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Abstract

A common assumption in the models for the vehicle routing problem with stochastic demands is that all

demands must be satisfied. This is achieved by including recourse actions in two-stage stochastic program-

ming formulations or by ensuring with a high probability that all demand fits within the vehicle capacity

(chance-constrained formulations). In this work, we relax the assumption of full demand satisfaction and

allow partial deliveries. Practical applications of partial deliveries include humanitarian logistics and food

rescue programs. To ensure a fair solution for all customers, we require that the minimum expected fill rate

over all customers meets the target fill rate. We refer to the resulting problem as the fair stochastic vehicle

routing problem with partial deliveries. We propose a model in which we account for uncertain customer

demand by constructing routes such that the expected minimum fill rate is above a predefined threshold.

To solve the problem, we develop a branch-price-and-cut algorithm capable of solving instances with up to

75 customers. Specifically, we propose problem-specific bounding techniques to enhance the performance of

the solution methods for the pricing problem. Results show, among others, that with our proposed model,

solutions are guaranteed to be feasible at only a marginal cost increase compared to a deterministic model

with expected demands.
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1 Introduction

The capacitated vehicle routing problem (CVRP) aims at finding a set of feasible routes that minimizes the

total routing costs subject to the constraint that each customer is visited exactly once. Each route should

start at the depot, visit some customers, and return to the depot. A route is feasible if the previous structure

holds and the total demand of the customers visited in the route does not exceed the vehicle capacity. Most

work is performed on the deterministic CVRP, where all problem parameters are certain. However, in reality,

some of the parameters may be uncertain. For example, when planning a route, we may not know the actual

travel times, service times, and/or demand of each customer (Gendreau et al., 2016). This work focuses on

the latter example of uncertainty and studies the vehicle routing problem with stochastic demands (VRPSD).

The VRPSD is often formulated using two-stage stochastic programming with recourse or chance-

constrained programming. The former formulation involves two decision stages. In the first stage, routes

must be planned without knowing the true values of the customers’ demands. In the second stage, we

observe a customer’s demand upon arrival at their location, and recourse actions may be triggered by a pre-

determined recourse policy (Oyola et al., 2018). The latter approach imposes chance constraints to ensure

with high probability that the total demand of the customers visited in a route does not exceed the vehicle

capacity (Dinh et al., 2018).

A common assumption in the VRPSD literature is that all demands must be met. In the two-stage

stochastic formulation, this is achieved by performing recourse actions when the total demand of the cus-

tomers in a route exceeds the vehicle capacity. All recourse policies considered in the literature involve a

detour to the depot to restock a vehicle or a scheduled rendezvous of two vehicles to exchange capacity.

However, such detours may not be feasible in practice due to time and/or safety restrictions, e.g., in hu-

manitarian logistics, detours are undesirable due to bad road conditions and/or the high risk of barricades

and raids along the routes (European Commission, 2022). In the chance-constrained formulation, no explicit

actions are considered for dealing with excess demand. In other words, insufficient capacity may result in

an unfair distribution of capacity over customers in a route.

One solution to these challenges is to relax this assumption and allow partial demand satisfaction. This

relaxation is strongly motivated by several practical applications in which it is more important that all

customers receive some products, rather than some customers receiving their demand and others not receiving

anything. This is particularly relevant in commercial settings where spreading supply across multiple demand

locations may result in higher revenue. Additionally, at non-profit organizations/operations such as food

rescue programs and humanitarian logistics, the total demand frequently exceeds the supply, and partial

deliveries are the only possibility (Rivera et al., 2023; Anuar et al., 2021). This relaxation introduces the

need for additional decisions regarding the delivery quantities to each customer and, consequently, criteria to

evaluate the quality of these decisions. In this paper, a distribution of capacity over customers is considered

to be fair if the minimum utility over all customers exceeds a predefined threshold. Similar to, among others,

Anaya-Arenas et al. (2018), Ibarra-Rojas and Silva-Soto (2021), and Nair et al. (2017), we use fill rates as

a measure of utility, where the fill rate at a customer is equal to the proportion of demand supplied. As

organizations frequently set a target fill rate, we consider a route feasible if, in expectation, the minimum fill

rate over all customers visited in the route meets the target fill rate. This way, we ensure that the expected

service level for each customer is at least equal to the target service level.

Constructing routes with a fair distribution of scarce resources along a route has mostly been studied

under the assumption of deterministic demand (Khorsi et al., 2020; Eisenhandler and Tzur, 2019), except

for Balcik et al. (2014). They propose a model and heuristic solution method for the stochastic multi-vehicle
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(a) Two-stage stochastic pro-
gramming formula-
tion with recourse

(b) Chance-constrained for-
mulation

(c) Fair stochastic vehicle
routing with partial deliver-
ies

Figure 1: Solutions obtained on a small instance with allocations displayed for one demand scenario in which
the total demand exceeds the vehicle capacity.

sequential allocation problem to provide equitable service and minimize unused donations. Hence, routing

costs are neglected when constructing the routes. This work considers the fair stochastic vehicle routing

problem with partial deliveries. We aim to find a set of feasible routes that minimizes the total routing costs

subject to the standard routing constraints and a constraint that ensures that the minimum expected fill

rate over all customers exceeds a pre-defined target fill rate. The final allocation of capacity to a customer

depends on its demand realization and is only decided upon when arriving at a customer and observing

its demand. This assignment problem can be classified as a sequential resource allocation problem and the

procedure in Lien et al. (2014) could be followed to decide on the allocation to each customer.

The differences between the solutions to the three approaches discussed so far - the two-stage stochastic

formulation with recourse, the chance-constrained formulation, and our formulation for the fair stochastic

vehicle routing problem with partial deliveries - are highlighted in Figure 1. The solutions show the planned

routes and the proportion of demand fulfilled for a specific demand realization where the sum of demands

exceeds the vehicle’s capacity. Figure 1a shows that a recourse action is required with the two-stage stochastic

programming approach to fulfill all demands. Conversely, the chance-constrained formulation (Figure 1b)

does not entail any recourse action, resulting in partial satisfaction of the last customer’s demand. Our

formulation returns a solution (Figure 1c) with a greater minimum fill rate over all customers when compared

to the chance-constrained formulation without using any recourse action.

In summary, our paper brings the following contributions:

• We propose a model for the fair stochastic vehicle routing problem with partial deliveries and account

for uncertain customer demand by designing routes such that the expected minimum fill rate is above

a predefined threshold.

• We develop a branch-price-and-cut algorithm capable of solving instances with up to 75 customers.

Specifically, we propose problem-specific bounding techniques to enhance the performance of the solu-

tion methods for the pricing problem.

• We present an extensive set of numerical experiments to compare the results obtained with our proposed

model to three alternative models. Results show, among others, that with our proposed model, solutions

are guaranteed to be feasible at only a marginal cost increase (1.52% on average compared to the

deterministic model).
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The outline of the paper is as follows. In Section 2, the relevant literature is discussed, followed by

a problem description in Section 3. In Section 4, we discuss several heuristic procedures for verifying the

feasibility of a route concerning the fill rate constraint. The problem is solved with a branch-price-and-cut

algorithm as described in Section 5. In Section 6, we introduce three alternative models to compare our

results to in Section 7. Finally, in Section 8, we conclude this paper and provide suggestions for future

research.

2 Literature review

The fair stochastic vehicle routing problem with partial deliveries builds on various existing vehicle routing

problems. In Section 2.1, we review relevant literature on the vehicle routing problem with stochastic

demands. Similarly, in Section 2.2, we review work on vehicle routing problems with fairness considerations.

2.1 Vehicle routing problem with stochastic demands

Three approaches have been considered for the VRPSD: stochastic programming with recourse, chance-

constrained programming, and reoptimization. In stochastic programming with recourse, the problem is

tackled in two stages. First, before any demand is revealed, a set of routes is constructed that minimizes the

sum of routing costs and expected recourse costs. Then, upon execution of the routes, demand is revealed,

and recourse actions may be taken. In the literature, different recourse policies have been considered,

including the detour-to-depot policy (Gauvin et al., 2014; Jabali et al., 2014), optimal restocking policy

(Salavati-Khoshghalb et al., 2019a), rule-based restocking policy (Salavati-Khoshghalb et al., 2019c), switch

policy (Florio et al., 2022a), and other variants (Ak and Erera, 2007; Salavati-Khoshghalb et al., 2019b). All

involve a detour to the depot or rendezvous between vehicles to exchange capacity.

In chance-constrained programming, chance constraints are included to ensure that the total demand of

the customers visited in a route fits within the vehicle’s capacity with high probability (Dinh et al., 2018;

Noorizadegan and Chen, 2018; Sluijk et al., 2023). The resulting model does not include any recourse actions

that should be taken when the vehicle’s capacity is exceeded, nor does it consider how much the capacity

is exceeded. In other words, exceeding it by one unit is considered as bad as exceeding it by half of the

vehicle’s capacity.

An alternative approach is to allow for complete reoptimization of the routes whenever new information

is revealed, potentially resulting in a solution very different from the initial solution (Dror et al., 1989;

Secomandi, 2001; Novoa and Storer, 2009). Some papers also consider partial reoptimization (Secomandi

and Margot, 2009; Goodson et al., 2013).

The best-performing algorithms for the deterministic CVRP are based on a combination of column and

cut generation, commonly known as the branch-price-and-cut algorithm (Costa et al., 2019). Additionally,

various successful implementations of variants of the branch-price-and-cut algorithm on the VRPSD exist

(Florio et al., 2020, 2022b; Hoogendoorn and Spliet, 2023). A significant advantage of branch-and-price is

that the complexity related to the stochastic customer demand can be entirely handled inside the pricing

problem. For a complete overview of the models and solution methods considered for stochastic vehicle

routing problems, we refer to Oyola et al. (2018, 2017).

So far, we reviewed the literature on the VRPSD in which it is assumed that all demands must be

met. Kyriakidis and Dimitrakos (2017) relax this assumption and include the possibility of partial demand

satisfaction. Their cost function consists of three components: routing costs, detour-to-depot costs, and

4



penalty costs incurred when a customer’s demand is only partially satisfied. They propose an optimal

routing policy and show with some numerical experiments that if the order of the customers is not fixed, it is

possible to derive the optimal routing strategy by enumerating all possible sequences if the instance contains

at most nine customers. Although penalizing partial deliveries will motivate efficient use of resources, it does

not ensure a fair distribution of resources among customers.

2.2 Vehicle routing problems with fairness considerations

In recent years, fairness/equity issues have received more attention and can be found in a wide range of

optimization models and application areas (Karsu and Morton, 2015; Chen and Hooker, 2022; Hooker,

2023). This also holds for the vehicle routing problem. Vidal et al. (2020) present an overview of a variety

of equity criteria imposed on different problem attributes of the VRP, including workload balancing (Matl

et al., 2018), service equity (Huang et al., 2012), and collaborative planning (Gansterer and Hartl, 2018). In

the remainder of this section, we focus on service equity.

In disaster relief and food rescue programs, the total demand of stakeholders (e.g., affected areas or

food banks) regularly exceeds the supply. This introduces the need for additional variables (next to routing

decisions) on the quantities to deliver to each customer and, consequently, criteria to evaluate the quality

of these decisions. Gralla et al. (2014) conducted a joint analysis survey among eighteen experienced hu-

manitarian logisticians. Their results show that effectiveness is considered more important than efficiency,

and practitioners prioritize more vulnerable communities and critical commodities while still acknowledging

the needs of others. Furthermore, Huang et al. (2012) show that there is a significant difference between

solutions that focus on the traditional commercial concern of efficiency (e.g., minimize cost) and solutions

that focus on both equity and efficacy (quick and adequate response).

An overview of possible equity metrics can be found in Marsh and Schilling (1994). A common metric

in the VRP literature is the fill rate at each customer (Anaya-Arenas et al., 2018; Khorsi et al., 2020; Lu

et al., 2022). To evaluate fairness based on this metric, different criteria have been considered. For example,

Ibarra-Rojas and Silva-Soto (2021) focus on an egalitarian distribution of resources and aim at maximizing

the weighted sum of the minimum fill rate among all demand points and the sum of delivery times. For

a comprehensive overview of the literature on multicriteria optimization in humanitarian aid, we refer to

Gutjahr and Nolz (2016).

Most studies on vehicle routing problems involving partial deliveries and fairness considerations have

assumed deterministic demand. However, in reality, demand is often stochastic. For instance, in the af-

termath of a disaster, predicting the demand for goods and services in the affected areas may be difficult.

Likewise, the number of people who may arrive at a food bank to receive a package of essential items is often

unknown beforehand. Incorporating stochasticity into the models is important in bridging the gap between

literature and practice. One work in that direction is by Balcik et al. (2014). They consider a multi-vehicle

sequential allocation problem with stochastic demands. Their objective is two-fold: providing equitable

service and minimizing unused donations. Hence, routing costs are neglected. Their solution method con-

sists of clustering customers, sequencing customers, and allocating capacity to each customer. Alkaabneh

et al. (2023) propose a two-stage stochastic programming formulation for integrated stochastic routing and

resource allocation in the context of a mobile food pantry program. In the first stage, supply is pre-allocated

to customers, and routes are constructed. At the beginning of the second stage, the true demand values are

revealed, and the final allocations are determined. Here, some flexibility is taken into account by allowing

any excess supply from previous customers to be (partially) used for the next customers. Instances with up
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to 35 customers are solved with an adaptive large neighborhood search algorithm.

This paper proposes a model and exact solution approach to obtain a set of routes that ensures a fair

division of capacity over customers and minimizes the total routing cost. Each customer’s demand is only

revealed upon arrival at its location. Hence, when executing the routes, one has to decide on the allocation

to the current customer without knowing the demands of the customers yet to visit. This problem is known

as the sequential resource allocation problem, and we refer to Lien et al. (2014) for a procedure that could

be followed to decide on the allocations to each customer.

3 Problem description

The problem is defined on a complete and directed graph G = (V,A), with node set V = {0, . . . , n} containing
the depot (node 0) and customers (V ′ = {1, . . . , n}) and arc set A = {(i, j) : i, j ∈ V, i ̸= j}. The cost of

traversing arc (i, j) ∈ A is equal to cij . We consider a homogeneous fleet of vehicles with a vehicle capacity

of Q each. We assume that the customer demands are independent and identically distributed. Specifically,

the demand of each customer i ∈ V ′ is a discrete random variable ξi ∈ N with mean µi and P(ξi = 0) = 0.

We denote the target fill rate by F .

A route r = (i0, i1, . . . , im, im+1) with i0 = im+1 = 0 and ik ∈ V ′ for k ∈ {1, . . . ,m} is considered to

be feasible if the expected minimum fill rate over all customers in the route (r) meets the target fill rate.

We refer to this fill rate as the collective fill rate and compute it with the following dynamic programming

model:

vr(k, q) =


∞∑
d=1

P
(
ξik = d

)
max

x≤min(d,q)
min

[
x
d , v

r(k + 1, q − x)
]

if k = 1, . . . ,m− 1,

fik(q) if k = m,

(1)

where fik(q) is the expected fill rate at customer ik with q units of capacity left:

fik(q) =

∞∑
d=1

P
(
ξik = d

)min(q, d)

d
. (2)

To find the optimal allocation, and hence the highest possible value for the collective fill rate, we start

at k = m and recursively solve (1) for k ∈ {m, . . . , 1} to obtain the collective fill rate value for route r, i.e.,

r = vr(1, Q). The complexity of this algorithm is O(m · Ud · Q) with Ud equal to some large value such

that for any d > Ud it holds that P(Ud > d) ≈ 0, hence negligible. Note that the value of r depends on the

order in which the customers are visited in the route. For example, suppose that we have an instance with

two customers. Customer A requests 3, 5, or 7 units with probability 0.2, 0.6, and 0.2, respectively, and

customer B requests eight units with probability 1. We set the capacity of the vehicle to Q = 11. Route

r = (0, A, B, 0) will give us a collective fill rate of

r = vr(1, 11) =
∑

d∈{3,5,7}

P(ξ(A) = d) max
x≤(d,11)

min
[x
d
, vr(2, 11− x)

]
= P(ξ(A) = 3)max

x≤3
min

[
x

3
,
11− x

8

]
+ P(ξ(A) = 5)max

x≤5
min

[
x

5
,
11− x

8

]
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+ P(ξ(A) = 7)max
x≤7

min

[
x

7
,
11− x

8

]
= P(ξ(A) = 3)min

[
3

3
,
8

8

]
+ P(ξ(A) = 5)min

[
4

5
,
7

8

]
+ P(ξ(A) = 7)min

[
5

7
,
6

8

]
= 0.2 · 1 + 0.6 · 0.8 + 0.2 · 0.71 = 0.82,

whereas the reverse route r′ = (0, B, A, 0) will give us a collective fill rate of

r′ = vr
′
(1, 11) =

∑
d∈{8}

P(ξ(B) = d) max
x≤(d,q)

min
[x
d
, vr(2, 11− x)

]
= max

x≤8
min

[x
8
, fA(11− x)

]
= max

x≤8
min

[
x

8
,P(ξ(A) = 3)

min(11− x, 3)

3

+ P(ξ(A) = 5)
min(11− x, 5)

5
+ P(ξ(A) = 7)

min(11− x, 7)

7

]
= min

[
7

8
, 0.2 · 3

3
+ 0.6 · 4

5
+ 0.2 · 4

7

]
= min [0.88, 0.79] = 0.79.

Hence, visiting customer A first results in a higher collective fill rate. However, if Q = 6, the collective

fill rates for routes r and r′ are 0.42 and 0.43, respectively, and visiting customer B first will result in a

higher collective fill rate. The latter two observations imply that proposing any dominance rules on partial

paths is intricate.

3.1 Mathematical model

We propose a set partitioning formulation for the problem. Let R denote the set of feasible routes. A route

r is feasible if it starts and ends at the depot, visits each customer at most once, and has a collective fill rate

r larger than or equal to the target fill rate F :

r ≥ F. (3)

We denote the set of arcs traversed in route r ∈ R by A(r) and define its corresponding transportation cost as

cr =
∑

(i,j)∈A(r) cij . Parameter air equals 1 if customer i ∈ V ′ is visited in route r and 0 otherwise. Finally,

binary decision variable yr equals 1 if route r is selected and 0 otherwise. The problem is now formulated

as follows:

min
∑
r∈R

cryr (4)

s.t.
∑
r∈R

airyr = 1, i ∈ V ′, (5)

yr ∈ {0, 1}, r ∈ R. (6)
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The objective is to minimize the total routing cost. Constraints (5) ensure that each customer is visited

exactly once, and Constraints (6) set the domain of the variables. The proposed set partitioning formulation

assumes a set of feasible routes. As this set of routes grows exponentially with the number of customers in

the problem instance, we proceed with a linear relaxation of the formulation with an initial subset of feasible

routes and use column generation to generate additional promising routes (Desaulniers et al., 2006). The

advantage of this approach is that the challenge of checking feasibility with respect to the target fill rate can

be handled entirely inside the algorithms used to generate new columns.

4 Heuristic feasibility checks

In Section 3, we showed that the collective fill rate of a route can be obtained with dynamic programming.

As this procedure is computationally expensive, we propose two alternative methods for checking feasibility

of customer sequences (routes) with respect to the fill rate constraint. Instead of computing the collective fill

rate exactly, we could approximate it using statistical inference with Monte Carlo simulation as described in

Section 4.1. In Section 4.2, we derive an upper bound on the sum of mean demand values of the customers

in a route such that any route with an aggregated mean demand larger than this bound is infeasible.

4.1 Collective fill rate under perfect information

One way to quickly assess whether a route may meet the target fill rate is by approximating its collective fill

rate through statistical inference tests with Monte Carlo sampling (Florio et al., 2021; Sluijk et al., 2023).

First, we generate a scenario by sampling from the demand distributions of the customers in the route.

Next, we assume that we know each customer’s demand at the start of the route (perfect information), and

use dynamic programming to decide on the allocation to each customer such that the minimum fill rate of

the route is maximized. We iteratively evaluate demand scenarios and compute a confidence interval [a, b]

around the collective fill rate under perfect information following the procedure in Agresti and Coull (1998).

The general outline of this procedure is given in Algorithm 1.

Algorithm 1 Collective fill rate under perfect information

1: input: set of customers V ′, maximum number of scenarios N , number of standard deviations κ, target
fill rate F

2: s1 ← 0, s2 ← 0
3: for n = 1 to N do
4: generate demand scenario [ξi]i∈V ′

5: compute the collective fill rate f for demand scenario [ξi]i∈V ′ with dynamic programming
6: update s1 ← s1 + f and s2 ← s2 + f2

7: compute sample mean and variance as µn ← s1
n and σ2

n ← s2 − µ2
n

8: if µn + κ
√

σ2
n

n < F then

9: return infeasible

10: if µn − κ
√

σ2
n

n ≥ F then

11: return feasible
12: return inconclusive

If a > F (b < F ), we conclude that the route is feasible (infeasible). If F ∈ [a, b], no conclusions can be

drawn, and additional scenarios must be evaluated to narrow the confidence interval. We consider at most

N scenarios. If the conclusion is that the route is infeasible, we no longer need to compute its true collective
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fill rate, as this will always be less than the collective fill rate under perfect information. If the method

returns inconclusive or feasible, we must compute its true collective fill rate to conclude (in)feasibility.

4.2 Upper bound on feasible mean

In branch-price-and-cut algorithms for vehicle routing problems, the vehicle capacity is often considered

an upper bound on the aggregated mean demand in a route. That is, any route with a larger aggregated

mean demand is considered to be infeasible. This is valid under the assumption that, on average, vehicles

should be able to serve all demands without any recourse actions (Florio et al., 2022b). However, with partial

deliveries, we may have feasible routes with an aggregated mean demand that exceeds the vehicle capacity. As

valid inequalities, completion bounds, and other techniques within branch-price-and-cut algorithms typically

require a limiting resource, we consider the following two-step procedure to derive an upper bound on the

aggregated mean value and use that as the limiting resource within the methods mentioned above.

We derive a valid initial bound by considering a single artificial customer and maximizing its mean value

subject to the constraint that its expected fill rate meets the target fill rate:

µ̄ = max

{
µ :

∞∑
d=1

P
(
ξ = d

∣∣µ)min(q, d)

d
≥ F, µ ∈ N

}
. (7)

Next, to potentially achieve a stronger upper bound on the feasible mean, we investigate whether a feasible

customer combination with an aggregated mean of µ̄ exists. If not, we decrease the value of µ̄ until a feasible

combination is found. The level of uncertainty regarding customer demands increases with the size of the

customer combinations. Therefore, we will only consider the smallest possible size for a given value of µ̄. To

acquire this size, we solve the following problem:

l = min

{∑
i∈V ′

xi :
∑
i∈V ′

µixi = µ̄, xi ∈ {0, 1}, i ∈ V ′
}

(8)

To find all customer subsets S ⊆ V ′ with
∑

i∈S µi = µ̄ and |S| = l, we solve a perfect subset sum problem

(PSSP). We iterate over all customer subsets retrieved to verify whether a feasible sequence exists. First, we

use the procedure outlined in Section 4.1. If this returns infeasible, we move on to the next customer subset.

Otherwise, we proceed with computing its true collective fill rate, which requires iterating over all possible

sequences of the customers in the subset. If at least one sequence is feasible, we conclude that a feasible

sequence with mean µ̄ and size l exists, set the upper bound on the feasible mean to µ̄, and terminate our

search. If none of the customer subsets return a feasible sequence, we conclude that no feasible subset with

an aggregated mean of µ̄ exists and proceed with iteratively decreasing µ̄ and repeating the previous steps

until we detect a feasible sequence. An overview for deriving the instance-specific bound on the feasible

mean is given in Algorithm 2.

The upper bound on the feasible mean can also be used to verify a route’s feasibility quickly. If the

aggregated mean demand of the customers in a route exceeds the bound, the route is infeasible and can

discarded. Exact feasibility verification remains necessary for the routes with an aggregated mean demand

less than or equal to µ̄.
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Algorithm 2 Instance-specific bound on feasible mean

1: input: set of customers V ′ and general upper bound on mean µ̄
2: while no feasible customer sequence found do
3: solve model (8) to obtain a value for l
4: C ← PSSP(µ̄, l) ▷ obtain all S ⊆ V ′ with

∑
i∈S µi = µ̄ and |S| = l

5: for S ∈ C do
6: assess feasibility under perfect information (Section 4.1)
7: if feasible under perfect information then
8: for every possible sequence of customers in subset S do
9: compute collective fill rate

10: if ≥ F then
11: return µ̄

12: µ̄← µ̄− 1 and l← 1

5 Branch-price-and-cut algorithm

This section proposes a branch-price-and-cut algorithm (BP&C) for the fair stochastic vehicle routing prob-

lem with partial deliveries. In this algorithm, column generation and constraint generation (cut separation)

techniques are employed to generate new decision variables and constraints dynamically and add these to

the linear relaxation of the master problem, hereafter referred to as the restricted master problem (RMP).

This way, the number of decision variables and constraints can be significantly reduced. To strengthen the

RMP formulation, we propose two sets of valid inequalities (Section 5.1). The algorithm starts by solving the

RMP with an initial set of columns (back-and-forward routes to each customer). Next, a pricing algorithm

is used to identify the most promising routes to add to the RMP. In Sections 5.2 and 5.3, we introduce the

pricing problem and propose three column generation algorithms to search for new routes: exact labeling,

heuristic labeling, and tabu search. In Section 5.4, we describe two types of completion bounds that we

employ to control the growth of the labels in the labeling algorithms. We iteratively solve the RMP and

pricing problem until no new columns with negative reduced costs are generated. Finally, in Section 5.5, we

detail the cut separation and branching approaches that we used to reduce the solution space and obtain an

optimal integer solution.

5.1 Valid inequalities

To strengthen the linear relaxation of the set-partitioning formulation, we include two sets of cuts: rounded

capacity cuts and subset row cuts. Rounded capacity cuts (RCCs) are defined for subsets of customers and

enforce lower bounds on the number of routes visiting customer subsets:

∑
r∈R

∑
i∈S

∑
j /∈S

arijyr ≥
⌈∑

i∈S µs

µ̄

⌉
, ∀S ⊆ V ′, (9)

where arij is a binary coefficient equal to 1 if route r ∈ R traverses arc (i, j) ∈ A and µ̄ is the upper bound

on the feasible mean as derived in Section 4.2.

Subset rows cuts (SRCs) proposed by Jepsen et al. (2008) may further help strengthen the formulation

as they provide upper bounds on the number of routes visiting customers from subset S, with S ⊆ V ′. In
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this work, we consider subset row cuts on triplets of customers:

∑
r∈R

⌊
1

2

∑
i∈S

1(i ∈ S)

⌋
yr ≤ 1, ∀S ⊆ V ′, (10)

where 1(i ∈ S) is an indicator function equal to 1 if customer i is in subset S and 0 otherwise.

5.2 Pricing problem

In column generation, new columns are generated by solving a pricing problem. To formally define the pricing

problem, let SRCC and SSRC denote the sets of customer sets for which RCCs and SRCs have been obtained

and πi (i ∈ V ′), βS (S ∈ SRCC), and γS (S ∈ SSRC) be the dual values corresponding to Constraints (5), (9)

and (10), respectively. The pricing problem can now be formulated as a variant of the elementary shortest

path problem with resource constraints (ESPPRC; Feillet et al., 2004), where the reduced cost of a path is

equal to

c′r = cr −
∑
i∈C

πi −
∑

S∈SRCC

∑
i∈S

∑
j /∈S

arijβS −
∑

S∈SSRC

⌊
1

2

∑
i∈S

airγS

⌋
. (11)

The objective of the pricing problem is to find a route with a negative reduced cost (c′r < 0). We refer to

Appendix 9.1 for a complete arc-based formulation of the pricing problem.

5.3 Column generators

In each iteration of column generation, we search for at most NC columns with negative reduced costs and

add them to the RMP. As there is no need to solve the ESPPRC to optimality in each iteration, we first

search for new columns with two heuristic column generators: tabu search and heuristic labeling. If neither

heuristic produces any new columns, we proceed with exact labeling. If no columns with negative reduced

costs are detected again, we conclude that the current solution to the RMP is optimal. In the remainder of

this section, we discuss each algorithm in detail.

Exact labeling.

The ESPPRC is often solved with a labeling algorithm, where each label in the labeling algorithm represents

a partial path in graph G. Given the (backward) dynamic programming model for computing the collective

fill rate on a sequence of customers (see Equations (1)), we proceed with backward labeling and consider

elementary paths only. Table 1 provides an overview of the attributes of a label. Following the approach in

Beasley and Christofides (1989) and Feillet et al. (2004), we use a binary vector to keep track of the nodes

that can be reached from each label. A node is classified as unreachable if the current label has already

visited it, or if visiting the node would result in a collective fill rate below the target fill rate F . However,

updating the collective fill rate of a label with every extension to a new node requires a significant amount of

computation time and memory. Instead, we assess feasibility concerning the collective fill rate by comparing

the aggregated mean demand of the customers visited so far to the upper bound on the feasible mean (µ̄). If

the aggregated mean demand does not exceed µ̄, the label is considered feasible (for now). When returning

a label would result in a route with a negative reduced cost, we compute its collective fill rate and add the

route to the RMP only if its fill rate meets the target fill rate. Otherwise, we discard the label. This way,

11



Table 1: Label attributes.

Notation Description

n ∈ V Last node visited
c ∈ R Total cost accumulated
ϕ ∈ R Sum of dual values
µ ∈ N Aggregated mean demand
ui ∈ B Indicator equal to 1 if node i ∈ V ′ cannot be reached from the current

label, 0 otherwise.
σS ∈ N Number of customers visited from subset S ∈ SSRC

we avoid accepting infeasible routes and reduce the number of collective fill rate evaluations, but at the

cost of an increase in the number of labels to consider. However, preliminary experiments showed that this

drawback does not outweigh the significant speed up in computation time when compared to computing the

collective fill rate for every possible label extension.

We iteratively select the label with the lowest reduced cost (L(c) − L(ϕ)) to be extended. For each

customer i ∈ V ′, we verify whether an extension of label L to customer i is feasible. An extension is feasible

if the customer is reachable (L(ui) = 0) and the aggregated mean does not exceed the upper bound on the

feasible mean (L(µ) + µi ≤ µ̄). If feasible, label L is extended to customer i ∈ V ′, resulting in a new label

L′:

L′(n) = i

L′(c) = L(c) + cL(n),i

L′(ϕ) = L(ϕ) +
∑

S∈SRCC

1(i ∈ S,L(n) /∈ S)βS +
∑

S∈SSRC

1(i ∈ S) · 1(L′(σS) = 2)γS

L′(µ) = L(µ) + µi

L′(ui) =


1 if L(ui) = 1

1 if L(µ) + µi > µ̄

0 otherwise

for i ∈ V ′

L′(σS) =

L(σS) + 1 if i ∈ S

L(σS + 1) otherwise
for S ∈ SSRC

The efficiency of the labeling algorithm strongly depends on its ability to prune nonpromising paths. This

is often achieved with completion bounds and dominance rules. A completion bound is a lower bound on

the reduced cost of all routes that can be created from the current label. In Section 5.4, we elaborate on

the two types of completion bounds considered in this work. Dominance rules are imposed on pairs of labels

(L1,L2) and state that label L1 dominates label L2 if any extension from label L1 would result in a path

with lower reduced cost and fewer resources used compared to the same extension from L2. In our setting,

one possible resource is the aggregated mean demand. However, since we accept labels that pass the weak

constant-time feasibility check (L(µ) ≤ µ̄), feasible labels could be pruned by infeasible labels, leading to

suboptimal results. Therefore, no dominance rules are employed in the exact labeling algorithm.
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Heuristic labeling.

To accelerate the search for new columns, we propose a heuristic labeling algorithm in which we relax

the fill rate constraint and impose dominance rules. Specifically, we substitute fill rate constraint (3) with

a constraint on individual expected fill rates. This enables us to replace the stochastic demand of each

customer i ∈ V ′ by its minimum allocation required (x−
i ) such that its individual expected fill rate meets

the target fill rate:

x−
i = min{q : fi(q) ≥ F}. (12)

We use this value to transform the problem into a deterministic CVRP with customer demand x−
i , i ∈ V ′.

It is important to note that this approach ignores the possibility of shifting capacity from one customer to

another. For instance, if the demand of customer i ∈ V ′ is less than the capacity reserved for this customer

(ξi < x−
i ), we could divide the remaining capacity (x−

i −ξi) over the customers yet to visit and obtain higher

fill rates than we initially computed. Incorporating this possibility will reduce the capacity requirement for

any customer subset and result in solutions with lower routing costs. Moreover, it is important to note that

even if the individual expected fill rates of the customers in a route satisfy the target fill rate, this may not

hold for the route’s collective fill rate as the measures are not comparable. Individual fill rates are based

on distinct distributions, while collective fill rates are derived from joint demand distributions. Therefore,

whenever we create a route with a negative reduced cost, we evaluate its collective fill rate and add it to the

RMP only if its collective fill rate meets the target fill rate.

We consider a simple example to demonstrate the differences between the two types of fill rates. Suppose

that we have a target fill rate of F = 0.95 and two customers with demands following shifted Poisson

distributions: ξ(1) ∼ POIS(λ1 = 5)+1 and ξ(2) ∼ POIS(λ2 = 12)+1. To ensure that the expected fill rates

of each customer meet the target fill rate, we need to reserve x−
1 = 6 and x−

2 = 14 units of capacity, which

yields fill rates of f1(x
−
1 ) = 0.9511 and f2(x

−
2 ) = 0.9671. Their collective fill rate depends on the order in

which they are visited and the available capacity. With Q = x−
1 + x−

2 = 20, the collective fill rates equal

0.9709 and 0.9661. However, the target fill rate can already be achieved with Q = 19 (0.9563 and 0.9508,

respectively). The latter shows that taking flexibility into account reduces the capacity needed to achieve

the target fill rate.

The approach is heuristic since we discard routes that are infeasible based on the individual fill rates of

the customers in the route, even though their collective fill rates may meet the target fill rate. Nonetheless,

it will simplify our search for routes that are also feasible when considering individual fill rates only.

The heuristic labeling algorithm uses the same labels as exact labeling, with two small changes. Attribute

µ now stores the sum of minimum allocations of each customer (x−
i ) in the path, and attribute m is added

to keep track of the number of nodes the label cannot reach. To control the growth of the labels, we propose

the following dominance rule:

Definition 1 (Dominance rule). Label L1 dominates label L2 if and only if

L1(n) = L2(n) (13a)

L1(c)− L1(ϕ) ≤ L2(c)− L2(ϕ) (13b)

L1(µ) ≤ L2(µ) (13c)

L1(m) ≤ L2(m) (13d)
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L1(ui) ≤ L2(ui) ∀i ∈ V ′ (13e)

L1(σS) ≤ L2(σS) ∀S ∈ SSRC (13f)

where one of the inequalities (13b)-(13f) has to hold strictly.

Definition 1 specifies that if L1 and L2 represent two partial paths satisfying Conditions (13a)-(13f),

extending label L1 will always result in a route with lower (or equal) reduced cost. Condition (13a) ensures

that both labels have the same last visited node. Condition (13b) requires that the reduced cost of label

L1 is at most equal to the reduced cost of label L2. Furthermore, Condition (13c) concerns the resource

consumption and ensures that label L1 has at least as many resources left as label L2. Conditions (13d)-(13e)

are related to the unreachable vector and assure that any customer that can be reached from label L2 can

also be reached from label L1. Finally, Condition (13f) relates to the subset row inequalities.

To reduce the time spent on the dominance checks, we sort the labels in nondecreasing order of reduced

cost and group them per last node visited (n) and the number of unreachable nodes (m). Whenever we

extend a label L to a new label L′, we process dominance. For each last node visited, we consider all groups

with fewer unreachable nodes (L′′(m) < L′(m)) and check whether any of the labels dominate the new

label L′. If not, we proceed with checking dominance between label L′ and all labels with the same last

node visited and the same number of unreachable nodes (L′′(m) = L′(m)). Finally, if label L′ has not been

dominated, we process all labels with the same last visited node and a larger number of unreachable nodes

(L′′(m) > L′(m)), and discard all labels that are dominated by label L′.

Tabu search.

Our third column generator is a tabu search algorithm. It takes an initial route as input and iteratively

applies neighborhood search operators to obtain new candidate routes (neighbors). The neighbor with the

lowest cost is selected as the new route to improve upon, even if its costs are higher than the cost of the

current route (Glover and Laguna, 1998). We allow at most Imax iterations per route and prevent cycles by

forbidding recent moves for a number of iterations. Similar to Desaulniers et al. (2008), we perform tabu

search on the routes in the current solution to the RMP.

We consider two neighborhood search operators. The first neighborhood contains all feasible routes

obtained from the current route by removing a single customer. The second neighborhood is constructed

with an insertion operator, where each customer i ∈ V ′ that is not yet visited is inserted in its cheapest

location in the current route. We allow only feasible routes to be included in the pool of neighbors. A route

is considered to be feasible if its aggregated mean does not exceed the upper bound on the feasible mean

and it does not violate any of the branching decisions made in the current node of the branch and bound

tree. If a neighbor has negative reduced cost, we compute its collective fill rate, and add the route to the

RMP only if its collective fill rate meets the target fill rate.

5.4 Completion bounds

Completion bounds provide lower bounds on the reduced cost of all routes that can be obtained from a label

and will help us identify and prune nonpromising labels. If the completion bound of a label is nonnegative, no

route with a negative reduced cost can be generated from the label, and we can safely discard the label. To

simplify the derivation of the bounds, we ignore the dual values associated with Constraints (10), since their

dual values will be nonpositive and only increase the value of the completion bound. We set the reduced cost
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of traveling from customer i ∈ V ′ to customer j ∈ V ′ equal to ϕij = πi+
∑

S∈SRCC 1(i ∈ S, j /∈ S)βS . In each

iteration of column generation, after solving the master problem, we update the bounds with the current

dual values of the RMP to enable constant-time retrieval of the bounds during the labeling algorithms.

We consider two sets of completion bounds. The first set is derived by solving a knapsack problem where

each customer i ∈ V ′ represent an item with value and weight equal to δi and µi, respectively. The value of

the knapsack bound on customer set S ⊆ V ′ with capacity value q ∈ {0, . . . , µ̄} is denoted by KS
(
S, q

)
. The

second set is obtained by solving a resource-constrained shortest path problem with two-cycle (RCSP-2CE)

elimination. Let G′ = (V,A) be a copy of graph G = (V,A). The cost of arc (i, j) ∈ A is equal to cij − ϕij

if j ∈ V ′, and cij otherwise. Visiting node i ∈ V ′ consumes µi units of capacity. We denote the value of the

RCSP-2CE obtained on customer set S ⊆ V ′ from node i ∈ V ′ to the depot with q units of capacity left by

RCSP (S, i, q). The completion bound on label L is now derived as:

CB(L) = L(c)− L(ϕ)−max
{
KS(S, q), RCSP

(
S,L(n), q

)}
(14)

with S = V ′ and q = µ̄− L(µ).
Stronger bounds may be derived by excluding customers that are already visited. To this end, we also

compute completion bounds on subsets of customers. Let setM contain the m customers with the largest

dual value-to-mean ratios (δi/µi with δi = max(i,j)∈A ϕij). Each time after solving the master problem,

we calculate the completion bounds on every subset of customers V ′ \M with M ⊆ M. In the labeling

algorithms, when deriving a completion bound on label L, set S contains all customers that are reachable

from label L, that is S = V ′ \(M∩{i ∈ V ′ : L(ui) = 1}). Finally, to reduce the time spent on pre-computing

bounds, we only evaluate them for capacity values up to ρµ̄ with 0 ≤ ρ ≤ 1.

5.5 Branch and cut

An initial valid lower bound on the objective value is obtained by iteratively applying column generation

until no more columns with negative reduced costs are found. To improve upon this bound, we proceed

with cut separation. We iteratively search for any violated RCCs, add them to the master problem, and

apply column generation to search for any new columns. If no violated RCCs are detected, we continue with

separating SRCs. The RCCs and SRCs are separated with the CVRPSEP package by Lysgaard et al. (2004)

and enumeration, respectively. In each iteration, we allow at most NSRC
iter new SRCs and at most NSRC

cust new

SRCs per customer. We repeat these rounds of column and cut generation until no new columns and cuts

are found.

The resulting solution to the RMP may contain fractional variables. To obtain an optimal integer solution

to the original problem, we proceed with branch-and-bound. In branch-and-bound, we split (“branch”) the

problem up into smaller and smaller subproblems (“nodes”) and iteratively select one to be solved. Let R′ be

the set of routes (columns) generated so far. If the total value of routes in the current solution to the RMP

(ȳ =
∑

r∈R′ yr) is fractional, we create the following two branches. The first branch restricts the number of

routes to be less than or equal to ȳ rounded down, whereas the second branch restricts the number of routes

to be larger than or equal to ȳ rounded up. If the sum of routing variables is integer, we perform branching

on the arc with the most fractional value (min(i,j)∈A |
∑

r∈R′ arijyr − 0.5|). If multiple arcs qualify, we select

the arc that, when removed, leads to the largest increase in the lower bound value when considering the

columns and rows generated so far. To select the next node to be solved, we employ the best node first

strategy, i.e., we select the node with the lowest lower bound as the next node to be evaluated. From Section
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5.3, we know that each SRC requires a separate attribute in the labeling algorithm. Therefore, SRCs are

only separated in the root node. The algorithm terminates when all nodes have been explored, a time limit

is reached, or the optimality gap drops below 1%.

To speed up the BP&C procedure, we propose two additional techniques. First, to prevent the generation

of the same column in different nodes of the branch-and-bound tree, we utilize a general route pool that

contains all generated routes. When selecting a node to be solved, we iterate over all routes in the route

pool, initialize the corresponding RMP with the routes that comply with the branching decisions of the

current node, and proceed with solving it. The second technique relates to searching for new best-known

integer solutions. In the algorithm described so far, integer solutions are only detected when a subproblem

returns an integer solution. To enable faster detection of promising integer solutions, whenever at least NC

new columns have been added to the RMP, we solve model (4)-(6) with the columns generated so far and

update the upper bound accordingly.

6 Alternative models

Instead of solving the model with collective fill rates, one could opt for solving a simpler non-stochastic

version of the problem. In this section, we introduce three alternative models. In Section ??, we compare

the results obtained with these alternative models to the results obtained with our proposed model to

assess the overall value of our proposed formulation. The main difference between all four models is in their

definition of a feasible route. Recall that in our proposed model (model CFR), route r = (i0, i1, . . . , im, im+1)

with i0 = im+1 = 0 and ik ∈ V ′ for k ∈ {1, . . . ,m} is considered to be feasible if r ≥ F .

For the first two alternative models, we set the demand of each customer equal to its expected demand

value (ξi = µi, i ∈ V ′). In model D, we require that the sum of demands of the customers visited in a route

fits within the vehicle capacity. Hence, route r is feasible if

m∑
k=1

µik ≤ Q. (15)

Model DP relaxes the requirement of fully serving the expected demand and allows partial deliveries. Here,

route r is feasible if

m∑
k=1

µik ≤ F ·Q. (16)

The third alternative was already introduced in Section 5.3 and involves replacing collective fill rate constraint

(3) with a constraint on individual expected fill rates. Specifically, we replace the stochastic demand of

customer i ∈ V ′ with the minimum number of units that should be reserved for this customer (x−
i ) to ensure

that its expected fill rate meets the target fill rate (see Model (12)). We refer to this model as the model

with individual fill rates (model IFR) and consider route r to be feasible if

m∑
k=1

x−
ik
≤ Q. (17)

The alternative models serve to assess the overall value of our proposed approach, which explicitly accounts

for stochastic demands, partial deliveries, and flexible allocations as a means to reduce overall costs while
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Figure 2: Solutions obtained with four different models, where the objective value is given in brackets and
the corresponding collective fill rates are given in the legend. The arcs from starting and ending at the depot
are excluded from the plots.

ensuring fair service to all customers.

For each of the models, Figure 2 shows the solution obtained on the same instance. To enhance the graph’s

clarity, arcs linked to the depot have been excluded from the plots. The objective values and collective fill

rates corresponding to each solution are given in brackets and legends, respectively. We observe that the

solutions to models D and DP contain at least one route with a collective fill rate below the target fill rate.

On the other hand, all routes in the solution to models IFR and CFR are feasible, but at the cost of a much

higher objective value in the case of model IFR. By contrast, model CFR has only a 0.11% higher objective

value than model D. Hence, model CFR provides feasible solutions at a minimal additional cost compared

to model D.

7 Computational experiments

We use benchmark instances from sets A, B, E, and P of the CVRPLIB (Uchoa et al., 2017) for experimental

evaluation. We considered all instances with up to 100 customers and a maximum vehicle capacity of 180.

This leaves us with 75 instances in total. When transforming the deterministic instances into instances

with stochastic customer demands, we assume that we are dealing with regular customers that always have

demand (ξi ≥ 1, i ∈ V ′). Let Di denote the deterministic demand of customer i ∈ V ′ as provided in the

original instance. In our experiments, we adopt a customer-dependent lower bound on the demand at each

customer, which is a fraction α of Di, specifically, di = max(1, αDi) with 0 < α < 1 and di rounded to the

nearest integer. The remaining portion of the demand follows a Poisson distribution with mean λi = Di−di.

Note that λi could be equal to zero for small values of Di and large values of α. For example, if Di = 2
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and α = 0.8, we have di = 2 and λi = 0. The observed demand of customer i depends on the realization of

di ∼ POIS(λi), and is expressed as:

ξi = di + di. (18)

The remainder of this section is structured as follows. Section 7.1 discusses the results obtained with our

proposed model. In Section 7.2, we compare these results to those obtained with the alternative models. The

impact of different levels of known demand (α) and target fill rates (F ) on the solution cost and collective

fill rates are studied in Sections 7.3 and 7.4. Finally, in Section 7.5, we investigate the contributions of

the different algorithmic components. All computational results are performed on a single thread of AMD

Rome 7H12 (2.6GHz) processor with 50 GB of available memory and two hours of computation time,

excluding the time for computing the upper bound on the feasible mean. Our implementation is available

at https://github.com/nsluijk/FSVRPpd.

7.1 CFR model

We performed preliminary testing on ten instances to select the values for the parameters of the BP&C

algorithm and report them in Table 2. Table 3 summarizes the results obtained with the proposed branch-

price-and-cut algorithm on the selected instances from sets A, B, E, and P with α = 0.5 and F = 0.95.

The first two columns indicate the instance sets and the number of instances considered. The next set of

columns provides the number of instances, the average computation time, the average optimality gap, and

the number of instances solved to the 1% optimality gap in the root node. The last two columns display the

number of instances that could not be solved within the allocated time and memory.

We observe that on 60 instances, the algorithm returns an integer solution within 1% of the lower bound.

For 17 out of the 60 instances, it holds that the difference between the lower and upper bound values is strictly

less than 1, i.e., they are solved to optimality. Additionally, it holds that ninety percent of them were already

solved to 1 % optimality in the root node, i.e., no branch-and-bound is necessary. The remaining fifteen

instances could not be solved within the allocated time (6) or memory (9). Figure 3 shows the number of

instances that could be solved within x seconds, for each set separately, as well as all sets together, excluding

the instances that could not be solved to a 1% optimality gap. We observe that fifty instances were solved

within ten minutes (600 seconds). The results clearly show that the method is efficient, since 60 out of 75

instances are solved to a 1% optimality gap. For detailed results per instance, we refer to Appendix 9.2.

7.2 Comparison to alternative models

We solved all four model formulations (D, DP, IFR, and CFR, as described in Section 6) on a subset of

ten instances. Models DP, IFR, and CFR are solved with (adaptations to) the proposed BP&C algorithm

to a 1% optimality gap. For model D, we took the guaranteed optimal solutions from CVRPLIB. Table 4

reports the objective values obtained for each instance and model combination. The models are arranged in

increasing order of objective values, starting with model DP and followed by model D, CFR, and IFR.

Models DP and D neglect the uncertainty associated with customer demands, which results in routes with

a high aggregated mean demand-to-vehicle-capacity ratio and, consequently, lower objective values. Model

IFR disregards the possibility of transferring reserved capacity from one customer to another, resulting in

sub-optimal solutions with higher objective values than those obtained with model CFR. On some instances,

model CFR produces lower objective values than model D. One reason is that some of the routes in the
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Table 2: Parameter settings.

Parameter Description Value

NC Minimum number of new columns for solving the integer
formulation

100

NC Maximum number of columns per iteration 250
NSRC

iter Maximum number of SRCs to add per iteration 40
NSRC

cust Maximum number of SRCs to add per customer per itera-
tion

3

SRCviolation Minimum violation of SRC 0.1
Imax Maximum number of iterations per route in tabu search 10
Itabu Maximum number of iterations a move is tabu in tabu

search
5

|M| Size of setM 5
ρ Fraction of capacity value for which we compute completion

bounds
0.8

NSI Number of standard deviations for statistical inference 4
Nscn Number of scenarios for statistical inference 100

Table 3: Summary results on selected instances from Sets A, B, E, and P.

1% optimality gap Time limit Memory limit

Set # # Time (s)a Gap(%)a # Root nodeb # #

A 27 23 502 0.60 22 1 3
B 23 14 1122 0.51 12 4 5
E 6 4 133 0.65 4 1 1
P 19 19 462 0.43 16 - -

a averaged over all instances solved to 1% optimality gap, b number of instances solved to
1% optimality gap in root node
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Figure 3: Performance plots on instances solved to 1% optimality gap
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Table 4: Objective values obtained with different models

DP D CFR IFR

A-n39-k6 823 831 834 844
A-n46-k7 911 914 928 971
B-n41-k6 824 829 830 854
B-n45-k6 673 678 690 720
B-n50-k7 740 741 741 750
P-n19-k2 195 212 195 219
P-n20-k2 209 216 209 232
P-n23-k8 525 529 551 568
P-n50-k10 682 696 694 711
P-n51-k10 732 741 746 764

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Fill rate

A-n39-k6
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D
CFR
IFR

Figure 4: Collective fill rates obtained with four different models.

solutions to model CFR have an aggregated mean demand exceeding the vehicle capacity, making them

infeasible in model D. The minimum and maximum difference in objective values with models D and CFR

are -8.02% and 4.15%, respectively. On average, we obtain 1.52% higher objective values with model CFR

compared to model D, with the benefit of guaranteed feasible routes, as we will show next.

Figure 4 depicts, for each instance and model, the corresponding fill rates of the routes in the solution

when evaluated with the demand distributions assumed in model CFR (α = 0.5). The collective fill rates

depicted for model IFR are well above F = 0.95, whereas only some of the fill rates of the routes obtained

with models DP and D exceed F = 0.95. One explanation for the feasible routes in the solutions to models

DP and D is the low aggregated mean demand-to-vehicle-capacity ratio of some of the routes, which indicates

that there is sufficient remaining capacity to serve demands that are larger than expected and, consequently,

achieve a collective fill rate that meets the target fill rate. In contrast to model CFR, where the collective

fill rate requirement is met for all routes, with models D and DP, this fill rate is not met for 29.69% and

42.86% of the routes, respectively. This demonstrates the necessity to account for stochasticity explicitly.

Hence, incorporating stochasticity and allowing partial deliveries ensures the solution is feasible at only a

marginal cost increase.

7.3 Different levels of uncertainty

In this section, we compare the results obtained with all four models for different levels of uncertainty. To

obtain the results, we consider the same subset of instances as in Section 7.2 and solve formulations CFR and

IFR for varying values of α, where lower and higher values of α represent cases of high and low uncertainty,
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Figure 5: Results obtained with varying levels of uncertainty

respectively. The solutions to formulations D and DP are independent of α and only require re-evaluation

of their collective fill rates for each value of α.

Figure 5a displays for α ∈ {0.1, 0.2, . . . , 0.9} the average difference in objective values between the

solutions obtained with model D, and the solutions obtained with model DP, CFR, and IFR, with F = 0.95

as before. The difference is constant for models D and DP, as the solutions do not depend on α. The

objective values of models CFR and IFR decrease as the uncertainty decreases (α increases). For α ≥ 0.5,

on average, lower objective values are obtained with model CFR compared to model D. Figure 5b shows

the percentage of routes with a collective fill rate that meets the target fill rate for each model and value of

α ∈ {0.1, 0.2, . . . , 0.9}. For model CFR, this percentage is always equal to 100. For model IFR, this holds

for almost all values of α, except for α = 0.9, where the percentage drops to 95.15%. Hence, at α = 0.9,

some solutions to model IFR contain routes with individual fill rates meeting the target fill rate while their

collective fill rate is below the target fill rate. We know from Section 3 that this is possible as the two

metrics are not comparable. Finally, we observe that as the value for α decreases (uncertainty increases),

fewer routes in the solutions to models D and DP meet the target fill rate.

7.4 Different service levels

In the following, we analyze the impact of different service levels (target fill rates) on the corresponding

solutions. We consider the same subset of instances as in Section 7.2 and solve models DP, CFR, and IFR

for F ∈ {0.90, 0.91, . . . , 0.99}, with α = 0.5 as before. Model D requires full demand satisfaction. Hence, its

solutions are independent of F . Figure 6a displays, for different values of F , the average difference between

the objective values obtained with model D, and models DP, CFR, and IFR. Similar objective values are

obtained with models DP, CFR, and IFR at low values for F , but they start to deviate as F increases.

Furthermore, as F approaches 1, the difference between the objective values obtained with models D and

DP becomes negligible. Figure 6b shows the percentage of routes that meet the target fill rate for each model

and F ∈ {0.90, 0.91, . . . , 0.99}. As the value for F increases, the percentage of feasible routes obtained with

models D and DP decreases. Overall, we conclude that accounting for stochasticity and partial deliveries

(model CFR) leads to solutions that are guaranteed to be feasible concerning the fill rate constraint and

have a marginal cost difference compared to model D. For small values of F , this difference is even negative.
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Figure 6: Results obtained with different target fill rates

Table 5: Details results on algorithmic performance.

Setting Avg. Time(s) # Root node only

Our proposed BP&C algorithm 10.8 10
without instance-specific bounds on µ̄ 57.9 10
without tabu search 15.3 10
without heuristic labeling 14.1 10
without knapsack bounds 11.0 10
without RCSP bounds1 533.1 5
without cuts (branch-and-price) 373.3 1
without SRC cuts 11.9 8
without RCC cuts 13.9 10

1 results reported on the 5 out of 10 instances that were solved to 1 % optimality.

7.5 Contribution of different algorithmic components

Our proposed BP&C algorithm consists of several components that together produce good results. To obtain

insights in the contribution of each algorithmic component, we study its impact by solving instances with our

proposed BP&C algorithm excluding the selected component. The analysis is performed on ten instances

from different instance sets and of varying sizes. Table 5 reports the average computation time and the

number of instances solved to 1% optimality in the root node. We observe that the inclusion of instance-

specific bounds on µ̄, RCSP bounds, and cuts significantly improve the average computation time and the

number of instances solved in the root node. Specifically, only 5 out of 10 instances could be solved to 1 %

optimality when the RCSP bounds were excluded from the algorithm. Moreover, by adding cuts, we avoid

branch-and-bound since we can solve more instances to a 1% optimality gap in the root node. Finally, we

observe that the computation time increases slightly if we exclude either heuristic column generator.

8 Conclusions

A common assumption in the models for the vehicle routing problem with stochastic demands is that all

demands must be satisfied. This is achieved by including recourse actions in two-stage stochastic program-

ming formulations or by ensuring with a high probability that all demand fits within the vehicle capacity
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(chance-constrained formulations). However, recourse actions may not be feasible in practice due to time

and/or safety restrictions, e..g, in humanitarian logistics, detours are undesirable due to bad road conditions

and/or the high risk of barricades. Additionally, the chance-constrained formulation does not make a dis-

tinction between small and large violations of vehicle capacity. One alternative is to relax the assumption of

full demand satisfaction and allow partial deliveries to customers. Practical applications of partial deliveries

include humanitarian logistics and food rescue programs. To ensure a fair solution for all customers, we

required that the expected minimum fill rate over all customers meets the target fill rate. We refer to the

resulting problem as the fair stochastic vehicle routing problem with partial deliveries.

In this work, we modeled the problem with a set partitioning formulation and solved it with a branch-

price-and-cut algorithm. One advantage of this approach is that the complexity related to the stochastic

customer demand can be entirely handled inside the pricing problem. We proposed a method for constructing

an upper bound on the feasible mean that can be used as a limiting resource in completion bounds and cuts.

To compute the collective fill rate of each route, we employed dynamic programming.

Computational experiments were performed on benchmark instances. When transforming the determinis-

tic instances into instances with stochastic customer demands, we assumed a lower bound on each customer’s

demand, with the possibility of additional demand that follows a Poisson distribution. Instances with up to

75 customers are solved to a 1% optimality gap. Additionally, we presented an extensive set of numerical

experiments in which we compared the results obtained with our proposed model to those obtained with

three alternative models with either simplified fill rate derivations and/or deterministic demand. The results

showed that with our proposed model, solutions are guaranteed to be feasible at a marginal cost increase

only (1.52% on average when compared to the deterministic model).

We conclude by mentioning a few interesting avenues for future research. First, the demand model

could be further extended to also incorporate varying lower bound values, where the lower bound on each

customer’s demand follows some distribution and is revealed at the start of the route, and additional demand

may be revealed upon arrival at the customer. Another interesting extension is the inclusion of correlated

demands. Also, more research is needed on additional mechanisms to better control the growth of the labels,

which will help in solving larger instances. Lastly, while we focused on a welfare-constraining model where

fairness was incorporated as a constraint, an alternative approach could be to consider a welfare-optimizing

model where the objective function is a convex combination of costs and fairness.

9 Appendix

9.1 Pricing problem

To formally define the pricing problem, let πi, βS , and γS denote the dual values corresponding to Constraints

(5), (9), and (10), respectively. Binary decision variable xij is equal to 1 if arc (i, j) ∈ A is used and 0

otherwise. Similarly, binary decision variable zi equals 1 if customer i ∈ V ′ is visited, and 0 otherwise.

Finally, integer decision variables ui indicate the position of customer i ∈ V ′ in the route. We now present

the arc-based formulation for the pricing problem:

min
∑
i∈V

∑
j∈V :
i ̸=j

cijxij −
∑
i∈C

πi −
∑

S∈SRCC

∑
i∈S

∑
j /∈S

βSxij −
∑

S∈SSRC

1

2

∑
i∈S

γS
∑
j∈V ′

xij


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s.t.
∑
i∈V ′

x0j = 1, (19)∑
i∈V ′

xi0 = 1, (20)∑
i∈V \{j}

xij = zi, j ∈ V ′, (21)

∑
j∈V \{i}

xij = zi, i ∈ V ′, (22)

uj − ui ≥ 1− |V ′|(1− xij), i, j ∈ V ′, i ̸= j, (23)

ui ≤ |V ′|zi, i ∈ V ′ (24)

fr(u) ≥ F, (25)

u0 = 0, (26)

ui ∈ N, i ∈ V ′, (27)

xij ∈ {0, 1}, i, j ∈ V, i ̸= j, (28)

zi ∈ {0, 1}, i ∈ V ′. (29)

The objective is to find the route with minimal reduced cost. Constraints (19) and (20) ensure that one

vehicle leaves and enters the depot. Constraints (21) and (22) are the flow conservation constraints and

Constraints (23) ensure that the route does not contain any subtours. Constraints (24) require that the

position variable ui can only be positive if customer i ∈ V ′ is visited in the route. The position variables are

not only included to eliminate subtours, but also to derive the collective fill rate of the constructed route.

Let m = maxi ui and let s ∈ Nm represent the customer sequence, i.e., sk = i if ui = k, for all i ∈ V ′ and

k ∈ {1, . . . ,m}. Then, we have

fr(u) = vs(1, Q). (30)

Constraints (25) ensure that the returned route has a collective fill rate that is at least equal to F . Finally,

Constraints (26)-(29) set the domains of the variables.

9.2 Detailed computation results

Tables 6 - 9 show the results obtained with the proposed branch-price-and-cut algorithm on the selected

instances from sets A, B, E and P with α = 0.5 and F = 0.95. Columns “LB”, “UB”, “Gap”, “T(s)”,

“# Nodes”, “# RCC” and “# SRC” report, respectively, the lower bound, upper bound, optimality gap,

solving time in seconds, number of nodes explored in the branch-and-bound tree, number of RCCs added,

and, finally, number of SRCs added. A dash in column “T(s)” indicates that the corresponding instance

could not be solved with the allocated memory. The remaining columns contain a dash if the algorithm

did not produce a valid lower bound for the corresponding instance, which holds for four out of the nine

instances with memory issues. On 60 instances, the algorithm returns a solution that is within 1% of the

lower bound, and on 17 of them, the difference between the lower and upper bound is less than 1, i.e., they

are solved to optimality. The remaining fifteen instances could not be solved within the allocated time (6)

or memory (9). Column “# Nodes” shows that most instances were solved in the root node. Finally, we

observe that on some instances we already obtain an optimality gap of 1% without adding any cuts.
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Table 6: Results on selected instances from set A.

Instance LB UB Gap T(s) # Nodes # RCC # SRC

A-n32-k5 781.85 784 0.27 5 1 18 0
A-n33-k5 656.43 661 0.70 3 1 0 0
A-n33-k6 737.40 742 0.62 4 1 14 0
A-n34-k5 778.00 778 0.00 7 1 47 23
A-n36-k5 802.81 807 0.52 10 1 40 24
A-n37-k5 669.00 669 0.00 275 1 63 10
A-n37-k6 942.00 949 0.74 12 1 46 50
A-n38-k5 730.70 733 0.31 21 1 49 49
A-n39-k5 824.36 830 0.68 23 1 122 26
A-n39-k6 827.03 834 0.84 9 1 63 20
A-n44-k6 935.67 942 0.68 7 1 26 0
A-n45-k6 953.09 956 0.30 20 3 94 35
A-n45-k7 1141.09 1146 0.43 10 1 100 0
A-n46-k7 921.75 928 0.68 20 1 180 25
A-n48-k7 1081.47 1092 0.97 28 1 113 29
A-n53-k7 997.99 1033 3.51 7200 1 0 0
A-n54-k7 1162.21 1170 0.67 164 1 195 28
A-n55-k9 1072.51 1083 0.98 14 1 121 21
A-n60-k9 1344.65 1358 0.99 3485 1 102 59
A-n61-k9 1029.96 1040 0.97 42 1 125 104
A-n62-k8 - - - - 0 - -
A-n63-k10 1302.12 1315 0.99 304 1 129 34
A-n63-k9 1618.57 1634 0.95 316 1 344 56
A-n64-k9 1399.09 1416 1.21 - 1 57 83
A-n65-k9 1183.48 1186 0.21 149 1 147 39
A-n69-k9 1161.99 1166 0.35 6615 1 78 136
A-n80-k10 - - - - 0 - -
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Table 7: Results on selected instances from set B.

Instance LB UB Gap T(s) # Nodes # RCC # SRC

B-n31-k5 672.00 672 0.00 53 1 9 0
B-n34-k5 781.82 789 0.92 97 1 24 0
B-n35-k5 958.00 960 0.21 12 1 16 0
B-n38-k6 764.36 808 5.71 7200 1 31 59
B-n39-k5 555.00 555 0.00 148 1 35 29
B-n41-k6 828.50 830 0.18 12 1 37 0
B-n43-k6 740.58 747 0.87 36 1 79 43
B-n44-k7 872.35 880 0.88 13 1 121 0
B-n45-k5 750.54 761 1.39 - 0 44 0
B-n45-k6 683.58 690 0.94 2433 11 92 61
B-n50-k7 736.39 741 0.63 347 1 41 0
B-n50-k8 1275.20 1300 1.94 7200 3 107 106
B-n51-k7 1035.09 1059 2.31 - 0 29 30
B-n52-k7 746.31 747 0.09 1486 1 131 27
B-n56-k7 - - - - 0 - -
B-n57-k7 1142.89 1147 0.36 3467 1 102 0
B-n57-k9 1599.89 1610 0.63 6773 3 166 95
B-n63-k10 1489.70 1503 0.89 115 1 134 0
B-n64-k9 852.98 886 3.87 - 0 139 0
B-n66-k9 - - - - 0 - -
B-n67-k10 1032.44 1038 0.54 720 1 128 55
B-n68-k9 1267.92 1301 2.61 7200 1 305 93
B-n78-k10 1174.14 1278 8.85 7200 0 1 0

Table 8: Results on selected instances from set E.

Instance LB UB Gap T(s) # Nodes # RCC # SRC

E-n31-k7 365.20 378 3.50 - 440 4160 135
E-n51-k5 521.00 521 0.00 49 1 58 47
E-n76-k10 823.82 832 0.99 76 1 123 105
E-n76-k14 1011.93 1020 0.80 26 1 47 101
E-n76-k8 732.97 739 0.82 382 1 92 150
E-n101-k14 1054.07 1097 4.07 7200 1 72 0
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Table 9: Results on selected instances from set P.

Instance LB UB Gap T(s) # Nodes # RCC # SRC

P-n16-k8 455.50 460 0.99 0 1 9 2
P-n19-k2 195.00 195 0.00 5 1 0 0
P-n20-k2 209.00 209 0.00 7 1 0 0
P-n21-k2 211.00 211 0.00 7 1 0 0
P-n22-k2 216.00 216 0.00 10 1 0 9
P-n23-k8 546.50 551 0.82 0 1 8 0
P-n40-k5 455.69 458 0.51 12 1 22 0
P-n45-k5 510.00 510 0.00 24 1 73 72
P-n50-k10 694.00 694 0.00 6 1 31 57
P-n50-k7 555.00 555 0.00 45 5 76 69
P-n50-k8 622.77 629 1.00 7192 177 72 72
P-n51-k10 742.65 746 0.45 5 1 41 27
P-n55-k10 688.38 692 0.53 1321 3 23 114
P-n55-k15 939.67 945 0.57 2 1 21 0
P-n55-k7 562.80 568 0.92 60 1 35 117
P-n60-k10 738.51 745 0.88 12 1 41 0
P-n60-k15 967.27 969 0.18 6 1 48 41
P-n65-k10 791.52 796 0.57 25 1 39 54
P-n70-k10 821.16 828 0.83 40 1 70 106
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