MISO1

Fig. 8: Plots for bcp for dimensions 2 ≤ n ≤ 30 and noise levels ω =
0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

205 of 230 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 190 40 0 0 41 31
NOMAD 183 0 1 46 48 35
BFO 136 5 0 89 29 44
DFLBOX 130 100 0 0 32 44
MISO2 95 0 20 115 18 9
MISO1 91 0 139 0 18 9

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

194 of 230 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 178 52 0 0 40 31
NOMAD 159 0 2 69 43 35
BFO 119 0 0 111 25 39
DFLBOX 109 121 0 0 29 40
MISO1 84 0 146 0 17 9
MISO2 83 0 16 131 16 9

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

180 of 230 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 163 67 0 0 39 32
NOMAD 132 0 0 98 35 28
DFLBOX 93 137 0 0 25 34
BFO 87 0 0 143 19 25
MISO1 76 0 154 0 15 9
MISO2 63 0 13 154 14 8

Table 5: Tabulated results for bcp for dimensions 2 ≤ n ≤ 30.

From Figure 8 and Table 5, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on bcp:
• MATRS and NOMAD are the two best solvers.
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of NOMAD is almost 7% higher than that of the other solvers.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 41

5.6.3 Results for prince

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

DFLBOX

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

NOMAD

MATRS

BFO

DFLBOX

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

NOMAD

BFO

DFLBOX

MISO2

Fig. 9: Plots for prince for dimensions 2 ≤ n ≤ 30 and noise levels ω =
0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

536 of 571 problems solved ω = 0.001
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
NOMAD 496 0 3 72 60 51
MATRS 496 75 0 0 61 39
BFO 417 4 0 150 36 51
DFLBOX 329 242 0 0 30 44
MISO2 254 0 54 263 16 6
MISO1 231 0 340 0 16 7

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

519 of 571 problems solved ω = 0.01
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 484 85 0 2 59 41
NOMAD 471 0 2 98 58 50
BFO 379 2 0 190 33 46
DFLBOX 222 349 0 0 25 30
MISO2 206 0 46 319 15 5
MISO1 188 0 383 0 14 8

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

490 of 571 problems solved ω = 0.1
dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 461 110 0 0 58 41
NOMAD 438 0 0 133 55 49
BFO 335 0 0 236 29 38
DFLBOX 178 393 0 0 22 24
MISO2 143 0 53 375 13 4
MISO1 135 0 436 0 12 8

Table 6: Tabulated results for prince for dimensions 2 ≤ n ≤ 30.

From Figure 9 and Table 6, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on prince:
• MATRS and NOMAD are the two best solvers.
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of MATRS is slightly higher than that of the other solvers.

Springer Nature 2021 LATEX template

42 5. NUMERICAL RESULTS

5.7 A comparison of integer bound-constrained DFO
solvers

5.7.1 Results for globalInt

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MISO1

MATRS

BFO

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

MISO2

NOMAD

BFO

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

NOMAD

DFLINT

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MISO1

MATRS

BFO

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

MISO2

NOMAD

BFO

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

NOMAD

DFLINT

MISO2

Fig. 10: Plots for globalInt for dimensions 2 ≤ n ≤ 30 and noise levels
ω = 0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

216 of 216 problems solved ω = 10−3

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MISO1 201 0 15 0 36 24
MATRS 200 13 3 0 50 37
BFO 188 0 0 28 8 24
NOMAD 184 0 4 28 42 45
MISO2 184 0 7 25 35 27
DFLINT 184 0 21 11 54 61

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

215 of 216 problems solved ω = 10−2

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 198 15 3 0 48 36
MISO1 193 0 23 0 36 22
MISO2 190 0 8 18 36 27
NOMAD 186 0 4 26 45 44
BFO 183 0 0 33 8 21
DFLINT 181 1 22 12 53 58

stopping test:
qf ≤ 0.0001, sec ≤ 360, nf ≤ 1200 ∗ n

214 of 216 problems solved ω = 10−2

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 198 15 3 0 48 41
MISO1 193 0 23 0 36 29
NOMAD 182 0 7 27 44 43
DFLINT 178 2 21 15 53 55
MISO2 177 0 8 31 33 30
BFO 167 0 0 49 6 23

Table 7: Tabulated results for globalInt for dimensions 2 ≤ n ≤ 30.

From Figure 10 and Table 7, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on globalInt:
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of DFLINT is almost 5% higher than that of the other solvers.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 43

5.7.2 Results for bcpInt

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

NOMAD

MISO1

MISO2

Fig. 11: Plots for bcpInt for dimensions 2 ≤ n ≤ 30 and noise levels ω =
0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

226 of 230 problems solved ω = 10−3

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 198 30 2 0 42 34
DFLINT 186 30 3 11 41 56
NOMAD 181 0 1 48 43 39
MISO1 169 0 61 0 32 17
MISO2 147 0 13 70 31 17
BFO 105 1 0 124 18 29

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

218 of 230 problems solved ω = 10−2

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 194 35 1 0 42 35
DFLINT 181 25 4 20 39 54
NOMAD 171 0 1 58 38 35
MISO1 168 0 62 0 33 19
MISO2 144 0 7 79 28 16
BFO 103 1 0 126 18 29

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

210 of 230 problems solved ω = 10−1

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 182 47 1 0 39 34
DFLINT 159 39 3 29 33 46
NOMAD 151 0 5 74 35 33
MISO1 148 0 82 0 31 19
MISO2 132 0 10 88 27 17
BFO 75 1 0 154 13 20

Table 8: Tabulated results for bcpInt for dimensions 2 ≤ n ≤ 30.

From Figure 11 and Table 8, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on bcpInt:
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of MATRS is almost 5% higher than that of the other solvers.

Springer Nature 2021 LATEX template

44 5. NUMERICAL RESULTS

5.7.3 Results for princeInt

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

MISO1

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

MISO1

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Performance ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 P

e
rf

o
rm

a
n

c
e
 p

ro
fi

le
s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

DFLINT

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

MISO1

NOMAD

MISO2

1 2 5 10 20 50 100 200 500

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

DFLINT

MISO1

NOMAD

MISO2

10
0

10
1

10
2

10
3

: Cost ratio for nf

0

0.2

0.4

0.6

0.8

1

(
):

 D

a
ta

 p
ro

fi
le

s

nfmax=1200*n, secmax=360, =0.0001

MATRS

MISO1

DFLINT

NOMAD

MISO2

Fig. 12: Plots for princeInt for dimensions 2 ≤ n ≤ 30 and noise levels
ω = 0.001 (left), 0.01 (middle), 0.1 (right). Other details as in Figure 4.

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

559 of 571 problems solved ω = 10−3

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 548 22 0 1 59 42
DFLINT 537 11 6 17 53 63
MISO1 528 0 42 1 38 27
NOMAD 521 0 1 49 46 42
MISO2 506 0 11 54 36 27
BFO 444 0 0 127 15 33

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

558 of 571 problems solved ω = 10−2

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 546 24 0 1 58 45
DFLINT 522 20 6 23 54 57
MISO1 517 0 53 1 37 28
NOMAD 510 0 3 58 45 38
MISO2 494 0 11 66 37 30
BFO 428 0 0 143 14 33

stopping test:
qs ≤ 10−4, sec ≤ 360, nf ≤ 1200 ∗ n

554 of 571 problems solved ω = 10−1

dim∈[2,30] # of anomalies es in %
solver solved #n #t #f nf sec
MATRS 546 24 0 1 59 52
MISO1 498 0 72 1 35 29
DFLINT 492 36 5 38 52 52
NOMAD 479 0 2 90 43 35
MISO2 462 0 10 99 34 31
BFO 351 0 0 220 12 27

Table 9: Tabulated results for princeInt for dimensions 2 ≤ n ≤ 30.

From Figure 12 and Table 9, we conclude that for all noise levels (ω =
10−3, 10−2, 10−1) on princeInt:
• The most robust solver MATRS solves slightly more problems than the other
solvers.
• The nf efficiency of MATRS is almost 7% higher than that of the other solvers.

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 45

6 Conclusion

This paper describes a new matrix adaptation trust region strategy for bound-
constrained DFO problems with mixed-integer variables. This strategy finds
the best points by integer and continuous line search methods in the mutation
and recombination phases, by integer and continuous trust region methods in
the trust region phase, and by mixed-integer line search method in the mixed-
integer phase. A new randomized space-filling method was proposed as a good
and cheap replacement for the Halton sequences to generate well-distributed
mutation points in the integer and continuous mutation phases.

Numerical results show
• on the three mixed-integer collections and the three continuous collections
that the two best solvers MATRS and NOMAD are comparable in terms of robust-
ness and efficiency;
• on the three integer collections that the two best solvers MATRS and DFLINT
are comparable in terms of robustness and efficiency;
• the increase in noise slightly reduces the efficiency and robustness of MATRS
compared to the other solvers.

Acknowledgment The first author acknowledges financial support of the
Austrian Science Foundation under Project No. P 34317.

References
[1] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis, Jr., S. Le Digabel,

and C. Tribes. The NOMAD project. Software available at https://www.
gerad.ca/nomad/.

[2] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization.
Springer International Publishing (2017).

[3] C. Audet, S. Le Digabel, and C. Tribes. The Mesh Adaptive Direct
Search Algorithm for Granular and Discrete Variables. SIAM J. Optim
29 (2019), 1164–1189.

[4] H. G. Beyer. Design principles for matrix adaptation evolution strategies
(2020).

[5] J. Blank, K. Deb, Y. Dhebar, S. Bandaru, and H. Seada. Generat-
ing well-spaced points on a unit simplex for evolutionary many-objective
optimization. IEEE Trans. Evol. 25 (2021), 48–60.

[6] X. W. Chang, X. Yang, and T. Zhou. MLAMBDA: A modified LAMBDA
method for integer least-squares estimation. J. Geod. 79 (2005), 552–565.

https://www.gerad.ca/nomad/
https://www.gerad.ca/nomad/

Springer Nature 2021 LATEX template

46 6. CONCLUSION

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-
Free Optimization. Society for Industrial and Applied Mathematics
(2009).

[8] Josef Dick and Friedrich Pillichshammer. Digital nets and sequences:
discrepancy theory and quasi–Monte Carlo integration. Cambridge
University Press (2010).

[9] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Math. Program. 91 (2002), 201–213.

[10] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi. A linesearch-based
derivative-free approach for nonsmooth constrained optimization. SIAM
J. Optim 24 (2014), 959–992.

[11] A. Ghasemmehdi and E. Agrell. Faster recursions in sphere decoding.
IEEE Trans. Inf. Theory 57 (2011), 3530–3536.

[12] T. Giovannelli, G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free meth-
ods for mixed-integer nonsmooth constrained optimization. Comput.
Optim. Appl. 82 (2022), 293–327.

[13] N. Hansen. The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772 (2016).

[14] W. Huyer and A. Neumaier. J. Glob. Optim 14 (1999), 331–355.

[15] W. Huyer and A. Neumaier. SNOBFIT – stable noisy optimization by
branch and fit. ACM. Trans. Math. Softw. 35 (2008), 1–25.

[16] M. Kimiaei. An active set trust-region method for bound-constrained
optimization. Bull. Iran. Math. Soc. (2021).

[17] M. Kimiaei. A developed randomized algorithm with noise level tuning
for large-scale noisy unconstrained DFO problems and its real-life appli-
cations, Manuscript (2023). Available at https://optimization-online.org/
?p=16687.

[18] M. Kimiaei and A. Neumaier. Efficient composite heuristics for integer
bound constrained noisy optimization, Manuscript (2022). Available at
https://optimization-online.org/2022/07/8998/.

[19] M. Kimiaei and A. Neumaier. Effective matrix adaptation strategy for
noisy derivative-free optimization, Manuscript (2023). Available at https:
//optimization-online.org/?p=22367.

[20] M. Kimiaei and A. Neumaier. Efficient unconstrained black box opti-
mization. Math. Program. Comput. (2022), 365–414.

https://optimization-online.org/?p=16687
https://optimization-online.org/?p=16687
https://optimization-online.org/2022/07/8998/
https://optimization-online.org/?p=22367
https://optimization-online.org/?p=22367

Springer Nature 2021 LATEX template

Matrix adaptation trust region strategy (MATRS) 47

[21] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization
methods. Acta Numer. 28 (2019), 287–404.

[22] G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for
bound constrained mixed-integer optimization. Comput. Optim. Appl. 53
(2011), 505–526.

[23] G. Liuzzi, S. Lucidi, and F. Rinaldi. An algorithmic framework based on
primitive directions and nonmonotone line searches for black-box opti-
mization problems with integer variables. Math. Program. Comput. 12
(2020), 673–702.

[24] G. Liuzzi, S. Lucidi, and F. Rinaldi. TESTINT - a collection
of 240 inequality constrained plus 61 bound constrained test prob-
lems for black-box integer programming. DFL – derivative-free library,
http://www.iasi.cnr.it/ liuzzi/dfl/ (2022).

[25] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization
algorithms. SIAM J. Optim. 20 (2009), 172–191.

[26] J. Müller. MISO: mixed-integer surrogate optimization framework.
Optim. Eng. 17 (2015), 177–203.

[27] H. Niederreiter. Random number generation and quasi-Monte Carlo
methods. SIAM (1992).

[28] N. Ploskas and N. V. Sahinidis. Review and comparison of algorithms and
software for mixed-integer derivative-free optimization. J. Glob. Optim.
82 (2021), 433–462.

[29] M. Porcelli and Ph. L. Toint. Exploiting problem structure in derivative
free optimization. ACM. Trans. Math. Softw. 48 (2022), 1–25.

[30] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: a review
of algorithms and comparison of software implementations. J. Global.
Optim. 56 (2012), 1247–1293.

[31] N. V. Sahinidis. BARON 21.1.13: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual (2017).

	Introduction
	Related work
	An overview of our new solver
	Improved mutation phase
	Improved recombination phase
	New mixed-integer phase

	Space-filling sequences
	MATRS
	The algorithm
	cMutation
	iMutation
	Selection
	cRecom
	cTRS
	iRecom
	iTRS
	mInteger, the mixed-integer phase

	Implementation
	Numerical results
	Codes compared
	Test problems
	Tools for efficiency and robustness
	A comparison of mixed-integer bound-constrained DFO solvers
	Results for globalMint

	Results for bcpMint
	Results on princeMint

	A comparison of continuous bound-constrained DFO solvers
	Results for global
	Results for bcp
	Results for prince

	A comparison of integer bound-constrained DFO solvers
	Results for globalInt
	Results for bcpInt
	Results for princeInt

	Conclusion

