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Electric vehicles (EV) pave a promising way towards low-carbon transportation, but the transition to all

EV fleets creates new challenges for the public transportation sector. Despite increasing adoption of electric

buses, the main challenges presented by the battery electric bus technology include the lack of charging

facilities, the reduced operating capacity per battery charge compared to fossil-fuel vehicles, and weather-

induced degradation. Thus, the joint planning of electric bus fleets and charging infrastructure are essential to

guarantee energy security of the transport service and the parsimony of investment. In this paper, we propose

a multi-period investment model in which the transition to a 100% electric bus fleet and the expansion of the

depot and on-route charging facilities are carried out jointly and gradually through bus retirement targets

or annual budget constraints. An important feature of our model is the representation of two optimization

time scales, one referring to yearly investment and the other to hourly operation; moreover, the hourly

operation model captures the cyclic nature of the bus schedules as well as various EV charging strategies. We

characterize the computational complexity of the proposed model and identify polynomially solvable problem

subclasses. A primal heuristic algorithm is proposed that can significantly speed up Gurobi. Extensive

computational experiments on public transit systems in major cities in the US and the world are carried out,

using real data. Insights gained from real-world case studies are also explained through theoretical analysis.
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1. Introduction

Modern transportation relies heavily on fossil fuels. However, fossil fuel consumption endangers

our world. According to the Intergovernmental Panel on Climate Change, IPCC (2021), carbon

dioxide emission is the predominant cause of global warming and has already increased the global

average temperature by one degree Celsius above the pre-industrial revolution level. An increase
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above two degrees Celsius can cause extreme weather events, a shortage of food supply, and higher

sea levels. The United States, among many other countries, aims to reduce its net greenhouse gases

(GHG) emissions by 50% below the 2005 levels in the coming decade, according to US Department

of State (2021).

To curb the GHG emission, the world is seeking alternative energy sources. Worldwide, the

transportation sector is the second largest contributor to greenhouse gas emissions EPA (2014)

after the electricity industry, while in the US, it is the largest contributor EPA (2019). Although

buses represent a fraction of the transportation segment, their effect on public health is significant,

due to the fact that buses operate in densely populated urban areas and emissions such as nitrogen

oxide and particulate matter adversely affects cardiovascular and respiratory health, see Bourdrel

et al. (2017) and Ritz et al. (2019).

One attractive solution in the public transit segment is the Battery Electric Bus (BEB). A BEB

produces zero tailpipe GHG emissions, its fuel cost is around 40% cheaper than a similar-sized

fossil-fuel bus, its noise level is significantly lower, and it has less maintenance need. There has

been an ever-growing number of transportation agencies all over the world switching to BEBs as

a more sustainable option for public transportation Bus Sustainable (2020).

However, BEB technology poses new challenges to the bus operation planning, fleet sizing, and

the charging placement due to the limited travel range and long charging hours. The optimal

charging infrastructure plan may vary with the spatial distribution of the routes. The minimum

fleet size to maintain the same service level may increase to compensate for the charging time.

Indeed, when planning the transition to an entirely electric bus fleet, one should consider the fleet

sizing, charging placement, and the impact on bus operation altogether.

There are two typical charging technologies that are adopted on a commercial scale, namely

depot and on-route charging. Depot charging refers to charging BEBs with a low-voltage alternating

current (AC) system in a bus depot or garage, which has lower deployment and usage costs but

requires several hours to fully charge a BEB. On-route charging, in contrast, uses a direct current
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(DC) fast charging system. It has a higher cost than a depot charger, but can be used in bus

terminals for fast charging during the layover time of a bus to provide the energy needed for a

round trip on a bus route.

In this paper, we propose a novel integer linear optimization model for the joint optimal planning

and operation of depot and on-route charging facilities and BEB fleets. This model plans the

transition to an entirely BEB fleet through annual investment targets which consider the agency’s

budget, the conventional bus retirement targets, and the operation of the mixed fleet of BEBs and

conventional buses in transition. The model is realistic in capturing periodic bus schedules, BEB

charging dynamics, various investment and operational costs, with depot locations, bus routes, and

bus demand extracted from real transit agency data.

1.1. Literature Review

The scientific literature on electric vehicles (EVs) has investigated a wide variety of modeling

techniques and applications. In this section, we mention some recent papers that are related to

electrical bus fleet planning and operations.

Kleindorfer et al. (2012) presents a model for EV fleet renewal from the French national postal

service. Mak et al. (2013) use distributionally robust optimization to plan the battery swapping

infrastructure. The work of Schneider et al. (2014) evaluates the implementation of battery swap-

ping for EVs in freight logistics, while Avci et al. (2015) consider the environmental impact of the

adoption of electric passenger vehicles. Montoya et al. (2017) consider an EV routing model with a

nonlinear charging function. Shen et al. (2019) present a literature review of other models related

to EV infrastructure planning, EV charging operations, and public policy in the EV industry.

The work of Li (2014) considers battery charging scheduling, battery swapping, and the bus

scheduling of a mixed bus fleet including battery-electric, compressed natural gas, diesel, and

hybrid-diesel buses. Abdelwahed et al. (2020) concentrate on fast charging scheduling of battery

electric buses to minimize charging costs and power grid impact. Wang et al. (2020) focus on

battery capacity fade and propose an optimization model, which considers the reduction in the
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storage capacity of batteries, to schedule the electric bus charge. The works of Kunith et al. (2017),

Rogge et al. (2018), and Houbbadi et al. (2019) consider a planning model for the composition

of an electrical bus fleet using depot charge BEBs. With regards to technological factors, the

paper of Yildirim and Yildiz (2021) assesses the impact of wireless chargers on battery-electric bus

scheduling. Panah et al. (2021) consider a hybrid solution of hydrogen and electric buses with the

concept of multi-product charging stations.

With regards to modeling specific features, the papers by He et al. (2019) and Kunith et al.

(2017) propose models for installing fast chargers focused on the electric demand charge, which is

the cost associated with the variations in power demand. Trocker et al. (2020) assess the potential

reduction of the peak demand charge by installing energy storage units for on-route fast chargers.

The works of Wu et al. (2021) and He et al. (2020) propose a fast charging location model for

battery-electric buses, considering the bus operation and the power distribution. Liu and Liang

(2020) propose a stochastic model for managing the electric bus charge, the photovoltaic energy

production, and energy storage systems. Csonka (2021) and Dirks et al. (2021) present a long-term

multi-period model for the electric bus integration into urban bus networks.

It is also worth commenting on the diversity of modeling techniques associated with battery-

electric buses. Zhang et al. (2021b) use bi-level programming to formulate an electrical transit

route planning problem, where the upper level determines the route structure and charging station

location while the lower level calculates the user cost. Uslu and Kaya (2021) propose a charger

location model that describes the bus charging using queuing theory. Zhang et al. (2021a)’s work

is based on a stochastic model for the interaction between bus charge and battery swap stations

for taxi and bus fleets. Lin et al. (2019) propose a mixed-integer second-order cone programming

model for the charging planning of battery-electric buses.

1.2. Contributions

1. Modeling: This paper proposes an Optimal Planning of Charging Facilities and Electric Bus

Fleet (OPCF-EBF) model for public transit systems to optimally plan the transition to an entirely

electric bus fleet with several innovative features.
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(a) The two-time-scale structure of the OPCF-EBF model brings together long-term planning

and short-term operation, with annual investment decisions of charging infrastructure and fleet

composition over a decade-long transition horizon and hourly operation decisions of bus charging

and scheduling over 24 hours in each planning year.

(b) Modular arithmetic is used to model the repeating of daily 24-hour bus demand in each

planning year. Various charging strategies, such as early charging (charging before battery full

depletion), idling (neither working nor charging), non-preemptive charging (charging until full), are

modeled, together with practical planning strategies such as utilization of existing bus depots and

route terminals as potential charging facilities, respecting of retirement schedules of conventional

buses, and various realistic investment and operational costs.

2. Characterizations: We characterize the computational complexity of the proposed model

and identify special structures in a subclass of the proposed model that can be polynomially solved

through an interesting transformation.

(a) The proposed OPCF-EBF model is shown to be NP-hard through reduction from the

uncapacitated facility location problem. Even with one planning period and two charging states

for depot-charged BEBs, the OPCF-EBF model is still NP-hard, as the numbers of bus routes and

charging depots grow.

(b) We show that an important class of OPCF-EBF problems, which has one bus route with

arbitrary numbers of investment periods and charging states for depot-charged BEBs under a

simple charging policy, has rich structure and is polynomially solvable.

3. Algorithm: We propose an effective and computationally scalable primal heuristic called

“Policy-Restriction” that significantly outperforms and improves Gurobi.

4. Real-world case studies: We conduct extensive computational studies using real-world

data from public transit systems in major cities in the U.S. and around the world, which reveal

insights into the optimal investment and operational strategies. For example, an optimal investment

decision tends to invest in depot chargers before on-route chargers; an optimal operational solution

tends to use on-route BEBs to meet base-load bus demand and to use depot BEBs to meet peaking

bus demand. These empirical insights are also explained through theoretical analysis.
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1.3. Organization of the Paper

The rest of the paper is structured as follows. We introduce the OPCF-EBF model in Section 2.

In Section 3, we analyze the complexity of the proposed OPCF-EBF model. Section 4 proposes a

primal heuristic to solve the challenging large-scale integer optimization model. Section 5 reports

real-world case studies with observed insights and theoretical analysis. Section 6 concludes the

paper. The electronic companion contains all the proofs.

2. An optimal planning model for charging facility and battery electric bus fleet

The OPCF-EBF model is formulated as a two-stage problem in Section 2.1, where investment

problem is in the first stage and the operational problem is the second-stage recourse. The detailed

operational problem is formulated in Section 2.2.

2.1. The OPCF-EBF model

We first define all the investment parameters and investment decision variables before laying out

the overall two-stage OPCF-EBF model.

2.1.1. Investment parameters Let Θ denote the set of yearly investment periods, (i.e.,

Θ = {1,2 . . . ,N} for some N ∈ Z+). Let I be the set of depot sites, J be the set of bus routes, K

be the set of relevant depot chargers, and R be the set of terminal stations available for on-route

charging. In the model, we allow BEBs from different manufacturers, since different BEB models

can have different charging times, battery capacities, unit costs, and ability to perform on-route

charging. In particular, denote Bdepot and Broute as the set of BEB models that can be charged by

depot and on-route chargers, respectively.

2.1.2. Investment decision variables Let x∈ {0,1}|I|×|Θ| be the vector of binary variables

such that xθi = 1 implies that the depot site i∈ I can install depot chargers during the investment

period θ ∈Θ, and xθi = 0 otherwise. Let y ∈Z|I|×|K|×|Θ|+ be the vector of integer variables whose entry

yθik represents the number of depot chargers of a given plug type k ∈K (e.g. levels 1 and 2 chargers)

for a given site i∈ I and investment period θ ∈Θ. Let χ∈Z|R|×|Θ|+ represent the number of on-route
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chargers at each terminal station r ∈R and investment period θ ∈Θ. Let η ∈ Z|Bdepot|×|J |×|Θ|+ and

η̃ ∈Z|Broute|×|J |×|Θ|+ be the numbers of depot and on-route BEBs respectively along each route j ∈J ,

given the BEB type, and investment period. Let ξ ∈Z|J |×|Θ|+ be the vector of conventional buses in

each route j ∈J and investment period θ ∈Θ.

2.1.3. Two-stage OPCF-EBF model The OPCF-EBF model is formulated as a two-stage

integer optimization model in the investment variables below.

min
∑
θ∈Θ

γθ ·
(
Iθ(x, y,χ, η, η̃, ξ) +Fθ(x, y,χ, η, η̃, ξ)

)
(1a)

s.t. Iθ(x, y,χ, η, η̃, ξ)≤Cθ, θ ∈Θ, (1b)

xθi ≥ xθ−1
i , yθik ≥ yθ−1

ik , χθr ≥ χθ−1
r , i∈ I, k ∈K r ∈R, θ ∈Θ, (1c)

ηθbj ≥ ηθ−1
bj , η̃θb̄j ≥ η̃

θ−1
b̄j

, ξθj ≤ ξθ−1
j , b∈Bdepot, b̄∈Broute, j ∈J , θ ∈Θ, (1d)

Qθ

ik
xθi ≤ yθik ≤Q

θ

ikx
θ
i , 0≤ χθr ≤ χθUB,r, i∈ I, k ∈K, r ∈R, θ ∈Θ, (1e)

ξθLB,j ≤ ξθj ≤ ξθUB,j, j ∈J , θ ∈Θ, (1f)

xθi ∈ {0,1}, yθik ∈Z+, χ
θ
r ∈Z+, i∈ I, k ∈K, r ∈R, θ ∈Θ,

ηθbj ∈Z+, η̃
θ
b̄j ∈Z+, ξ

θ
j ∈Z+, b∈Bdepot, b̄∈Broute, j ∈J , θ ∈Θ. (1g)

The objective function (1a) has two parts Iθ and Fθ for each investment period θ, where Iθ rep-

resents the investment related cost, Fθ is the operational cost associated with the infrastructure

decision (x, y,χ, η, η̃, ξ), and γθ is a discount factor. The investment cost Iθ is defined as

Iθ(x,χ, y, η, η̃, ξ) =
∑
i∈I

cθx,i(x
θ
i −xθ−1

i ) +
∑

(i,k)∈I×K

cθy,ik(y
θ
ik− yθ−1

ik ) +
∑
r∈R

cθχ,r(χ
θ
r −χθ−1

r )

+
∑

(b,j)∈Bdepot×J

cθη,bj(η
θ
bj − ηθ−1

bj ) +
∑

(b,j)∈Bdepot×J

cθη̃,bj(η̃
θ
bj − η̃θ−1

bj )

+
∑
j∈J

cθξ,j · (ξθj − ξθ−1
j ), (2)

which is incurred on the incremental change of charging facilities and bus fleet in year θ. The

vectors cx, cy, cχ, cη, cη̃, and cξ in (2) represent the unit cost of the corresponding decisions x, y,
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χ, η, η̃, and ξ. The cost cξ signifies the financial benefit of retiring a conventional bus, which can

be also interpreted as a penalty for using fossil fuel-based buses. The operational cost Fθ is given

by a recourse problem in operational decisions and will be presented in Section 2.2.

In terms of constraints, we have the budget constraint (1b) on the investment costs, where Cθ is

the investment budget in period θ. Constraints (1c) and (1d) describe the monotone expansion of

the charging infrastructure and the BEB fleet, and the monotone reduction of the conventional bus

fleet. We have the upper and lower bounds (1e) on the numbers of depot and on-route chargers,

where Qθ

ik
and Q

θ

ik are the upper and lower bounds on the number of depot plugs yθik given that

the depot site i is open (i.e., xθi = 1), while χθUB,r is the upper bound on the number of on-route

chargers χθr. The bus retirement target constraint (1f) has upper and lower bounds ξθLB,j and ξθUB,j

for the number of conventional buses ξθj in each year θ.

2.2. The operational problem as recourse

The goal of the operational problem is to find an optimal daily schedule for the charging and

operation of a mixed fleet of BEBs and conventional buses in an investment period with a given

investment decision. We use the information on existing bus routes and schedules published by

public transit agencies, see MobilityData IO (2021), and assume that the mixed fleet should operate

on the same routes and satisfy the same bus demand as in the current system. To obtain the bus

demand for each hour and route, we count the number of operating buses from the published bus

schedules. See Figure 1a as an illustration of the bus schedules for routes 2, 4, and 102 on a weekday

in Atlanta’s MARTA system and Figure 1b for the total bus demand in Atlanta on a weekday in

August 2019.

In the following sections, we describe the operational problem as a recourse to the investment

decisions. Sections 2.2.1, 2.2.2, and 2.2.3 describe the parameters, decisions, and constraints, which

are put together in Section 2.2.4 to formulate the operational problem, whose optimal objective

value is the operational cost Fθ in the overall model (1a).
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Figure 1 Atlanta MARTA bus schedule for routes 2,4, and 102, and the total bus demand in August 2019.

(a) Weekday bus schedule for routes 2, 4, and 102. (b) Weekday total bus demand.

2.2.1. Parameters in the operational problem.

1. Time related parameters: Let [0 : T − 1] be the set of time intervals {0,1, . . . , T − 1} of

the operational horizon, which is treated as the cyclic group Z/TZ of integers modulo T . In this

way, the operation becomes cyclic, i.e., the operation at time t= T − 1 loops back to time t= 0 as

the next time step. This construction models stationary, periodic operation rather than transient

operation with fixed initial (t= 0) and final conditions (t= T −1). If each t∈ [0 : T −1] is an hourly

interval and T = 24, then the operational problem models the repeated daily bus operation.

2. Charging related parameters: Different types of BEBs may have different battery capac-

ities, thus we define [1 :Wb + 1] := {1, . . . ,Wb + 1} as the set of battery states of a depot BEB of

type b∈Bdepot, where s= 1 and s=Wb+1 denote the fully charged and the fully discharged states,

respectively. The value Wb is the lowest battery state in which it is still safe to operate a depot

BEB. The battery state index increases with time, that is, if a depot BEB is in a state s when

it operates in time interval t, then it must be in the battery state s+ 1 at time t+ 1 to model

the battery discharging in one interval of operation. Let P be the set of all pairs of depot BEB

types and battery states, i.e., P := {(b, s) : b ∈ Bdepot, s ∈ [1 :Wb + 1]}. Let Lbks be the number of

time intervals needed to fully charge a depot BEB of type b ∈ Bdepot from state s ∈ [1 :Wb + 1] to

s = 1 using a depot charger of type k ∈ K. For instance, suppose an hourly interval operational

model with T = 24 hours. Consider a depot BEB b with battery capacity Wb = 12 hours. If a depot

charger k takes 6 hours to fully charge b, then we have Lbk,13 = 6. One can use a linear interpolation



10

rule to define the charging time Lbks for other states of charges s∈ [1 :Wb]. This means that if the

BEB b starts to charge at time t with initial state s= 13, then it will be fully charged at time t+6.

3. Routes related parameters: Let J (r) be the set of bus routes associated with terminal

station r. Let R(j) be the set of terminal stations that are connected to the bus route j. We assume

it is possible to accommodate up to CHr on-route charging activities within one operational time

interval at the terminal station r. Denote by Q the set of all pairs of routes and terminal stations,

i.e., Q := {(j, r) : j ∈J , r ∈R(j)}.

2.2.2. Decision variables in the operational problem. Given an investment period θ ∈Θ,

consider the decisions wθ ∈ ZNd,op+ and vθ ∈ ZNd,op+ as the number of depot BEBs that are working

and idling (i.e. neither working nor charging) respectively, where the set Nd,op is the Cartesian

product P ×J × [0 : T − 1] and represents all the indices for wθ and vθ, including the depot BEB

model, battery state, bus route, and time interval. Moreover, let z ∈ ZNd,ch+ represent the battery

state at which a group of depot BEBs starts charging, where Nd,ch is defined as P×I×J ×K× [0 :

T − 1]. Finally, the decision βθ ∈ ZNd,beta+ contains the number of depot BEBs that are currently

charging regardless of the charging state, where Nd,beta is defined as B×J × [0 : T − 1].

Let w̃θ ∈ ZNroute+ and ṽθ ∈ ZNroute+ be the decisions that represent the number of on-route BEBs

that are working and idling respectively, for each terminal station, route, and time interval. The set

Nroute is defined as Q× [0 : T − 1]. Let φθ ∈ZNconv+ and σθ ∈ZNconv+ be the numbers of conventional

buses working and idling for each route and time interval, where Nconv is J × [0 : T − 1]. Finally,

let uθ ∈ZNslack+ be the slack variable of the demand constraint, where Nslack is J × [0 : T − 1].

2.2.3. Constraints of the operational problem.

1. Bus demand satisfaction: Given (j, t, θ)∈J × [0 : T−1]×Θ, we have the demand constraint

∑
(b,s)∈P

wt,θbjs +
∑

(b,r)∈Broute×R

w̃t,θbjr +φt,θj +ut,θj ≥ d
t,θ
j , (3)

where the bus demand dt,θj must be satisfied by the total number of working depot BEBs (the first

term on the left), working on-route BEBs (the second term), working conventional buses (the third

term), and the slack variable ut,θj (the fourth term).
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2. Depot BEB dynamics: For all t∈ [0 : T −1] and (b, j, θ)∈Bdepot×J ×Θ, we have the depot

BEB charging dynamic equations

wt,θbj1 + vt,θbj1 =

Wb+1∑
s=2

∑
(i,k)∈I×K

z
(t−Lbks),θ
bijks + v

(t−1),θ
bj1 , (4a)

wt,θbjs +
∑

(i,k)∈I×K

zt,θbijks + vt,θbjs =w
(t−1),θ

bj(s−1) + v
(t−1),θ
bjs , s∈ [2 : (Wb + 1)], (4b)

wt,θbj(Wb+1) = 0, zt,θbijk1 = 0. (4c)

Equation 4a states that the total number of fully charged (s= 1), working and idling depot BEBs

at time t (the two terms on the left) must equal to the total number of depot BEBs that just

finished charging at time t (the first term on the right) plus the fully charged idle depot BEBs at

time t−1 (the second term on the right). The same dynamics applies to the partially charged state

s∈ [2 : (Wb+ 1)] in (4b). Equation (4c) enforces that the depot BEBs cannot work if fully depleted

(the first equation) and cannot charge if fully charged (the second equation). Recall that all time

indices are cyclic modulo T . Also note that these equations represent a non-preemptive charging

policy (i.e. charging must continue until fully charged), which is practical for depot BEB charging

and assumed throughout the paper.

3. On-route BEB and conventional bus dynamics: The dynamic equations for on-route

BEBs and conventional buses are

w̃t,θbjr + ṽt,θbjr = w̃
(t−1),θ
bjr + ṽ

(t−1),θ
bjr , (5a)

φt,θj +σt,θj = φ
(t−1),θ
j +σ

(t−1),θ
j , (5b)

for all (j, θ)∈J ×Θ, r ∈R(j), b∈Broute, and t∈ [0 : T−1]. Equations (5a) and (5b) are conservation

of on-route and conventional buses over each time interval, respectively. Because the on-route

charging is accommodated within an operational time interval no state-of-charge index is needed.

4. Bounds on depot BEBs simultaneously being charged: The number of depot BEBs

being charged and the upper bound by the number of depot chargers are given below

βt,θbijk−
Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−l),θ
bijks = 0, (6a)
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∑
b∈Bdepot

∑
j∈J

βt,θbijk ≤ yθik, (6b)

for all (i, j, k, θ) ∈ I ×J ×K×Θ, b ∈ Bdepot, and t ∈ [0 : T − 1]. Here, equation (6a) has the total

number of type b depot BEBs that are being charged at time t, depot i, route j, using charging

plug type k. Equation (6b) is an upper bound on βt,θbijk by the total number of depot chargers yθik

that are invested.

5. On-route charging capacity: The number of working on-route BEBs that can charge at a

given terminal is bounded by the following constraint∑
b∈Broute

∑
j∈J (r)

w̃t,θbjr ≤CHr ·χθr, (7)

for all (r, θ) ∈R×Θ, and t ∈ [0 : T − 1]. Recall that CHr is the charging capacity of an on-route

charger over a time interval and χθr is the number of on-route chargers on route r, investment

period θ.

6. Total numbers of BEBs and conventional buses: The link between the operational

variables and the total number of BEBs and conventional buses is given below

Wb∑
s=1

w0,θ
bjs +

Wb+1∑
s=1

v0,θ
bjs +

∑
i∈I

∑
k∈K

β0,θ
bijk = ηθbj, b∈Bdepot, (8a)

∑
r∈R(j)

w̃0,θ
bjr + ṽ0,θ

bjr = η̃θbj, b∈Broute, (8b)

φ0,θ
j +σ0,θ

j = ξθj , (8c)

for all (j, θ) ∈J ×Θ. It is enough to relate the total number of buses to the operational variables

at time t= 0, because the dynamic equations (4)-(5) imply bus conservation, see Section 2.3.1.

2.2.4. The model of the operational problem Finally, we can formulate the operational

problem using the constraints defined above:

Fθ(x, y,χ, η, η̃, ξ) := min p>z z
θ + p>ww

θ + p>w̃w̃
θ + p>φφ

θ + p>u u
θ

s.t. (3)− (8),

wθ, vθ ∈ZNd,op+ , zθ ∈ZNd,ch+ , βθ ∈ZNd,beta+ ,

w̃θ, ṽθ ∈ZNroute+ , φθ, σθ ∈ZNconv+ , uθ ∈ZNslack+ .

(9)



13

Some observations are instructive regarding the operational costs. The cost pz contains the

unit electricity cost for charging a depot BEB plus the deadhead cost of a trip between a route

and a depot charging site. The pw and pφ represent the unit costs of operating depot BEBs and

conventional buses, respectively, which are essentially the bus driver costs. The pw̃ contains the

unit electricity cost associated with the incremental charge at on-route stations plus the bus driver

cost. The pu represents the penalty for the demand constraint violation.

2.3. Properties of the optimal planning of model

2.3.1. Conservation of the total number of buses As our model does not track individual

buses, but rather only tracks the total number of buses in different states, it would be assuring to

verify that the total number of each type of buses in the fleet is conserved over operating times

within each investment period. Indeed, Eq. (5a) and (8b) imply that the total number of on-route

BEBs counted in interval t is equal to the total number of invested on-route BEBs η̃θbj as

∑
r∈R(j)

w̃t,θbjr + ṽt,θbjr = η̃θbj, b∈Broute, (10)

for all (j, θ)∈J ×Θ and t∈ [0 : T −1]. The conservation of the total number of conventional buses

follows analogously as φt,θj + σt,θj = ξθj for all j ∈ J , t ∈ [0 : T − 1], and θ ∈Θ. For depot BEBs, the

conservation is stated in Lemma 1 and the proof is referred to the Electronic Companion EC.1.

Lemma 1. The total number of depot BEBs is constant through the operational horizon. That is,

the following equality holds

Wb∑
s=1

wt,θbjs +

Wb+1∑
s=1

vt,θbjs +
∑
i∈I

∑
k∈K

βt,θbijk = ηθbj, t∈ [0 : T − 1], (b, j, θ)∈Bdepot×J ×Θ. (11)

3. Computational complexity

3.1. Complexity of the OPCF-EBF model

The OPCF-EBF problem defined in (1)-(9) is NP-hard. The idea of the proof is to create a map-

ping between the charging depot and bus terminals in the OPCP-EBF and the facilities in an

uncapacitated facility location problem. Moreover, some special classes of the OPCF-EBF problem

are already NP-hard as shown in the following theorem. The proof is given in EC.2.1.
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Theorem 1. The OPCF-EBF problem is NP-hard. Even an OPCF-EBF problem with a single

investment period and only depot BEBs of two battery states or only on-route BEBs is NP-hard.

3.2. A polynomial time solvable class: the fleet sizing problem

In this subsection, we explore another dimension of the model with only one bus route and only

depot BEBs, but allow an arbitrary number of battery states and investment periods. We call this

a fleet-sizing problem. We show that, under a simple non-preemptive charging strategy with no

early charging and idling, the following fleet-sizing problem is polynomially solvable.

min
η

∑
θ∈Θ

cθη · ηθ + F̃θ(η
θ) (12a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ∈Z+, θ ∈Θ. (12b)

Here, F̃θ(η
θ) is the operational cost of a depot BEB fleet of size ηθ during the investment period θ,

which is given by the following operational problem

F̃θ(η
θ) = min

w,z

∑
t∈[0:T−1]

(
W∑
s=1

pt,θw,s ·wt,θs + pt,θz · zt,θ
)

(13a)

s.t.
W∑
s=1

w0,θ
s +

L−1∑
l=0

z−l,θ = ηθ, (13b)

wt,θ1 = zt−L,θ, wt,θs =wt−1,θ
s−1 , zt,θ =wt−1,θ

W , t∈ [0 : T − 1], (13c)

W∑
s=1

wt,θs ≥ dt,θ, t∈ [0 : T − 1], (13d)

wt,θs , z
t,θ ∈Z+, t∈ [0 : T − 1], s∈ [1 :W ], (13e)

which minimizes the total working and charging cost in (13a), subject to the total number of depot

BEBs equal to ηθ in (13b), the non-preemptive policy (13c) with non-stop working buses that start

charging once it reaches the depleted battery state W and resume operation immediately after

fully charged, and the bus demand constraint (13d).

The strategy to prove the polynomial solvability of (12)-(13) has three steps. First, we show

that the operational problem (13) has a tight LP relaxation, thus a tight convex lower envelope
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(Theorem 2). Then, using this, (12) can be viewed as a nonlinear integer program with a convex

piecewise linear objective. Exploiting such a view allows us to reformulate and solve (12)-(13)

through a small number of LPs (Theorem 3). Lastly, we do a detailed complexity analysis to show

it is polynomial time to solve all the LPs involved (Theorem 4).

To carry out the first step, note that the constraints of (13) may not be totally unimodular (TU).

However, interestingly, by exploiting the rich symmetry imposed by the non-preemptive charging

policy and the modular arithmetic in (13), we can reformulate and unimodularly transform (13)

to an equivalent formulation that does have the TU property (see Lemmas EC.1 and EC.2). Based

on this, we can reach the following conclusion. The proof is given in EC.2.2.1.

Theorem 2. The domain of F̃θ is a set of integer multiples of (W +L)/k, where k is the greatest

common divisor of W + L and T , that is, dom(F̃θ) ⊆
{
i(W+L)

k
∈Z

∣∣∣ i∈Z}. Moreover, the LP

relaxation of (13) gives a tight lower convex envelope of F̃θ, i.e., it is equal to F̃θ(η
θ),∀ηθ ∈ dom(F̃θ).

To carry out the second step, we first rescale the fleet variables ηθ of the fleet sizing problem (12)

to the appropriate domain of F̃θ using the change of variables ηθ = k
W+L

·ηθ. Define the new objective

costcθη = W+L
k
· cθη, the new lower and upper bounds ηθLB =

⌈
k

W+L
· ηθLB

⌉
and ηθUB =

⌊
k

W+L
· ηθUB

⌋
,

and the new value function F θ(η
θ) = F̃θ

(
W+L
k
· ηθ
)

. By Theorem 2, F θ(·) can be extended to a

extended-real-valued convex piecewise linear function. Thus, (12) is essentially a separable convex

integer program (SCIP), separable over θ. Now the key result, Theorem 3, shows that (12), viewed

as an SCIP, can be further reformulated as a new integer linear program (15), which has an exact

LP relaxation. Underlying this result is a proximity result proved for general SCIP that an optimal

integer solution of SCIP is close to its LP relaxation’s optimal solution (Theorem EC.2).

The new IP (15) takes as parameters an optimal solution, denoted as η∗,LR, of the linear relax-

ation of (12)-(13), as well as a discretization of the convex function F θ(·), which can be obtained
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by solving some LPs. In particular, let hθLB and hθUB be the smallest and largest integer h∈ [0 : 2|Θ|]

such that F θ(bηθ∗,LRc− |Θ|+h)<∞, and let qθδ,h be the cost vector defined as

qθδ,h =



F θ(bηθ∗,LRc− |Θ|+hθLB), if h= hθLB,

F θ(bηθ∗,LRc− |Θ|+h)−F θ(bηθ∗,LRc− |Θ|+h− 1), if h∈ [hθLB + 1 : hθUB],

0, if h /∈ [hθLB : hθUB],

(14)

for all h= 0, . . . ,2|Θ| and θ ∈Θ. Thus, we have Theorem 3, which is proved in EC.2.2.2.

Theorem 3. The fleet sizing problem (12) can be reformulated as the following integer program:

min
η,δ

∑
θ∈Θ

(
cθη · ηθ +

2|Θ|∑
h=0

qθδ,h · δθh
)

(15a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, θ ∈Θ, (15b)

ηθ−
2|Θ|∑
h=0

δθh = bηθ∗,LRc− |Θ| − 1, θ ∈Θ, (15c)

δθh = 1, h∈ [0 : hθLB], θ ∈Θ, (15d)

δθh = 0, h∈ [hθUB + 1 : 2|Θ|], θ ∈Θ, (15e)

ηθ ∈Z+, δ
θ
h ∈ {0,1}, h= 0, . . . ,2|Θ|, θ ∈Θ. (15f)

An optimal solution (η∗, δ∗) to (15) exists if and only if an optimal solution to (12) exists. The

objective function requires O(|Θ|) evaluations of the value function F θ(·), for each θ ∈Θ. The con-

straint matrix induced by (15b)-(15f) is TU. Thus, (15) can be solved exactly by its LP relaxation.

Finally in the last step, we show that all the LPs involved, i.e. the LP relaxation of (12)-(13),

the evaluations of F θ(·) in (14), and the LP relaxation of (15), can be solved in polynomial time by

an algorithm of Vaidya (1990). Let k be defined as in Theorem 2 and L be the size of the integer

program (12) (see (EC.38)). The theorem below is proved in EC.2.2.3.

Theorem 4. An optimal integral solution of (12) can be obtained in O
(

(k3|Θ|3 + |Θ|6)L
)

arith-

metic operations.
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4. Primal Heuristic Method

The OPCF-EBF model (1)-(9) is an extremely challenging large-scale integer linear program. The

state-of-the-art commercial solver such as Gurobi cannot obtain a good feasible solution within

a reasonable computation time as will be shown in the computation part. After explorations of

various computation methods, it became evident the need for primal heuristics to warm-start

Gurobi. In this section, we describe a primal heuristic called the Policy Restriction.

Policy Restriction heuristic. This heuristic restricts the operation dynamics of depot BEBs

to reduce the primal solution search. Indeed, we denote the set of positive demand time intervals

as T servicej,θ = {t∈ [0 : T −1] | dt,θj > 0} and refer to it as the service times. Analogously, we define the

set of zero-demand time intervals as T offj,θ = [0 : T − 1]\T servicej,θ and refer to it as off-service times.

The Policy Restriction heuristic prevents the depot BEBs from charging at any state s different

from the depleted state Wb + 1 during the service times, that is,

zt,θbijks = 0, ∀t∈ T servicej,θ , s∈ [2 :Wb], (b, i, j, k, θ)∈Bdepot×I ×J ×K×Θ. (16)

It also prevents the depot and on-route BEBs from being idle during service times, with the

exception of depot BEBs when fully charged (s= 1):

vt,θbjs = 0, ∀t∈ T servicej,θ , s∈ [2 : (Wb + 1)], (b, j, θ)∈Bdepot×J ×Θ, (17)

ṽt,θbjr = 0, ∀t∈ T servicej,θ , r ∈R(j), (b, j, θ)∈Broute×J ×Θ. (18)

The idea of the above restriction is to use fully charged depot BEBs when it is most convenient

in terms of cost. Lastly, the number of working depot and on-route BEBs must be zero during

off-service times t∈ T offj,θ :

wt,θbjs = 0, ∀t∈ T offj,θ , s∈ [1 :Wb], (b, j, θ)∈Bdepot×J ×Θ, (19)

w̃t,θbjr = 0, ∀t∈ T offj,θ , r ∈R(j), (b, j, θ)∈Broute×J ×Θ. (20)

One advantage of the Policy Restriction heuristic is that it always leads to a feasible solution.

Proposition 1. The OPCF-EBF problem with the Policy Restriction constraints is feasible.
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5. Case studies and analysis

We present in Section 5.1 a bus electrification plan for the Metropolitan Atlanta Rapid Transit

Authority (MARTA) of Atlanta and a battery sensitivity analysis in Section 5.2 for bus electrifi-

cation of the Massachusetts Bay Transportation Authority (MBTA) of Boston using depot BEBs.

Section 5.3 highlights the performance of the primal heuristic compared to Gurobi over 11 US

and 2 non-US cities using real data. Finally, Section 5.4 provides an analytical explanation for the

patterns of investment and operation decisions observed in the computation studies.

5.1. Atlanta MARTA case study: Bus electrification plan

The data used in this case study corresponds to a weekday bus schedule and it is based on the

MARTA GTFS file available at MobilityData IO (2021) from August 2019, before the COVID-19

pandemic. In 2019, Atlanta had 110 bus routes, from which there were 115 terminal stops that

could serve as possible locations to install on-route chargers. We assume an installation capacity of

2 on-route chargers per terminal station, where each can serve up to 8 on-route BEBs each hour.

The bus depots operated by MARTA are taken as potential depot charging sites, with a total of

five depots identified through CPTDB (2021), see the “D” marks in Figure 2. We use geospatial

images to estimate the maximum installation capacity of depot chargers in each depot. The only

depot charger considered in this study is a 70kW AC charger that costs $60.05k. The on-route

325kW DC charger costs $877.59k and both values comprise purchase, installation, and mainte-

nance over 10 years Johnson et al. (2020).

We consider two models of BEBs in our studies. The first model is the New Flyer 40-foot BEB

with a 160 kWh battery capacity, 6 hours of operational capacity when fully charged, and it requires

3 hours to fully charge using a depot charger. The New Flyer BEB has the on-route charging

capability and costs $943k each. The second model is the BYD 40-foot BEB with a 351 kWh

battery capacity. We assume the BYD BEB has a 12-hour operational capacity and it requires 6

hours to fully charge. However, the BYD model does not have the on-route charging capability

and it costs $1,093k per unit.
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Atlanta bus fleet electrification plan. The solution of our model gives an annual invest-

ment plan in depot and on-route chargers and BEBs over 10 years, summarized in Table 1. The

investment plan is guided by the conventional bus retirement targets based on MARTA (2021),

which is column ‘# Conv. buses” (e.g. -5 means retiring 5 conventional buses). All other columns

are obtained from our numerical solution.

Table 1 Investment plan for MARTA on charging facilities and bus fleet units.

Year
# Depot

BEBs
# On-route

BEBs
# Conv.

buses
# Depot
chargers

# On-route
chargers

Invest. cost
($ Million)

Op. cost
($ Million)

0 2 3 -5 1 2 $6.53 $38.14

1 11 0 -11 5 0 $10.26 $36.76

2 66 6 -72 33 2 $67.18 $36.87

3 46 27 -73 35 13 $72.92 $37.08

4 1 72 -72 2 14 $69.06 $35.71

5 1 27 -28 2 6 $25.94 $34.32

6 0 23 -23 0 3 $19.05 $32.94

7 1 46 -45 0 4 $35.98 $31.72

8 0 50 -49 0 5 $37.21 $30.43

9 19 40 -63 0 11 $45.25 $29.98

Total 147 294 -441 78 60 $389.39 $343.95

One interesting observation from Table 1 is that, during the first four years (years 0-3), investment

is primarily on depot BEBs and chargers, but from year 4 onwards, the investment shifts towards

on-route BEBs and chargers. A similar investment pattern is also observed in other cities, see

Section 5.3.

Also from Table 1, the replacement factor of the conventional bus fleet is 1, that is, the total

number of retired conventional buses is equal to the total number of the added depot and on-route

BEBs. The yearly investment cost of such an investment plan remains below $70 million, except

in year 3, with the total investment cost equal to $390 million. The total operational cost over 10

years is comparable to the investment cost.
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The spatial distribution of on-route chargers from our numerical solution is depicted in Figure 2.

The D markers represent the five depots used as charging depots, the small grey circles represent

potential on-route charging locations, while the larger red circles are the installed on-route chargers.

Generally, the model suggests the installation of on-route chargers from the area of the greatest

confluence of bus routes in the downtown area towards the periphery of the city as shown in years

3 and 9 in Figures 2b and 2c.

Figure 2 Spatial distribution of on-route charge stations for Atlanta.

(a) Bus transportation network. (b) # Open stations: 16 – year 3. (c) # Open stations: 49 – year 9.

Operation of the BEB fleet. To understand how the mixed fleet of BEBs and conventional

buses is operated by our model, we present the operational schedule of working depot BEBs, on-

route BEBs, and conventional buses over 24 hours during investment years 3 and 9 in Figure 3.

From Figure 3c, we note that the conventional buses meet the part of the demand that is essentially

constant throughout the day, named base demand, during year 3, and diminish to zero in year 9.

Meanwhile, as seen in Figure 3a, the depot BEBs accommodate the rush-hour demand fluctuation

for both years 3 and 9. The most likely explanation is that the depot BEB New Flyer 40ft (160

KWh) is the cheapest option, its 6 hours battery performance is sufficient to cover each rush wave,

and the 3 hours charging time is less than the in-between rush hour times. We observed that the

number of the other type of BEBs, namely the BYD BEBs, obtained in the solution is almost zero,

which is possibly due to its purchase cost being slightly higher than the New Flyer (about 16%

higher per BEB). As Figure 3b shows, the number of on-route BEBs from year 3 is insignificant
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Figure 3 Fleet operational dynamics over 24 hours per bus type.

(a) Depot working (DW) BEBs. (b) On-route working (RW) BEBs. (c) Conventional (C) buses.

in comparison with the total bus demand but in year 9 the on-route BEBs essentially replaced

the conventional bus fleet from year 3, see also Figure 3c. In summary, we observe that depot

BEBs accommodate the variation in demand during rush hour waves, while on-route BEBs are

responsible for handling the base demand. This pattern is partially explained in Section 5.4.

5.2. Boston MBTA case study: Battery sensitivity analysis

In this section, we present a case study on the Massachusetts Bay Transportation Authority

(MBTA) of Boston, Massachusetts. The report MBTA (2021) points out that their electrification

strategy considers only depot BEBs and a type of diesel-electric hybrid bus. The justification for

this strategy instead of an entirely electric fleet is that during the winter season the efficiency of a

depot BEB drops to 4 hours of operation due to the use of heaters. MBTA’s plan is to use hybrid

buses to retire most of the old conventional diesel buses in order to meet the GHG reduction target

set for 2030, US Department of State (2021).

Based on this scenario, we carry out a sensitivity analysis for the MBTA’s 10-year investment

plan, assuming only depot BEBs with battery performance values of 4, 6, 8, 10, and 12 hours,

and a charging time of 4 hours. These numbers are chosen based on the assumption that the

insulation system and the battery capacity of electric buses may improve in the near future. The

maximum demand for buses in this case study is 1108 buses and the result is summarized in

Table 2. The column “Battery (h)” contains the battery performance in hours of operations for the

depot BEBs; the column “# Depot BEBs” contains the number of depot BEBs needed to replace
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the conventional bus fleet, while maintaining the same level of service; the column “Ratio” is the

ratio between the number of depot BEBs and the number of retired conventional buses. Note that

Table 2 Sensitivity analysis of the

operating capacity depot BEBs for the
MBTA case study.

Battery (h) # Depot BEBs Ratio
4 1902 1.72
6 1638 1.48
8 1625 1.47
10 1610 1.45
12 1518 1.37

the number of depot BEBs needed to replace the conventional bus fleet decreases as the battery

capacity increases. To illustrate the need of extra depot BEBs, we present in Figure 4 the mixed

fleet operating dynamics in year 9, in particular, the total numbers of working, charging, and idling

depot BEBs with 8 hours of battery capacity. The curve of working depot BEBs is very close to the

bus demand which indicates the same bus service level. But to compensate for the charging time,

the depot BEBs require a coordinated operation that involves around 27% of the fleet constantly

charging and the idle BEBs to start working at the specific times of day, as can be seen by the first

and second rush waves.

Figure 4 Depot BEBs’ operational dynamics over 24 hours with a battery capacity of 8 hours.

Thus, one cannot expect a replacement ratio equal to 1 using exclusively depot BEBs if their

battery capacity is not enough to operate through the entire service day. In comparison, a mixed

fleet solution in the Atlanta study involves a large proportion of on-route BEBs. If the deployment
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of on-route chargers may delay the replacement of conventional buses and negatively impact the

GHG reduction goal set for 2030 (see MBTA (2021)), then the use of the diesel-electric hybrid

buses is a reasonable solution.

5.3. Multi-city study: commonalities and differences

We benchmark the efficiency of the Policy Restriction heuristic with respect to Gurobi’s internal

heuristic over a total execution time of four hours for 17 public transit systems with 11 US cities

and 2 non-US cities. All computation is performed on a cluster with 86 processors Intel Xeon

Skylake and 317 Gb of shared RAM memory.

Table 3 Primal heuristics optimality gap after 4 hours of computation.

City
Gurobi

gap
Policy-R

gap
# Depot

BEBs
# On-route

BEBs
# Depot
chargers

# On-route
chargers

Invest. cost
($ Million)

Chicago 99.71% 7.62% 874 598 380 96 1256.15

Dallas 100.00% 11.23% 251 348 125 52 519.07

Houston 70.55% 8.78% 580 316 156 50 753.65

LasVegas 3.64% 1.82% 46 233 15 36 249.94

LosAngeles 99.21% 3.00% 1064 706 536 108 1507.30

NY (Bronx) 23.59% 8.23% 655 570 354 80 1046.20

NY (Brooklyn) 59.15% 8.42% 1481 1461 795 193 2512.65

NY (Manhatt.) 26.73% 4.32% 525 551 194 80 921.03

NY (Queens) 1.95% 6.08% 595 303 178 45 753.42

NY (St. Island) 0.32% 0.29% 565 52 105 6 498.63

San Francisco 3.95% 0.47% 745 572 169 82 1114.21

Seattle 3.61% 2.12% 169 26 29 4 159.01

Philadelphia 99.74% 7.56% 637 387 299 72 914.03

San Jose 7.15% 2.61% 209 198 48 42 406.33

Sydney 99.70% 3.84% 2249 726 838 115 2640.40

Toronto 99.75% 3.35% 982 808 456 154 1638.11

Washington DC 99.69% 3.24% 869 352 293 93 1058.05

Average Gap 52.85% 4.75%

Std. Gap 43.33% 3.01%
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Table 3 shows the total number of depot BEBs and chargers, on-route BEBs and chargers, and

total investment cost to preserve the same bus service level in those major cities. We assume for

all instances a constant budget in every investment year and a target of 0 conventional bus in the

last year. The following are some comments on the computational results.

Original: The solutions by Gurobi alone have an optimality gap of greater than 99% for 7 of

the 17 instances and an average gap of 52.85%, even after four hours of computation.

Policy-R: Gurobi warm started by the Policy Restriction heuristic has a much lower optimality

gap with quite stable results overall. All instances of the Policy-R heuristic have a gap smaller than

12% and the average gap is only 4.75%. Thus, the Policy-R heuristic is shown to be more reliable

in producing a high-quality solution than using Gurobi alone. Below we provide more details for

some important features of the Policy-R solution.

Figure 5 Multicity case study - fleet investment in 10 years (top row) and 24-hour operation (bottom row).

The proportion of depot and on-route BEBs from Table 3 can be primarily explained by the

bus demand shape of each instance. For this, Figure 5 shows the fleet investment evolution over

10 years and the BEB operation in year 9 for Las Vegas, Dallas, and Houston. Indeed, we observe

that the number of working on-route BEBs are relatively constant over the day to cover the base
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bus demand, while the depot BEBs supply the difference between the total bus demand and the

working on-route BEBs, thus covering the peak waves. As a secondary influence, a larger spatial

distribution of the bus routes (e.g. in Houston) may hinder the use of on-route chargers and increase

the gap between on-route and depot BEBs, as reflected in the difference between fleet investment

in Houston versus in Las Vegas and Dallas in the top row of Figure 5.

In the BEB fleet evolution from Figure 5, we see a preference for depot BEBs in the early invest-

ment years until a saturation point and then the investment in on-route BEBs. This observation

is consistent with the intuition that depot BEBs are cheaper to deploy than on-route BEBs and,

because of the discount factor γθ ∈ (0,1), depot BEBs should be invested first. See Proposition EC.1

for a mathematical explanation of the role of the discount factor in ordering decisions.

5.4. Analysis of the mixed depot and on-route fleet strategy

Now we provide an analytical explanation for the interesting pattern observed in the above com-

putational studies. Namely, in a mixed fleet, depot BEBs tend to cover peak demand and on-route

BEBs tend to supply base demand. Consider a simplified fleet sizing problem with one route and

one investment period, where the chargers and other infrastructure costs are aggregated into the

BEB unit costs. We consider depot and on-route BEBs only, i.e., no conventional buses in the fleet

sizing problem. Suppose that each time interval covers several hours and a depot BEB can only

work for one time interval and need to fully charge in the next interval. For example, 24 hours can

be partitioned to 4 time intervals, each of 6 hours, in a way to model peak and off-peak hours.

Let η and η̃ be the total number of the depot and on-route BEBs with unit costs cd, cr, respec-

tively, and let wt, vt, and zt be the number of working, idling, and charging depot BEBs at time t.

Let w̃t and ṽt be the number of working and idling on-route BEBs, and let dt be the bus demand
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at time t. Assume there are no charging or working costs. Then, our simplified fleet sizing model is

min cdη+ crη̃

s.t. η=w0 + v0 + z0, η̃= w̃0 + ṽ0,

wt + vt = zt−1 + vt−1, zt =wt−1, ∀t∈ [0 : T − 1],

w̃t + ṽt = w̃t−1 + ṽt−1, wt + w̃t ≥ dt, ∀t∈ [0 : T − 1],

η, η̃,wt, w̃t, vt, ṽt, zt ∈Z+, ∀t∈ [0 : T − 1].

(21)

It turns out the optimal solution of (21) can be obtained in closed form.

Proposition 2. For every scenario of unit costs cd and cr, the optimal number of the depot and

on-route BEBs to (21) and the corresponding numbers of working BEBs for each time interval t∈

[0 : T − 1] is obtained in Table 4, where D1 := maxt∈[0:T−1] dt and D2 := maxt∈[0:T−1](dt + dt−1).

Moreover, the optimal solution of the variables zt, vt, and ṽt is given by the relations zt = wt−1,

vt = η−wt− zt, and ṽt = η̃− w̃t.

Table 4 Optimal solution table of (21) for each objective coefficients cr and cd.

Coeff. η η̃ wt w̃t

cr ≤ cd 0 D1 0 dt

cr ≥ 2cd D2 0 dt 0

cd < cr < 2cd 2D1−D2 D2−D1 max{dt +D1−D2, 0} min{D2−D1, dt}

The following example provides the intuition behind the optimal solution in Proposition 2 and

how it matches the patterns observed in computation. Consider a 24-hour horizon partitioned to

4 time intervals: early morning t= 0, morning rush t= 1, off-peak t= 2, and evening rush t= 3.

On this timescale, it is reasonable to assume that a depot BEB can work during only one time

interval and needs to fully charge in a consecutive interval. Suppose the demand {dt}3t=0 is such

that d0 < d2 < d1 < d3 and d3 − d2 < d1 − d0, which mimics the buses’ rush waves, see Figure 6a.

Then, peak demand is D1 = d3 and the highest two-period demand D2 = d2 + d3.

It is a reasonable approximation to assume that the deployment of an on-route BEB is more

expensive than that of a depot BEB but less expensive than that of two depot BEBs, i.e., cd < cr <



27

Figure 6 Bus demand and the optimal number of working BEBs if cd < cr < 2cd.
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2cd, since the cost of an on-route charger can be divided equally among the on-route BEBs. This

implies that the optimal fleet is η = d3 − d2 and η̃ = d2 and the optimal working BEBs are given

by wt = max{dt− d2,0} and w̃t = min{d2, dt}, for each t ∈ [0 : 3], see the illustration of Figure 6b.

Thus, the optimal operation is to use on-route BEBs for the base demand and depot BEBs for the

rush wave fluctuations. In reality, the OPCF-EBF solution may suggest more depot BEBs since

there may exist many routes without common terminals, which increases the unit cost cr.

6. Conclusions

In this paper, we propose a novel investment planning model for the electrification of bus fleets and

the building up of charging infrastructure for public transit systems. We carry out a detailed com-

plexity analysis of the proposed model and develop an effective primal heuristic, which significantly

speeds up Gurobi. We present two detailed case studies and a multi-city analysis. In the Atlanta

case study, we present an investment plan that achieves a 1:1 replacement ratio of conventional

buses and sheds light on the operation of the bus fleet in transition. In the Boston case study, we

assess the sensitivity of the bus electrification plan with regard to BEB charging times, motivated

by the significant weather-induced battery performance change in Boston winters. In the multi-city

analysis, we observe that the proportion of depot and on-route BEBs is primarily dictated by the

shape of the total bus demand curve. These patterns are also corroborated by an analytical study.

Overall, the proposed model, algorithm, and analysis provide a valuable tool to facilitate public

transit systems to carry out one of the most important and challenging tasks facing modern society,

namely to electrify transportation in a timely and efficient manner.
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Proofs of Statements

EC.1. Conservation of the total number of depot BEBs

The goal of this section is to prove the Lemma 1 about the conservation of the total number of

depot BEBs in the system. In other words, the number of depot BEBs either working, charging,

or idling is constant over the entire operational horizon t∈ [0 : T − 1].

Lemma 1. The total number of depot BEBs is constant through the operational horizon. In other

words, the following equality holds

Wb∑
s=1

wt,θbjs +

Wb+1∑
s=1

vt,θbjs +
∑
i∈I

∑
k∈K

βt,θbijk = ηθbj, (EC.1)

for all t∈ [0 : T − 1] and (b, j, θ)∈Bdepot×J ×Θ.

Proof of Lemma 1. We prove equation (EC.1) by induction. The base case t= 0 follows from the

constraint (8a), so assume the cases 0,1, . . . , t− 1. Denote by Ct the term
∑Wb

s=1w
t,θ
bjs +

∑Wb+1

s=1 vt,θbjs.

Note that on the left-hand side of (EC.1) we have

Wb∑
s=1

wt,θbjs +

Wb+1∑
s=1

vt,θbjs +
∑
i∈I

∑
k∈K

βt,θbijk =Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−l),θ
ijks

=Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

(
Lbks−2∑
l=0

z
(t−l−1),θ
bijks + zt,θbijks

)
, (EC.2)

where we get the equation (EC.2) by splitting the sum
∑Lks−1

l=0 z
(t−l),θ
bijks into the term

∑Lks−1

l=1 z
(t−l),θ
ijks

plus zt,θijkst and by re-indexing l to range from 0 to Lbks − 2. We sum the depot transition equa-

tions (4a) and (4b) over the states of charge s∈ [1 :Wb + 1] to get

Ct +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

zt,θijks =C(t−1) +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

z
(t−Lks),θ
ijks . (EC.3)

By replacing (EC.3) into (EC.2) and using the induction hypothesis, we conclude our proof:∑
s∈[1:W ]

wt,θbjs +

Wb+1∑
s=1

vt,θbst +
∑
i∈I

∑
k∈K

βt,θbijk

((EC.2)+(EC.3))
= C(t−1) +

∑
i∈I

∑
k∈K

Wb+1∑
s=2

(
Lks−2∑
l=0

z
(t−l−1),θ
ijks + z

(t−Lks),θ
ijks

)

=C(t−1) +
∑
i∈I

∑
k∈K

Wb+1∑
s=2

Lbks−1∑
l=0

z
(t−1−l),θ
ijks

(β def.)
= C(t−1) +

∑
i∈I

∑
k∈K

β
(t−1),θ
bijk = ηθbj.

�
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EC.2. Complexity Analysis

EC.2.1. Complexity of the OPCF-EBF model

In this section, we prove that the Uncapacitated Facility Location (UFL) problem can be poly-

nomially reduced to the single period depot only OPCF-EBF instance. In particular, this implies

that the OPCF-EBF problem is NP-hard.

Theorem 1 The UFL problem can be polynomially reduced to the single period depot-only OPCF-

EBF problem. In particular, the OPCF-EBF problem is NP-Hard.

Proof of Theorem 1. Let us denote by λi ∈ {0,1} the binary variable that corresponds to deci-

sion to open or not the facility i ∈ [n] := {1, . . . , n} and by πij ∈ {0,1} the binary variable that

corresponds to meet the demand of j-th client using the i-th installation. Consider the facility

setup cost fi associated with variable λi and the supply cost gij associated with λij. Below, we

present an instance of the UFL problem:

min
∑n

i=1 fiλi +
∑n

i=1

∑m

j=1 gijπij

s.t.
∑n

i=1 πij = 1, ∀j ∈ [m],∑m

j=1 πij ≤m ·λi, ∀i∈ [n],

λi ∈ {0,1}, πij ∈ {0,1}, ∀i∈ [n], ∀j ∈ [m].

We now define the reduction to an instance of the OPCF-EBF problem starting with the set

of indices. Consider just one type of depot BEB, Bdepot = {1}, but not a single on-route BEB,

Broute = ∅, n potential charging sites, I = {1, . . . , n}, m routes, J = {1, . . . ,m}, only one plug

type, K = {1}, not a single on-route charging facility, R = ∅, battery performance of one time-

interval, W1 = 1, operational horizon T = 2, and single investment period Θ = {1}. To improve the

presentation of this instance of the OPCF-EBF problem, we omit the sub-indices that have only

one possible value such as the depot BEB type b, the plug type k, and the investment period θ.
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Consider the lower Q
i

and upper Qi bounds of plugs as being equal to 0 and m, respectively, for

all site i∈ I. Let djt be the demand for buses and let Ls be the charging time as defined below

djt =


1, if t= 0,

0, if t= 1,

, Ls =


0, if s= 1,

1, if s= 2,

for every route j ∈ J . Note that s = 1 is the fully charged state, and s = 2 is the fully depleted

state, since W = 1. The idea of our construction is to have the depot BEBs working at time t= 0

and charging at time t= 1.

We assume that the initial infrastructure condition is zero, that is, xi0 = 0, yi0 = 0, ηj0 = 0, and

ξj0 = 0, for all depots i ∈ [n] and routes j ∈ [m]. If the initial condition of conventional buses is

zero, ξj0 = 0, then the number of conventional buses in the period of investment θ= 1 is also zero,

that is, ξj1 = 0. This implies that the number of working φjtθ and idling σjtθ conventional buses

are zero for all time intervals t∈ [0 : 1], route j ∈ [m], and investment period θ= 1.

Let H be the constant
∑n

i=1 fi +
∑n

i=1

∑m

j=1 gij, and consider the unit cost of a depot BEB cbeb

as H + 1. Let the investment budget C be equal to
∑n

i=1 fi +m · cbeb, which is essentially a large

enough constant so all possible investments are feasible. Then the investment part of this OPCF-

EBF instance is given below:

min
∑n

i=1 fixi +
∑m

j=1 cbeb · ηj +F (x, y, η)

s.t.
∑n

i=1 fixi +
∑m

j=1 cbeb · ηj ≤C,

0≤ yi ≤m ·xi, ∀i∈ [n],

xi ∈ {0,1}, yi, ηj ∈Z+, ∀i∈ [n], ∀j ∈ [m],

and there is no on-route and conventional bus variables since those are zero.

For the operational problem, we have two remarks regarding the depot working and charging

variables w and z, respectively. We omit the state of charge s= 1 of the depot working variable w,

since this is the only possible state for a working depot BEB given that W = 1. Similarly, we

omit the state of charge s= 2 for z, since this is also the only possible state of charge for a depot
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BEB to start charging in our instance. For the depot idling BEBs v, we keep the state of charge

index s∈ [1 : 2] because it is possible for a depot BEB to be idle in both fully charged (s= 1) and

fully discharged (s= 2) states. Let the demand constraint violation cost cu be equal to (m+1) ·cbeb.

Below, we present the operational part of our OPCF-EBF instance:

F (x, y, η) = min
∑n

i=1

∑m

j=1

[
0 · z0

ij + gij · z1
ij

]
+
∑m

j=1

∑1

t=0 cu ·ujt

s.t. wtj +utj ≥ dtj, ∀j ∈ [m], ∀t∈ [0 : 1]

wtj + vtj1 =
∑n

i=1 z
(t−1)
ij + v

(t−1)
j1 , ∀j ∈ [m], ∀t∈ [0 : 1],∑n

i=1 z
t
ij + vtj2 =w

(t−1)
j + v

(t−1)
j2 , ∀j ∈ [m], ∀t∈ [0 : 1],

βtij = ztij, ∀i∈ [n], ∀j ∈ [m], ∀t∈ [0 : 1],∑
j∈[m] β

t
ij ≤ yi, ∀i∈ [n], ∀t∈ [0 : 1],

ηj =
(
vtj1 + vtj2 +wtj +

∑n

i=1 β
t
ij

)
, ∀j ∈ [m], ∀t= 0,

wtj, v
t
js, z

t
ij, β

t
ij, u

t
j ∈Z+, ∀i∈ [n], ∀j ∈ [m], ∀t∈ [0 : 1],

∀s∈ [1 : 2].

Now that we have defined the instance of the OPCF-EBF, we focus on the reduction of the UFL

problem. Let (λ,π) be a feasible solution of the UFL problem with an objective value less than or

to K. Note that K is less than or equal to H =
∑n

i=1 fi +
∑n

i=1

∑m

j=1 gij, because H is an upper

bound for the UFL objective cost. Consider the following OPCF-EBF-induced solution:

xi = ξi, yi =m ·λi, ηj = 1, (EC.4a)

wtj =


1, if t= 0,

0, if t= 1,

ztij =


0, if t= 0,

πij, if t= 1,

, (EC.4b)

vtjs = 0, βtij = ztij, utj = 0, (EC.4c)

for every site i∈ [n], route j ∈ [m], charge state s∈ [1 : 2], and time interval t∈ [0 : 1]. The solution

defined by the equations (EC.4a), (EC.4b), and (EC.4c) is feasible for the OPCF-EBF instance,

and it has objective value equal to
∑n

i=1 fiλi +
∑n

i=1

∑m

j=1 gijπij + cbeb ·m, which is equal to the
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objective value of the UFL problem plus the constant cbeb ·m. Therefore, the objective value of the

OPCF-EBF instance is less or equal to K+ cbeb ·m, which is also less than or equal to H+ cbeb ·m.

We now check the other side of the reduction. Consider a feasible solution of the OPCF-EBF

instance (x, y, η,w, v, z, β,u) with objective value K + cbeb · m, where K is less than or equal

to H. Such solution exist, since we can take (x, y, η,w, v, z, β,u) as defined by (EC.4a), (EC.4b),

and (EC.4c), and the following feasible solution (λ,π) for the UFL problem:

λi =


1, if i= 1,

0, otherwise,

πij =


1, if i= 1,

0, otherwise,

for each site i∈ [n] and route j ∈ [m].

The first observation regarding the feasible solution of the OPCF-EBF is that the the demand

constraint violation ujt is 0, and that the number of depot BEBs ηj equals 1, for every route j ∈ [m]

and interval t∈ [0 : 1]. Indeed, the objective function

Obj :=
n∑
i=1

fixi +
m∑
j=1

cbeb · ηj +
n∑
i=1

m∑
j=1

gijz
1
ij +

m∑
j=1

1∑
t=0

cu ·utj

evaluated at the OPCF-EBF solution is such that Obj ≤ H + cbeb ·m, by hypothesis, and from

the choice of cbeb we have that H < cbeb. Thus, Obj < cbeb · (m+ 1). Since cu equals cbeb · (m+ 1)

this implies that ujt is 0, for every route j ∈ [m] and every time interval t ∈ [0 : 1]. The demand

constraint wtj +utj ≥ dtj at t= 0 implies that

ηj ≥w0
j ≥ 1−u0

j = 1, ∀j ∈J .

With this lower bound on ηj, we have that Obj satisfies cbeb ·m≤Obj < cbeb · (m+1), which implies

that both ηj and w0
j must be equal to 1 for every route j ∈ [m].

The second observation is that the number of working wtj and idling vtjs depot BEBs satisfy

wtj =


1, if t= 0,

0, if t= 1,

and vtjs = 0,
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for every route j ∈ [m], state of charge s ∈ [1 : 2], and time interval t ∈ [0 : 1]. Indeed, because the

depot BEBs have enough charge for only one time interval, all the buses must be charging at time

t= 1 to be able to work again at time t= 0. This implies that wj1 = 0, for all j ∈ [m]. Consequently,

the number of idling depot BEBs vtjs is equal to 0, for all j ∈ [m], s∈ [1 : 2], t∈ [0 : 1].

The third observation is that the solution (λ,π) defined by

λi = xi, πij = z1
ij,

is feasible for the UFL problem with objective value K less than or equal to H. From the state

transition dynamics wtj+vtj1 =
∑n

i=1 z
(t−1)
ij +v

(t−1)
j1 at time t= 1, we conclude the identity

∑n

i=1 z
1
ij =

1, for every route j ∈ [m]. It follows from 0≤ yi ≤m ·xi, βtij = ztij, and
∑

j∈[m] β
t
ij ≤ yi the constraint∑

j∈[m] z
1
ij ≤m ·xi, for every site i∈ I. Note that z1

ij is a binary variable as there is only one BEB

in each route. In particular,

K :=
n∑
i=1

fiλi +
n∑
i=1

m∑
j=1

gijπij =Obj− cbeb ·m≤H,

and this concludes the reduction proof. �

We note that one can prove a similar reduction from the UFL to the single period on-route BEB

only OPCF-EBF.

EC.2.2. Complexity of the depot BEB fleet sizing with simple charging policy

In this section, we analyze the complexity of a simplified OPCF-EBF with a single route, depot

BEB fleet only, unlimited depot charging capacity, and arbitrary numbers of battery states and

investment periods:

min
η

∑
θ∈Θ

cθη · ηθ + F̃θ(η
θ) (EC.5a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ∈Z+, θ ∈Θ. (EC.5b)
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The value function F̃θ(η
θ) represents the operational cost impact of the fleet ηθ at the investment

period θ ∈Θ. We omit the index θ to improve the exposition.

F̃ (η) = min
w,z

∑
t∈[0:T−1]

(
W∑
s=1

ptw,s ·wts + ptz · zt
)

(EC.6a)

s.t.
W∑
s=1

w0
s +

L−1∑
l=0

z−l = η, (EC.6b)

wt1 = zt−L, t∈ [0 : T − 1], (EC.6c)

wts =wt−1
s−1, t∈ [0 : T − 1], s∈ [2 :W ], (EC.6d)

zt =wt−1
W , t∈ [0 : T − 1], (EC.6e)

W∑
s=1

wts ≥ dt, t∈ [0 : T − 1], (EC.6f)

wts, z
t ∈Z+, t∈ [0 : T − 1], s∈ [1 :W ]. (EC.6g)

EC.2.2.1. Properties of the operational problem with simple charging policy

Let P (η) be the feasible polyhedron defined by the constraints (EC.6a)-(EC.6g). The goal of this

section is to understand the properties of the polyhedron P (η) and the value function F̃ (η) for

every integral coefficients ptw,s, p
t
z, η ∈Z.

Lemma EC.1 (Variable Reduction). Let k be the greatest common divisor of (W +L) and T .

The problem (EC.6) is equivalent to the following model in ζ variables only

F̃ (η) = min
ζ

k−1∑
i=0

pζ,i · ζi (EC.7a)

s.t.
k−1∑
i=0

ζi =
k

W +L
· η, (EC.7b)

W−1∑
l=0

ζi−l ≥ d̃i, i∈ [0 : k− 1], (EC.7c)

ζi ∈Z+, i∈ [0 : k− 1], (EC.7d)

where the ζ indexes i’s are equivalence classes modulo k. The coefficients pζ,i and d̃i are defined as

pζ,i =
∑

t∈[0:T−1]
t%k=i

[
ptz +

∑
τ∈[0:T−1], s∈[1:W ],
s.t. τ−s−L+1=t.

pτw,s

]
, and d̃i = max

t∈[0:T−1]

t%k=i

dt+L, (EC.8)
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for all i ∈ [0 : k − 1], and t%k represents the remainder of t divided by k. The map between the

feasible solutions from problem (EC.7) and the original operational problem (EC.6) is given by the

relation

zt = ζt%k, and wts = zt−s−L+1, (EC.9)

for all s∈ [1 :W ] and t∈ [0 : T −1]. In particular, the fleet size η must be a multiple of (W +L)/k,

otherwise the original operational problem (EC.6) is infeasible.

Proof of Lemma EC.1. First, it follows from (EC.6c)-(EC.6e) that wts = zt−s−L+1 for all charge

states s ∈ [1 : W ] and time intervals t ∈ [0 : T − 1]. This reduces the original operational prob-

lem (EC.6a) to the following:

F̃ (η) = min
z

∑
t∈[0:T−1]

p̃tz · zt (EC.10a)

s.t.
L+W−1∑
l=0

z−l = η (EC.10b)

zt = zt−W−L, t∈ [0 : T − 1], (EC.10c)

W−1∑
l=0

zt−l−L ≥ dt, t∈ [0 : T − 1], (EC.10d)

zt ∈Z+, t∈ [0 : T − 1], (EC.10e)

where the cost vector p̃z is defined as

p̃tz = ptz +
∑

τ∈[0:T−1], s∈[1:W ],
s.t. τ−s−L+1=t.

pτw,s, (EC.11)

for all t∈ [0 : T − 1].

The equality constraint (EC.10c) creates a symmetry, i.e. a periodicity of W + L, on the z-

variable space. Moreover, recall that t is an equivalence class modulo T , so t+ yT is equal to t for

all y ∈Z. This fact together with the constraint (EC.10c) implies that

zt = zt+x·(W+L)+y·T , (EC.12)
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for every x, y ∈Z, and every t∈ [0 : T −1]. By the Bezout’s identity, there are integers x and y such

that k = x · (W +L) + y · T , where k is the greatest common divisor of (W +L) and T , and k is

also the smallest positive integer given by any integral combination of (W +L) and T . Thus, the

number of distinct z variables is k, and the constraint (EC.12) can be equivalently represented as

zt = zt+a·k, for every a∈Z and every t∈ [0 : T − 1]. Let ζi be defined as ζi = zi for all i∈ [0 : k− 1].

Because of the identity zt = zt+a·k, we have that

zt = ζt%k, (EC.13)

so the total fleet constraint (EC.10b) can be described in terms ζ as

η=
W+L−1∑
l=0

z−l =

(W+L)
k ·k−1∑
l=0

ζ(−l)%k =
(W +L)

k
·
k−1∑
i=0

ζl. (EC.14)

The demand constraint (EC.10d) in terms of the variables ζ becomes
∑W+L−1

l=L ζ(t−l)%k ≥ dt for

all t∈ [0 : T −1]. So, by the change of variable t := t+L, and by taking a maximum of the right-hand

side demand dt+L over t∈ [0 : T − 1] such that t%k= i we obtain the following expression:

W−1∑
l=0

ζi−l ≥ max
t∈[0:T−1]

t%k=i

dt+L, (EC.15)

for all t ∈ [0 : T − 1]. Finally, the cost pζ,i follows from (EC.11) similarly by adding p̃tz over t ∈ [0 :

T − 1] such that t%k= i, that is, pζ,i =
∑

t∈[0:T−1]
t%k=i

p̃tz, for all i∈ [0 : k− 1]. �

Although the reduced problem (EC.7a) has a simpler structure compared to the original oper-

ational model (EC.6a), the new demand constraint (EC.7c) is inconvenient to analyze. Indeed,

the wrap-around property of the indexes i’s leads to a complicated expression for the summation∑W−1

l=0 ζi−l in terms of ζ0, ζ1, . . . , ζk−1 with coefficients that may be greater than 1. In order to

improve the analysis we perform a symmetry-breaking transformation, this time with a unimodular

linear transformation R :Rk→Rk defined as

(Rζ)i =
i∑
l=0

ζl, ∀0≤ i≤ k− 1. (EC.16)
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Its inverse R−1 is given by

(R−1ζ)i =


ζ0, if i= 0,

ζi− ζi−1, if 1≤ i≤ k− 1.

(EC.17)

Recall that a matrix M is called unimodular if M is a square integral matrix with determinant +1

or −1. The unimodularity property holds for R since it is an integral lower triangular matrix with

ones in its main diagonal.

Lemma EC.2 (Unimodular transformation). The change of variables ζ := Rζ applied to the

reduced operational problem (EC.7) results in the following problem:

F̃ (η) = min
ζ

k−1∑
i=0

pζ,i · ζi (EC.18a)

s.t. ζk−1 =
k

W +L
· η, (EC.18b)

ζi− ζi−W +

(⌊
W

k

⌋
+ I[i+1,∞)(W%k)

)
ζk−1 ≥ d̃i, i∈ [0 : k− 1], (EC.18c)

ζ0 ≥ 0, (EC.18d)

ζi− ζi−1 ≥ 0, i∈ [1 : k− 1], (EC.18e)

ζi ∈Z, i∈ [0 : k− 1], (EC.18f)

where I[i+1,∞)(x) is an indicator function that is 1 if x is greater than or equal to i+ 1, and 0

otherwise, and the cost coefficient pζ,i is defined as

pζ,i =


pζ,i− pζ,i+1, if 0≤ i≤ k− 2,

pζ,k−1, if i= k− 1,

(EC.19)

for all i ∈ [0 : k − 1]. In particular, the polyhedron defined by the linear relaxation of (EC.18) is

integral whenever η is a multiple of (W + L)/k and thus F̃ (η) is an extended real-valued convex

piecewise linear function for continuous values of η.
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Proof of Lemma EC.2 Because ζi = ζi − ζi−1, for every i ∈ [1 : k − 1], and ζ0 = ζ0. we can

describe the left-hand side of the constraint (EC.7b) as
∑k−1

i=0 ζi = ζ0 +
∑k−1

i=1 (ζi − ζi−1) = ζk−1.

Similarly for the left-hand side of (EC.7c). Indeed,

W−1∑
l=0

ζi−l =

kbWk c−1∑
l=0

ζi−l +
W−1∑

l=kbWk c
ζi−l (EC.20a)

=

⌊
W

k

⌋(
ζi + ζi−1 + · · ·+ ζ0 + ζk−1 + ζk−2 + · · ·+ ζi+1

)
+

W−1∑
l=kbWk c

ζi−l (EC.20b)

=

⌊
W

k

⌋
ζk−1 +

W−1∑
l=kbWk c

ζi−l (EC.20c)

Since any integer W can be described as W = k
⌊
W
k

⌋
+W%k, we have the following equalities for∑W−1

l=kbWk c ζi−l:

W−1∑
l=kbWk c

ζi−l =
W%k−1∑
l=0

ζi−l =


ζi− ζi−W%k, if W%k≤ i,

ζi− ζi−W%k + ζk−1, if W%k≥ i+ 1,

(EC.21)

where the last equality follows from noting that the term ζk−1 is added to the final expression

whenever ζ0 appears in a consecutive summation. The expression (EC.18c) follows from (EC.21)

because of the identity i−W%k= (i−W )%k and that we can drop the remainder operator % since

the indexes of ζ and ζ are equivalence classes modulo k. The expression (EC.19) for the objective

costs is straightforward.

Finally, we prove that the linear relaxation polyhedron induced by (EC.18b)-(EC.18f) is integral

whenever η is a multiple of (W +L)/k. Indeed, the last variable ζk−1 is fixed and equal to k
W+L

·η,

so we can replace it in every occurrence of ζk−1, which leads to an integral right-hand side vector.

We conclude the integrality of linear relaxation polyhedron by noting that the constraint matrix

associated to the variables ζ0, . . . , ζk−2 is totally unimodular since it has at most one +1 and −1

at each row. �

We can now prove Theorem 2 using the properties of the reduced models.
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Theorem 2 The domain of F̃θ is a set of integer multiples of (W +L)/k, where k is the greatest

common divisor of W + L and T , that is, dom(F̃θ) ⊆
{
i(W+L)

k
∈Z

∣∣∣ i∈Z}. Moreover, the LP

relaxation of (13) gives a tight lower convex envelope of F̃θ, i.e., it is equal to F̃θ(η
θ),∀ηθ ∈ dom(F̃θ).

Proof of Theorem 2 From Lemmas EC.1 and EC.2, we know that the feasible solutions of the

original operational problem (13) have a one-to-one correspondence with the feasible solutions of

the reformulated model (EC.18). So, it is straightforward to note that the original operational

problem is infeasible when ηθ is not a multiple of (W +L)/k.

Denote the polyhedron defined by the linear relaxation of the constraints (13b)-(13e) as Pθ(η
θ).

Then Pθ(η
θ) is integral if and only if the minimum of

min
(w,z)∈Pθ(ηθ)

p>ww+ p>z z (EC.22)

is either integral or −∞, for every pw ∈ZW×T and pz ∈ZT . Using the variable reduction map from

Lemma EC.1 and the unimodular change of variables from Lemma EC.2, we have that (EC.22)

can be the reduced to the following problem:

min
ζ

k−1∑
i=0

pζ,i · ζi (EC.23a)

s.t. (EC.18b)− (EC.18c) (EC.23b)

ζi ≥ 0, i∈ [0 : k− 1]. (EC.23c)

Since pζ,i is integral whenever ptw,s and ptz are integral, and the constraints (EC.18b)-(EC.18c)

induce an integral polyhedron by Lemma EC.2, we conclude that the optimal value of (EC.22) is

integral or −∞. �

Theorem 2 provides important insights on how to solve the fleet sizing problem (EC.5). First,

it states that the relevant fleet sizes ηθ are multiple of (W + L)/k, and second, we can evaluate

the function F̃θ(η
θ) by solving a simple linear program. Below we present the fleet sizing problem

(EC.5) after a change of variables ηθ = W+L
k
ηθ:

min
η

∑
θ∈Θ

cθη · ηθ + F̃θ

(W +L

k
· ηθ
)

(EC.24a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ∈Z+, θ ∈Θ, (EC.24b)
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where cθη = W+L
k
cθη, η

θ
LB =

⌈
ηθLB · k

W+L

⌉
, and ηθUB =

⌊
ηθUB · k

W+L

⌋
. Thus, the overall problem structure

remains the same after this variable rescaling with the additional benefit that the value function

F θ(η
θ) := F̃θ

(
W+L
k
· ηθ
)

is convex piecewise linear for continuous values of ηθ by using the linear

relaxation of (EC.6).

Thus, we have reduced the main fleet sizing program (EC.5) to the solution of a separable convex

integral program (EC.24) with the objective function separable over investment periods and subject

to total unimodular constraints (EC.24b). In the next section, we review the solution proximity

results for this class of problems and propose a polynomial time algorithm to solve (EC.24) if the

number of investment periods θ ∈Θ is fixed.

EC.2.2.2. The Proximity Theorem Let {fi}ni=1 be univariate real-valued convex functions,

and consider the following separable convex integer programming problem:

min
n∑
i=1

fi(yi) (EC.25a)

s.t. Ay≥ b, (EC.25b)

y ∈Zn, (EC.25c)

where A is a totally unimodular (TU) matrix, and b is an integer vector. The goal of this section

is to prove that we can use the linear relaxation to perform an efficient local search for an optimal

integral solution. We assume the minimum of the linear relaxation of the integer program (EC.25)

exists and it is attainable. The feasibility of the integer program (EC.25) is implied by the feasibility

of the corresponding linear relaxation and the fact that A is TU and b is integral.

Even extended real-valued functions fit the scope of the program (EC.25). Let fi be an extended

real-valued proper convex lower semi-continuous function of the form:

fi(x) =


gi(x), if x∈ [ai, bi],

+∞, otherwise,

(EC.26)
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where gi(x) is a univariate real-valued convex function. A relevant example of such a function is

the polyhedral function F θ(·). Indeed, if {fi}ni=1 are extended real-valued convex functions such

as (EC.26) we can reformulate (EC.25) as follows:

min
n∑
i=1

gi(yi) (EC.27a)

s.t. Ay≥ b, (EC.27b)

dae ≤ y≤ bbc, (EC.27c)

y ∈Zn. (EC.27d)

Note that the constraint matrix induced by (EC.27b)-(EC.27c) is still TU, and the right-hand side

vectors are still integral.

Theorem EC.1 (Proximity Theorem for Separable Convex Integer Programs).

Suppose {fi}ni=1 are convex proper real-valued functions and let y∗ and w∗ be optimal integral and

continuous linear relaxation (LR) solutions to (EC.25), respectively. Then,

1. there exists an optimal integral solution ŷ to (EC.25) such that ‖ŷ−w∗‖∞ ≤ n.

2. there exists an optimal LR solution ŵ to (EC.25) such that ‖y∗− ŵ‖∞ ≤ n.

Proof to Theorem EC.1 This proof can be found in Hochbaum and Shanthikumar (1990).

�

The next result provides a method to solve separable convex integer programs assuming that the

summation terms {fi}ni=1 are cheap to evaluate. Let hi,LB and hi,UB be the minimum and maximum

index h ∈ {0,1 . . . ,2n} such that fi(bw∗i c−n+h)<+∞, respectively, and let qi,h be the following

objective cost:

qi,h =



fi(bw∗i c−n+hi,LB), if h= hi,LB,

fi(bw∗i c−n+h)− fi(bw∗i c−n+h− 1), if h∈ [hi,LB + 1, hi,UB],

0, if h /∈ [hi,LB, hi,UB],

(EC.28)

for every i∈ [1 : n] and h∈ [0 : 2n]. The cost vector q defined in (EC.28) provides a linearization of

the objective function at integral points y such that ‖y−w∗‖∞ ≤ n.
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Theorem EC.2 (Solution of separable convex integer program). Suppose that {fi}ni=1 are

extended real-valued proper convex functions. Let w∗ be an optimal solution to the linear relaxation

of (EC.25), and let hi,LB, hi,UB, and qi,h be the constants defined previously. Then, the separable

convex integer program (EC.25) can be reformulated as follows:

min
y,δ

n∑
i=1

2n∑
h=0

qi,h · δi,h (EC.29a)

s.t. Ay≥ b, (EC.29b)

yi−
2n∑
h=0

δi,h = bw∗i c−n− 1, i∈ [1 : n], (EC.29c)

δi,h = 1, h∈ [0 : hi,LB], i∈ [1 : n], (EC.29d)

δi,h = 0, h∈ [hi,UB + 1 : 2n], i∈ [1 : n], (EC.29e)

yi ∈Z+, δi,h ∈ {0,1}, h∈ [0 : 2n], i∈ [1 : n]. (EC.29f)

In particular, an optimal solution (y∗, δ∗) to (EC.29) exists if and only if an optimal solution

to (EC.25) exists. The constraint matrix of the integer program (EC.29) is totally unimodular,

therefore, it is sufficient to solve the linear relaxation of (EC.29).

Proof of Theorem EC.2 First, note that constraints (EC.29c) and (EC.29f) imply that any solu-

tion y ∈Zn is such that ‖y−w∗‖∞ ≤ n, where the infinite norm is defined as ‖a‖∞ = maxi∈[1:n] |ai|.

By definition of the qi,h, we note that

fi (bw∗i c−n+h) =
k∑
h=0

qi,h, (EC.30)

for each h ∈ [hi,LB, hi,UB] and i ∈ [1 : n]. Because fi is convex and univariate, the slopes of fi are

non-decreasing functions, so the sequence {qi,h} is non-decreasing over h ∈ [hi,LB + 1 : hi,UB], for

every i ∈ [1 : n]. This proves that among all possible representations of fi (bw∗i c−n+h) as the

binary variable encoding
∑2n

h=0 qi,h · δi,h the one with the least objective cost is the right-hand side

of (EC.30). Thus, the formulation (EC.29) is equivalent to

min
y

n∑
i=1

fi(yi) (EC.31a)
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s.t. ‖y−w∗‖∞ ≤ n, (EC.31b)

(EC.25b)− (EC.25c), (EC.31c)

and we know from Theorem EC.1 that an optimal solution to (EC.31a) is also optimal to (EC.25).

Recall that the constraint matrix A defined by the constraint (EC.25b) is totally unimodular

(TU), and by appending any canonical vector to columns or rows of a TU matrix, we preserve the

TU property. Since the constraint matrix formed by (EC.29b) and (EC.29c) can be represented as

Ã=

η δ0 · · · δ2n
A 0 · · · 0

I −I · · · −I

, (EC.32)

where δh := (δi,h)ni=1, for all h∈ [0 : 2n], we conclude that Ã is also TU. It is straightforward to see

that all the other constraints coefficients when appended to Ã preserves the TU property. �

Note that Theorem EC.2 is a more general statement of Theorem 3.

Theorem 3 The fleet sizing problem (12) can be reformulated as the following integer program:

min
η,δ

∑
θ∈Θ

(
cθη · ηθ +

2|Θ|∑
h=0

qθδ,h · δθh
)

(EC.33a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, θ ∈Θ, (EC.33b)

ηθ−
2|Θ|∑
h=0

δθh = bηθ∗,LRc− |Θ| − 1, θ ∈Θ, (EC.33c)

δθh = 1, h∈ [0 : hθLB], θ ∈Θ, (EC.33d)

δθh = 0, h∈ [hθUB + 1 : 2|Θ|], θ ∈Θ, (EC.33e)

ηθ ∈Z+, δ
θ
h ∈ {0,1}, h= 0, . . . ,2|Θ|, θ ∈Θ. (EC.33f)

An optimal solution (η∗, δ∗) to (15) exists if and only if an optimal solution to (12) exists. The

objective function requires O(|Θ|) evaluations of the value function F θ(·), for each θ ∈Θ. The con-

straint matrix induced by (15b)-(15f) is TU. Thus, (15) can be solved exactly by its LP relaxation.

Proof of Theorem 3 The proof is a direct application of Theorem EC.2. �
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EC.2.2.3. Polynomial solvability Consider any linear program with integral coefficients:

min c>x

s.t. Ax≤ b,

x∈Rn,

(EC.34)

where c ∈ Zn, A ∈ Zm×n, and b ∈ Zm. In all our integer programs the coefficient matrices and the

right-hand side vectors are integral. The objective coefficients can be converted to integral numbers

if one multiplies the denominator of each rational coefficient by the least common multiple among

all denominators.

Assume the feasible set P = {x ∈ Rn | Ax ≤ b} is a non-empty polytope. Let ∆ be the largest

absolute value of the determinant of a submatrix of A. We define the size of (EC.34) as

L= log2(∆ + 1) + log2

(
max
j∈[n]
|cj|+ 1

)
+ log2

(
max
i∈[m]
|bi|+ 1

)
+ log2(m+n). (EC.35)

We note that any basic feasible solution x∗ to (EC.34) and the associated objective costs c>x∗ have

the following upper bound:

‖x∗‖∞ ≤ 2L, |c>x∗| ≤ 22L, (EC.36)

see (Vaidya 1990, page 191).

After the change of variables to the new fleet sizing variable η̃, see (EC.24), and the reformulation

of the operational variables as described in Lemma EC.2, the fleet-sizing problem (EC.5) becomes

equivalent to

min
η,ζ

∑
θ∈Θ

[
cθη · ηθ +

k−1∑
i=0

pθζ,i · ζ
θ

i

]
(EC.37a)

s.t. ηθ−1 ≤ ηθ, ηθLB ≤ ηθ ≤ ηθUB, ηθ ≥ 0, θ ∈Θ, (EC.37b)

ζ
θ

k−1− ηθ = 0, θ ∈Θ, (EC.37c)

ζ
θ

i − ζ
θ

i−W +

(⌊
W

k

⌋
+ I[i+1,∞)(W%k)

)
ζ
θ

k−1 ≥ d̃θi , i∈ [0 : k− 1], θ ∈Θ, (EC.37d)

ζ
θ

0 ≥ 0, θ ∈Θ, (EC.37e)

ζ
θ

i − ζ
θ

i−1 ≥ 0, i∈ [1 : k− 1], θ ∈Θ, (EC.37f)

ηθ, ζ
θ

i ∈Z, i∈ [0 : k− 1], θ ∈Θ. (EC.37g)
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Note that the integer program (EC.37) has n = (k + 1)|Θ| variables and m = (2k + 5)|Θ| linear

constraints. Denote by ∆ the maximum absolute value of the determinant of a submatrix of the

constraint matrix in (EC.37). Let c = [cη, pζ ] and b = [ηLB, ηUB, d̃]. The size of the integer pro-

gram (EC.37) is well-defined by the formula (EC.35):

L=log2(∆ + 1) + log2

(
max

{
‖cη‖∞, ‖pζ‖∞

}
+ 1
)

+ log2

(
max

{
‖ηLB‖∞, ‖ηUB‖∞, ‖d̃‖∞

}
+ 1
)

+ log2 (m+n) .

(EC.38)

We note that the feasible region of the linear relaxation of (EC.37) is a polytope since all the

variables are bounded. Indeed, it follows from (EC.37e),(EC.37f), (EC.37c), and (EC.37b) the

inequalities

0≤ ζθ0 ≤ ζ
θ

1 ≤ · · · ≤ ζ
θ

k−1 = ηθ ≤ ηθUB.

To recap, in order to obtain an optimal integral solution to (EC.37) using the Proximity result

from Theorem 3, one needs to:

1. Find an optimal basic feasible solution (η∗,LR, ζ∗,LR) to the linear relaxation of (EC.37).

2. Compute the optimal value F̃θ(η) of the operational subproblem (EC.18) with fleet sizes η=

(W+L)

k

(
bηθ∗,LRc− |Θ|−1 +h

)
, for all h= 0,1, . . . ,2|Θ|, and all θ ∈Θ. Then, define qθδ,h according to

the expression (14).

3. Solve the proximity problem (EC.33) using qθδ,h and bηθ∗,LRc as inputs.

In our complexity analysis proof, we must guarantee that the sizes of all the intermediate linear

programs are polynomially bounded by the size of the integer program (EC.37). Indeed, denote

by Lθ,h the size of the linear relaxation of (EC.18), and let nθ,h and mθ,h be the associated numbers

of variables and constraints. Denote by ∆̃ the maximum absolute value of the determinant of a
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submatrix of the constraint matrix in (EC.18) Note that ∆̃ is less than or equal to ∆. Then, the

size of the linear relaxation of (EC.18) is given by

Lθ,h =log2(∆̃ + 1) + log2

(
‖pθζ‖∞+ 1

)
+ log2

(
max

{
‖d̃θ‖∞,

∣∣∣bηθ∗,LRc− |Θ| − 1 +h
∣∣∣}+ 1

)
+ log2 (mθ,h +nθ,h) ,

(EC.39)

where the number of variables is nθ,h = k and the number of constraints is mθ,h = 2k+1. Similarly,

denote by LP the size of the proximity problem (EC.33), and let nP and mP be the corresponding

number of variables and constraints. Recall that the coefficient matrix of (EC.33) is also TU. Then,

note that

LP =1 + log2

(
max

{
‖cη‖∞, ‖qδ‖∞

}
+ 1
)

+ log2

(
max

{
‖ηLB‖∞, ‖ηUB‖∞, ‖bη∗,LRc− (|Θ|+ 1) · e‖∞

}
+ 1
)

+ log2 (mP +nP ) .

(EC.40)

where e is a vector of 1’s, the number of variables of (EC.33) is nP = 2|Θ|2 + |Θ|, and the number

of constraints is mP = 2|Θ|2 + 4|Θ|+ 1.

Lemma EC.3. The linear program sizes Lθ,h and LP are linearly bounded by the size L:

Lθ,h ≤ 2L+ 2, LP ≤ 8L+ 13, (EC.41)

for all θ ∈Θ and h= 0,1, . . . ,2|Θ|.

Proof of Lemma EC.3 From the definition of L, we obtain the upper bound:

Lθ,h ≤L+ log2

(
max

{
‖d̃θ‖∞,

∣∣∣bηθ∗,LRc− |Θ| − 1 +h
∣∣∣}+ 1

)
. (EC.42)

Because (η∗,LR, ζ∗,LR) is an optimal basic feasible solution, we know that 0≤ bηθ∗,LRc ≤ ηθ∗,LR ≤ 2L.

This implies that

∣∣∣bηθ∗,LRc− |Θ| − 1 +h
∣∣∣≤ 2L +

∣∣h− |Θ| − 1
∣∣≤ 2L+1 (EC.43a)

=⇒ Lθ,h ≤L+ log2(2L+1 + 1)≤ 2L+ 2, (EC.43b)
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for all θ ∈Θ and h= 0,1, . . . ,2|Θ|.

It follows from (EC.38) the upper bound |F̃θ(η)| ≤ 22Lθ,h . Then, we use this inequality

and (EC.43b) to get |qθδ,h| ≤ 22Lθ,h+1 ≤ 24L+5. Hence, we have the following upper bound for LP :

LP ≤ 1 + log2

(
24L+5 + 1

)
+ log2

(
22L+1 + 1

)
+ log2(mP +nP ) (EC.44a)

≤ (6L+ 9) + log2(mP +nP ) (EC.44b)

= (6L+ 9) + log2(4|Θ|2 + 5|Θ|+ 1) (EC.44c)

≤ (6L+ 9) + log2

(
16 · |Θ|2

)
(EC.44d)

= (6L+ 13) + 2 log2(|Θ|) (EC.44e)

≤ 8L+ 13. (EC.44f)

This completes the proof. �

We can finally prove the polynomial solvability of the fleet sizing problem (12).We use the

algorithm of Vaidya (1990) that finds an optimal basic feasible solution of a linear program in

O(((m+ n)n2 + (m+ n)1.5n)L) arithmetic operations, where L is the size of the linear program,

m is the number of constraints, and n is the number of variables. Note that if m = O(n) this

arithmetic complexity becomes O(n3L).

Theorem 4 An optimal integral solution of (12) can be obtained in O
(

(k3|Θ|3 + |Θ|6)L
)

arith-

metic operations, where L is the size of the integer program (12) defined in (EC.38).

Proof The number of variables n and constraints m of the linear relaxation of (EC.37) is

O(k|Θ|). So, the arithmetic complexity to compute an optimal basic feasible solution η∗,LR is

O
(

(k|Θ|)3L
)

.

One needs to solve the linear relaxation of (EC.18) to compute the optimal value F̃θ(η) with

η = (W+L)

k

(
bηθ∗,LRc − |Θ| − 1 + h

)
, for all h = 0,1, . . . ,2|Θ| and all θ ∈ Θ. Since the number of

variables nθ,h and constraints mθ,h of each subproblem is O(k), it takes O(k3Lθ,h) arithmetic

operations to solve each of them. By Lemma EC.3, we have that Lθ,h =O(L) and this implies that
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the arithmetic complexity to solve (EC.18) is indeed O(k3L). Hence, it takes O(k3|Θ|2L) arithmetic

operations to find the coefficient qδ of the proximity problem (EC.33).

Finally, one needs to solve the proximity problem (EC.33) which has O(|Θ|2) variables and

constraints. This implies a arithmetic complexity of O(|Θ|6LP ), and again by Lemma EC.3, we can

replace the size Lp by L. Therefore, the arithmetic complexity of the whole algorithm is

O(k3|Θ|3L) +O(k3|Θ|2L) +O(|Θ|6L) =O
(

(k3|Θ|3 + |Θ|6)L
)
. (EC.45)

This completes the proof. �

EC.3. Feasibility of the Policy Restriction heuristic

The goal of this section is to prove that the Policy Restriction (PR) heuristic is always feasible.

First, we recall the constraints of the PR heuristic. Indeed, the PR heuristic prevents the depot

BEBs from charging at any state s different from the depleted state Wb + 1 during the service

times T servicej,θ , that is,

zt,θbijk = 0, ∀t∈ T servicej,θ , s∈ [2 :Wb], (b, i, j, k, θ)∈Bdepot×I ×J ×K×Θ.

It also prevents the depot and on-route BEBs from being idle during service times, with the

exception of depot BEBs when fully charged (s= 1):

vt,θbjs = 0, ∀t∈ T servicej,θ , s∈ [2 : (Wb + 1)], (b, j, θ)∈Bdepot×J ×Θ,

ṽt,θbjr = 0, ∀t∈ T servicej,θ , r ∈R(j), (b, j, θ)∈Broute×J ×Θ.

Lastly, the number of working depot and on-route BEBs must be zero during off-service times

t∈ T offj,θ :

wt,θbjs = 0, ∀t∈ T offj,θ , s∈ [1 :Wb], (b, j, θ)∈Bdepot×J ×Θ,

w̃t,θbjr = 0, ∀t∈ T offj,θ , r ∈R(j), (b, j, θ)∈Broute×J ×Θ.

Proposition 1. The OPCF-EBF problem with the Policy Restriction constraints is feasible.
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Proof of Proposition 1 Consider a solution defined as follows:

• Define all the depot infrastructure x and y, depot BEBs η, and the associated operational

variables w, v, and z as zero vectors.

• Define all the on-route infrastructure χ, on-route BEBs η̃, and the associated operational

variables w̃ and ṽ as zero vectors as well.

• Let the conventional buses ξ be such that it satisfies the retirement targets ξθLB,j ≤ ξθj ≤ ξθUB,j

and the monotonicity constraints ξθj ≤ ξθ−1
j for all routes j ∈ J , and all investment periods θ ∈Θ.

Define the working conventional buses φt,θj as zero and the idle conventional buses σt,θj as ξθj for all

time intervals t∈ [0 : T − 1], routes j ∈ J , and investment periods θ ∈Θ.

• Let the demand slack variable ut,θj be equal to dt,θj for all time intervals t ∈ [0 : T − 1], routes

j ∈ J , and investment periods θ ∈Θ.

It is straightforward to check that this solution is feasible. Hence, the OPCF-EBF problem with

Policy Restriction constraints is feasible. �

EC.4. Optimal solution of the simplified model

The purpose of this section is to prove Proposition 2. Recall the simplified fleet sizing model (21):

min cdη+ crη̃

s.t. η=w0 + v0 + z0, η̃= w̃0 + ṽ0,

wt + vt = zt−1 + vt−1, zt =wt−1, ∀t∈ [0 : T − 1],

w̃t + ṽt = w̃t−1 + ṽt−1, wt + w̃t ≥ dt, ∀t∈ [0 : T − 1],

η, η̃,wt, w̃t, vt, ṽt, zt ∈Z+, ∀t∈ [0 : T − 1],

(EC.46)

where cd and cr are non-negative unit costs, the demand {dt}T−1
t=0 is a scalar sequence taking non-

negative values, and the quantities D1 and D2 are defined by:

D1 = max
t∈[0:T−1]

dt, D2 = max
t∈[0:T−1]

dt + dt−1.

Proposition 2. For every scenario of unit costs cd and cr, the optimal number of the depot and

on-route BEBs to (21) and the corresponding numbers of working BEBs for each time interval t∈
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[0 : T − 1] is obtained in Table 4, where D1 := maxt∈[0:T−1] dt and D2 := maxt∈[0:T−1](dt + dt−1).

Moreover, the optimal solution of the variables zt, vt, and ṽt is given by the relations zt = wt−1,

vt = η−wt− zt, and ṽt = η̃− w̃t.

Table EC.1 Optimal solution table of (21) for each objective coefficients cr and cd.

Coeff. η η̃ wt w̃t

cr ≤ cd 0 D1 0 dt

cr ≥ 2cd D2 0 dt 0

cd < cr < 2cd 2D1−D2 D2−D1 max{dt +D1−D2, 0} min{D2−D1, d
t}

Proof of Proposition 2. We first simplify (EC.46) by eliminating the charging variable zt, and

the idling variables vt and ṽt. Indeed, we can replace zt by wt−1 everywhere in (EC.46) and this

leads to the following model:

min cdη+ crη̃

s.t. η=w0 + v0 +wT−1, η̃= w̃0 + ṽ0,

wt + vt =wt−2 + vt−1, ∀t∈ [0 : T − 1],

w̃t + ṽt = w̃t−1 + ṽt−1, wt + w̃t ≥ dt, ∀t∈ [0 : T − 1],

η, η̃,wt, w̃t, vt, ṽt ∈Z+, ∀t∈ [0 : T − 1].

(EC.47)

Note that η =wt + vt +wt−1 is equivalent to wt + vt =wt−2 + vt−1, for all t ∈ [0 : T − 1], and that

η̃ = w̃t + ṽt is equivalent to w̃t + ṽt = w̃t−1 + ṽt−1, for all t ∈ [0 : T − 1]. This leads to the following

equivalent formulation:

min cdη+ crη̃

s.t. η=wt + vt +wt−1, η̃= w̃t + ṽt, ∀t∈ [0 : T − 1]

wt + w̃t ≥ dt, ∀t∈ [0 : T − 1],

η, η̃,wt, w̃t, vt, ṽt ∈Z+, ∀t∈ [0 : T − 1].

(EC.48)
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From (EC.48), it is straightforward to eliminate the idling variables vt and ṽt. Let vt = η−wt−wt−1

and ṽt = η̃− w̃t, and because both variables are non-negative, we have the formulation below:

min cdη+ crη̃

s.t. η≥wt +wt−1, η̃≥ w̃t, ∀t∈ [0 : T − 1]

wt + w̃t ≥ dt, ∀t∈ [0 : T − 1],

η, η̃,wt, w̃t ∈Z+, ∀t∈ [0 : T − 1].

(EC.49)

The lines of Table EC.1 induce feasible solutions to (EC.49) with objectives crD1, cdD2, and

cr(2D1−D2) + cd(D2−D1). Consider the dual of the linear relaxation of (EC.49):

max
∑

t∈[0:T−1] d
tφt

s.t.
∑

t∈[0:T−1] πt ≤ cd,
∑

t∈[0:T−1] π̃
t ≤ cr,

−πt−πt+1 +φt ≤ 0, −π̃t +φt ≤ 0, t∈ [0 : T − 1],

πt, π̃t, φt ≥ 0, t∈ [0 : T − 1],

(EC.50)

and let a, b ∈ [0 : T − 1] be such that D1 = da and D2 = db + db−1. We use the Kronecker delta

vectors δa and δb to define the dual feasible solutions, where

(δa)t :=


1, if t= a,

0, otherwise.

One can check that the lines of Table EC.2 induce feasible solutions to the dual problem (EC.50)

with the same objective values crD1, cdD2, and cr(2D1−D2)+cd(D2−D1). Therefore, the solutions

of Table EC.1 are optimal to (EC.49). �

Table EC.2 Optimal solutions of the dual problem (EC.50) for each objective coefficients cr and cd.

Coeff. φt πt π̃t

cr ≤ cd crδ
a crδ

a crδ
a

cr ≥ 2cd cd(δ
b + δb−1) cdδ

b cd(δ
b + δb−1)

cd < cr < 2cd (2cd− cr)δa + (cr − cd)(δb + δb−1) (2cd− cr)δa + (cr − cd)δb (2cd− cr)δa + (cr − cd)(δb + δb−1)
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The discount factor and decision order Below we show the role of the discount factor in

ordering decisions.

Proposition EC.1. Let c1 < c2 < · · · < cn and 0 < β < 1 be given. Let π : [n]→ [n] denote a

permutation, i.e. a bijection, where [n] := {1,2, . . . , n}. Then, the following minimization problem

min
π:[n]→[n]

π permutation

n∑
θ=1

βθ−1cπ(θ)

has a unique optimal solution given by the identity permutation π∗(θ) = θ for all θ ∈ [n]. That is,

the minimum sum of a sequence of distinct numbers discounted by β is achieved by the increasing

ordering of the numbers.

Proof of Proposition EC.1. The solution to this problem can be find by induction. Indeed, the

case n = 1 and n = 2 are trivial. Given a permutation π, we create another permutation π̂ by

swapping two numbers:

π̂(i) =



n, if i= n,

π(n), if i= π−1(n),

π(i), if i 6= n,π−1(n).

Note that the new permutation π̂ is identical to the original permutation π except at two places:

π̂(n) = n, whereas π(n) = i, and π̂(i) = π(n), whereas π(i) = n.

Let r= π−1(n), and note that

cπ̂(r) ·βr−1 + cπ̂(n) ·βn−1 < cπ(r) ·βr−1 + cπ(n) ·βn−1,

⇐⇒ cπ(n)β
r−1 + cn ·βn−1 < cn ·βr−1 + cπ(n) ·βn−1,

⇐⇒ βn−1(cn− cπ(n)) < βr−1(cn− cπ(n)),

where the last inequality holds since n is greater than r. Therefore,

n−1∑
i=1

cπ̂(i)β
i−1 + cnβ

n−1 <
n∑
i=1

cπ(i)β
i−1,

and because π̂ restricted to [n− 1] defines a permutation in [n− 1], we conclude the result by the

induction hypothesis:
n−1∑
i=1

ciβ
i−1 + cnβ

n−1 <
n∑
i=1

cπ(i)β
i−1.
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